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Abstract:

The nonlinear Klein–Gordon equation, which describes nonlinear wave interaction and arises
from the study of quantum field theory, is one of the most notable differential equations. In this
research, we solve the equation using a novel approach. It is used in many areas of mathematics,
such as conformal mapping theory, physics, and algebraic geometry. In the current work, the
J−transform Adomian decomposition method (JADM) is applied to provide exact solutions for a
variety of nonlinear partial differential equations (PDES). We provide comprehensive proofs for
novel theorems related to the J−transform methodology. This method is based on the J−transform
method (JTM) and the Adomian decomposition method (ADM). The theoretical analysis of the
JADM is investigated and computed using easily obtained terms for some differential equations.
Our results are compared with exact solutions obtained by other methods that can be found in the
literature. The paper describes the important aspects of the JADM. The JADM has demonstrated
a high degree of efficiency, accuracy, and adaptability to a wide range of differential equations, both
linear and nonlinear. Mathematica was used for much of the symbolic and numerical calculations
Ω.

Keywords: Klein-Gordon Differential Equation, J−Transform Method, Adomian Decompo-
sition Method, Schrödinger Equation, Fixed Point Theory.
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1 Introduction

When solving differential and integral equations with initial and boundary value conditions,
integral transformations play a crucial role. One of the most popular methods for handling
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differential and integral problems is the integral transform method [1–11]. The Laplace trans-
form is also the technique that is used the most frequently in the literature [12]. In 1993,
Watugala proposed the Laplace-Carson transform for the first time [13]. Another name for
it is the p−multiplied version of the conventional Laplace transform. It is closely related to
the Sumudu transform, which was employed to address controlled engineering problems. The
N-transformation, sometimes referred to as the natural transform, was initially presented in 2008
and is comparable to the Sumudu integral transform and the Laplace-Carson transform. The N-
transform can solve the unsteady fluid flow through a flat wall problem by changing the variables,
which provide both Laplace and Sumudu integral transforms [5–8].

Most linear and nonlinear techniques found in a variety of scientific domains, such as popu-
lation models, fluid mechanics, solid state physics, plasma physics, and chemical kinetics, can be
modeled using differential equations. As a result, it is still very difficult to obtain exact or approx-
imate solutions to linear and nonlinear differential equations in applied mathematics and physics,
which demands developing new techniques [14–20]. Many powerful mathematical techniques, such
as the Adomian decomposition method (ADM) [14–18], natural Adomian decomposition method
(NADM) [21], reduced differential transform method (RDTM) [22–25], and homotopy perturbation
method (HPM) [26], have been proposed to obtain exact or approximate analytical solutions of
those existing phenomena.

For the most part, nonlinear phenomena may be modeled using partial differential equations
(PDEs) of integer order [21]. Analytical and numerical investigations are necessary for address-
ing the complex problem of dynamically studying PDEs. Notably, integral transformations are the
most efficient and successful methods for determining the exact and approximate analytical solutions
of PDEs. Interestingly, and this is significant, integral transforms do not contain perturbations or
long-lasting polynomials.

A novel method for solving both linear and nonlinear differential equations is the J−transform
Adomian decomposition method (JADM), as stated in [27]. It has been motivated and inspired
by the ongoing studies in this area. Furthermore, Shehu Maitama and Wei dong Zhao developed
accurate solutions to partial differential equations (PDEs) by applying the JTM. Recall that the
study’s exact solutions were incorrect, and you can easily confirm this by applying the initial
conditions to the exact solutions.

The Korteweg-deVries (KdV) equation, which describes a long wave moving through a canal, was
developed through research on shallow water. There is a single wave solution to the KdV equation.
The single wave solution of the nonlinear Schrödinger equation is typically observed. A solitary
or soliton wave equation is one in which the propagation speed and wave equation amplitude are
totally unrelated. One of the most basic model equations in fluid mechanics is Burger’s equation.
It consistently illustrates how diffusion and convection processes are related.

This work is arranged as follows: The definitions and significant features of the J−transform
and the Adomian decomposition technique are provided in section 2 along with some background
on the theory of integral transform. The J−transform theories are examined in full with proofs in
Section 3. In section 4, we present the theoretical analysis of the JADM for nonlinear PDEs. Exact
solutions to nonlinear partial differential equations are provided in Section 5. Section 6 focuses on
providing exact solutions to nonlinear partial differential equations. Finally, in section 7, we present
the conclusion of our work.
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2 The J−Transform Adomian Decomposition Method

The concept of J−transform method was introduced by Shehu Maitama and Wei dong Zhao[27].
We provide some background information regarding the nature of the J−transform method in this
section.

Definition 2.1 Suppose that θ(s) is a piece-wise continuous function over R and K, p > 0. Suppose
that A =

{
θ(s) : |θ(s)| < Kec sχ(0,∞)(s)

}
, where χ(0,∞)(s) is the characteristic function and its given

by:

χ(0,∞)(s) =

{
1 s ∈ (0,∞),

0 s /∈ (0,∞).

So, |θ(s)| ≤ Kec s for s −→ ∞ i.e. given any θ(s) ∈ A, where r, v > 0 we have:∣∣∣∣∫ ∞

0

e−r sθ(sv)ds

∣∣∣∣ ≤ K

∫ ∞

0

e−r sec|s v|ds

= K

∫ ∞

0

e(cv−r)sds.

If c v − r < 0, the above is convergent. Therefore, the order of θ(s) is exponential.

