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Abstract

This research introduces an effective numerical algorithm to determine the numerical solution of the

Lane-Emden equation. This method is based on the variational iteration method coupled with the ho-

motopy analysis method. We also included the convergence study of the proposed algorithm. Eight

application problems of the Lane-Emden type equation of various kinds with several types of initial and

boundary conditions are included to demonstrate the efficacy and accuracy of the proposed algorithm.

The numerical outcomes are contrasted with those obtained by other methods [12, 20, 21] and the exact

solution. Unlike other methods, the proposed algorithm does not require discretization or perturbation

and can be applied easily and accurately. The proposed method can solve complex problems with less

computational work and computation time.
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1 Introduction

In recent years, singular Lane-Emden equations (LEE) have arisen in many real-world applications in the

fields of engineering and science. It arises in the modeling of stellar structure, clusters of galaxies, the

catalytic diffusion process, thermal explosions, the behavior of gas clouds, population evolution, etc. In this

article, we consider the general Lane-Emden equation that arises in astrophysics

d2V (t)

dt2
+

α

t

dV (t)

dt
+ f(t, V (t)) = 0, 0 < t ≤ 1, α ≥ 0 (1.1)
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with the initial and boundary conditions

V (0) = a, V ′(0) = b, a1V (1) + b1V
′(1) = c (1.2)

where α is a shape factor that describes the geometry of a gas vessel and f represents a non-linear function.

It is difficult to capture a solution close to the singular point of any nonlinear differential equation

because the coefficients in the differential equation blow up around singularities. Wazwaz [23] presented two

different approaches for solving LEEs using the Adomian decomposition technique. Yildirim and Ozis [24]

proposed a homotopy perturbation method to solve IVPs of LEEs. In [8], Ozturk and Gulsu proposed an

approximation algorithm using Hermite polynomials for solving LEEs arising in astrophysics and engineering.

In [22], Gorder et al. presented an analytic solution using the homotopy analysis method and standard power

series approach of LEE that describes the thermal behaviour of a spherical gas cloud acting under the mutual

attraction of its molecules. Al-Hayani et al. [2] proposed an algorithm using the homotopy analysis method

to find the numerical solution for IVPs of LEE. In [14], Singh et al. presented an algorithm for solving

LEEs with various boundary conditions using the Haar wavelet collocation method. In [3], Dizicheh et

al. presented a spectral method for finding the approximate solution of LEEs using the Legendre wavelet.

In [10], Sabir et al. proposed an algorithm based on a Morlet wavelet neural network to solve second-order

LEE. In [19], Tiwari et al. proposed an orthogonal polynomial wavelet method for solving strongly nonlinear

LEE. In [13], Singh proposed a scheme using Green’s function and decomposition technique to solve coupled

LEEs. In [11], Saha and Singh developed a new method for dealing with IVPs of second-order Emden

Fowler pantograph differential equations using Laguerre polynomials. In [17], Sinha and Maroju developed

an algorithm for solving nonlinear LEEs using the variational iteration method and the quasilinearization

method. In [16], Sinha and Maroju introduce an algorithm to solve coupled Lane-Emden type equations

using the homotopy analysis method by embedding the quasilinearization technique. In [1], Ahmed described

a numerical algorithm to obtain the approximate solution of singular LEEs using the first kind of shifted

Chebyshev polynomials. In [7], Malele et al. used a high-order compact-finite-difference scheme for solving

LEEs with various boundary conditions.

In this research, we are going to introduce an effective numerical algorithm called the homotopy vari-

ational iteration method (HVIM), which is based on the variational iteration method [4, 15, 18] coupled

with the homotopy analysis method [5, 6, 16] to determine the numerical solution of the Lane-Emden type

equation. Also, the convergence study of HVIM is addressed under general conditions. We included eight

different kinds of nonlinear LEEs arises in astrophysics, where two are boundary value problems and the re-
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maining six are initial value problems. We consider the LEEs containing nonlinear functions as exponential,

trigonometric, and hyperbolic, which is difficult to solve due to their strong nonlinearity, which can be solved

by means of the proposed HVIM. The numerical results obtained by the proposed HVIM are compared with

advanced Adomian decomposition method [20,21], homotopy perturbation method [12] and available exact

solutions to check the reliability of the method. Unlike other methods, the proposed algorithm does not

require discretization or perturbation and can be applied easily and accurately. The proposed method can

solve complex problems with less computational work and computation time.

