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Abstract In the present study, a novel semi-analytic scheme is proposed to
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bivariate transform followed by the homotopy perturbation method to formu-
late the recurrence relation. The recurrence relation leads to a system of linear
differential equations that associates with the desired components of the se-
ries solution. To characterize the considered model with memory effects, the
fractional temporal order is considered in the Caputo, Caputo-Fabrizio, and
Atangana-Baleanu in Caputo senses. The adapted scheme appears efficient
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in the governing phenomena with alterations in the fractional order are ad-
dressed through graphical illustrations. The potential of the developed regime
is affirmed through the uniqueness and convergence analysis of the acquired
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1. Introduction

The concept of calculus of fractional operators was developed to find an answer
to the question that prompted L’ Hospital in 1695 to ask Leibnitz about the sce-
nario of n = 1/2 for derivative of order n i.e. dnf

dζn . An essential role of the
fractional operators is that it furnishes the real-world models with an arbitrary
order of differentiation and integrals for characterizing memory and hereditary ef-
fects. These are increasingly employed in the disciplines of applied sciences to
decode the non-local physical appeal of complex systems [2, 7, 9, 12, 24, 56]. As
a result of the usefulness of the fractional calculus in the mathematical analysis
its practical and theoretical aspects are emerged as an enthralling topic in recent
decades. For instance, mathematical modeling of viscoelastic materials frequently
makes use of fractional derivatives [50]. A differential equation of diffusion that
does not use integers can be used to describe anomalous diffusion phenomena in
non-homogeneous media [14]. Fractance, an electrical circuit with non-integer or-
der impedance that possesses both resistance and capacitance qualities, is another
example of an element with fractional order [36]. Additionally, it has been demon-
strated that fractional order calculus can be used to more accurately simulate the
dynamic process of heat conduction [22]. It has been demonstrated in biology that
biological cell membranes exhibit fractal order conductance and are classified as
non-integer order systems [21, 26]. Some financial systems are known to exhibit
fractional order dynamics in economics [37]. Due to the wide range of multidisci-
plinary applications, the piqued attention of researchers glorified the literature with
innumerable definitions of differentiation and integration of arbitrary order. The
capacity to choose the most advantageous definition increased the ability of math-
ematical simulation to adapt the given facts. Some of the renowned definitions
are Riemann-Liouville derivative, Caputo-derivative, Caputo-Fabrizio derivative,
Atangana Baleanu derivative, Grunwald-Letnikov derivative and Riesz derivative
etc [15, 19, 33, 44, 45]. Despite the abundance of literature on fractional calculus,
the optimal definition of a fractional derivative is still lacking. Researchers have
reported the setbacks of prevailing non-integer derivatives in several aspects. R-L
derivative have singular kernel and results in variable function even for derivative
of constant function. All existing fractional derivatives just inherited the linearity
property from the classical derivative. All fractional derivatives do not follow the
product rule, quotient rule, chain rule, Rolle’s theorem and mean value theorem.
Most of the fractional derivatives except Caputo derivative do not cope up with zero
for constant function. After discarding the R-L derivative the Caputo derivative
is considered as most preferable operator by incorporating the limitations of R-L
derivative. Since, mathematical model within the framework of Caputo derivative
possess the classical initial conditions, the behaviour of complex evolution processes
is widely investigated with aid of the Caputo derivative and its extensions.
Experimental studies regarding wave-particle duality witnessed the wave motion
of particles in microscopic system instead of obeying Newtonian laws of motions
governed in macroscopic systems. To specify the quantitative relation between the
behaviour of particle and its associated wave function, prompted by de Broglie pos-
tulate, Schrödinger’s theory developed as a generalization of Newton’s theory of
the motion of particles in macroscopic systems. The mathematical model evolved
from Schrödinger’s theory entitled as Schrödinger equation (SG) have emerged as
fundamental narrator of the aspects of the particle for its specific potential energy
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ν(ζ, τ), through the behaviour of associated wave function ψ(ζ, τ). Potential en-
ergy is usually a function of ζ only and possibly can be of τ also. However, for
the constant value potential energy, SG equation describes the phenomena of free
particle. The presence of imaginary unit i at a fundamental level in SG equation
led to the relation of first power of total energy to the second power of momentum.
Furthermore, it associates the wave function to two real functions simultaneously,
its real part and imaginary part. This is in contrast to a wave function from classi-
cal mechanics. Taking into account, the uncertainty principal of microscopic world
knowns as quantum mechanics SG equation expresses the particle-wave relation in
terms of probability density, first stated in 1926 by Max Born [18] as :

P(ζ, τ) = |ψ(ζ, τ)|2

This quantity indicates the probability of finding the particle close to the coordi-
nate ζ at time τ , in per unit length of the ζ-axis. With development of non-linear
science, the non-linear SG equation established as a multidisciplinary model inter-
preting non-linear wave evolution phenomena frequently arise in quantum mechan-
ics, chemical kinetics, optics, hydrodynamics, bio-genetics, plasma physics, and so
forth [13,16,20,34,54,55]. The integrable cubic non-linear SG equation has special
interest in revolutionized communication system fabricated with optical fibers [17].
It exhibits the basic features of optical wave propagation in Kerr media but leaves
certain finer details such as spin which is a purely quantum phenomena [35]. For
being general, non-linear SG equations incorporates a variety of non-linearities in-
cluding, octic-septic-quintic-cubic non-linearity, Kerr non-linearity, logarithmic non-
linearity, dual-power law non-linearity etc [8, 30,43,51–53].
The Feynman path integrals is generated by quantum dynamics with Brownian-like
attributes. However, commonly known as ψ(τ) ∼ τ1/2 , square root law of govern-
ing Brownian motion regarding change in location over time has not been spotted
for many complex quanta and classical physics [38–40]. To analyze complex quan-
tum dynamic processes, broader evolution law ψ(τ) ∼ τ1/ϖ has been confined with
general scaling 1/ϖ ; 0 < ϖ ≤ 2, known as Levy flights. As a fundamental result of
extending the Feynman path integrals to Levy-like quantum mechanical path, Nick
Lasin discovered eminent fractional Schrödinger equation interpreting the mechan-
ics of fractional quantum [38–40]. To extract the dynamical information of variants
of fractional SG equation, various analytical and numerical studies have been orga-
nized with different preeminent techniques [3–6,10,27,29,31,32,42,47].
In present study, to characterize the SG equation with the memory effect, the
fractional temporal operator has been adapted with three terminologies such as Ca-
puto(C), Caputo-Fabrizio (CF) and Atangana Baleanu in Caputo sense (ABC) in
the following form:

iCρ
τψ(ζ, τ) = βψζζ(ζ, τ) + ν(ζ)ψ(ζ, τ) + λψ(ζ, τ)|ψ(ζ, τ)|2. (1.1)

Initially,
ψ(ζ, 0) = ϕ(ζ), (1.2)

where i =
√
−1, ψ(ζ, τ) is complex-valued function while ζ and τ are spatial and

temporal variables, respectively. The parameter ρ decribes the order of fractional
temporal derivative. β stands for coefficient of group velocity dispersion (GVD) and
λ represents the coefficient of non-linearity. The term ψ(ζ, τ)|ψ(ζ, τ)|2 represents
Kerr-law non-linearity which implies direct proportional dependence of refractive
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index of light on its intensity. ν(ζ) is the trapping potential relies on the description
of loss and dispersion management schemes. ϕ(ζ) is the known initial function.
The paper comprises seven sections. Section 1 is about general introduction of
the problem. Section 2 consists of fundamental terminologies of fractional deriva-
tives and general bivariate (GB) transform. Section 3 gives brief description of
general bivariate homotopy perturbation method (GB-HPM). Sufficient conditions
for uniqueness and convergence of the solution are presented in Section 4. Several
numerical examples are discussed in Section 5. Section 6 briefs the results and
thorough observations. Finally, conclusions are given in Section 7.

