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EXISTENCE AND ASYMPTOTIC BEHAVIOR
OF COEXISTENCE STATES TO A DIFFUSIVE
HOLLING TYPE II PREDATOR-PREY MODEL

WITH HUNTING COOPERATION∗

Lina Zhang1,† and Xue Xiao2

Abstract In this paper, we delve into a diffusive Holling type II predator-
prey model, incorporating the element of hunting cooperation, and examine
it under Dirichlet boundary conditions. Our primary focus is on addressing
two pivotal questions: Firstly, we endeavor to establish the existence of coex-
istence states across a range of hunting cooperation effects. This exploration
aims to reveal how the predator and prey species can maintain their coexis-
tence within the ecological system, regardless of the magnitude of cooperation
among predators during hunting. Secondly, we are interested in elucidating
the asymptotic behavior of these coexistence states as the cooperation pa-
rameter approaches infinity. This analysis will provide insights into how the
ecological balance shifts as the predators’ cooperation increases indefinitely, of-
fering a deeper understanding of the long-term ecological implications of such
cooperation.

Keywords Predator-prey, hunting cooperation, coexistence state, asymptot-
ic behavior.
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1. Introduction

In predator-prey interactions, predators frequently collaborate and cooperate
while hunting their prey. For example, lions [15, 20], wolves [21], chimpanzees [3]
and African wild dogs [7] unite in their efforts to capture and dispatch their prey.

An earlier mathematical model addressing the phenomenon of cooperative hunt-
ing was put forth by Berec [2]. This model utilized ordinary differential equations to
simulate the intricate predator-prey interactions. Berec’s analysis revealed that co-
operation among hunters introduces instability in the predator-prey system, broad-
ening the range of parameters that permit limit cycle oscillations. Later on, Alves
and Hilker [1] expressed the belief that hunting cooperation enhances the preda-
tor’s attack rate. Therefore, they deemed it essential to incorporate a cooperation
term in the formulation of the predator population’s attack rate. As a result, they
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established the hunting cooperation models with Holling types I, II, III and IV func-
tional response, respectively, where the predator-prey model with type II functional
response and hunting cooperation can be written in the form

dN

dt
= rN

(
1− N

K

)
− (λ+ aP )NP

1 +H(λ+ aP )N
,

dP

dt
=

e(λ+ aP )NP

1 +H(λ+ aP )N
−mP,

(1.1)

where N and P are prey and predator densities respectively. The parameter r is
the per capita intrinsic growth rate of prey, K is the carrying capacity of prey,
e is the conversion efficiency, m is the per capita mortality rate of predators, H
is the handling time of predator population and is a dimensionless parameter, λ
is the attack rate of the per predator on the prey and a describes the predator
cooperation in hunting. The parameters r,K, e,m,H, λ are positive constants and
a is a non-negative constant.

Alves and Hilker numerically investigated the existence and stability of the pos-
itive equilibria and have shown that the hunting cooperation can be beneficial to
the predator population by increasing the attack rate. In the simulations of [1], by
comparing the bifurcation diagrams of models (1.1) and (1.1) with H = 0 (a hunting
cooperation model with type I functional response ) at the same parameter values,
the authors concluded that these two models have quite similar bifurcation behavior,
and type II function response can promote the possibility of sustained oscillation.
Afterwards, rigorous mathematical analysis about the stability of equilibria and
the detailed behaviour of bifurcations for (1.1) was done in [9]. The authors not
only discussed how hunting cooperation among predators affects the population
dynamics of (1.1), but also investigated the corresponding reaction-diffusion model

∂N

∂t
−D1∆N = rN

(
1− N

K

)
− (λ+ aP )NP

1 +H(λ+ aP )N
, x ∈ Ω, t > 0,

∂P

∂t
−D2∆P =

e(λ+ aP )NP

1 +H(λ+ aP )N
−mP, x ∈ Ω, t > 0,

∂N

∂ν
=
∂P

∂ν
= 0, x ∈ ∂Ω, t > 0,

N(x, 0) ≥ 0, P (x, 0) ≥ 0, x ∈ Ω,

(1.2)

where the positive constants D1 and D2 are diffusion rates, Ω ⊂ RN is a bounded
domain with a smooth boundary ∂Ω, ν is the outward normal vector on ∂Ω. Turing
unstable region in model (1.2) is given precisely in [9]. In addition, Singh et al.
in [22] also analyzed Turing instability by the linearization method and obtained
complex pattern formations by using extensive numerical simulations for (1.2). The
dynamics of model (1.2) with H = 0 have been studied in [6, 23,24].

It is widely recognized that boundary conditions significantly influence the dy-
namics of reaction-diffusion systems. In the referenced literature [6, 9, 22–24], the
authors have extensively discussed the system (1.2) under the homogeneous Neu-
mann boundary conditions. This particular boundary condition suggests that the
system is self-contained with zero population flux across the boundary.

However, another crucial boundary condition deserves equal attention - the
Dirichlet boundary condition, characterized by N = P = 0 on ∂Ω. This condi-
tion implies that the boundary is hostile to the survival of species, rendering it
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unsuitable for habitation. This concept is not merely theoretical; there is empirical
evidence [5] to support its relevance. For instance, studies have shown that cer-
tain neurohemicals in the human brain, such as acetylcholine and triethylcholine,
are capable of freely traversing boundaries within specific regions of the brain but
are unable to persist on these boundaries due to the presence of a third chemical.
From a mathematical perspective, there exist significant differences in the research
methods for reaction-diffusion equations with different boundary conditions.