2 The VIM and the Lagrange multiplier for LEEs

According to variational theory [4, 15], correction functional for Lane-Emden equation (1.1) can be con-

structed as

Vk+1(t) = Vk(t) +

∫ t

0
λ(x)

[
d2Vk(x)

dx2
+

α

x

dVk(x)

dx
+ f(x, Ṽk)

]
dx, k = 0, 1, 2, ...

where, λ is a general Lagrange multiplier and, f(x, Ṽk) denote restricted variation, i.e. δf(x, Ṽk) = 0.

δVk+1(t) = δVk(t) + δ

∫ t

0
λ(ξ)

[
d2Vk(x)

dx2
+

α

x

dVn(x)

dx

]
dx.

On simplifying the above equation, we get the following stationary conditions

1 +
α

t
λ(t)− λ′(t) = 0,

α (xλ′(x)− λ(x))

x2
− λ′′(x) = 0, λ(t) = 0.

Solving the above expression for λ, we obtained

λ(x) =


x log

(x
t

)
, α = 1

x
(
xα−1 − tα−1

)
(α− 1)tα−1

, α ̸= 1

(2.1)

3 Construction of homotopy variational iteration method (HVIM)

In this part, we propose HVIM for solving the LEEs. Using the Lagrange multiplier λ, we have the following

variational iteration formula

Vk+1(t) = Vk(t) + c0

∫ t

0
λ(x)

[
d2Vk(x)

dx2
+

α

x

dVk(x)

dx
+ f(x, Vk)

]
dx, (3.1)

where c0 is a control parameter.
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To obtain the series solution of (1.1), we couple the concept of VIM with HAM. Using the homotopy analysis

method, we get the following general zero-order deformation equation for (3.1) (see appendix in [12])

H(t, q, v) := (1− q)[v0 − V ] = qh

∫ t

0
λ(x)

[
d2V (x)

dx2
+

α

x

dV (x)

dx
+ f(x, V (x))

]
dx, (3.2)

where q ∈ [0, 1] is an embedding parameter, h = −c0 is a convergence control parameter and v0 is the initial

guess satisfying (1.2). We have from (3.2)

H(t, 0, V ) = V − v0,

H(t, 1, V ) = h

∫ t

0
λ(x)

[
d2V (x)

dx2
+

α

x

dV (x)

dx
+ f(x, V (x))

]
dx.

Therefore V (t, q) changes from v0(t) to the best approximate solution of (3.1) as q varies from 0 to 1. Taylor

series expansion of v(t,q) w.r.t. parameter q

V (t, q) = v0 +
∞∑

m=1

vmqm, (3.3)

where

vm =
1

m!

∂mv(t, q)

∂qm
|q=0 . (3.4)

If h ̸= 0 is chosen properly then the series (3.3) will be convergent at q = 1

V (t, 1) = V (t) =
∞∑

m=0

vm, (3.5)

which will be the solution of (1.1)

Defining the vector v⃗m = {v0, v1, . . . , vm} and differentiating (3.2) m times w.r.t. parameter q, dividing

it by m! and setting subsequently q = 0 then the mth-order deformation equation is obtained

vm = ηvm−1 − hRm(t, v⃗m−1), (3.6)

where

η =


0, m ≤ 1

1, m > 1
(3.7)

and
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Rm(t, v⃗m−1) =
1

(m− 1)!

∂m−1

∂qm−1

∫ t

0
λ(x)

[
d2V (x, q)

dx2
+

α

x

dV (x, q)

dx
+ f(x, q, V )

]
dx

=

∫ t

0
λ(x)

[
d2vm−1(x)

dx2
+

α

x

dvm−1(x)

dx
+

1

(m− 1)!