2. Basic Definitions

This section covers basic concepts and definitions of Caputo, CF, ABC fractional
derivatives and the GB-transform that will be used in this work.

Definition 2.1. [44] In Caputo’s terminology the fractional operator over function
φ (τ) is defined as:

C
0 C

ρ
τ (φ(τ)) =

{
1

Γ(n−ρ)

∫ τ

0
φn(ξ)

(τ−ξ)ρ+1−n dξ, n− 1 < ρ < n,
dn

dτnφ(τ), ρ = n.
(2.1)

By replacing the singular power law kernel and multiplier of intergral in Caputo’s
fractional derivative fractional operators with non-singular kernels are defined as:

Definition 2.2. [12, 19] In CF’s terminology the fractional operator of order ρ
over function φ (τ) is defined as:

CF
0 C

ρ

τ (φ (τ)) =

{
B(ρ)
1−ρ

∫ τ

0
exp

(
−ρ(τ−ξ)

1−ρ

)
φ′ (ξ) dξ, 0 < ρ < 1,

d
dτ φ(τ), ρ = 1,

(2.2)

where B (ρ) is the normalization function with B (0) = B (1) = 1.

Definition 2.3. [2, 15] In ABC’s terminology the fractional operator of order ρ
over function φ (τ) is defined as:

ABC
0 C

ρ

τ (φ (τ)) =

{
B(ρ)
1−ρ

∫ τ

0
Eρ

(
−ρ(τ−ξ)ρ

1−ρ

)
φ′ (ξ) dξ, 0 < ρ < 1,

d
dτ φ(τ), ρ = 1,

(2.3)

where B (ρ) is the normalization function and Eρ (.) is the Mittag-Leffler function.

In present study, B(ρ) = 1 is considered for simplicity.
These terminologies of fractional calculus have been widely explored to trace the
non-local behaviour of numerous physical systems. In search of efficient tools, in-
tegral transforms have been emerged as competent tools to construct the solution
of fractional models. However, efficiency of these transforms is totally problem
oriented. The present study directs to the capabilities of recently introduced GB
transform [11] for fractional models framed with different Caputo’s type fractional
derivatives. GB transform reduces to ARA [49] and Formable transform [48] for
specific values of its accounted parameters.
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Definition 2.4. [11] The GB transform of function φ (τ) is given by:

Am (φ (τ)) = Pm (s, γ) =
s

γm

∫ ∞

0

τm−1 exp

(
− s

γ
τ

)
φ (τ) dτ, (2.4)

where m is order, s and γ are transformation variable.

Definition 2.5. [11] If Pm (s, γ) is the GB transform of function φ (τ), then the
inverse of Pm (s, γ) is the φ (τ) is such that

A −1
m (Pm (s, γ)) = φ (τ) . (2.5)

Lemma 2.1. [11] If Am (φ1 (τ)) = Pm (s, γ) and Am (φ2 (τ)) = Qm (s, γ) then

Am (λ1φ1 (τ) + λ2φ2 (τ)) = λ1Pm (s, γ) + λ2Qm (s, γ) , (2.6)

where λ1 and λ2 are constants.

Lemma 2.2. [11] (Shifting in n-domain)

Am (τnφ (τ)) = γnAm+n (φ (τ)) , (2.7)

where m+ n− 1 ≥ 0.

Theorem 2.1. The GB transform for fractional operator defined in Caputo’s sense
is given by:

Am

[
C
0 C

ρ

τ (φ (τ))
]
=

1

Γ (n− ρ)

m∑
r=1

(
m− 1

r − 1

)
Γ (n+m− ρ− r)

γn−ρ

sn+m−ρ−r
Ar [φ

n (τ)] ,

(2.8)
where n− 1 < ρ ≤ n.

Proof. By using definition of GB transform and Caputo’s derivative one can have

Am

[
C
0 C

ρ

τ (φ (τ))
]
=

s

γm

∫ ∞

0

τm−1 exp

(
− s

γ
τ

)(
1

Γ (n− ρ)

∫ τ

0

φn (ξ)

(τ − ξ)
ρ−n+1 dξ

)
dτ.

(2.9)
Altering the order of integration in Eq.(2.9), gives

Am

[
C
0 C

ρ

τ (φ (τ))
]
=

s

γmΓ (n− ρ)

∫ ∞

0

φn (ξ)

∫ ∞

ξ

τm−1

(τ − ξ)
ρ−n+1 exp

(
− s

γ
τ

)
dτ dξ.

(2.10)
Letting λ = τ − ξ in Eq.(2.10) leads to

Am

[
C
0 C

ρ

τ (φ (τ))
]
=

s

γmΓ (n− ρ)

∫ ∞

0

φn (ξ) exp

(
− s

γ
ξ

)∫ ∞

0

exp

(
− s

γ
λ

)
(λ+ ξ)

m−1

λn−ρ−1dλ dξ. (2.11)

Using the binomial formula, Eq.(2.11) gives

Am

[
C
0 C

ρ

τ (φ (τ))
]
=

s

γmΓ (n− ρ)

∫ ∞

0

φn (ξ) exp

(
− s

γ
ξ

)∫ ∞

0

exp

(
− s

γ
λ

) m∑
r=1

(
m− 1

r − 1

)
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λn+m−ρ−r−1ξr−1dλ dξ. (2.12)

Using the definition of GB transform of order one, Eq.(2.12) implies

Am

[
C
0 C

ρ

τ (φ (τ))
]
=

1

γm−1Γ (n− ρ)

∫ ∞

0

φn(ξ) exp

(
− s

γ
ξ

)
A1

[
m∑
r=1

(
m− 1

r − 1

)
λn+m−ρ−r−1

]
ξr−1dξ, (2.13)

=
1

Γ (n− ρ)

m∑
r=1

(
m− 1

r − 1

)
Γ (n+m− ρ− r)

γn−ρ−r

sn+m−ρ−r−1

∫ ∞

0

φn (ξ) exp

(
− s

γ
ξ

)
ξr−1dξ.

(2.14)
Using the definition of GB transform of order r, Eq.(2.14) implies

Am

[
C
0 C

ρ

τ (φ (τ))
]
=

1

Γ (n− ρ)

m∑
r=1

(
m− 1

r − 1

)
Γ (n+m− ρ− r)

γn−ρ

sn+m−ρ−r
Ar [φ

n (τ)] .

Remark 2.1. (Special Cases of Eq.(2.8))

i. For m=1:

A1[
C
0 C

ρ
τ (φ (τ))] =

γn−ρ

sn−ρ
A1[φ

n(τ)], n− 1 < ρ ≤ n.

ii. For m=2:

A2[
C
0 C

ρ
τ (φ (τ))] = (n−ρ) γn−ρ

sn−ρ+1
A1[φ

n(τ)]+
γn−ρ

sn−ρ
A2[φ

n(τ)], n−1 < ρ ≤ n.

For γ = 1, the resulting equations of GB transform for Caputo’s operator are in
alignment with existing equations of ARA transform for Caputo’s operator [46].

Theorem 2.2. The GB transform for fractional operator defined in Caputo-Fabrizio’s
sense is given by

Am

[
CF
0 C

ρ

τ (φ (τ))
]
= B (ρ)

m∑
r=1

(
m− 1

r − 1

)
(m− r)!

(1− ρ)

γ(
s+ ρ

1−ργ
)m−r+1Ar [φ

′ (τ)],

(2.15)
where 0 < ρ ≤ 1.

Proof. By using definition of GB transform and Caputo-Fabrizio’s derivative one
can have

Am

[
CF
0 C

ρ

τ (φ (τ))
]
=

B (ρ) s

(1− ρ) γm

∫ ∞

0

τm−1 exp

(
− s

γ
τ

)[∫ τ

0

φ′ (ξ) exp

(
−ρ (τ − ξ)

1− ρ

)
dξ

]
dτ.