The J−transformation is then provided as follows:

J (θ(s)) = Θ(r, v) = v

∫ ∞

0

e
−r s
v θ(s)ds, s, v > 0, (2.1)

where J is the J−transformation of θ(s) and r, v are the J−transformation variables.

So, Eq. (2.1) can be written as,

J (θ(s)) = Θ(r, v) = v2
∫ ∞

0

e−r s θ(v s) ds, r, v ∈ (0,∞). (2.2)

It is crucial to understand the inverse property of the J-transform before we demonstrate its appli-
cations. First, we present the following two crucial theorems.

Theorem 2.1 [28]. Assume that the function θ(w) is analytic on a region which includes γ and its
interior, and that γ is a simple closed curve. Assumed to be in a counterclockwise orientation is γ.
Next, for every w0 within γ

θ(w0) =
1

2πi

∫
γ

Θ(w)

w − w0
dw.

Theorem 2.2 [28]. Provided that γ is a simple closed, positively oriented contour and θ is analytic
on C except for a few points w1, w2, ..., wn inside it, then∮

γ

θ(w) dw = 2πi

n∑
k=1

Res θ (wk) .

Theorem 2.1 leads to Theorem 2.2, which is invaluable in computing the real integral by using the
proper contour in C, see [28].
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Definition 2.2 (Inverse J-transform) [27]. Suppose J−1 is referred to as the inverse J−transform
of Θ(r, v), where Θ(r, v) is the J−transform of the function θ(s). Then,

J−1[Θ(r, v)] = θ(s), for s ⩾ 0.

Equivalently, based on Theorem 2.1 and Theorem 2.2, the complex inverse J−transform is defined
as:

θ(s) = lim
β→∞

1

2πi

∫ α+iβ

α−iβ

1

w2
e(

rs
w )Θ(r, w)dr

=
∑

residues of
1

w2
e(

rs
w )Θ(r, w) at the poles of Θ(r, w).

Significant Properties:

Some fundamental properties of J-transforms are as follows; for a list of these properties, see
[27]:

1. J [C] = C v2

r .

2. J [ζm] = m!vm+2

rm+1 , where m ≥ 0.

3. J
[
ecζ

]
= v2

(r−cv) .

4. Suppose the function θ (s, z) has a J-transformation if θ(k) (s, z) is its kth derivative.
Then,

J
[
θ(k) (s, z)

]
=

rk

vk
Θ(x, r, v)−

k−1∑
j=0

rk−(j+1)

vk−(j+2)
θ(j) (s, 0) .

Adomian Polynomials Evaluations:

Now let’s introduce the Adomian polynomials, which are a useful tool for efficiently decom-
posing the complex nonlinear component into smaller, more manageable components that can be
integrable as a Taylor series. The following is a representation of the unknown function ϕ, as shown
in [14]:

ϕ =

∞∑
m=0

ϕm, (2.3)

Thus it is necessary to build a recursive relation in order to identify the components ϕm , m ≥ 0.
The following formula can be used to define F (ϕ) as an infinite series, also referred to as Adomian
polynomials Am, when working with nonlinear terms:

F (ϕ) =

∞∑
m=0

Am(ϕ0, ϕ1, ...., ϕm), (2.4)

where the Am of the nonlinear term F (ϕ) can be computed using the following formula from [17]:

A
m
=

1

m!

dm

dµm

F
 m∑

j=0

µjϕj


µ=0

,m = 0, 1, 2, ... (2.5)
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The generic formula for Eq. (2.5) can then be expressed as follows:

Let the nonlinear function be represented by F (ϕ). Using the Adomian polynomial defini-
tion and Eq. (2.5), the following can be obtained:

A0 = F (ϕ0),

A1 = ϕ1F
′(ϕ0),

A2 = ϕ2F
′(ϕ0) +

1
2!ϕ

2
1F

′′(ϕ0).

(2.6)

Lastly, a similar process can be used to construct the other terms. Two important observations
are provided by the polynomials previously given in Eq. (2.6). A0 depends exclusively on ϕ0, A1

depends solely on ϕ0 and ϕ1, A2 depends solely on ϕ0, ϕ1 and ϕ2, etc.

Additionally, by substituting Eq. (2.6) for Eq. (2.4), one can produce:

F (ϕ) = A0 +A1 +A2 + · · ·
= F (ϕ0) + (ϕ1 + ϕ2 + ϕ3 + · · · )F ′(ϕ0)

+
1

2!
(ϕ2

1 + 2ϕ1ϕ2 + 2ϕ1ϕ3 + ϕ2
2 + · · · )F ′′(ϕ0)

+
1

3!
(ϕ3

1 + 3ϕ2
1ϕ2 + 3ϕ2

1ϕ3 + 6ϕ1ϕ2ϕ3 + · · · )F ′′′(ϕ0) + · · ·

= F (ϕ0) + (ϕ− ϕ0)F
′(ϕ0) +

1

2!
(ϕ− ϕ0)

2F ′′(ϕ0) + · · ·

3 J-Transform Theories Derivation

The new and comprehensive proofs of several theorems pertaining to the J-transformation will be
examined in this part. Additionally, we will use these to exactly solve a few PDEs under suitable
initial conditions.

Theorem 3.1 Let θ(s) = eαs ∈ A, where α ∈ R. Then its J−transform is given by

J[eαs] =
w2

r − αw
. (3.1)

Proof: By employing the definition of J−transform, we arrive at:

J[eαs] = w

∫ ∞

0

e
−rs
w eαsds

= w

∫ ∞

0

e−(
r
w−α)sds.