∂m−1

∂qm−1
f

( ∞∑
i=0

viq
i

)
|q=0

]
dx

=

∫ t

0
λ(x)

[
d2vm−1(x)

dx2
+

α

x

dvm−1(x)

dx
+ Pm−1

]
dx, (3.8)

where

Pm−1 =
1

(m− 1)!

∂m−1

∂qm−1
f

( ∞∑
i=0

viq
i

)
|q=0 . (3.9)

Therefore choosing the initial guess v0 satisfying (1.2), vm,m ≥ 1 are successively obtained. Hence the

kth-order approximate solution of (1.1) can be obtained by

Vk(t) =

k∑
m=0

vm. (3.10)

4 Convergence analysis

Theorem 4.1 Suppose the Lipschitz condition | f(t, V (t)) − f(t, V ∗(t)) |≤ M | V (t) − V ∗(t) |, where

f(t, V (t)) is nonlinear function, such that there exist K ∈ (0, 1) then the series
∑k

m=0 vm obtained from

(3.10) is convergent in Banach space X = (C[0, 1], ||V ||) with defined norm

||V || = max
t∈[0,1]

| V (t) |, V ∈ X

Proof From (3.6)-(3.10), we have

Vk =
k∑

m=0

vm =
k∑

m=0

vm−1 − h
k∑

m=0

∫ t

0
λ(x)

[
d2vm−1(x)

dx2
+

α

x

dvm−1(x)

dx
+ Pm−1

]
dx

= Vk−1 − h

∫ t

0
λ(x)

[
d2Vk−1(x)

dx2
+

α

x

dVk−1(x)

dx
+

k∑
m=0

Pm−1

]
dx.
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For n > p and for all n, p ∈ N ,

∥Vk − Vp∥ = max
t∈[0,1]

∣∣∣∣(Vk−1 − Vp−1)−

h

∫ t

0
λ(x)

[
d2Vk−1(x)

dx2
− d2Vp−1(x)

dx2
+

α

x

(
dVk−1(x)

dx
− dVp−1(x)

dx

)
+

k∑
m=0

Pm−1 −
p∑

m=0

Pm−1

]
dx

∣∣∣∣
≤ ∥Vk−1 − Vp−1∥+

max
t∈[0,1]

∣∣∣∣h∫ t

0
λ(x)

[
d2Vk−1(x)

dx2
− d2Vp−1(x)

dx2
+

α

x

(
dVk−1(x)

dx
− dVp−1(x)

dx

)
+

k∑
m=0

Pm−1 −
p∑

m=0

Pm−1

]
dx

∣∣∣∣.
Using the relation

∑k
m=0 Pm ≤ f(Vk) [9]

∥Vk − Vp∥ ≤ ∥Vk−1 − Vp−1∥+

| h | max
t∈[0,1]

∫ t

0

∣∣∣∣λ(x) [d2Vk−1(x)

dx2
− d2Vp−1(x)

dx2
+

α

x

(
dVk−1(x)

dx
− dVp−1(x)

dx

)
+ (f(Vk)− f(Vp))

]
dx

∣∣∣∣.
(4.1)

As d2

dξ2
and d

dξ are continuous linear operators in X, so there exists the real numbers β1 and β2 such that∥∥∥∥d2Vk

dx2
− d2Vk−1

dx2

∥∥∥∥ ≤ β1 ∥Vk − Vk−1∥ , (4.2)∥∥∥∥dVk

dx
− dVk−1

dx

∥∥∥∥ ≤ β2 ∥Vk − Vk−1∥ , (4.3)

γ1 = max
t∈[0,1]

∫ t

0
|λ(x)|dx, and γ2 = max

t∈[0,1]

∫ t

0

∣∣∣∣λ(x)x

∣∣∣∣ dx. (4.4)

From (4.1)-(4.4) and using the Lipschitz condition, we have

∥Vk − Vp∥ ≤ ∥Vk−1 − Vp−1∥+ | h | {γ1β1∥Vk−1 − Vp−1∥+ | α | γ2β2∥Vk−1 − Vp−1∥+ γ1M∥Vk−1 − Vp−1∥}

= (1+ | h | {γ1β1+ | α | γ2β2 + γ1M}) ∥Vk−1 − Vp−1∥

= K∥Vk−1 − Zp−1∥,

where K = 1+ | h | {γ1β1+ | α | γ2β2 + γ1M}.