The significance of studying Dirichlet boundary conditions lies in their ability
to provide deeper insights into the behavior of reaction-diffusion systems in hostile
environments. Understanding how species interact and adapt under such conditions
can have profound implications in various fields, including ecology, biology, and
even neuroscience. Therefore, the exploration of Dirichlet boundary conditions
represents a crucial area of research that holds significant potential for advancing
our knowledge in these disciplines.

Motivated by the previous researches, this paper focuses on system (1.2) under
the homogeneous Dirichlet boundary conditions. For the sake of brevity and clarity,
we adopt the following rescaling techniques

u =
r

KD1
N, v =

λ

D1
P, t̄ = D1t, µ =

r

D1
, α =

aD1

λ2
,

m =
HλKD1

r
, β =

eλKD1

rD2
, γ =

m

D2
, τ =

D1

D2

and then drop the upper bar of t̄, we obtain the following simplified reaction-
diffusion system

∂u

∂t
−∆u = u(µ− u)− (1 + αv)uv

1 +m(1 + αv)u
, x ∈ Ω, t > 0,

τ
∂v

∂t
−∆v =

β(1 + αv)uv

1 +m(1 + αv)u
− γv, x ∈ Ω, t > 0,

u = v = 0, x ∈ ∂Ω, t > 0,

u(x, 0) ≥ 0, v(x, 0) ≥ 0.

(1.3)

Notably, α exhibits a direct proportionality to a, highlighting its crucial role in
determining the efficiency of hunting cooperation among predators.

In ecosystems, the coexistence of diverse species is of utmost significance. Hence,
we pay more attention to whether the two species in the system (1.3) can coexist.
From an ecological perspective, a positive steady-state solution of (1.3) means a
coexistence state of prey and predator [4,8]. Therefore, the research on the steady-
state problems is very important. In this paper, our primary focus lies on exploring
two fundamental questions: (1) The existence of positive steady-state solutions of
(1.3); (2)The asymptotic behavior of these positive steady-state solutions as the
cooperation parameter α goes to infinity. To this end, we consider the steady-state
system 

−∆u = u(µ− u)− (1 + αv)uv

1 +m(1 + αv)u
, x ∈ Ω,

−∆v =
β(1 + αv)uv

1 +m(1 + αv)u
− γv, x ∈ Ω,

u = v = 0, x ∈ ∂Ω.

(1.4)
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Before presenting our main results, it is imperative to establish certain notations
and fundamental concepts that will be frequently referenced throughout this paper.
Let λ1(q) < λ2(q) ≤ λ3(q) ≤ · · · be all eigenvalues of the following problem

−4φ+ q(x)φ = λφ, x ∈ Ω, φ = 0, x ∈ ∂Ω,

where q(x) ∈ C(Ω̄). We know that λ1(q) is simple and λ1(q) is strictly increasing
in the sense that q1 ≤ q2 and q1 6≡ q2 implies λ1(q1) < λ1(q2). When q(x) ≡ 0, we
denote λi(0) by λi, and denote by ϕ1 the eigenfunction corresponding to λ1 with
normalization ‖ϕ1‖∞=1 and positive in Ω.

We define C0(Ω̄) = {u ∈ C(Ω̄)| u = 0 on ∂Ω}. It is well-known that for any
µ > λ1, the problem

−4u = u(µ− u), x ∈ Ω, u = 0, x ∈ ∂Ω (1.5)

has a unique positive solution, say θµ. In addition, the mapping µ→ θµ is strictly
increasing, continuously differentiable from (λ1,∞) to C2(Ω) ∩ C0(Ω̄) and that
θµ → 0 uniformly on Ω̄ as µ→ λ+

1 . Moreover, we have 0 < θµ < µ in Ω. Therefore,
(1.4) has a semi-trivial solution (θµ, 0) if µ > λ1.

To the first question, we establish the conditions for existence of coexistence
states by using the fixed point index [12]. Our analysis reveals that the existence
of coexistence states is determined by the principal eigenvalue associated with a
operator (as stated in Theorem 3.1), which is independent of the hunting rate α.

Regarding the second question, we proceed with an asymptotic analysis of the
positive solutions of (1.4) as α → ∞. Our findings reveal that excessively strong
cooperation can lead solely to the extinction of predators, and the prey density
u(x) converges to θµ in C(Ω̄) (see Theorem 4.1). This paradoxical occurrence has
also been observed in prior studies [1, 18, 19] involving Holling type I functional
responses. As pointed out in [1], this phenomenon arises due to the following
reasons: the beneficial effect of cooperation on predators was overcompensated by
the decrease in prey density since a scarcer prey implies a smaller predator density
in turn.