(2.16)
Altering the order of integration in Eq.(2.16), gives

Am

[
CF
0 C

ρ

τ (φ (τ))
]
=

B (ρ) s

(1− ρ) γm

∫ ∞

0

φ′ (ξ)

∫ ∞

ξ

exp

(
− s

γ
τ

)
exp

(
−ρ (τ − ξ)

1− ρ

)
τm−1dτ dξ.

(2.17)
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Letting λ = τ − ξ in Eq.(2.17) leads to

Am

[
CF
0 C

ρ

τ (φ (τ))
]
=

B (ρ) s

(1− ρ) γm

∫ ∞

0

φ′ (ξ)

∫ ∞

0

exp

(
− s

γ
(λ+ ξ)

)
exp

(
− ρλ

1− ρ

)
(λ+ ξ)

m−1
dλ dξ. (2.18)

Using the binomial formula, Eq.(2.18) gives

Am

[
CF
0 C

ρ

τ (φ (τ))
]
=

B (ρ) s

(1− ρ) γm

∫ ∞

0

φ′ (ξ)

∫ ∞

0

exp

(
− s

γ
(λ+ ξ)

)
exp

(
− ρλ

1− ρ

)
m∑
r=1

(
m− 1

r − 1

)
λm−rξr−1dλ dξ.

(2.19)

From the definition of GB transform of order one, one can get

Am

[
CF
0 C

ρ

τ (φ (τ))
]
=

B (ρ)

(1− ρ) γm−1

∫ ∞

0

φ′ (ξ) exp

(
− s

γ
ξ

)
A1

[
m∑
r=1

(
m− 1

r − 1

)

exp

(
− ρλ

1− ρ

)
λm−r

]
ξr−1dξ,

=
B (ρ)

(1− ρ) γm−1

m∑
r=1

(
m− 1

r − 1

)
(m− r)!

sγm−r(
s+ ρ

1−ργ
)m−r+1

∫ ∞

0

φ′ (ξ) exp

(
− s

γ
ξ

)
ξr−1dξ.

(2.20)
Using the definition of GB transform of order r, Eq.(2.20) implies

Am

[
CF
0 C

ρ

τ (φ (τ))
]
= B (ρ)

m∑
r=1

(
m− 1

r − 1

)
(m− r)!

1− ρ

γ(
s+ ρ

1−ργ
)m−r+1Ar [φ

′ (τ)].

Remark 2.2. (Special Cases of Eq.(2.15))

i. For m = 1:

A1[
CF
0 Cρ

τ (φ (τ))] =
B (ρ)

1− ρ+ ργ
s

γ

s
A1[φ

′(τ)], 0 < ρ ≤ 1.

ii. For m = 2:

A2[
CF
0 Cρ

τ (φ (τ))] =
B (ρ) γ(1− ρ)

[s(1− ρ) + ργ]2
A1[φ

′(τ)]+
B (ρ) γ

s(1− ρ) + ργ
A2[φ

′(τ)], 0 < ρ ≤ 1.

Theorem 2.3. The GB transform for fractional operator defined in Atangana
Baleanu in Caputo sense is given by

Am

[
ABC
0 C

ρ

τ (φ (τ))
]
=

B (ρ)

(1− ρ)

m∑
r=1

(
m− 1

r − 1

)
1

sm−r

∞∑
k=0

(
− ρ

1− ρ

)k
1

Γ (ρk + 1)
(ρk +m− r)!

γρk+1

sρk+1
Ar [φ

′ (τ)] , (2.21)

where 0 < ρ ≤ 1.
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Proof. By using definition of GB transform and Atangana Baleanu in Caputo
sense derivative one can have

Am

[
ABC
0 C

ρ

τ (φ (τ))
]
=

sB (ρ)

(1− ρ) γm

∫ ∞

0

τm−1 exp

(
− s

γ
τ

)[∫ τ

0

φ′ (ξ)Eρ

(
−ρ (τ − ξ)

ρ

1− ρ

)
dξ

]
dτ.

(2.22)
Altering the order of integration in Eq.(2.22), gives

Am

[
ABC
0 C

ρ

τ (φ (τ))
]
=

sB (ρ)

(1− ρ) γm

∫ ∞

0

φ′ (ξ)

∫ ∞

ξ

exp

(
− s

γ
τ

)
Eρ

(
−ρ (τ − ξ)

ρ

1− ρ

)
τm−1dτ dξ.

(2.23)
Letting λ = τ − ξ in Eq.(2.23) leads to

Am

[
ABC
0 C

ρ

τ (φ (τ))
]
=

sB (ρ)

(1− ρ) γm

∫ ∞

0

φ′ (ξ)

∫ ∞

0

exp

(
− s

γ
(λ+ ξ)

)
Eρ

(
− ρλρ

1− ρ

)
(λ+ ξ)

m−1
dλ dξ. (2.24)

Using the binomial formula, Eq.(2.24) gives

Am

[
ABC
0 C

ρ

τ (φ (τ))
]
=

sB (ρ)

(1− ρ) γm

∫ ∞

0

φ′ (ξ) exp

(
− s

γ
ξ

)[∫ ∞

0

exp

(
− s

γ
λ

)
Eρ

(
− ρλρ

1− ρ

)
m∑
r=1

(
m− 1

r − 1

)
λm−rdλ

]
ξr−1dξ. (2.25)

From the definition of GB transform of order one, one can get

Am

[
ABC
0 C

ρ

τ (φ (τ))
]
=

B (ρ)

(1− ρ) γm−1

∫ ∞

0

φ′ (ξ) exp

(
− s

γ
ξ

)
A1

[
m∑
r=1

(
m− 1

r − 1

)
Eρ

(
− ρλρ

1− ρ

)

λm−r

]
ξr−1dξ. (2.26)

By using series expansion of Eρ(.) [2, 45], one gets

Am

[
ABC
0 C

ρ

τ (φ (τ))
]
=

B (ρ)

(1− ρ) γm−1

m∑
r=1

(
m− 1

r − 1

)
1

sm−r

∞∑
k=0

(
− ρ

1− ρ

)k
1

Γ (ρk + 1)
(ρk +m

− r)!
γρk+m−r

sρk

∫ ∞

0

φ′ (ξ) exp

(
− s

γ
ξ

)
ξr−1dξ. (2.27)

Using the definition of GB transform of order r, Eq.(2.27) implies

Am

[
ABC
0 C

ρ

τ (φ (τ))
]
=

B (ρ)

(1− ρ)

m∑
r=1

(
m− 1

r − 1

)
1

sm−r

∞∑
k=0

(
− ρ

1− ρ

)k
1

Γ (ρk + 1)
(ρk +m− r)!

γρk+1

sρk+1
Ar [φ

′ (τ)] .
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Remark 2.3. (Special Case of Eq.(2.21) for m = 1)

A1

[
ABC
0 C

ρ

τ (φ (τ))
]
=

B(ρ)

(1− ρ)

∞∑
k=0

(−1)k
[

ρ

1− ρ

(γ
s

)ρ]k γ
s
A1[φ

′(τ)],

=
B(ρ)

(1− ρ)

[
1 +

ρ

1− ρ

(γ
s

)ρ]−1
γ

s
A1[φ

′(τ)],

=
B(ρ)[

1− ρ+ ρ
(
γ
s

)ρ] γsA1[φ
′(τ)], 0 < ρ ≤ 1.