Setting k = p+ 1, we get

∥Vp+1 − Vp∥ ≤ K∥Vp − Vp−1∥ ≤ K2∥Vp−1 − Vp−2∥ ≤ ... ≤ Kp∥V1 − V0∥.

Using triangular inequality for all k, p ∈ N with k > p

∥Vk − Vp∥ ≤ ∥Vk −Xk−1∥+ ∥Vk−1 − Vk−2∥+ ∥Vk−2 − Vk−3∥+ ...+ ∥Vp+1 − Vp∥

≤ Kp
(
1 +K +K2 + ...+Kk−p−1

)
∥V1 − V0∥

= Ks

(
1−Kn−s

1−K

)
∥v1∥.
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Since K ∈ (0, 1), therefore

∥Vk − Vp∥ ≤
(

Kp

1−K

)
∥v1∥. (4.5)

Taking k, p → ∞, we get Vk → Vp. Hence, < Vk > converges to the analytic solution.

5 Numerical results

In this section, we include eight application problems of the Lane-Emden type equation with various initial

and boundary conditions and compare the obtained numerical results by using the proposed homotopy

variational iteration method with those obtained by advanced Adomian decomposition method (AADM)

[20, 21] and homotopy perturbation method (HPM) [12] to illustrate the applicability and accuracy of the

homotopy variational iteration method.

Example 1. Consider the following nonlinear LEE that arises in equilibrium isothermal gas sphere

d2V (t)

dt2
+

2

t

d

dt
V (t) = −V 5, (5.1)

with the initial and boundary conditions

V (0) = 1, V ′(0) = 0, V (1) =

√
3

4
.

The Exact solution is

V (t) =

√
3

x+ t2
.

Here α = 2, so LEE in (5.1) is spherical.

On applying the proposed HVIM, we get the following (m+ 1)th iterative scheme for (5.1)

Vk+1(t) = Vk − h

∫ t

0

x (x− t)

t

[
d2Vk(x)

dx2
+

α

x

dVk(x)

dx
+

k∑
m=0

Pm

]
dx, (5.2)

Where Pm can be obtain from (3.9).

Applying the proposed HVIM, with the initial guess V0 = v0 = 1 and h = −1, the 4th-order approximate

solution for (5.1) can be obtained as

V4(t) = 1− 0.166667t2 + 0.0416667t4 − 0.0115741t6 + 0.00337577t8
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Table 1: Comparison of numerical results of Example 1

t V (t) V4(t) AADM [21] HPM [12] R4 r4 [21] r4 [12]

0.1 0.9983374885 0.9983374885 0.9819992464 0.9901138001 1.01030E − 13 1.63382E − 02 8.22369E − 03

0.2 0.9933992678 0.9933992679 0.9774514890 0.9856630325 1.02452E − 10 1.59478E − 02 7.73624E − 03

0.3 0.9853292782 0.9853292840 0.9700154210 0.9783541835 5.82008E − 09 1.53139E − 02 6.97509E − 03

0.4 0.9743547037 0.9743548049 0.9599063336 0.9683460216 1.01246E − 07 1.44484E − 02 6.00868E − 03

0.5 0.9607689228 0.9607698417 0.9474256347 0.9558512822 9.18870E − 07 1.33433E − 02 4.91764E − 03

0.6 0.9449111825 0.9449167000 0.9329608489 0.9411276222 5.51748E − 06 1.19503E − 02 3.78356E − 03

0.7 0.9271455408 0.9271704283 0.9169856171 0.9244666981 2.48875E − 05 1.01599E − 02 2.67884E − 03

0.8 0.9078412990 0.9079322864 0.9000596969 0.9061819006 9.09874E − 05 7.78160E − 03 1.65940E − 03

0.9 0.8873565094 0.8876397215 0.8828289622 0.8865953896 2.83212E − 04 4.52755E − 03 7.61120E − 04

1.0 0.8660254038 0.8668016975 0.8660254038 0.8660252039 7.76294E − 04 1.11022E − 16 1.99841E − 07

In Table 1, we compare the approximate solutions and corresponding absolute errors obtained by HVIM

with the existing AADM [21], HPM [12] and available Exact solution. Figure 1 displays the comparison of

numerical solutions and corresponding absolute errors obtained by HVIM with the existing methods [12,21].