(3.2)
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Equation (3.2) can be used to integrate by substitution to get:

Let
v =

( r

w
− α

)
s ⇒ dv =

( r

w
− α

)
ds ⇒ ds =

w

r − αw
dv.

So,

J[eαs] = w

∫ ∞

0

e−v w

r − αw
dv

=
w2

r − αw

[∫ ∞

0

e−vdv

]

=
w2

r − αw

[
lim

n→∞
(−e−v)

∣∣∣∣∣
n

0

]

=
w2

r − αw
[1]

=
w2

r − αw
.

Theorem 3.2 Given θ(s) = sk

k! , its J−transform may be found as

J
[
sk

k!

]
=

wk+2

rk+1
k = 0, 1, 2, 3, · · · (3.3)

Proof: By using the J−transform definition, we obtain:

J
[
sk

k!

]
= w

∫ ∞

0

e
−rs
w

sk

k!
ds

=
w

k!

∫ ∞

0

e
−rs
w skds.

(3.4)

Using Eq. (3.4)’s and integration by parts, we get:

v = sk −→ dv = ksk−1,

dz = e
−rs
w −→ z = −w

r
e

−rs
w .
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So,

J
[
sk

k!

]
=

w

k!

[
−wsk

r
e−

rs
w

∣∣∣∣∣
∞

0

+

∫ ∞

0

kwsk−1

r
e−

rs
w ds

]

=
w

k!

∫ ∞

0

kwsk−1

r
e

−rs
w ds

=
w

r

[
w

∫ ∞

0

e
−rs
w

sk−1

(k − 1)!
ds

]

=
w

r
J
[

sk−1

(k − 1)!

]
.

Hence,

J
[
sk

k!

]
=

w

r
J
[

sk−1

(k − 1)!

]
.

Using induction now, we observe that,

For k = 0 ⇒ J
[
s0

0!

]
= J[1] =

w2

r
.

For k = 1 ⇒ J
[ s
1!

]
=

w

r
J
[
s0

0!

]
=

w

r
J[1] =

w3

r2
.

For k = 2 ⇒ J
[
s2

2!

]
=

w

r
J
[
s1

1!

]
=

w

r
J[s] =

w4

r3
.

For k = 3 ⇒ J
[
s3

3!

]
=

w

r
J
[
s2

2!

]
=

w

r

w4

r3
=

w5

r4
.

.

.

.

We keep doing this to obtain:

J
[
sk

k!

]
=

wk+2

rk+1
, k = 0, 1, 2, 3, · · ·
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Theorem 3.3 Consider the following: θ(s) = sinhαs
α ∈ A. Then, its J−transform is obtained as

J
[
sinhαs

α

]
=

w3

r2 − α2w2
. (3.5)

Proof: Utilizing the J−transform definition, we arrive at

J
[
sinhαs

α

]
= w2

∫ ∞

0

e−rs sinh(αsw)

α
ds

=
w2

α

∫ ∞

0

e−rs sinh(αsw) ds

=
w2

α

∫ ∞

0

e−rs e
αsw − e−αsw

2
ds

=
w2

2α

∫ ∞

0

[e−(r−αw)s − e−(r+αw)s] ds

=
w2

2α

[
− e−(r−αw)s

−(r − αw)
− e−(r+αw)s

−(r + αw)

∣∣∣∣∣
∞

0

]

=
w2

2α

[
1

r − αw
− 1

r + αw

]
=

w2

2α

[
2αw

r2 − α2w2

]
.

Hence,

J
[
sinhαs

α

]
=

w3

r2 − α2w2
.

Theorem 3.4 Assume θ(s) = cosh(αs) ∈ A. Subsequently its J−transform is obtained as:

J[coshαs] =
w2r

r2 − w2α2
. (3.6)

Proof: With the help of the J−transform definition, we derive:
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J[coshαs] = w2

∫ ∞

0

e−rs cosh(αsw) ds

= w2

∫ ∞

0

e−rs

[
eαsw + e−(αsw)

2

]
ds

=
w2

2

∫ ∞

0

[
e−(r−αw)s + e−(r+αw)s

]
ds

=
w2

2

[
e−(r−αw)s

−(r − αw)
+

e−(r+αw)s

−(r + αw)

∣∣∣∣∣
∞

0

]

=
w2

2

[
1

r − αw
+

1

r + αw

]
=

w2

2

[
2r

r2 − α2w2

]
.

Hence,

J[coshαs] =
w2r

r2 − α2w2
.

Theorem 3.5 Given Ci(s) =
∫∞
s

cos(w)
w dw is the cosine integral function. Then, the following is

its J−transform:

J[Ci(s)] =
−w2

2r
ln

(
w2

r2 + w2

)
. (3.7)

Proof: First,

Ci(s) =

∫ ∞

s

cos(w)

w
dw. (3.8)

Let
w = sv ⇒ dw = s dv

w = s −→ v = 1

w = ∞ −→ v = ∞.

Eq. (3.8) then becomes into,

Ci(s) =

∫ ∞

1

cos(sv)

sv
sdv

=

∫ ∞

1

cos(sv)

v
dv.