3. Methodology

In this section, the fundamental operation of proposed semi-analytic procedure
derived from amalgamation of GB transform and HPM [1,28] is presented to solve
time fractional non-linear partial differential equations. Consider the generic non-
linear non-homogeneous PDE with temporal fractional operator as:

Cρ
τ (ψ(ζ, τ)) = Λ(ψ(ζ, τ)) + Θ(ψ(ζ, τ)) + f(ζ, τ), (3.1)

with the initial condition
ψ(ζ, 0) = ϕ(ζ), (3.2)

where Cρ
τ is the fractional temporal operator. Λ and Θ specify the linear and non-

linear operators, respectively. f(ζ, τ) is the source term and ϕ(ζ) is the known
initial function.
By employing the GB transform of order one on Eq.(3.1) with consideration of
fractional derivatives of Caputo type, yields

1

r(s, γ, ρ)
[A1 [ψ(ζ, τ)]− ϕ(ζ)] = A1 [M(ζ, τ)] , (3.3)

where,
M(ζ, τ) = Λ(ψ(ζ, τ)) + Θ(ψ(ζ, τ)) + f(ζ, τ), (3.4)

and the function r(s, γ, ρ) emerges in the following forms:

i. ( GB-HPMC) For Caputo’s terminology:

r(s, γ, ρ) =
(γ
s

)ρ
. (3.5)

ii. (GB-HPMCF ) For CF’s terminology:

r(s, γ, ρ) = 1− ρ+ ρ
(γ
s

)
. (3.6)

iii. (GB-HPMABC) For ABC’s terminology:

r(s, γ, ρ) =
1− ρ+ ρ

(
γ
s

)ρ
B(ρ)

. (3.7)
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By operating inverse of GB transform, Eq.(3.3) can be re-written as

ψ(ζ, τ) = ϕ(ζ) + A −1
1 [r(s, γ, ρ)A1[M(ζ, τ)]]. (3.8)

Embedding the homotopy parameter i.e., q ∈ [0, 1] constructs the perturbation
equation as

ψ(ζ, τ) = ϕ(ζ) + qA −1
1 [r(s, γ, ρ)A1[M(ζ, τ)]]. (3.9)

The solution of Eq.(3.1) is presumed in the form of series expanded with respect to
the small parameter q as

ψ(ζ, τ) =

∞∑
l=0

qlψl(ζ, τ). (3.10)

Decompose the non-linear operator Θ(ψ(ζ, τ)) as

Θ(ψ(ζ, τ)) =

∞∑
l=0

Hl, (3.11)

where the Hl represent the He’s polynomials [25]:

Hl(ψ0, ψ1, . . . , ψl) =
1

l!

∂l

∂ql

Θ
 ∞∑

j=0

qjψj(ζ, τ)


q=0

, l = 0, 1, 2 . . . . (3.12)

Expression (3.12) can be expanded as:

H0 = Θ(ψ0),

H1 = ψ1Θ
′(ψ0), (3.13)

H2 = ψ2Θ
′(ψ0) +

1

2!
ψ2
1Θ

′′(ψ0), . . . .

By inserting the Eq.(3.10) and Eq.(3.11) into Eq.(3.9), one obtains the following
system of linear equations corresponding to the components of desired series solution
as:

ψ0(ζ, τ) = ϕ(ζ) + A −1
1 [r(s, γ, ρ)A1[f(ζ, τ)]],

ψ1(ζ, τ) = A −1
1 [r(s, γ, ρ)A1[Λ(ψ0(ζ, τ)) + H0]], (3.14)

...

ψl+1(ζ, τ) = A −1
1 [r(s, γ, ρ)A1[Λ(ψl(ζ, τ)) + Hl]], l = 0, 1, 2, . . . .

By substituting calculated components from system (3.14) into Eq.(3.10) with q → 1
gives the solution of Eq.(3.1) as

ψ(ζ, τ) = ψ0(ζ, τ) + ψ1(ζ, τ) + ψ2(ζ, τ) + ψ3(ζ, τ) + ..., (3.15)

where truncated series of n components termed as nth order approximate solution
and closed form represents analytic solution.
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4. Analysis of GB-HPM

Theorem 4.1. [2, 56] Let B = (C[Ω], ∥ . ∥) be the Banach space that incorporates
∥ ψ ∥= max(ζ,τ)∈Ω |ψ(ζ, τ)| , for all continuous functions defined on Ω. Λ and Θ
(linear and non-linear operators in GB-HPM scheme) are Lipschitz operators, that
is

|Λ[ψ]− Λ[ψ∗]| < κ1|ψ − ψ∗|, (4.1)

and
|Θ[ψ]−Θ[ψ∗]| < κ2|ψ − ψ∗|, (4.2)

where κ1 and κ2 are Lipschitz constants. Then GB-HPM solution is convergent if
∃ κ ∈ (0, 1) such that

i.

κ = (κ1 + κ2)
τρ

Γ(ρ+ 1)
for GB-HPMC solution. (4.3)

ii.
κ = (κ1 + κ2)(1− ρ+ ρτ) for GB-HPMCF solution. (4.4)

iii.

κ = (κ1 + κ2)

(
1− ρ+ ρ

τρ

Γ(ρ+ 1)

)
for GB-HPMABC solution. (4.5)

Proof. Let Ψm =
∑m

r=0 ψr . To show that Ψm is a Cauchy sequence in B.
Consider,

∥ Ψm −Ψn ∥ = max
(ζ,τ)∈Ω

|Ψm −Ψn| = max
(ζ,τ)∈Ω

∣∣∣ m∑
r=n+1

ψr(ζ, τ)
∣∣∣, n = 1, 2, 3... ,

≤ max(ζ,τ)∈Ω

∣∣∣∣∣A −1
1

{
r(s, γ, ρ)A1

[
m∑

r=n+1

(Λ(ψr−1(ζ, τ)) + Θ(ψr−1(ζ, τ)))

]}∣∣∣∣∣,
≤ max

(ζ,τ)∈Ω

∣∣∣∣∣A −1
1

{
r (s, γ, ρ)A1

[
m−1∑
r=n

(Λ (ψr (ζ, τ)) + Θ (ψr (ζ, τ)))

]}∣∣∣∣∣ ,
≤ max

(ζ,τ)∈Ω

∣∣A −1
1 {r (s, γ, ρ)A 1 [Λ (ψm−1)− Λ (ψn−1) + Θ (ψm−1)−Θ(ψn−1)]}

∣∣ ,
(4.6)

i. GB-HPMC solution: Using Eq.(3.5), Eq.(4.6) drives

≤ (κ1 + κ2)
τρ

Γ (ρ+ 1)
∥ ψm−1 − ψn−1 ∥ .

Let m = n+ 1, then

∥ ψn+1 − ψn ∥≤ κ ∥ ψn − ψn−1 ∥≤ κ2 ∥ ψn−1 − ψn−2 ∥≤ . . . ≤ κn ∥ ψ1 − ψ0 ∥,

where κ = (κ1 + κ2)
τρ

Γ(ρ+1) .

In the same manner,

∥ ψm−1 − ψn−1 ∥≤∥ ψn+1 − ψn ∥ + ∥ ψn+2 − ψn+1 ∥ + . . .+ ∥ ψm − ψm−1 ∥,
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≤
(
κn + κn+1 + . . .+ κm−1

)
∥ ψ1 − ψ0 ∥,

≤ κn
(
1− κm−n

1− κ

)
∥ ψ1 ∥ .

As 0 < κ < 1 implies 1− κm−n < 1. Therefore

∥ Ψm −Ψn ∥≤ κn

1− κ
∥ ψ1 ∥ .

Since ∥ ψ1 ∥<∞. ∥ Ψm −Ψn ∥→0 when n→ ∞. Hence, Ψm is a Cauchy sequence
in B which is sufficient to prove the convergence of series solution.
ii. GB-HPMCF solution: Using Eq.(3.6), Eq.(4.6) gives

≤ (κ1 + κ2) (1− ρ+ ρτ) ∥ ψm−1 − ψn−1 ∥ .

Further proof is analogous to the (i) part.
iii.GB-HPMABC solution: Using Eq.(3.7), Eq.(4.6) gives

≤ (κ1 + κ2)

(
1− ρ+ ρ

τρ

Γ (ρ+ 1)

)
∥ ψm−1 − ψn−1 ∥ .

Further proof is analogous to the (i) part.