We conclude that the proposed HVIM has greater efficiency, and we reach good accuracy within a few

iterations.

Example 2. Consider the following nonlinear LEE that arises in thermal explosion in cylindrical vessel

d2V (t)

dt2
+

1

t

d

dt
V (t) = −ceV (t), (5.3)

with the initial and boundary conditions

V (0) = 2 ln2(2− 2
√
3), V ′(0) = 0, V (1) = 0.

The Exact solution is

V (t) = 2 ln

(
1 + c1
1 + c1t2

)
, where c1 =

(8− 2c) +−
√

(8− 2c)2 − 4c2

2c

Here α = 1, so LEE in (5.3) is cylindrical.

On applying the proposed HVIM for c = 1 with the initial guess V0 = v0 = 2 ln2(2− 2
√
3) and h = −1, the
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(a) HVIM Vs AADM Vs HPM (b) Absolute error

Figure 1: Graphical comparison for example 1

4th-order approximate solution for (5.3) can be obtained as

V4(t) = 0.316694− 0.343146t2 + 0.0294373t4 − 0.00336709t6 + 0.000433276t8

In Table 2, we compare the approximate solutions and corresponding absolute errors obtained by HVIM

with the existing AADM [21], HPM [12] and available Exact solution. Figure 2 displays the comparison of

numerical solutions and corresponding absolute errors obtained by HVIM with the existing methods [12,21].

We conclude that the proposed HVIM has greater efficiency, and we reach good accuracy within a few

iterations.

Example 3. Consider the following nonlinear singular boundary value problem of LEE

d2V (t)

dt2
+

2

t

d

dt
V (t) =

c1V (t)

c2 + V (t)
(5.4)

with the boundary conditions

V ′(0) = 0, 5V (1) + V ′(1) = 5.

where c1 = 0.76129 and c2 = 0.03119 Here α = 2, so LEE in (5.4) is spherical.

On applying the proposed HVIM with the initial guess V0 = v0 = 1 and h = −1, the 4th-order approximate

solution for (5.4) can be obtained as

V4(t) = 1.+ 0.123044t2 + 0.000137378t4 − 7.73281588853816× 10−6t6 + 5.307578546053464× 10−7t8
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Table 2: Comparison of numerical results of Example 2

t V (t) V4(t) AADM [21] HPM [12] R4 r4 [21] r4 [12]

0.1 0.3132658505 0.3132658505 0.3091110525 0.3107822715 5.88418E − 15 4.15480E − 03 2.48358E − 03

0.2 0.3030154228 0.3030154228 0.2989032977 0.3006563961 6.05554E − 12 4.11213E − 03 2.35903E − 03

0.3 0.2860472653 0.2860472657 0.2820071442 0.2838860900 3.46709E − 10 4.04012E − 03 2.16118E − 03

0.4 0.2625311275 0.2625311336 0.2585977491 0.2606277580 6.09658E − 09 3.93338E − 03 1.90337E − 03

0.5 0.2326967839 0.2326968399 0.2289203320 0.2310948050 5.60745E − 08 3.77645E − 03 1.60198E − 03

0.6 0.1968268057 0.1968271477 0.1932901754 0.1955522821 3.42017E − 07 3.53663E − 03 1.27452E − 03

0.7 0.1552481067 0.1552496768 0.1520926245 0.1543102970 1.57011E − 06 3.15548E − 03 9.3781E − 04

0.8 0.1083227634 0.1083286149 0.1057830873 0.1077164120 5.85148E − 06 2.53968E − 03 6.06351E − 04

0.9 0.0564386025 0.0564571922 0.0548870346 0.0561472994 1.85898E − 05 1.55157E − 03 2.91303E − 04

1.0 0.0000000000 0.0000520553 −2.082E − 17 −2.594E − 08 5.20553E − 05 2.08167E − 17 2.59375E − 08

(a) HVIM Vs AADM Vs HPM (b) Absolute error

Figure 2: Graphical comparison for example 2
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Table 3: Numerical comparison of Example 3

t V4(t) AADM [21] R4 r4 [21]