(3.9)

The following can be obtained by applying the J−transform to both sides of Eq. (3.9):
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J[Ci(s)] = J
[∫ ∞

1

cos(sv)

v
dv

]

= w

∫ ∞

0

e−rs

[∫ ∞

1

cos(svw)

v
dv

]
ds.

(3.10)

By altering the integration order in Eq. (3.10), we get:

J[Ci(s)] =

∫ ∞

1

1

v

[
w

∫ ∞

0

e−rs cos(svw)ds

]
dv

=

∫ ∞

1

1

v
J [cos(sv)] dv

=

∫ ∞

1

1

v

w2s

r2 + v2w2
dv

= w2r

∫ ∞

1

1

v(r2 + (vw)2)
dv.

Using partial fraction, the following can be determined:
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J[Ci(s)] = w2r

∫ ∞

1

1

r2

[
1

v
− 1

2

2w2v

r2 + (wv)2

]
dv

=
w2r

r2

∫ ∞

1

1

v
− 1

2

2w2v

r2 + (wv)2
dv

=
w2

r

[
ln(v)− 1

2
ln(r2 + (wv)2)

∣∣∣∣∣
∞

1

]

=
w2

r

[
ln(v)− ln

√
(r2 + (wv)2)

∣∣∣∣∣
∞

1

]

=
w2

r

[
ln

v√
(r2 + (wv)2)

∣∣∣∣∣
∞

1

]

=
w2

r

ln 1√
( r

2

v2 + w2)

∣∣∣∣∣
∞

1



=
w2

r

[
ln

1

w
− ln

1√
r2 + w2

]

=
w2

r
ln

(
r2 + w2

) 1
2

w

=
w2

r
ln

(
r2 + w2

w2

) 1
2

=
w2

r
ln

(
w2

r2 + w2

)−1
2

.

Hence,

J[Ci(s)] = −w2

2r
ln

(
w2

r2 + w2

)
.
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4 Analysis of the JADM for Nonlinear ODEs

We are going to talk about the theoretical analysis, including the error estimate, the convergence and
uniqueness theorems, and the proposed method. Examining a nonlinear partial differential equation
with the following structure:

θz(s, z) = F (θ(s, z)) + θ(s, z). (4.1)

Accompanied along the I.C.
θ(s, 0) = α(s). (4.2)

Where F (θ(s, z)) = θzz(s, z) + θ2(s, z) are the nonlinear source.

One can employ the J-transformation along with property 4 in Eq. (4.1) to get:

Θ (r, w) = w2

r2 α(s) +
w
r2 J [θ(s, z) + F (θ(s, z))] . (4.3)

Applying the inverse J-transformation of Eq. (4.3), we get:

θ(s, z) = γ(s, z) + J−1
[w
r2

J [θ(s, z) + F (θ(s, z))]
]
.

Note γ(s, z) describes the conditions and the non-homogeneous source.

Suppose we have a solution as follows:

θ(s, z) =

∞∑
j=0

θj(s, z). (4.4)

The nonlinear term F (θ(s, z)) =

∞∑
i=0

Ci, where the Ci’s are the Adomian polynomials.

Using Eq. (4.4), Eq. (4.3) can be rewritten as follows:

∞∑
j=0

θj(s, z) = γ(s, z) + J−1

w

r2
J

 ∞∑
j=0

Cj +

∞∑
j=0

θj

 . (4.5)

By looking at Eq. (4.5), one can observe that γ(s, z) represents the source term along with initial
conditions.

So, one can achieve the recursive formula as:

θj+1(s, z) = J−1
[w
r2

J [Cj + θj ]
]
, j ≥ 0. (4.6)

In this case, our intended solution is:

θ(s, z) =

∞∑
j=0

θj(s, z). (4.7)
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Theorem 4.1 (Uniqueness Theorem). Suppose 0 < δ < 1 and δ = (K1 +K2) z. Then Eq.
(4.1) will have a unique solution.

Proof: Given the norm ∥.∥ and Ξ = (C[Ω], ∥.∥) as the Banach space of all continuous functions on
Ω = [c, d], define Υ : Ξ → Ξ, where

θj+1(s, z) = γ(s, z) + J−1
[w
r2

J [M (θj(s)) + L (θj(s, z))]
]
.

Given L [θ(s, z)] = θ(s, z), M [θ(s, z)] = F (θ(s, z)) with
∣∣∣M(θ)−M(θ̂)

∣∣∣ < K1

∣∣∣θ − θ̂
∣∣∣ and∣∣∣L(θ)− L(θ̂)

∣∣∣ < K2

∣∣∣θ − θ̂
∣∣∣, where K1, K2 are constants related to Lipschitz and θ, θ̂ are distinct

solutions for Eq. (4.1).

∥∥∥Υ(θ)−Υ(θ̂)
∥∥∥ = max

z∈Ω

∣∣∣∣∣∣∣∣∣
J−1

[
w
r2 J [L(θ) +M(θ)]

]

−J−1
[
w
r2 J

[
L(θ̂) +M(θ̂))

]]
∣∣∣∣∣∣∣∣∣

= max
z∈Ω

∣∣∣∣∣∣∣∣∣∣
J−1

[
w
r2 J

[
L(θ)− L(θ̂)

]]

+J−1
[
w
r2 J

[
M(θ)−M(θ̂)

]]
∣∣∣∣∣∣∣∣∣∣

≤ max
z∈Ω

[
K1J−1

[
w
r2 J

[∣∣∣θ − θ̂
∣∣∣]]+K2J−1

[
w
r2 J

[∣∣∣θ − θ̂
∣∣∣]]]

≤ max
z∈Ω

(K1 +K2)
[
J−1

[
w
r2 J

[∣∣∣θ − θ̂
∣∣∣]]]

≤ (K1 +K2)
[
J−1

[
w
r2 J

[∥∥∥θ(s, z)− θ̂(s, z)
∥∥∥]]]

=
∥∥∥θ − θ̂

∥∥∥ (K1 +K2) z.