The highlights and advantages of this paper are presented as follows:
(1) In previous studies, the hunting cooperation models with diffusion have most-

ly focused on Neumann boundary conditions, yet research on Dirichlet boundary
conditions is rarely involved. This paper not only fills the gap in this field but also
presents significant differences in research methods and conclusions compared to
studies under Neumann boundary conditions. This breakthrough research provides
valuable insights and references for people to deeply understand the influence of
boundary conditions on the dynamic behavior of species, and it will greatly enrich
the research achievements in this field.

(2) This paper aims to establish a comprehensive and systematic research frame-
work and method to deeply explore the existence and asymptotic behavior of coexis-
tence solutions in the predator-prey model with hunting cooperation under Dirichlet
boundary conditions. It is worth mentioning that the research method used in this
article is not only applicable to the current model but can also be extended to oth-
er types of functional response functions, such as the classic Holling III and Ivlev
types, demonstrating its strong universality and innovation.

(3) In this paper, we specifically selected the Holling II type functional response
function as the research object because it has a wide application basis and represen-
tativeness in predator-prey relationships. Through in-depth research and analysis,
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the conclusions drawn in this paper not only have high theoretical value but also
demonstrate widespread applicability in practical applications, playing an impor-
tant role in promoting the research development in this field.

The contents of this paper are structured as follows. Firstly, in Section 2, we
present some preliminary results, including some estimates for positive solutions of
(1.4), a sufficient condition for the non-existence of positive solutions and a necessary
condition for the existence of positive solutions of (1.4). These results will play an
important role in the subsequent sections. In Section 3, we discuss the existence of
positive solutions of (1.4). Finally, in Section 4, we establish the limiting behavior of
any positive solution of (1.4) as α→∞, providing a comprehensive understanding
of the solution’s asymptotic characteristics.

2. Preliminaries and a priori estimates

This section aims to present some preliminary results, specifically focusing on es-
tablishing estimates for positive solutions of (1.4). These estimates will serve as the
foundation for subsequent sections. Throughout this section, the parameters µ, m,
β and γ are fixed, while the constant M will vary based on these parameters but
not on α. Since these parameters are fixed, this dependence will not be explicitly
stated.

Lemma 2.1. Let (u, v) be a positive solution of (1.4). Then (u, v) satisfies

u ≤ µ, v ≤ βµ(µ+ γ)

γ
:= M0.

Proof. According to the maximum principle, it can be derived that u(x) ≤ µ on
Ω. Set w = βu+ v. Then

−∆w = βu(µ− u)− γv
= βu(µ+ γ − u)− γ(βu+ v)

≤ βµ(µ+ γ)− γw. (2.1)

If we once again apply the maximum principle, it follows that

w = βu+ v ≤ βµ(µ+ γ)

γ
in Ω,

which implies the desired result.

Lemma 2.2. Let (u, v) be a positive solution of (1.4). Then there exists a positive
constant M such that

(i)

∫
Ω

|∇u|2dx ≤M,

∫
Ω

|∇v|2dx ≤M ;

(ii) α

∫
Ω

uv2

1 +m(1 + αv)u
dx ≤M .

Proof. (i)By multiplying the first equation of (1.4) with u and integrating over
the domain Ω, we obtain∫

Ω

|∇u|2 dx =

∫
Ω

[
u2(µ− u)− (1 + αv)u2v

1 +m(1 + αv)u

]
dx ≤ µ

∫
Ω

u2 dx.
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According to Lemma 2.1, it follows that
∫

Ω
|∇u|2 dx ≤M .

To demonstrate that
∫

Ω
|∇v|2dx ≤ M , we proceed by multiplying the equation

in (2.1) by w and integrating the result over Ω. This operation yields that∫
Ω

|∇w|2dx =

∫
Ω

(βu+ v)[βu(µ− u)− γv]dx ≤ βµ
∫

Ω

u(βu+ v)dx.

As a direct consequence of Lemma 2.1, we have the inequality
∫

Ω
|∇w|2dx ≤ M .

Consequently, it follows that∫
Ω

|∇v|2 dx =

∫
Ω

|∇(βu+ v)−∇(βu)|2 dx ≤ 2

∫
Ω

(
|∇w|2 + β2|∇u|2

)
dx ≤M.

Hence, u and v are uniformly bounded in W 1,2
0 (Ω).

(ii) We know from [17] that the elliptic problem

−∆φ = βµ(µ+ γ)− γφ in Ω, φ = 0 on ∂Ω (2.2)

has a maximal solution, say φ0, such that 0 ≤ φ ≤ φ0 ∈ C2,τ (Ω) for all nonnegative
solutions φ and a τ ∈ (0, 1). By (2.1), 0 ≤ βu(x) + v(x) ≤ φ0(x) in Ω. Noticing
that u(x) = φ0(x) = 0 on ∂Ω, it follows that∣∣∣∣∂u∂ν

∣∣∣∣ ≤ 1

β

∣∣∣∣∂φ0

∂ν

∣∣∣∣ ≤M on ∂Ω, (2.3)

where ν is the outward normal vector on ∂Ω. Integrating the first equation in (1.4),
we have

α

∫
Ω

uv2

1 +m(1 + αv)u
dx =

∫
Ω

[∆u+ u(µ− u)]dx−
∫

Ω

1

1 +m(1 + αv)u
dx

≤
∫
∂Ω

∂u

∂ν
dx+

∫
Ω

u(µ− u)dx.