0.1 1.0012304530 0.8296798519 4.47975E − 14 7.37113E − 01

0.2 1.0049219764 0.8333484897 1.14257E − 11 7.37113E − 01

0.3 1.0110750606 0.8394636718 2.91129E − 10 7.37113E − 01

0.4 1.0196905138 0.8480265769 2.88457E − 09 7.37113E − 01

0.5 1.0307694490 0.8590388551 1.70170E − 08 7.37113E − 01

0.6 1.0443132659 0.8725026281 7.22638E − 08 7.37113E − 01

0.7 1.0603236294 0.8884204889 2.44447E − 07 7.37113E − 01

0.8 1.0788024451 0.9067955021 6.99766E − 07 7.37113E − 01

0.9 1.0997518334 0.9276312038 1.76274E − 06 7.37113E − 01

1.0 1.1231741029 0.9509316014 4.01325E − 06 7.37113E − 01

(a) HVIM Vs AADM (b) Absolute residual error

Figure 3: Graphical comparison for example 3
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In Table 3, we compare the approximate solutions and corresponding absolute residual errors obtained

by HVIM with the existing AADM [20]. Figure 3 displays the comparison of numerical solutions and

corresponding absolute residual errors obtained by HVIM with the AADM [20]. We conclude that the

proposed HVIM has greater efficiency, and we reach good accuracy within a few iterations.

Example 4. Consider the following nonlinear initial value problem of LEE arises in astrophysics

d2V (t)

dt2
+

2

t

d

dt
V (t) = −eV (x) (5.5)

with the initial conditions

V (0) = 0, V ′(0) = 0.

On applying the proposed HVIM with the initial guess V0 = v0 = 0 and h = −1, the 4th-order approximate

solution for (5.5) can be obtained as

V4(t) = −0.166667t2 + 0.00833333t4 − 0.000529101t6 + 0.0000373555t8

Table 4: Numerical comparison of Example 4

t V4(t) AADM [20] R4 r4 [20]

0.1 −0.0016658339 −0.0016658333 3.07854E − 12 2.22006E − 06

0.2 −0.0066533671 −0.0066533333 7.85679E − 10 3.54178E − 05

0.3 −0.0149328833 −0.0149325000 2.00348E − 08 1.78437E − 04

0.4 −0.0264554760 −0.0264533333 1.98721E − 07 5.60158E − 04

0.5 −0.0411539546 −0.0411458333 1.17389E − 06 1.35583E − 03

0.6 −0.0589440583 −0.0589200000 4.99298E − 06 2.78219E − 03

0.7 −0.0797259280 −0.0796658333 1.69206E − 05 5.09154E − 03

0.8 −0.1033857667 −0.1032533333 4.85356E − 05 8.56513E − 03

0.9 −0.1297976054 −0.1295325000 1.22531E − 04 1.35060E − 02

1.0 −0.1588250784 −0.1583333333 2.79618E − 04 2.02319E − 02

In Table 4, we compare the approximate solutions and corresponding absolute residual errors obtained

by HVIM with the existing AADM [20]. Figure 4 displays the comparison of numerical solutions and

corresponding absolute residual errors obtained by HVIM with the AADM [20]. We conclude that the

12



(a) HVIM Vs AADM (b) Absolute residual error

Figure 4: Graphical comparison for example 4

proposed HVIM has greater efficiency, and we reach good accuracy within a few iterations.

Example 5. Consider the following nonlinear trigonometric problem of LEE

d2V (t)

dt2
+

2

t

d

dt
V (t) = −Sin(V (t)) (5.6)

with the initial conditions

V (0) = 1, V ′(0) = 0.