The Banach fixed-point theorem for contraction states that there is a unique solution to Eq.
(4.1) since 0 < δ < 1 implies that Υ is contraction mapping.

Hence, Theorem 4.1 proof is now complete.

Theorem 4.2 (Convergence Theorem) The solution for Eq. (4.1) with 0 < δ < 1 and |θ1| < ∞
will eventually converge when the JADM applied.
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Proof: Assume the kth partial sum is qk i.e. qk =

k∑
j=0

θj(s). We will demonstrate that in the

Banach space Ξ, {qk} is a Cauchy sequence. Assume the Adomian polynomials mentioned in [29],

which is new format of M (qk) = C̃k +

k−1∑
j=0

C̃j . Let qi and qk be any distinct sums with k ≥ i. Thus,

∥qk − qi∥ = max
z∈Ω

|qk − qi|

= max
z∈Ω

∣∣∣∣∣∣
k∑

j=i+1

θ̂i(s, z)

∣∣∣∣∣∣ , k = 1, 2, ...

≤ max
z∈Ω

∣∣∣∣∣∣J−1

 w
r2 J

L
 k∑

j=i+1

θj−1(s, z)

+ J−1

 w
r2 J

 k∑
j=i+1

Cj−1(s, z)

∣∣∣∣∣∣
= max

z∈Ω

∣∣∣∣∣∣J−1

 w
r2 J

L
k−1∑

j=i

θi(s, z)

+ J−1

 w
r2 J

k−1∑
j=i

Cj(s, z)

∣∣∣∣∣∣
≤ max

z∈Ω

∣∣J−1
[
w
r2 J [L(qk−1)− L(qi−1)]

]
+ J−1

[
w
r2 J [M(qk−1)−M(qi−1)]

]∣∣
≤ K1max

z∈Ω
J−1

[
w
r2 J [|qk−1 − qi−1|]

]
+K2max

z∈Ω
J−1

[
w
r2 J [|qk−1 − qi−1|]

]

= (K1 +K2) z ∥qk−1 − qi−1∥ .

Thus, ∥qk − qi∥ ≤ δ ∥qk−1 − qi−1∥. Choose k = i+ 1, then:

∥qi+1 − qi∥ ≤ δ ∥qi − qi−1∥ ≤ δ2 ∥qi−1 − qi−2∥ ≤ ... ≤ δi ∥q1 − q0∥ .

Similarly, using the triangle inequality:

∥qk − qi∥ ≤ ∥qi+1 − qi∥+ ∥qi+2 − qi+1∥+ ...+ ∥qk − qk−1∥

≤
[
δi + δi+1 + ...+ δm−1

]
∥q1 − q0∥

≤ δi
[
1−δk−i

1−δ

]
∥θ1∥ .

But, 0 < δ < 1, then 1− δk−i < 1. Thus,

∥qk − qi∥ ≤ δi

1− δ
max
z∈Ω

|θ1| . (4.8)
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Since θ(s, z) is bounded, then |θ1| < ∞. So, as i → ∞, then ∥qk − qi∥ → 0. Thus, the sequence

{qk} is a Cauchy in Ξ. Therefore, θ(s, z) =

∞∑
j=0

θj(s, z) converges.

Hence, Theorem 5.2 proof is now complete.

Theorem 4.3 (Error Estimate) It is expected that the largest absolute truncation error of the
series solution in equations (4.8) to (4.1) will be

max
s∈Ω

∣∣∣∣∣θ(s, z)−
i∑

k=0

θk(s, z)

∣∣∣∣∣ ≤ δi

1− δ
∥θ1(s, z)∥ .

Proof: Using both Theorem 4.2 and Eq. (4.8) one can conclude: ∥qk − qi∥ ≤ δi

1−δmax
s∈Ω

|θ1|. So as

k → ∞, we have qk → θ(s, z). Then, ∥θ(s, z)− qi∥ ≤ δi

1−δmax
s∈Ω

|θ1(s, z)|.

Thus, the absolute truncation error reaches its maximum in Ω as:

max
z∈Ω

∣∣∣∣∣θ(s, z)−
i∑

k=0

θk(s, z)

∣∣∣∣∣ ≤ δi

1− δ
max
z∈Ω

|θ1(s, z)| =
δi

1− δ
∥θ1(s, z)∥ .

Hence, Theorem 4.3 proof is now complete.

Remark:

The JADM for nonlinear PDE convergence analysis was successfully applied in the current
work. This is very important to the research community because of its importance and the fact
that it shows how the technique converges and the solution is unique.

5 Applications of JADM
We now demonstrate the use of the J−transform to the solution of many nonlinear ordinary
differential equations. A nonlinear differential equation’s nonlinear terms can all be easily handled
with the aid of the Adomian polynomials.

Assume the nonlinear partial differential equation exists:

L(θ(s, z)) +R(θ(s, z)) + F (θ(s, z)) = g(s, z). (5.1)

And its I.C:
θ(s, 0) = γ(s), (5.2)

where the nonhomogeneous term is g(s, z), the nonlinear term is F (θ(s, z)), L represents the
operator of the largest derivative, and R represents the remaining differential operator.