Theorem 4.2. [2, 56] Presume the conditions of Theorem 4.1 then the solution
obtained with the aid of GB-HPM solution is unique whenever 0 < κ < 1, where

i.

κ = (κ1 + κ2)
τρ

Γ (ρ+ 1)
for GB-HPMCsolution. (4.7)

ii.
κ = (κ1 + κ2) (1− ρ+ ρτ) for GB-HPMCF solution. (4.8)

iii.

κ = (κ1 + κ2)

(
1− ρ+ ρ

τρ

Γ (ρ+ 1)

)
for GB-HPMABC solution. (4.9)

Proof. Eq. (3.8) gives

ψ (ζ, τ) = ϕ(ζ) + A −1
1 [r (s, γ, ρ)A 1 [Λ (ψ (ζ, τ )) + Θ (ψ (ζ, τ))]] .

If possible, let ψ and ψ∗ be the two distinct function values. Then

∥ ψ − ψ∗ ∥ = max |A −1
1 [r (s, γ, ρ)A 1 [Λ (ψ (ζ, τ )) + Θ (ψ (ζ, τ))]] |

− A −1
1 [r (s, γ, ρ)A 1 [Λ (ψ∗ (ζ, τ )) + Θ (ψ∗ (ζ, τ))]] |,

≤ max
∣∣A −1

1 [r (s, γ, ρ)A 1 [κ1 |ψ − ψ∗|]]
∣∣+max

∣∣A −1
1 [r (s, γ, ρ)A 1 [κ2 |ψ − ψ∗|]]

∣∣,
≤ (κ1 + κ2)A

−1
1 [r (s, γ, ρ)A 1 ∥ ψ − ψ∗ ∥] , (4.10)

i. (GB-HPMC) For Caputo’s terminology Eq.(4.10) reduces to

= (κ1 + κ2)A −1
1

[(γ
s

)ρ
A

1
∥ ψ − ψ∗ ∥

]
,
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∥ ψ − ψ∗ ∥≤ (κ1 + κ2)
τρ

Γ (ρ+ 1)
∥ ψ − ψ∗ ∥,

(1− κ) ∥ ψ − ψ∗ ∥≤ 0. (4.11)

Since 0 < κ = (κ1 + κ2)
τρ

Γ(ρ+1) < 1, then ∥ ψ − ψ∗ ∥= 0 which implies ψ = ψ∗.

This proves the uniqueness of GB-HPMC solution.
ii. (GB-HPMCF ) For CF’s terminology:
Using r (s, γ, ρ) = 1− ρ+ ρ

(
γ
s

)
uniqueness condition for GB-HPMCF solution can

be derived as part (i).
iii. (GB-HPMABC) For ABC’s terminology:

Using r (s, γ, ρ) =
1−ρ+ρ( γ

s )
ρ

B(ρ) uniqueness condition for GB-HPMABC solution can

be derived as part (i).

5. Numerical Experiments

This section provides the demonstration of developed method with error analysis
for considered examples.

Example 5.1. Consider the time fractional linear SG equation as follows:

Cρ
τψ + iψζζ = 0, 0 < ρ ≤ 1, (5.1)

with initial condition
ψ (ζ, 0) = e3iζ . (5.2)

The exact solution for Eq.(5.1) is established as ψ (ζ, τ) = e3i(ζ+3τ) for ρ =
1. Proceeding as developed methodology with choice of Λ (ψ (ζ, τ)) = −iψζζ and
Θ (ψ (ζ, τ)) = 0 yields the recurrent connection in the following form

ψ0 = ψ (ζ, 0) ,

ψl+1 (ζ, τ) = −iA −1
1 [r(s, γ, ρ)A1[(ψl)ζζ ]], l = 0, 1, 2, . . . . (5.3)

i. GB-HPMC solution: Using explicit form of r (s, γ, ρ) described in Eq.(3.5)
for Caputo’s terminology, the solution of the above system of successive iter-
ative components can be written in the form

ψ0 (ζ, τ) = e3iζ ,

ψ1 (ζ, τ) =
9iτρ

Γ (1 + ρ)
e3iζ ,

ψ2 (ζ, τ) =
(9iτρ)

2

Γ (1 + 2ρ)
e3iζ ,

ψ3 (ζ, τ) =
(9iτρ)

3

Γ (1 + 3ρ)
e3iζ , . . . .

Consequently, the series of the GB-HPMC solution is represented as

ψc (ζ, τ) = e3iζ +
9iτρ

Γ (1 + ρ)
e3iζ +

(9iτρ)
2

Γ (1 + 2ρ)
e3iζ +

(9iτρ)
3

Γ (1 + 3ρ)
e3iζ + . . . , (5.4)

= e3iζEn (9it
ρ) . (5.5)

where En (.) is Mittag-Leffler function.



14 S. Arora, S.S. Dhaliwal, W.X. Ma & A. Pasrija

ii. GB-HPMCF solution: Using explicit form of r (s, γ, ρ) described in Eq.(3.6)
for CF’s terminology, the solution of the above system of successive iterative
components can be written in the form

ψ0 (ζ, τ) = e3iζ ,

ψ1 (ζ, τ) = 9ie3iζ [ρ (τ − 1) + 1] ,

ψ2 (ζ, τ) =
(9i)

2

2!
e3iζ

[
ρ2
(
τ2 − 4τ + 2

)
+ 4ρ (τ − 1) + 2

]
,

ψ3 (ζ, τ) =
(9i)

3

3!
e3iζ

[
ρ3
(
τ3 − 9τ2 + 18τ − 6

)
+ ρ2

(
9τ2 − 36τ + 18

)
+ 18ρ (τ − 1) + 6

]
, . . . .

Consequently, the series of the GB-HPMCF solution is represented as

ψCF (ζ, τ) = e3iζ
{
1 + 9i [ρ (τ − 1) + 1] +

(9i)
2

2!

[
ρ2
(
τ2 − 4τ + 2

)
+ 4ρ (τ − 1) + 2

]
+
(9i)

3

3!

[
ρ3
(
τ3 − 9τ2 + 18τ − 6

)
+ ρ2

(
9τ2 − 36τ + 18

)
+ 18ρ (τ − 1) + 6

]
, . . .

}
.

(5.6)

iii. GB-HPMABC solution: Using explicit form of r (s, γ, ρ) described in Eq.(3.7)
for ABC’s terminology, the solution of the above system of successive iterative
components can be written in the form

ψ0 (ζ, τ) = e3iζ ,

ψ1 (ζ, τ) =
9ie3iζ

Γ (ρ+ 1)
[ρτρ − (ρ− 1) Γ (ρ+ 1)] ,

ψ2 (ζ, τ) = e3iζ
(

162ρ2τρ

Γ (ρ+ 1)
− 162ρτρ

Γ (ρ+ 1)
− 81ρ2τ2ρ

Γ (2ρ+ 1)
− 81− 81ρ2 + 162ρ

)
, . . . .

Consequently, the series of the GB-HPMABC solution is represented as

ψABC (ζ, τ) = e3iζ

{
1 +

9ie3iζ

Γ (ρ+ 1)
[ρτρ − (ρ− 1) Γ (ρ+ 1)]

+

(
162ρ2τρ

Γ (ρ+ 1)
− 162ρτρ

Γ (ρ+ 1)
− 81ρ2τ2ρ

Γ (2ρ+ 1)
− 81− 81ρ2 + 162ρ

)
+ . . .

}
.

(5.7)

By considering ρ = 1, the GB-HPMABC , GB-HPMCF and GB-HPMABC

solutions become

ψ (ζ, τ) = e3iζ
∞∑

n=0

(9iτ)
n

n!
= e3i(ζ+3τ). (5.8)

which represents the exact solution for the linear SG equation (5.1) with
classical derivative.