It follows that α

∫
Ω

uv2

1 +m(1 + αv)u
dx ≤ M from Lemma 2.1 and (2.3). This

completes the proof.
We now present a sufficient condition that guarantees the non-existence of pos-

itive solutions, along with some crucial necessary conditions that underlie the exis-
tence of positive solutions to (1.4).

Lemma 2.3. (i) If µ ≤ λ1, then (1.4) has no positive solution.

(ii) Conditions µ > λ1 and

λ1

(
γ − βθµ

1
1+αM0

+mθµ

)
< 0

are necessary conditions for the existence of positive solutions of (1.4), where

M0 = βµ(µ+γ)
γ .

Proof. (i) Suppose that (u, v) is a positive solution of (1.4) for µ ≤ λ1. Then
(u, v) satisfies

−∆u+ u

[
u+

(1 + αv)v

1 +m(1 + αv)u

]
= µu in Ω, u = 0 on ∂Ω.
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Hence,

λ1

(
u+

(1 + αv)v

1 +m(1 + αv)u

)
= µ.

By the comparison principle of eigenvalues, we have µ > λ1, a contradiction is
obtained.

(ii) Let (u, v) be a positive solutions of (1.4), then µ > λ1 by (i). Since

−∆u = u(µ− u)− (1 + αv)uv

1 +m(1 + αv)u
≤ u(µ− u) in Ω, u = 0 on ∂Ω,

we obtain that u is a lower solution of

−∆u = u(µ− u) in Ω, u = 0 on ∂Ω.

Hence u ≤ θµ. Since v satisfies

−∆v =
β(1 + αv)uv

1 +m(1 + αv)u
− γv in Ω, u = 0 on ∂Ω,

we have

0 = λ1

(
γ − β(1 + αv)u

1 +m(1 + αv)u

)
> λ1

(
γ − βθµ

1
1+αM0

+mθµ

)
,

where M0 is given in Lemma 2.1.

3. Existence of coexistence states

In this section, we employ the theory of fixed point index as a pivotal tool to
establish conditions for the existence of coexistence states to (1.4). This theory
serves as a fundamental framework for our proofs, enabling us to delve deeper into
the intricacies of the coexistence states.

Let E be a real Banach space and W is the natural positive cone of E. For
y ∈W , define

Wy = {x ∈ E : y + ξx ∈W for some ξ > 0},
Sy = {x ∈W y : −x ∈W y}.

Let y∗ be a fixed point of a compact operator A : W → W and L = A′(y∗) be the
Fréchet derivative of A at y∗. We say that L has property α on W y∗ , if there exists
a η ∈ (0, 1) and a y ∈ W y∗ \ Sy∗ such that y − ηLy ∈ Sy∗ . For an open subset
U ⊂ W , let indexW (A, U) be the Leray-Schauder degree degW (I −A, U, 0), where
I is the identity map, the fixed of A at y∗ in W is defined by indexW (A, y∗) :=
index(A, U(y∗),W ), where U(y∗) is a small open neighborhood of y∗ in W .

The following Lemma is from Lemma 4.1 of [13].

Lemma 3.1. Assume that I − L is invertible on W y∗ .

(i) If L has property α on W y∗ , then indexW (A, y∗) = 0.
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(ii) If L does not have property α on W y∗ , then indexW (A, y∗) = (−1)σ, where
σ is the sum of algebraic multiplicities sum of the eigenvalues of L which are
greater than 1.

We also introduce the notations mentioned below.

(i) X := C0(Ω̄)⊕ C0(Ω̄).

(ii) W := P0 ⊕ P0, where P0 := {φ ∈ C0(Ω̄) : φ ≥ 0 in Ω̄}.

(iii) D := {(u, v) ∈ X : u < µ+ 1, v < M0 + 1}.

(iv) D′ := D ∩W .

Take P as a sufficiently large positive constant such that

P > max {µ+M0(1 + αM0) + 1, γ + 1} .

Define a positive compact operator Aθ: X → X by

Aθ(u, v) = (−∆ + P )−1

 θu

(
µ− u− (1 + αv)v

1 +m(1 + αv)u

)
+ Pu

θv

(
β(1 + αv)u

1 +m(1 + αv)u
− γ
)

+ Pv


for θ ∈ [0, 1].

Observe that the coexistence state in W for (1.4) is equivalent to the existence of
a positive fixed point in D′ for A := A1. Recall that (1.4) admits a trivial solution
(0, 0) and a semi-trivial solution (θµ, 0) when µ > λ1. By using the properties of
fixed point index, we will demonstrate the presence of a positive solution (u, v) in
D′.

Lemma 3.2. Assume that µ > λ1 holds, then indexW(A, D′) = 1.

Proof. We can regard θ as a parameter. Assuming that (uθ, vθ) is a positive fixed
point of Aθ in D′, it becomes evident that uθ < µ, vθ < M0 for every θ ∈ [0, 1].
Consequently, Aθ possesses no fixed point on the boundary ∂D′, ensuring that
deg(Aθ, D′, 0) is well defined and remains constant regardless of θ. Applying the
homotopy invariance and normalization properties of the degree, we can deduce
that

indexW(A0, D
′) = indexW(A1, D

′) = 1.

This leads to the desired result.