After that, J−transform and property 4 are applied to Eq. (5.1) to yield:

r2Θ(x, r, w)

w
− w γ(s) + J [R(θ(s, z))] + J [F (θ(s, z))] = J [g(s, z)] . (5.3)
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From Eq. (5.2) and Eq. (5.3) together, the following is true:

Θ(x, r, w) =
γ(s)w2

r2
+

w

r2
J [g(s, z)]− w

r2
J [R(θ(s, z)) + F (θ(s, z))] . (5.4)

Using the inverse J-transform on Eq. (5.4) to get:

θ(s, z) = G(s, z)− J−1
[w
r2

J [R(θ(s, z)) + F (θ(s, z))]
]
, (5.5)

where G(s, z) represents both the initial condition and the nonhomogeneous part.

Assume an infinite series solution of θ(s, z) of the form:

θ(s, z) =

∞∑
j=0

θj(s, z). (5.6)

We rewrite Eq. (5.5) as follows using Eq. (5.6):

∞∑
j=0

θj(s, z) = G(s, z)− J−1

w

r2
J

R ∞∑
j=0

θj(s, z) +

∞∑
j=0

Aj(s, z)

 , (5.7)

The Adomian polynomials are the Aj(s, z)
′s in the nonlinear term F (θ(s, z)) =

∑∞
j=0 Aj(s, z).

When the two sides of equation (5.7) are compared, θ0(s, z) = G(s, z) is the outcome.

θ0(s, z) = G(s, z),

θ1(s, z) = −J−1
[w
r2

J [Rθ0(s, z) +A0(s, z)]
]
,

θ2(s, z) = −J−1
[w
r2

J [Rθ1(s, z) +A1(s, z)]
]
,

θ3(s, z) = −J−1
[w
r2

J [Rθ2(s, z) +A2(s, z)]
]
.

Next, one can generate the following general relation:

θj+1(s, z) = −J−1
[w
r2

J [Rθj(s, z) +Aj(s, z)]
]
, j ≥ 0. (5.8)

The expected exact solution’s final expression is as follows:

θ(s, z) =

∞∑
j=0

θj(s, z). (5.9)
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Worked Examples:

We use the JADM to illustrate the performance of our recently designed system in a num-
ber of nonlinear PDE situations.

Example 5.1 Assume Burger’s equation, which has the following form:

θz + θθs = θss. (5.10)

Accompanied by its condition:
θ(s, 0) = 4 tan (2s). (5.11)

Using J-transformation on Eq. (5.10), we get:

rΘ(x, r, w)

w
− wθ(s, 0) + J [θθs] = J [θss] . (5.12)

Substitute Eq. (5.11) in Eq. (5.11) to produce:

θ(x, r, w) =
4w2 tan (2s)

r
+

w

r
J [θss − θθs] . (5.13)

Employing the J-inverse transformation of Eq. (5.13) to obtain:

θ(s, z) = 4 tan (2s) + J−1
[w
r
J [θss − θθs]

]
. (5.14)

Suppose our intended solution θ(s, z) is of the form:

θ(s, z) =

∞∑
j=0

θj(s, z). (5.15)

Putting Eq. (5.15) in place of Eq. (5.14) results in:

∞∑
j=0

θj(s, z) = 4 tan (2s) + J−1

w

r
J

 ∞∑
j=0

(θj)ss −
∞∑
j=0

Aj

 , (5.16)

where the Adomian polynomials Aj(s, z) stand in for the nonlinear term θ(s)θ′(s).

Thus,

θ0(s, z) = 4 tan (2s),

θ1(s, z) = J−1
[w
r
J [(θ0)ss −A0]

]
,

θ2(s, z) = J−1
[w
r
J [(θ1)ss −A1]

]
.

Finally,

θj+1(s, z) = J−1
[w
r
J [(θj)ss −Aj ]

]
, ∀j ≥ 0. (5.17)
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Then using Eq. (5.17) we can arrive at:

θ1(s, z) = J−1
[w
r
J [(θ0)ss −A0]

]
= J−1

[w
r
J [(θ0)ss − θ0(θ0)s]

]
= J−1

[w
r
J
[
32 sec2(2s) tan(2s)− 32 sec2(2s) tan(2s)

]]
= 0.

θ2(s, z) = J−1
[w
r
J [(θ1)ss −A1]

]
= J−1

[w
r
J [(θ1)ss − (θ1θ0s + θ0(θ1)s)]

]
= 0.

Eventually, we can conclude:
θj+1(s, z) = 0, ∀j ≥ 1. (5.18)

Consequently, the following provides the solution to the nonlinear Burgers equation:

θ(s, z) =

∞∑
j=0

θj(s, z)

= θ(s, z) + θ1(s, z) + θ2(s, z) + · · ·

= 4 tan (2s) + 0 + 0 + · · ·

= 4 tan (2s).

Therefore, the following provides exact solution to Burger’s equation:

θ(s, z) = 4 tan (2s).

As a result, our exact solution and the one found in the literature agree when employing the JADM.