Example 5.2. Consider β = − 1
2 , ν (ζ) = 0 and λ = −1 then time fractional

non-linear SG equation (1.1) becomes

iCρ
τψ +

1

2
ψζζ + |ψ|2 ψ = 0, 0 < ρ ≤ 1, (5.9)
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with initial condition
ψ (ζ, 0) = eiζ . (5.10)

The exact solution for Eq.(5.9) is established as ψ (ζ, τ) = ei(ζ+τ/2) in the case of
ρ = 1. Proceeding as developed methodology with choice of Λ (ψ (ζ, τ)) = i 12ψζζ

and Θ (ψ (ζ, τ)) = i |ψ|2ψ yields the recurrent connection in the following form

ψ0 = ψ (ζ, 0) ,

ψl+1 (ζ, τ) = iA −1
1

[
r (s, γ, ρ)A 1

[(
1

2
ψ
l

)
ζζ

+ Hl

]]
, l = 0, 1, 2, . . . . (5.11)

where non-linear term written as Θ (ψ (ζ, τ)) = i |ψ|2 ψ = iψ2 ψ̄ is represented in
terms of He’s polynomials (3.12) in following form:

H0 = iψ2
0ψ̄0,H1 = iψ0

(
ψ0ψ̄1 + 2ψ̄0ψ1

)
,H2 = i[2ψ0

(
ψ̄0ψ2 + ψ1ψ̄1

)
+ ψ2

1ψ0 + ψ2
0ψ̄2], . . . .

(5.12)

i. GB-HPMC solution: Using explicit form of r (s, γ, ρ) described in Eq.(3.5)
for Caputo’s terminology the series solution of 3rd-order approximation is
obtained as following:

ψ0 (ζ, τ) = eiζ ,

ψ1 (ζ, τ) =
i

2

τρ

Γ (ρ+ 1)
eiζ ,

ψ2 (ζ, τ) = −1

4

τ2ρ

Γ (2ρ+ 1)
eiζ ,

ψ3 (ζ, τ) = − i

8

τ3ρ

Γ (3ρ+ 1)

(
5− 2

Γ (2ρ+ 1)

(Γ (ρ+ 1)
2

)
eiζ , . . . .

Similarly, one can get more components for different values of l in Eq.(5.11).
Then the GB-HPMC solution can be written in following series

ψC (ζ, τ) = eiζ

[
1 +

i

2

τρ

Γ (ρ+ 1)
− 1

4

τ2ρ

Γ (2ρ+ 1)
− i

8

τ3ρ

Γ (3ρ+ 1)

(
5− 2

Γ (2ρ+ 1)

(Γ (ρ+ 1)
2

)
+ . . .

]
.

(5.13)

ii. GB-HPMCF solution: Using explicit form of r (s, γ, ρ) described in Eq.(3.6)
for CF’s terminology the series solution of 3rd-order approximation is obtained
as following:

ψ0 (ζ, τ) = eiζ ,

ψ1 (ζ, τ) = ieiζ (ρ (τ − 1) + 1) ,

ψ2 (ζ, τ) = − i

2
eiζ
[
ρ2(τ2 − 4τ + 2

)
+ 4ρ (τ − 1) + 2],

ψ3 (ζ, τ) = − i

6
eiζ
[
ρ3
(
τ3 − 21τ2 + 54τ + 18

)
+ ρ2

(
2τ2 − 108τ + 54

)
+ 54ρ (τ − 1) + 18

]
, . . . .
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Similarly, one can get more components for different values of l in Eq.(5.11).
Then the GB-HPMCF solution can be written in following series

ψCF (ζ, τ) = eiζ

{
1 + i [ρ (τ − 1) + 1]− i

2

[
ρ2
(
τ2 − 4τ + 2

)
+ 4ρ (τ − 1) + 2

]
− i

6
eiζ
[
ρ3
(
τ3 − 21τ2 + 54τ + 18

)
+ ρ2

(
2τ2 − 108τ + 54

)
+ 54ρ (τ − 1) + 18

]
+ . . .

}
. (5.14)

iii. GB-HPMABC solution: Using explicit form of r (s, γ, ρ) described in Eq.(3.7)
for ABC’s terminology the approximate series solution is obtained as following:

ψ0 (ζ, τ) = eiζ ,

ψ1 (ζ, τ) =
ieiζ

2Γ (ρ+ 1)
[ρτρ − (ρ− 1) Γ (ρ+ 1)] ,

ψ2 (ζ, τ) = eiζ
(

−1

4
− ρ2

4
+
ρ

2
+

ρ2τρ

2Γ (ρ+ 1)
− ρτρ

2Γ (ρ+ 1)
− ρ2τ2ρ

4Γ (2ρ+ 1)

)
, . . . .

Similarly, one can get more components for different values of l in Eq.(5.11).
Then the GB-HPMABC solution can be written in following series

ψABC (ζ, τ) =eiζ
{
1 +

ieiζ

2Γ (ρ+ 1)
[ρτρ − (ρ− 1) Γ (ρ+ 1)]+(

−1

4
− ρ2

4
+
ρ

2
+

ρ2τρ

2Γ (ρ+ 1)
− ρτρ

2Γ (ρ+ 1)
− ρ2τ2ρ

4Γ (2ρ+ 1)

)
+ . . .

}
.

(5.15)

As ρ → 1 , the GB-HPMC , GB-HPMCF and GB-HPMABC solutions become

ψ (ζ, τ) = eiζ
∞∑

n=0

(
iτ
2

)n
n!

= ei(ζ+
τ
2 ). (5.16)

which represents the exact solution for the non-linear SG equation (5.9) with
classical derivatives.

Example 5.3. Consider β = − 1
2 , ν (ζ) = − cos2(ζ) and λ = 1 then time fractional

non-linear SG equation (1.1) becomes

iCρ
τψ +

1

2
ψζζ − cos2 (ζ)ψ − |ψ|2 ψ = 0, 0 < ρ ≤ 1, (5.17)

with initial condition
ψ (ζ, 0) = sin(ζ). (5.18)

The exact solution for Eq.(5.17) is given as ψ (ζ, τ) = e−3iτ/2sin(ζ) when ρ = 1.

Proceeding as developed methodology with choice of Λ (ψ (ζ, τ)) = i
(
1
2ψζζ − cos2 (ζ)ψ

)
and Θ (ψ (ζ, τ)) = −i |ψ|2ψ yields the recurrent connection in the following form

ψ0 = ψ (ζ, 0) ,
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ψl+1 (ζ, τ) = iA −1
1

[
r (s, γ, ρ)A 1

[(
1

2
ψ
l

)
ζζ

− cos2 (ζ)ψl − Hl

]]
, l = 0, 1, 2 . . . .

(5.19)

where in order to deal with existing non-linearity Θ (ψ (ζ, τ)) = −i |ψ|2 ψ = −iψ2 ψ̄,
He’s polynomials (3.12) are used in following form:

H0 = −iψ2
0ψ̄0,H1 = −iψ0

(
ψ0ψ̄1 + 2ψ̄0ψ1

)
,H2 = −i[2ψ0

(
ψ̄0ψ2 + ψ1ψ̄1

)
+ψ2

1ψ0+ψ
2
0ψ̄2], . . . .

(5.20)

i. GB-HPMC solution: Using explicit form of r (s, γ, ρ) described in Eq.(3.5)
for Caputo’s terminology the series solution of 3rd-order approximation is
obtained as following:

ψ0 (ζ, τ) = sin(ζ),

ψ1 (ζ, τ) = −3iτρ sin (ζ)

2Γ (ρ+ 1)
,

ψ2 (ζ, τ) = −9τ2ρ sin (ζ)

4Γ (2ρ+ 1)
,

ψ3 (ζ, τ) =
9iτ3ρsin(ζ)[4(Γ(ρ+ 1))2sin2(ζ)− 2Γ(2ρ+ 1)sin2(ζ) + 3(Γ(ρ+ 1))2]

8(Γ(ρ+ 1))2Γ(3ρ+ 1)
, . . . .