Lemma 3.3. Assume that µ > λ1 holds, then indexW (A, (0, 0)) = 0.

Proof. To demonstrate that the index is zero, lemma 3.1 shall be employed. In
this case we have y∗ = (0, 0), W y∗ = W , Sy∗ = {(0, 0)}, and

L := A′(0, 0) = (−∆ + P )−1

µ+ P 0

0 −γ + P

 .
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Firstly, we show that I − L is invertible on W . Suppose that there exists some
function (φ, ψ)

> ∈W such that L(φ, ψ)
>

= (φ, ψ)
>

, then we obtain that
−∆φ = µφ, x ∈ Ω,

−∆ψ = −γψ, x ∈ Ω,

(φ, ψ) = (0, 0), x ∈ ∂Ω.

So µ and −γ are eigenvalues of −∆ with corresponding eigenfunctions φ and ψ.
Since µ > λ1 and −γ < λ1, φ = 0 and ψ = 0. This implies that I − L is invertible
on W .

Furthermore, we show that L has property α on W . In fact, choosing y =
(ϕ1, 0)> and η1 = λ1+P

µ+P , where ϕ1 is the eigenfunction corresponding to λ1. It is

easy to check that η1 ∈ (0, 1), (ϕ1, 0)> ∈W (0,0)\S(0,0) and (ϕ1, 0)
>−η1L(ϕ1, 0)

> ∈
S(0,0).Hence, L has property α and we can use lemma 3.1 to conclude indexW (A, (0, 0)) =
0.

Next, we calculate the fixed point for the point (θµ, 0), which will depend on the

sign of λ1

(
− βθµ

1+mθµ
+ γ
)
.

Lemma 3.4. (i) If λ1

(
− βθµ

1 +mθµ
+ γ

)
< 0, then indexW(A, (θµ, 0)) = 0.

(ii) If λ1

(
− βθµ

1 +mθµ
+ γ

)
> 0, then indexW(A, (θµ, 0)) = 1.

Proof. For y∗ = (θµ, 0), we have W y∗ = C0(Ω)⊕ P0, and

L := A′(θµ, 0) = (−∆ + P )−1

µ− 2θµ + P − θµ
1 +mθµ

0
βθµ

1 +mθµ
− γ + P

 .

Firstly, we claim that I−L is invertible on C0(Ω)⊕C0(Ω) if λ1

(
− βθµ

1+mθµ
+ γ
)
6=

0. Suppose that there exists some function (φ, ψ) such that L(φ, ψ)
>

= (φ, ψ)
>

, that
is 

−∆φ = (µ− 2θµ)φ− θµ
1 +mθµ

ψ, in Ω,

−∆ψ =

(
βθµ

1 +mθµ
− γ
)
ψ, in Ω,

(φ, ψ) = (0, 0), on ∂Ω.

If ψ 6≡ 0, then the second equation above implies that 0 = λ1

(
− βθµ

1+mθµ
+ γ
)
, which

contrary to λ1

(
− βθµ

1+mθµ
+ γ
)
6= 0. Hence ψ ≡ 0. The first equation becomes

−∆φ+ (−µ+ 2θµ)φ = 0 in Ω, φ = 0 on ∂Ω.

If φ 6≡ 0, then λ1(−µ + 2θµ) = 0. Recall that θµ is a solution of (1.5), thus
λ1(−µ+ θµ) = 0. Therefore,

0 = λ1(−µ+ 2θµ) > λ1(−µ+ θµ) = 0.
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This contradiction implies that φ ≡ 0. Hence (φ, ψ) ≡ (0, 0) and I −L is invertible
on C0(Ω)⊕ C0(Ω).

Next we consider whether L has property α in W (θµ,0). Here we have S(θµ,0) =

C0(Ω) ⊕ {0} and W (θµ,0)\S(θµ,0) = C0(Ω) ⊕ {P0 \ {0}}. Suppose that L has

property α in W (θµ,0). Then there is a η1 ∈ (0, 1) and (φ, ψ) ∈W (θµ,0)\S(θµ,0) such

that (I − η1L)(φ, ϕ)> ∈ S(θµ,0). That is

−∆φ+ Pφ− η1

[
(µ− 2θµ + P )φ− θµ

1 +mθµ
ψ

]
= 0,

−∆ψ + Pψ − η1

(
βθµ

1 +mθµ
− γ + P

)
ψ = 0.

From the second equation we have

λ1

(
P − η1

(
βθµ

1 +mθµ
− γ + P

))
= 0. (3.1)

Consider η as a parameter and denote

f(η) := λ1

(
P − η

(
βθµ

1 +mθµ
− γ + P

))
.

Obviously, f(η) is decreasing with η ∈ [0,∞) and f(0) = λ1(P ) > 0.

(i) If λ1

(
− βθµ

1+mθµ
+ γ
)
< 0, then f(1) < 0. Due to the continuity and mono-

tonicity of f(η), there exists a unique η1 ∈ (0, 1) such that f(η1) = 0. Hence (3.1)
holds and L dose have property α in W (θµ,0). From Lemma 3.1, it follows that
indexW (A, (θµ, 0)) = 0.