On applying the proposed HVIM with the initial guess V0 = v0 = 1 and h = −1, the 4th-order approximate

solution for (5.6) can be obtained as

V4(t) = 1− 0.140245t2 + 0.00378874t4 + 0.000148292t6 − 0.0000107728t8

In Table 5, we compare the approximate solutions and corresponding absolute residual errors obtained

by HVIM with the existing AADM [20]. Figure 5 displays the comparison of numerical solutions and

corresponding absolute residual errors obtained by HVIM with the AADM [20]. We conclude that the

proposed HVIM has greater efficiency, and we reach good accuracy within a few iterations.

Example 6. Consider the following nonlinear trigonometric problem of LEE

d2V (t)

dt2
+

2

t

d

dt
V (t) = −Cos(V (t)) (5.7)
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Table 5: Numerical comparison of Example 5

t V4(t) AADM [20] R4 r4 [20]

0.1 0.9985979274 0.9985979272 9.82547E − 15 6.22130E − 07

0.2 0.9943962649 0.9943962554 2.75274E − 12 9.92073E − 06

0.3 0.9874087314 0.9874086240 8.26175E − 11 4.99427E − 05

0.4 0.9776583658 0.9776577655 9.93206E − 10 1.56603E − 04

0.5 0.9651777802 0.9651755052 7.19872E − 09 3.78449E − 04

0.6 0.9500094993 0.9500027615 3.76175E − 08 7.74951E − 04

0.7 0.9322063712 0.9321895459 1.55867E − 07 1.41434E − 03

0.8 0.9118320290 0.9117949626 5.42366E − 07 2.37100E − 03

0.9 0.8889613799 0.8888872089 1.64595E − 06 3.72255E − 03

1.0 0.8636810942 0.8635435751 4.47304E − 06 5.54644E − 03

(a) HVIM Vs AADM (b) Absolute residual error

Figure 5: Graphical comparison for example 5
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with the initial conditions

V (0) = 1 +
π

2
, V ′(0) = 0.

On applying the proposed HVIM with the initial guess V0 = v0 = 1 + π
2 and h = −1, the 4th-order

approximate solution for (5.7) can be obtained as

V4(t) = 2.5708 + 0.140245t2 + 0.00378874t4 − 0.000148292t6 − 0.0000107728t8

Table 6: Numerical comparison of Example 6

t V4(t) AADM [20] R4 r4 [20]

0.1 2.5721991572 2.5721991573 8.93730E − 15 6.23521E − 07

0.2 2.5764121858 2.5764121953 1.99557E − 12 1.00098E − 05

0.3 2.5834489715 2.5834490804 3.89438E − 11 5.09567E − 05

0.4 2.5933319303 2.5933325448 2.17682E − 10 1.62300E − 04

0.5 2.6060920549 2.6060944140 2.33805E − 11 4.00182E − 04

0.6 2.6217685068 2.6217756065 7.09392E − 09 8.39837E − 04

0.7 2.6404080661 2.6404261335 5.29620E − 08 1.57792E − 03

0.8 2.6620644183 2.6621050994 2.51166E − 07 2.73540E − 03

0.9 2.6867972559 2.6868807016 9.29641E − 07 4.46098E − 03

1.0 2.7146711656 2.7148302302 2.90866E − 06 6.93514E − 03

In Table 6, we compare the approximate solutions and corresponding absolute residual errors obtained

by HVIM with the existing AADM [20]. Figure 6 displays the comparison of numerical solutions and

corresponding absolute residual errors obtained by HVIM with the AADM [20]. We conclude that the

proposed HVIM has greater efficiency, and we reach good accuracy within a few iterations.

Example 7. Consider the following nonlinear hyperbolic problem of LEE

d2V (t)

dt2
+

2

t

d

dt
V (t) = −Sinh(V (t)) (5.8)

with the initial conditions

V (0) = 1, V ′(0) = 0.

15



(a) HVIM Vs AADM (b) Absolute residual error

Figure 6: Graphical comparison for example 6

On applying the proposed HVIM with the initial guess V0 = v0 = 1 and h = −1, the 4th-order approximate

solution for (5.8) can be obtained as

V4(t) = 1− 0.195867t2 + 0.0151119t4 − 0.00109194t6 + 0.000098555t8

In Table 7, we compare the approximate solutions and corresponding absolute residual errors obtained

by HVIM with the existing AADM [20]. Figure 7 displays the comparison of numerical solutions and

corresponding absolute residual errors obtained by HVIM with the AADM [20]. We conclude that the

proposed HVIM has greater efficiency, and we reach good accuracy within a few iterations.