Similarly, one can get more components for different values of l in Eq.(5.19).
Then the GB-HPMC solution can be written in following series

ψC (ζ, τ) = sin (ζ)

{
1− 3iτρ

2Γ (ρ+ 1)
− 9τ2ρ

4Γ (2ρ+ 1)

9iτ3ρ[4(Γ(ρ+ 1))2sin2(ζ)− 2Γ(2ρ+ 1)sin2(ζ) + 3(Γ(ρ+ 1))2]

8(Γ(ρ+ 1))2Γ(3ρ+ 1)
, . . .

}
.

(5.21)

ii. GB-HPMCF solution: Using explicit form of r (s, γ, ρ) described in Eq.(3.6)
for CF’s terminology the series solution of 3rd-order approximation is obtained
as following:

ψ0 (ζ, τ) = sin(ζ),

ψ1 (ζ, τ) = −3isin (ζ)

2
[ρ (τ − 1) + 1] ,

ψ2 (ζ, τ) = −9 sin (ζ)

8

[
ρ2
(
τ2 − 4τ + 2

)
+ 4ρ (τ − 1) + 2

]
, . . . .

Similarly, one can get more components for different values of l in Eq.(5.19).
Then the GB-HPMCF solution can be written in following series

ψCF (ζ, τ) = sin (ζ)

{
1− 3i

2
[ρ (τ − 1) + 1]− 9

8
[ρ2(τ2 − 4τ + 2) + 4ρ(τ − 1) + 2] + . . .

}
.

(5.22)
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iii. GB-HPMABC solution: Using explicit form of r (s, γ, ρ) described in Eq.(3.7)
for ABC’s terminology the approximate series solution is obtained as following:

ψ0 (ζ, τ) = sin(ζ),

ψ1 (ζ, τ) = − 3i sin (ζ)

2Γ (ρ+ 1)
(ρτρ − (ρ− 1) Γ (ρ+ 1)) ,

ψ2 (ζ, τ) = − 9 sin (ζ)

4Γ (ρ+ 1)Γ (2ρ+ 1)

(
Γ (ρ+ 1)Γ (2ρ+ 1)− 2ρΓ (ρ+ 1)Γ (2ρ+ 1)

+ 2ρτρΓ (2ρ+ 1) + ρ2Γ (ρ+ 1)Γ (2ρ+ 1)− 2ρ2τρΓ (2ρ+ 1) + ρ2τ2ρΓ (ρ+ 1)

)
, . . . .

Similarly, one can get more components for different values of l in Eq.(5.19).
Then the GB-HPMABC solution can be written in following series

ψABC (ζ, τ) = sin (ζ)

{
1− 3i sin (ζ)

2Γ (ρ+ 1)
(ρτρ − (ρ− 1) Γ (ρ+ 1))− 9 sin (ζ)

4Γ (ρ+ 1)Γ (2ρ+ 1)(
Γ (ρ+ 1)Γ (2ρ+ 1)− 2ρΓ (ρ+ 1)Γ (2ρ+ 1) + 2ρτρΓ (2ρ+ 1)

+ ρ2Γ (ρ+ 1)Γ (2ρ+ 1)− 2ρ2τρΓ (2ρ+ 1) + ρ2τ2ρΓ (ρ+ 1)
)
+ . . .

}
.

(5.23)

Considering ρ = 1 , the GB-HPMC , GB-HPMCF and GB-HPMABC solutions
gives

ψ (ζ, τ) = sin(ζ)

∞∑
n=0

(−3iτ
2

)n
n!

= sin(ζ)e
− 3iτ

2 . (5.24)

which represents the exact solution for the non-linear SG equation (5.17) with
classical derivative.

6. Results and Discussions

The advantageous feature about this scheme is that, unlike the variables separa-
tion strategy and most of numerical schemes, which requires the use of both initial
and boundary conditions, it solves for an analytic solution by using only the ini-
tial condition. In Example 1 the GB-HPM solution is found in accordance with
existing solutions obtained using Sumudu transform iterative method (STIM) [31]
and differential transform method (DTM) [23] for Caputo’s derivative. In Figure
1, two-dimensional graphs are provided to compare approximate real and imagi-
nary part of the GB-HPM solution for Caputo, CF and ABC terminologies when
ρ = 0.5, 0.7, 0.9 and 1 at τ = 0.5 for Example 5.1. Resulting in waves with higher
amplitude displays the impact of variation in fractional order. Table 1. describes
the performance of present scheme in terms of absolute error for approximate so-
lution of Example 5.1. It demonstrates the efficiency of suggested method with
maximum error of order 10−5.
Figure 2 depicts the graphical presentation of solutions obtained for distinct frac-
tional order values (ρ = 0.5, 0.7, 0.9 and 1) of Example 5.2 with Caputo, CF and
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ABC operators in computational domain −5 ≤ ζ ≤ 5 at τ = 0.5. Figure 2 demon-
strates that each of the subfigures behave almost in identical manner, are in com-
parable nature and have good precision alignment. For Example 5.2, the absolute
errors of present scheme are compared to the existing results of modified general-
ized Mittag-Leffler function method (MGMLFM) [10] which verify the superiority
of present scheme for non-linear differential equations. Table 3 exhibits the fast
convergence of approximate series solutions to exact solution with evaluation of
more components of series solutions.
The wave form behaviour of numerical results obtained for Example 5.3 with Ca-
puto, CF and ABC derivatives at different values of fractional order (ρ = 0.5, 0.7, 0.9
and 1) is presented in Figure 3 for limited spatial domain of −5 ≤ ζ ≤ 5 at τ = 0.5.
In Table 4, the tabulated results of Example 5.3 again indicates the better perfor-
mance of present scheme in comparison of MGMLFM [10] results. Table 5 ensures
that the required precision can be attained through the assessment of additional
components of series solutions.
In present study it is observed that however the CF and ABC operators with non-
singular kernels are considered extensions of Caputo operator but due to their high
sensitivity with respect to the small change in fractional order, Caputo operator
still holds its legacy. GB-HPMC solutions are found more consistent with respect
to the small variations in ρ. For ρ = 1 GB-HPM solution for Caputo, CF and ABC
operators coincides and results in a rapidly convergent series solution. Finding the
closed form of a series solution allows one to obtain the desired exact solution for
considered problem.

7. Conclusion

In this study, approximate semi-analytic solutions for time fractional linear and
non-linear Schrödinger equations are investigated using three types of fractional
derivatives: Caputo, Caputo-Fabrizio (CF), and Atangana-Baleanu-Caputo (ABC).
These solutions are obtained through the recently proposed GB transform followed
by the HPM. The study establishes the application of the GB transform to the con-
sidered fractional derivatives and demonstrates the GB-HPM procedure for general
time fractional non-linear equations.
Compared to the traditional HPM scheme, the suggested GB-HPM scheme stream-
lines the sequence estimation process by avoiding the need to compute fractional
derivatives and fractional integrals in the recursive mechanism. Numerical results of
the GB-HPM solutions are displayed in figures and tables for different values of the
parameter ρ across all three fractional terminologies. Graphical simulations help
in understanding the impact of Caputo, CF, and ABC operators on the complex
internal structure of wave propagation.
A comparative error analysis of the GB-HPM solution with previously published
results reflects the supremacy and consistency of the proposed scheme. The numer-
ical results demonstrate high accuracy, even when only a few components of the
series solution are considered. The straightforward GB-HPM scheme is effective in
resolving non-linear fractional differential equations and has enormous potential for
identifying hidden mechanisms in dynamic mathematical systems.
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Table 1. Computed absolute errors for GB-HPM
20th−order