(ii) If λ1

(
− βθµ

1+mθµ
+ γ
)
> 0, then f(1) > 0. It follows from the continuity and

monotonicity that f(η) > 0 for all η ∈ (0, 1). Therefore, (3.1) dose not hold and L
dose not have property α in W (θµ,0).

To calculate indexW (A, (θµ, 0)), suppose that 1/η is an eigenvalue of L with

corresponding eigenvector (φ, ψ)>. Then L(φ, ψ)
>

= 1
η (φ, ψ)

>
. That is

(−∆ + P )−1

[
(µ− 2θµ + P )φ− θµ

1 +mθµ
ψ

]
=

1

η
φ,

(−∆ + P )−1

(
βθµ

1 +mθµ
− γ + P

)
ψ =

1

η
ψ.

From the second equation we have

−∆ψ +

[
P − η

(
βθµ

1 +mθµ
− γ + P

)]
ψ = 0. (3.2)

Since f(0) > 0, f(1) > 0, f(+∞) < 0 and f(η) is decreasing with η ∈ (0,+∞), one
can conclude that η > 1 in (3.2). Thus L has no eigenvalues greater than 1. Hence
σ = 0 and we have indexW (A, (θµ, 0)) = (−1)σ = 1.

Using Lemmas 3.2-3.4, we have the following theorem which gives the existence
of coexistence states to system (1.4).
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Theorem 3.1. If µ > λ1 and λ1

(
− βθµ

1 +mθµ
+ γ

)
< 0, then (1.4) has at least one

positive solution for any α > 0.

Proof. By using Lemmas 3.2-3.4 and the additivity of the index, we have

indexW (A, D′)− indexW (A, (0, 0))− indexW (A, (θµ, 0)) = 1 6= 0.

Hence, there must be a coexistence state of (1.4) in D′.

4. The asymptotic behavior of coexistence states

In this section, our focus is on exploring the asymptotic behavior of positive solutions
of (1.4) as the hunting cooperation parameter α goes to infinity. Unless explicitly
stated otherwise, we shall maintain the assumption that µ > λ1. For each α > 0, let
(uα, vα) represent any positive solution to (1.4). We present the following lemmas
to aid in our analysis.

Lemma 4.1. If limα→∞ uα = 0 uniformly on Ω, then limα→∞ vα = 0 uniformly
on Ω.

Proof. Assume that limα→∞ uα = 0 uniformly on Ω. For any given constant
ε > 0, there exists a large α such that uα ≤ ε for all α > α. Hence, it follows from
(2.1) that

−∆(βuα + vα) ≤ βε(µ+ γ)− γ(βuα + vα) for α > α.

Therefore, we have

vα(x) ≤ βuα(x) + vα(x) ≤ βε(µ+ γ)

γ

on Ω for all α > α. The arbitrariness of ε implies that limα→∞ vα = 0 uniformly
on Ω.

Lemma 4.2. Either limα→∞ uα = 0 or limα→∞ vα = 0 uniformly on Ω.

Proof. To establish this assertion, we argue by contradiction. Suppose that there
exists a certain ε0 > 0 and a positive sequence {αi}∞i=1 satisfying αi →∞ such that

uαi(xi) ≥ ε0 and vαi(xi) ≥ ε0 for some xi ∈ Ω.

It is clear that xi 6∈ ∂Ω for all i. Without loss of generality, we may assume that
xi → x0 ∈ Ω as i→∞. Since φ0(x) is a maximal solution to (2.2) and βuαi + vαi
satisfies (2.1) with α = αi, which implies that βuαi(x) + vαi(x) ≤ φ0(x) on Ω. If
x0 ∈ ∂Ω, then

0 < (β + 1)ε0 ≤ βuαi(xi) + vαi(xi) ≤ φ0(xi).

However, this contradicts φ0(xi)→ 0 as i→∞. Hence, x0 6∈ ∂Ω.
We define

x = xi +
y
√
αi
, Ui(y) = uαi(x), Vi(y) = vαi(x), Ωi =

{
y : xi +

y
√
αi
∈ Ω

}
.
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Then (Ui, Vi) satisfies

−∆Ui =
1

αi
Ui(µ− Ui)−

UiVi
αi[1 +m(1 + αiVi)Ui]

− UiV
2
i

1 +m(1 + αiVi)Ui
, y ∈ Ωi,

−∆Vi =
βUiVi

αi[1 +m(1 + αiVi)Ui]
+

βUiV
2
i

1 +m(1 + αiVi)Ui
− γ

αi
Vi, y ∈ Ωi,

Ui = Vi = 0, y ∈ ∂Ωi.