Example 8. Consider the following nonlinear hyperbolic problem of LEE

d2V (t)

dt2
+

2

t

d

dt
V (t) = −Cosh(V (t)) (5.9)

with the initial conditions

V (0) = 1, V ′(0) = 0.

On applying the proposed HVIM with the initial guess V0 = v0 = 1 and h = −1, the 4th-order approximate

solution for (5.9) can be obtained as

V4(t) = 1− 0.25718t2 + 0.0151119t4 − 0.00163787t6 + 0.000156302t8
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Table 7: Numerical comparison of Example 7

t V4(t) AADM [20] R4 r4 [20]

0.1 0.9980428414 0.9980428425 1.05561E − 11 4.58075E − 06

0.2 0.9921894348 0.9921895044 2.69214E − 09 7.30338E − 05

0.3 0.9824935991 0.9824943887 6.85614E − 08 3.67576E − 04

0.4 0.9690437586 0.9690481667 6.78844E − 07 1.15231E − 03

0.5 0.9519611019 0.9519777785 4.00117E − 06 2.78429E − 03

0.6 0.9313971428 0.9314464330 1.69733E − 05 5.70182E − 03

0.7 0.9075308232 0.9076536075 5.73456E − 05 1.04108E − 02

0.8 0.8805653368 0.8808350478 1.63936E − 04 1.74699E − 02

0.9 0.8507248911 0.8512627685 4.12348E − 04 2.74757E − 02

1.0 0.8182516669 0.8192450528 9.37302E − 04 4.10482E − 02

(a) HVIM Vs AADM (b) Absolute residual error

Figure 7: Graphical comparison for example 7
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Table 8: Numerical comparison of Example 8

t V4(t) AADM [20] R4 r4 [20]

0.1 0.9974297085 0.9974297101 1.87563E − 11 6.86973E − 06

0.2 0.9897368704 0.9897369748 4.78081E − 09 1.09470E − 04

0.3 0.9769750133 0.9769761970 1.21639E − 07 5.50470E − 04

0.4 0.9592314419 0.9592380482 1.20279E − 06 1.72350E − 03

0.5 0.9366244873 0.9366494684 7.07739E − 06 4.15761E − 03

0.6 0.9092998754 0.9093736665 2.99615E − 05 8.49689E − 03

0.7 0.8774264367 0.8776101198 1.00985E − 04 1.54763E − 02

0.8 0.8411914399 0.8415945740 2.87901E − 04 2.58950E − 02

0.9 0.8007958965 0.8015990439 7.21930E − 04 4.05892E − 02

1.0 0.7564502464 0.7579318126 1.63541E − 03 6.04043E − 02

(a) HVIM Vs AADM (b) Absolute residual error

Figure 8: Graphical comparison for example 8
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In Table 8, we compare the approximate solutions and corresponding absolute residual errors obtained

by HVIM with the existing AADM [20]. Figure 8 displays the comparison of numerical solutions and

corresponding absolute residual errors obtained by HVIM with the AADM [20]. We conclude that the

proposed HVIM has greater efficiency, and we reach good accuracy within a few iterations.

6 Conclusion

In this research, we introduced an effective numerical algorithm called the homotopy variational iteration

method using the variational iteration method combined with the homotopy analysis method to determine

the numerical solution of Lane-Emden type equations. The convergence study is addressed under general

conditions. Eight problems of different kinds of LEEs with strong nonlinearities are included and solved by

means of the proposed HVIM to test the efficiency. The method is compared with the exact solution and

existing methods [12, 20, 21]. Unlike other methods, the proposed algorithm does not require discretization

or perturbation and can be applied easily and accurately. The proposed HVIM can solve highly nonlinear

LEEs with less computational work and computation time and converge to the solution in a few iterations.
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