Example 5.2 Examine the nonlinear Schrödinger equation of the following form:

iθz + θss − 2|θ|2θ = 0. (5.19)

Accompanied by its condition:
θ(s, 0) = eis. (5.20)
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By multiplying Eq. (5.19) by i, we obtain:

−θz + iθss − 2i|θ|2θ = 0,

θz = iθss − 2i|θ|2θ.
(5.21)

Using J-transformation on Eq. (5.21), we obtain:

rΘ(x, r, w)

w
− wθ(s, 0) = iJ [θss]− i2J

[
|θ|2θ

]
. (5.22)

Substitute Eq. (5.21) in Eq. (5.20) to produce:

Θ(x, r, w) =
w2

r
eis + i

w

r
J
[
θss − 2|θ|2θ

]
. (5.23)

Employing the J-inverse transformation of Eq. (5.23) to obtain:

θ(s, z) = eis + iJ−1
[w
r
J
[
θss − 2|θ|2θ

]]
. (5.24)

Assume our anticipated solutions for θ(s, z) in the form:

θ(s, z) =

∞∑
j=0

θj(s, z). (5.25)

Substituting Eq. (5.25) into Eq. (5.24) will result in:

∞∑
j=0

θj(s, z) = eis + iJ−1

w

r
J

 ∞∑
j=0

(θj)ss − 2

∞∑
j=0

Aj

 , (5.26)

where the nonlinear term |θ|2θ is represented by the Adomian polynomial Aj.

We continue in a similar manner to obtain:

θ0(s, z) = eis,

θ1(s, z) = iJ−1
[w
r
J [(θ0)ss − 2A0]

]
,

θ2(s, z) = iJ−1
[w
r
J [(θ1)ss − 2A1]

]
,

θ3(s, z) = iJ−1
[w
r
J [(θ2)ss − 2A2]

]
.

Finally,

θj+1(s, z) = iJ−1
[w
r
J [(θj)ss − 2An]

]
, ∀j ≥ 0. (5.27)
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Then using Eq. (5.27) we can arrive at:

θ1(s, z) = iJ−1
[w
r
J [(θ0)ss − 2A0]

]
= iJ−1

[w
r
J
[
(θ0)ss − 2v20 θ̄0

]]
= iJ−1

[w
r
J
[
−eis − 2e2ise−is

]]
= −3ieisJ−1

[w
r
J [1]

]
= −3ieisJ−1

[
w3

r2

]
= −3izeis.

θ2(s, z) = iJ−1
[w
r
J [(θ1)ss − 2A1]

]
= iJ−1

[w
r
J
[
(θ1)ss − 2

(
2θ0θ1 ¯theta0 + θ20 θ̄1

)]]
= iJ−1

[w
r
J
[
3izeis − 2

(
−6izeis + 3izeis

)]]
= −9eisJ−1

[w
r
J [z]

]
= −9eisJ−1

[
w4

r3

]
=

1

2!
(3iz)

2
eis.

Thus,

θ(s, z) =

∞∑
j=0

θj(s, z)

= θ0(s, z) + θ1(s, z) + θ2(s, z)θ3(s, z) + · · ·

= eis − 3izeis +
1

2!
(3iz)

2
eis − 1

3!
(3iz)

3
eis + · · ·

= eis
(
1− (3iz) +

1

2!
(3iz)

2 − 1

3!
(3iz)

3
+ · · ·

)
= ei(s−3z).
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Hence, the exact solution θ(s, z) is given by:

θ(s, z) = ei(s−3z).

As a result, our exact solution and the one found in the literature agree when employing the JADM.

Example 5.3 Examine the homogeneous Korteweg-deVries (KdV) equation that is as follows:

θz(s, z)− 6θ(s, z)θs(s, z) + θsss(s, z) = 0. (5.28)

Accompanied by its conditions:

θ(s, 0) =
s− 4

18
. (5.29)

Using J−transformation on Eq. (5.28), we obtain:

rΘ(x, r, w)

w
− wθ(s, 0)− J [6θθs] + J [θsss] = 0. (5.30)

Substitute in Eq. (5.29) using Eq. (5.30) to produce:

Θ(x, r, w) =
w2(s− 4)

18r
− w

r
[ J [6θθs − θsss]] . (5.31)

Below, we employ the J-inverse transformation of Eq. (5.31) for our purposes:

θ(s, z) =
(s− 4)

18
− J−1

[w
r
[J [6θθs − θsss]]

]
. (5.32)

Assume the following is how we want our solutions to look: v(x, t) of the form:

θ(s, z) =

∞∑
j=0

θj(s, z). (5.33)

Putting Eq. (5.33) in place of Eq. (5.32) results in:

∞∑
j=0

θj(s, z) =
(s− 4)

18
− J−1

w

r

J
6 ∞∑

j=0

Aj −
∞∑
j=0

(θj)sss

 . (5.34)

The nonlinear terms’ Adomian polynomials θθs is denoted by Aj.

Then, using Eq. (5.34) we can arrive at:

θ0(s, z) =
(s− 4)

18
,

θ1(s, z) = J−1
[w
r
[J [6A0 − (θ0)sss]]

]
,

θ2(s, z) = J−1
[w
r
[J [6A1 − (vθ1)sss]]

]
,

θ3(s, z) = J−1
[w
r
[J [6A2 − (θ2)sss]]

]
.
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Thus,

θj+1(s, z) = J−1
[w
r
[J [6Aj − (θj)sss]]

]
, ∀j ≥ 0. (5.35)

From Eq. (5.35), we obtain:

θ1(s, z) = J−1
[w
r
[J [6A0 − (θ0)sss]]

]
= J−1

[w
r
[J [6θ0θ0s − (v0)sss]]

]
= J−1

[
w

r

[
J
[
(s− 4)

54
− 0

]]]

=
(s− 4)

54
J−1

[w
r
[J [1]]

]
=

(s− 4)z

54
.