(4.1)

Obviously, 0 ∈ Ωi due to xi ∈ Ω for all i. We can combine x0 6∈ ∂Ω and the
definition of Ωi to discover that dist(0, ∂Ωi)→∞ as i→∞,

Ui(0) = uαi(xi) ≥ ε0 > 0 and Vi(0) = vαi(xi) ≥ ε0 > 0. (4.2)

As stated in Lemma 2.1, it can be deduced from (4.1) that there exists a M > 0
(independent of i) such that Ui, Vi ≤M on Ωi for all i. Additionally, utilizing (4.1),
we find that −4Ui and −4Vi have a bound (independent of i) in L∞(B2R(0)),
where B2R(0) represents a ball centered at the origin with a radius of 2R. By
invoking the standard elliptic regularity arguments from [10] along with the Sobolev
embedding theorems, we can conclude that, upon selecting a subsequences, Ui → U
and Vi → V in C1(BR(0)). Furthermore, 0 ≤ U(y), V (y) ≤ M in BR(0). Lastly,
the pair (U, V ) satisfies

−∆U = −∆V = 0, in BR(0). (4.3)

The arbitrariness of R in (4.3) implies that (U, V ) solves

−∆U = −∆V = 0, in RN . (4.4)

Since U, V are bounded and harmonic in RN , U and V are constants. The boundary
condition in (4.1) implies that U ≡ V ≡ 0, which is in contradiction with (4.2).

As a consequence of Lemma 4.1 and Lemma 4.2, we can see the asymptotic
behavior of vα as α tends to infinity.

Lemma 4.3. limα→∞ vα = 0 uniformly on Ω.

Next, we consider the asymptotic behavior of uα as α tends to infinity.

Lemma 4.4. There exists a subsequence {(uαi , vαi)} of {(uα, vα)} and nonnegative
functions u ∈ L∞(Ω) ∩W 1,2

0 (Ω) and w0 ∈ C1(Ω) such that uαi → u, vαi → 0 in
W 1,2

0 (Ω) and βuαi +vαi → w0 in C1(Ω) as αi →∞. Moreover, w0 = βu a.e. in Ω.

Proof. Based on Lemma 2.1 and Lemma 2.2 (i), subject to a subsequence, we
may assume that

uαi → u, vαi → v weakly in W 1,2
0 (Ω) and strongly in L2(Ω) as αi →∞ (4.5)

for some nonnegative functions u, v ∈ L∞(Ω) ∩W 1,2
0 (Ω). The remaining proof is

divided into four steps.
Step 1. we claim that

∫
Ω
|∇uαi |2dx→

∫
Ω
|∇u|2dx as i→∞. In view of Lemma

2.2 (ii), we can conclude
∫

Ω
uv2 dx = 0 as α→∞. Hence, uv2 = 0 a.e. in Ω. Thus,

uv = 0 and ∇u · ∇v = 0 a.e. in Ω. (4.6)
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By multiplying the second equation of (1.4) with (u, v, α) = (uαi , vαi , αi) by the
limit u, and integrating over the domain Ω, we arrive at a new expression∫

Ω

∇u · ∇vαi dx =

∫
Ω

βu(1 + αivαi)uαivαi
1 +m(1 + αivαi)uαi

dx− γ
∫

Ω

uvαi dx. (4.7)

It follows form (4.5) that∫
Ω

∇u · ∇v dx = β lim
i→∞

∫
Ω

u(1 + αivαi)uαivαi
1 +m(1 + αivαi)uαi

dx− γ
∫

Ω

uv dx.

This equation, coupled with (4.6), leads to

lim
i→∞

∫
Ω

u(1 + αivαi)uαivαi
1 +m(1 + αivαi)uαi

dx = 0. (4.8)

A similar calculation gives∫
Ω

∇u · ∇uαi dx =

∫
Ω

uuαi(µ− uαi) dx−
∫

Ω

u(1 + αivαi)uαivαi
1 +m(1 + αivαi)uαi

dx.

From (4.5) and (4.8), we can see∫
Ω

|∇u|2 dx =

∫
Ω

u2(µ− u) dx, i→∞. (4.9)

Multiplying the first equation of (1.4) with (u, v, α) = (uαi , vαi , αi) by uαi , inte-
grating the obtained equation in Ω, and then using (4.5) and (4.9), we get∫

Ω

|∇uαi |2 dx =

∫
Ω

u2
αi(µ− uαi) dx−

∫
Ω

(1 + αivαi)u
2
αivαi

1 +m(1 + αivαi)uαi
dx

≤
∫

Ω

u2
αi(µ− uαi) dx→

∫
Ω

u2(µ− u) dx =

∫
Ω

|∇u|2 dx.

Hence,

lim sup
i→∞

∫
Ω

|∇uαi |2 dx ≤
∫

Ω

|∇u|2 dx.

By the weak lower semi-continuity of the norm, we can gain∫
Ω

|∇uαi |2 dx→
∫

Ω

|∇u|2 dx as i→∞.

Step 2. We further show that v = 0 a.e. in Ω. Similar to (4.7), we obtain that∫
Ω

∇v · ∇uαi dx =

∫
Ω

vuαi(µ− uαi) dx−
∫

Ω

v(1 + αivαi)uαivαi
1 +m(1 + αivαi)uαi

dx,

and so it follows from (4.6) that

lim
i→∞

∫
Ω

v(1 + αivαi)uαivαi
1 +m(1 + αivαi)uαi

dx = 0. (4.10)
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Moreover, we can also gain∫
Ω

∇v · ∇vαi dx =

∫
Ω

βv(1 + αivαi)uαivαi
1 +m(1 + αivαi)uαi

dx− γ
∫

Ω

vvαi dx,

which combined with (4.5), (4.6) and (4.10), gives∫
Ω

|∇v|2 dx+ γ

∫
Ω

v2 dx = 0.