solutions for Example 5.1 when ρ=1

ζ τ GB-HPMC GB-HPMCF GB-HPMABC |Exact|

-5 0.1 4.7123×10−16 4.7123×10−16 4.7123×10−16 1.0000

0.3 2.2250×10−11 2.2250×10−11 2.2250×10−11 1.0000

0.6 4.5730×10−5 4.5730×10−5 4.5730×10−5 1.0000

-1 0.1 1.1102×10−16 1.1102×10−16 1.1102×10−16 1.0000

0.3 2.2250×10−11 2.2250×10−11 2.2250×10−11 1.0000

0.6 4.5730×10−5 4.5730×10−5 4.5730×10−5 1.0000

1 0.1 1.1102×10−16 1.1102×10−16 1.1102×10−16 1.0000

0.3 2.2249×10−11 2.2249×10−11 2.2249×10−11 1.0000

0.6 4.5730×10−5 4.5730×10−5 4.5730×10−5 1.0000

5 0.1 2.9894×10−16 2.9894×10−16 2.9894×10−16 1.0000

0.3 2.2250×10−11 2.2250×10−11 2.2250×10−11 1.0000

0.6 4.5730×10−5 4.5730×10−5 4.5730×10−5 1.0000

Table 2. Comparison of the absolute errors of obtained solutions using GB-HPM
3rd−order

and modified

generalized Mittag-Leffler function method (MGMLFM) for Example 5.2 when ρ = 1

ζ τ GB-HPMC GB-HPMCF GB-HPMABC MGMLFM [10]

-5 0.01 2.6042×10−11 2.6042×10−11 2.6042×10−11 8.3335×10−8

0.03 2.1094×10−9 2.1094×10−9 2.1094×10−9 2.2506×10−6

0.06 3.3750×10−8 3.3750×10−8 3.3750×10−8 1.8020×10−5

-1 0.01 2.6042×10−11 2.6042×10−11 2.6042×10−11 8.3335×10−8

0.03 2.1094×10−9 2.1094×10−9 2.1094×10−9 2.2506×10−6

0.06 3.3750×10−8 3.3750×10−8 3.3750×10−8 1.8020×10−5

1 0.01 2.6042×10−11 2.6042×10−11 2.6042×10−11 8.3335×10−8

0.03 2.1094×10−9 2.1094×10−9 2.1094×10−9 2.2506×10−6

0.06 3.3750×10−8 3.3750×10−8 3.3750×10−8 1.8020×10−5

5 0.01 2.6042×10−11 2.6042×10−11 2.6042×10−11 8.3335×10−8

0.03 2.1094×10−9 2.1094×10−9 2.1094×10−9 2.2506×10−6

0.06 3.3750×10−8 3.3750×10−8 3.3750×10−8 1.8020×10−5
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Table 3. Comparison of the absolute errors of obtained GB-HPM solutions for Example 5.2 when ρ = 1
and ζ = 5.

3rd-order solutions 5th-order solutions

τ GB-HPMC GB-HPMCF GB-HPMABC GB-HPMC GB-HPMCF GB-HPMABC

0.1 2.6041×10−7 2.6041×10−7 2.6041×10−7 2.1701×10−11 2.1701×10−11 2.1701×10−11

0.2 4.1661×10−6 4.1661×10−6 4.1661×10−6 1.3888×10−9 1.3888×10−9 1.3888×10−9

0.3 2.1087×10−5 2.1087×10−5 2.1087×10−5 1.5818×10−8 1.5818×10−8 1.5818×10−8

0.4 6.6631×10−5 6.6631×10−5 6.6631×10−5 8.8862×10−8 8.8862×10−8 8.8862×10−8

0.5 1.6262×10−4 1.6262×10−4 1.6262×10−4 3.3892×10−7 3.3892×10−7 3.3892×10−7

0.6 3.3710×10−4 3.3710×10−4 3.3710×10−4 1.0118×10−6 1.0118×10−6 1.0118×10−6

0.7 6.2424×10−4 6.2424×10−4 6.2424×10−4 2.5508×10−6 2.5508×10−6 2.5508×10−6

0.8 1.0644×10−3 1.0644×10−3 1.0644×10−3 5.6819×10−6 5.6819×10−6 5.6819×10−6

0.9 1.7040×10−3 1.7040×10−3 1.7040×10−3 1.1515×10−5 1.1515×10−5 1.1515×10−5

1 2.5955×10−3 2.5955×10−3 2.5955×10−3 2.1660×10−5 2.1660×10−5 2.1660×10−5

Table 4. Comparison of the absolute errors of obtained solutions using GB-HPM
3rd−order

and modified

generalized Mittag-Leffler function method (MGMLFM) for Example 5.3 when ρ = 1

ζ τ GB-HPMC GB-HPMCF GB-HPMABC MGMLFM [10]

-5 0.01 2.0227×10−9 2.0227×10−9 2.0227×10−9 6.6173×10−7

0.03 1.6384×10−7 1.6384×10−7 1.6384×10−7 1.7956×10−5

0.06 2.6212×10−6 2.6212×10−6 2.6212×10−6 1.4613×10−4

-1 0.01 1.7750×10−9 1.7750×10−9 1.7750×10−9 4.4717×10−7

0.03 1.4377×10−7 1.4377×10−7 1.4377×10−7 1.2139×10−5

0.06 2.3001×10−6 2.3001×10−6 2.3001×10−6 9.8906×10−5

1 0.01 1.7750×10−9 1.7750×10−9 1.7750×10−9 4.4717×10−7

0.03 1.4377×10−7 1.4377×10−7 1.4377×10−7 1.1395×10−5

0.06 2.3001×10−6 2.3001×10−6 2.3001×10−6 9.8906×10−5

5 0.01 2.0227×10−9 2.0227×10−9 2.0227×10−9 6.6173×10−7

0.03 1.6384×10−7 1.6384×10−7 1.6384×10−7 1.7956×10−5

0.06 2.6212×10−6 2.6212×10−6 2.6212×10−6 1.4613×10−4
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Table 5. Comparison of the absolute errors of obtained GB-HPM solutions for Example 5.3 when ρ = 1
and ζ = 5.

3rd-order solutions 5th-order solutions

τ GB-HPMC GB-HPMCF GB-HPMABC GB-HPMC GB-HPMCF GB-HPMABC

0.1 2.0221×10−5 2.0221×10−5 2.0221×10−5 1.5168×10−8 1.5168×10−8 1.5168×10−8

0.2 3.2325×10−4 3.2325×10−4 3.2325×10−4 9.7024×10−7 9.7024×10−7 9.7024×10−7

0.3 1.6340×10−3 1.6340×10−3 1.6340×10−3 1.1042×10−5 1.1042×10−5 1.1042×10−5

0.4 5.1534×10−3 5.1534×10−3 5.1534×10−3 6.1967×10−5 6.1967×10−5 6.1967×10−5

0.5 1.2548×10−2 1.2548×10−2 1.2548×10−2 2.3602×10−4 2.3602×10−4 2.3602×10−4

0.6 2.5933×10−2 2.5933×10−2 2.5933×10−2 7.0343×10−4 7.0343×10−4 7.0343×10−4

0.7 4.7858×10−2 4.7858×10−2 4.7858×10−2 1.7698×10−3 1.7698×10−3 1.7698×10−3

0.8 8.1279×10−2 8.1279×10−2 8.1279×10−2 3.9334×10−3 3.9334×10−3 3.9334×10−3

0.9 1.2953×10−1 1.2953×10−1 1.2953×10−1 7.9510×10−3 7.9510×10−3 7.9510×10−3

1 1.9632×10−1 1.9632×10−1 1.9632×10−1 1.4913×10−2 1.4913×10−2 1.4913×10−2
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Figure 1. Waveform behaviour of real (Re) and imaginary (Im) part of GB-HPM solution for Caputo,
CF and ABC operators at τ = 0.5.
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Figure 2. Waveform behaviour of real (Re) and imaginary (Im) part of GB-HPM solution for Caputo,
CF and ABC operators at τ = 0.5.
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Figure 3. Waveform behaviour of real (Re) and imaginary (Im) part of GB-HPM solution for Caputo,
CF and ABC operators at τ = 0.5.
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