θ2(s, z) = J−1
[w
r
[J [6A1 − (θ1)sss]]

]
= J−1

[w
r
[J [6 (θ1(θ0)s + (θ1)sθ0)− (θ1)sss]]

]
= J−1

[
w

r

[
J
[
12

(
(s− 4)z

972
+

(s− 4)z

972

)]]]

=
(s− 4)

81
J−1

[w
r
[J [z]]

]
=

(s− 4)z2

162
.

Therefore,

θ(s, z) =

∞∑
j=0

θj(s, z)

= θ0(s, z) + θ1(s, z) + θ3(s, z) + · · ·

=
(s− 4)

18
+

(s− 4)z

54
+

(s− 4)z2

162
+ · · ·

=
(s− 4)

18

(
1 +

z

3
+

z2

9
+ · · ·

)
=

s− 4

6(3− z)
.
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Therefore, the precise answer to Eq. (5.28) is:

θ(s, z) =
s− 4

6(3− z)
.

As a result, our exact solution and the one found in the literature agree when employing the JADM.

Example 5.4 The following nonlinear Klein-Gordon equation given below needs to be investigated.

θzz − θss + θ2 = 6s3z − 6sz3 + s6z6. (5.36)

Accompanied by its conditions:
θ(s, 0) = θz(s, 0) = 0. (5.37)

Using J-transformation on Eq. (5.36), we obtain:

r2Θ(x, r, w)

w2
− rθ(s, 0)− wθz(s, 0)− J [θss] + J

[
θ2
]
=

6s3w3

r2
− 36sw5

r4
+

720s6w8

r7
. (5.38)

Substitute Eq. (5.37) into Eq. (5.37) to produce:

Θ(x, r, w) =
6s3w5

r4
− 36rw7

r6
+

720s6w10

r9
+

w2

r2
[
J
[
θss − θ2

]]
. (5.39)

Employing the J-inverse transformation on Eq. (5.39) to get:

θ(s, z) = s3z3 − 3sz5

10
+

s6z8

56
+ J−1

[
w2

r2
[
J
[
θss − v2

]]]
. (5.40)

Assume the following is how we want our solutions to look: θ(s, z) of the form:

θ(s, z) =

∞∑
j=0

θj(s, z). (5.41)

Putting Eq. (5.40) in place of Eq. (5.41) results in:

∞∑
j=0

θj(s, z) = s3z3 − 3sz5

10
+

s6z8

56
+ J−1

w2

r2

J
 ∞∑
j=0

(θj)ss −
∞∑
j=0

Aj

 , (5.42)

where the nonlinear term θ2 is represented by the Adomian polynomial Aj(s).

We continue in a similar manner to obtain:

θ0(s, z) = s3z3 − 3sz5

10
+

s6z8

56
,

θ1(s, z) = J−1

[
w2

r2
[J [(θ0)ss −A0]]

]
,

θ2(s, z) = J−1

[
w2

r2
[J [(θ1)ss −A1]]

]
,

θ3(s, z) = J−1

[
w2

r2
[J [(θ2)ss −A2]]

]
.
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Finally,

θj+1(s, z) = J−1

[
w2

r2
[J [(θj)ss −An]]

]
, ∀j ≥ 0. (5.43)

Then using Eq. (5.41) we can arrive at:

θ1(s, z) = J−1

[
w2

r2
[J [(θ0)ss −A0]]

]

= J−1

[
w2

r2
[
J
[
(θ0)ss − θ20

]]]

= J−1

[
w2

r2

[
J

[(
6sz3 +

15s4z8

28

)
−
(
s3z3 − 3sz5

10
+

s6z8

56

)2
]]]

= J−1

[(
36sw7

r6
− 720s6w10

r9
+ · · ·

)]

=
3sz5

10
− s6z8

56
+ · · · .

Ultimately, one can observe that the remaining terms continue to satisfy the equation by eliminating
any of the noise terms in θ0(s, z) that also occur in θ1(s, z). This leads to an exact solution that
takes the following form:

θ(s, z) = s3z3.

As a result, our precise solution and the one found in the literature agree when employing the JADM.

Remark: The term pairs with the same sign but opposite sign are called noise terms.

6 Conclusion

One of the most intriguing differential equations is the nonlinear Klein–Gordon equation rises from
the study of quantum field theory and is used to describe nonlinear wave interaction, which we
solve in this paper using a unique strategy. It has applications in algebraic geometry, physics,
and the theory of conformal mapping, among other branches of mathematics. Using the JADM,
Klein-Gordon equation problem has been effectively resolved. We also provided exact solutions
for Schrodinger equation and Burger’s equation. The results show that the convergence rate of
the JADM is faster than other methods reported in the literature. The relevance of JADM was
proved by its application in applied science and engineering fields. Additionally, we implemented
the suggested technique to other situations, demonstrating its efficacy and adaptability. According
to the aforementioned study, the JADM can also be used to precisely solve other non-linear ODEs
and PDEs, such as systems of ODEs and PDEs, which are commonly encountered in science and
engineering. So, from the JADM solutions to various scenarios, a fuller understanding of the real-
world applications represented by these modeling challenges will become clear.
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