So v = 0 a.e. in Ω.
Step 3. We prove that there exists a nonnegative function w0 ∈ C1(Ω) such

that βuαi + vαi → w0 in C1(Ω). Moreover, w0 = βu a.e. in Ω. In view of (2.1),
Lemma 2.1 establishes that {−∆(βuαi + vαi)} is bounded in L∞. Leveraging the
regularity properties of elliptic equations, we deduce that {βuαi + vαi} is bounded
in W 2,p(Ω) for all p ≥ 1, and even further, it is bounded in C1,τ (Ω) for all τ ∈ (0, 1).
Consequently, there exists a subsequence of {βuαi + vαi} that converges in C1(Ω).
For simplicity, we assume that βuαi + vαi → w0 in C1(Ω), where w0 is a non-
negative function belonging to C1(Ω). Due to (4.5) and Step 1, we can deduce that
vαi = (βuαi + vαi) − βuαi → w0 − βu in W 1,2

0 (Ω). Therefore, as per Step 2, we
conclude that w0 − βu = v = 0 a.e. in Ω, and so w0 = βu a.e. in Ω.

Step 4. It remains to demonstrate that uαi → u, vαi → 0 in W 1,2
0 (Ω). Obviously,

uαi → u in W 1,2
0 (Ω) follows directly from (4.5) and Step 1. Furthermore, Step 3’s

argument establishes that vαi → w0 − βu = v = 0 in W 1,2
0 (Ω). This conclusively

verifies the proof of Lemma 4.4.
Now, let’s state the key theorem regarding the asymptotic behavior of coexis-

tence states as the cooperation effect parameters, denoted as α, tends to infinity.

Theorem 4.1. Assume that µ > λ1 and {(uα, vα)} is a sequence of positive solu-
tions to system (1.4). Then as α → ∞, vα → 0 in C(Ω) and uα → θµ in C(Ω),
where θµ is the unique positive solution of (1.5).

Proof. From Lemma 4.3, it is evident that vα → 0 in C(Ω). Furthermore, our
objective is to demonstrate that, un → u∞ βuα+vα → βθµ in C1(Ω), and uα → θµ
in C(Ω) as α→∞.

In view of the proof outlined in Step 3 of Lemma 4.4, there exists a subsequence
{(uαi , vαi)} of {(uα, vα)} such that βuαi+vαi is bounded in C1,τ (Ω) for all τ ∈ (0, 1).
On the other hand, Lemma 4.4 asserts that uαi → u in W 1,2

0 (Ω), βuαi + vαi → w0

in C1(Ω), and w0 = βu a.e. in Ω, where u ∈ L∞(Ω) ∩W 1,2
0 (Ω) and w0 ∈ C1(Ω)

are nonnegative functions. Substituting (u, v) = (uαi , vαi) into the first equation of
(2.1), we obtain∫

Ω

∇(βuαi + vαi) · ∇φ dx = β

∫
Ω

uαi(µ− uαi)φ dx− γ
∫

Ω

vαiφ dx, ∀φ ∈W
1,2
0 (Ω).

Letting αi →∞ and using Lemma 4.4, we conclude∫
Ω

∇u · ∇φ dx =

∫
Ω

u(µ− u)φ dx,

which indicates that u is a weak solution for (1.5). As a result of the elliptic
regularity theory, u is a classical solution. Consequently, we arrive at the conclusion
that u = θµ in Ω, thus finalizing the proof.
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5. Conclusions

This paper has made significant contributions to the understanding of diffusive
Holling type II predator-prey models under Dirichlet boundary conditions, par-
ticularly in incorporating the element of hunting cooperation. By addressing the
existence of coexistence states across various levels of hunting cooperation and elu-
cidating their asymptotic behavior as cooperation increases indefinitely, this study
provides valuable insights into the dynamic behavior of predator-prey species within
ecological systems. The unique focus on Dirichlet boundary conditions fills a gap
in the existing research and reveals distinct differences compared to studies under
Neumann boundary conditions.

Furthermore, the comprehensive and systematic research framework and method
developed in this paper not only demonstrate strong applicability to the current
model but also hold potential for extension to other functional response functions,
showcasing its innovation and universality. The specific choice of the Holling II
type functional response function ensures that the conclusions drawn have both
theoretical significance and practical applicability, thereby advancing research in
this crucial field of ecological modeling.

Recently, the predator-prey models of hunting cooperation combined with other
factors have also been widely studied. R. Han et al. [11] studied the temporal as
well as spatio-temporal dynamics of a prey-predator model with additive Allee effect
in prey growth and hunting cooperation among the specialist predators. D. Pal et
al. [16] considered a modified Leslie-Gower predator-prey model incorporating fear,
intra-specific competition among predators, hunting cooperation of predators and
cross-diffusion. B. Mondal et al. [14] investigated the predator-prey model with
Crowley-Martin response function, considering the effect of hunting cooperation.
These findings highlight the complex interplay between social interactions, coop-
eration, and system dynamics in predator-prey systems. These excellent research
achievements are mainly based on the deep study of ODE model and realized by
meticulous numerical simulation technology.

In the future work, we will innovatively introduce diffusion, cross-diffusion and
Dirichlet boundary conditions to deeply explore the intricate and combined effects
of hunting cooperation and other various factors.
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