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Abstract

The measurement of the distance between two points is always tainted by errors.
The causes of such errors are varied. For instance, the imperfection in the adjustment of
instruments affects the accuracy of measurements. These errors are generally ”small”,
however their accumulations can become significant. Motivated by this fact, in this
paper, we introduce the notion of perturbed metric spaces and establish an interesting
generalization of Banach’s fixed point theorem in such spaces.
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1 Introduction

The most existence results in nonlinear analysis have been established making use of Banach’s
fixed point theorem [2]. For instance, the existence of local solutions to evolution equations,
the existence of solutions to integral equations and the existence of solutions to matrix
equations, see e.g. [7,8,17,20]. The literature includes several extensions and generalizations
of Banach’s fixed point theorem. We can classify such extensions or generalizations in two
categories: the first one is concerned with the study of new classes of mappings satisfying
generalized contractions, see e.g. [3, 5, 9, 11, 14–16, 18, 21]; the second one is concerned with
study of contraction mappings, where X is equipped with a generalized metric, see e.g.
[1, 4, 6, 10,12,13,19].

Banach’s fixed point theorem asserts that, if (X, d) is a complete metric space and T :
X → X is a contraction mapping, that is,

d(Tu, Tv) ≤ λd(u, v), u, v ∈ X (1.1)

for some constant λ ∈ (0, 1), then T admits one and only one fixed point. On the other hand,
due to the possible errors made in the measurement of the distance between two points, a
natural question arises. Namely, if instead (1.1), one has

D(Tu, Tv) ≤ λD(u, v), u, v ∈ X,
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where D(u, v) is the experimental measurement of d(u, v), what we can say in this case?
Namely, the Banach fixed point result will be affected by the experimental measurements?
Notice that D is not necessarily a metric on X. In this paper, we study the above question
by introducing the concept of perturbed metric spaces. Next, an interesting generalization
of Banach’s fixed point theorem is obtained in the setting of perturbed metric spaces.

The rest of the paper is organized as follows. In Section 2, we introduce the notion of
perturbed metric spaces and some topological concepts related to such spaces. Our main
result and its proof are given in Section 3. An interesting example is also provided to
illustrate our obtained result.

2 Perturbed metric spaces

Throughout this paper, X denotes an arbitrary non-empty set. The set of nonnegative
integers is denoted by N.

We introduce below the notion of a perturbed metric sapce.

Definition 2.1. Let D,P : X × X → [0,∞) be two given mappings. We say that D is a
perturbed metric on X with respect to P , if

D − P : X ×X → R
(x, y) 7→ D(x, y)− P (x, y)

is a metric on X, i.e., for all x, y, z ∈ X,

(i) (D − P )(x, y) ≥ 0;

(ii) (D − P )(x, y) = 0 if and only if x = y;

(iii) (D − P )(x, y) = (D − P )(y, x);

(iv) (D − P )(x, y) ≤ (D − P )(x, z) + (D − P )(z, y).

We call P a perturbed mapping, d = D − P an exact metric and (X,D, P ) a perturbed
metric space.

Notice that a perturbed metric on X is not necessarily a metric on X. Some examples
are provided below to illustrate this fact.

Example 2.2. Let D : R× R → [0,∞) be the mapping defined by

D(x, y) = |x− y|+ x2y4, x, y ∈ R.

ThenD is a perturbed metric on R with respect to the perturbed mapping P : R×R → [0,∞)
given by

P (x, y) = x2y4, x, y ∈ R.

In this case, the exact metric is the mapping d : R× R → [0,∞) defined by

d(x, y) = |x− y|, x, y ∈ R.

Remark that D is not a metric on X. This can be easily seen observing that D(1, 1) = 1 ̸= 0.
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Example 2.3. Let D : C([0, 1])× C([0, 1]) → [0,∞) be the mapping defined by

D(f, g) =

∫ 1

0

|f(t)− g(t)| dt+ (f(0)− g(0))2, f, g ∈ C([0, 1]),

where C([0, 1)) = {f : [0, 1] → R : f is continuous on [0, 1]}. Then D is a perturbed metric
on C([0, 1]) with respect to the perturbed mapping P : C([0, 1]) × C([0, 1]) → [0,∞) given
by

P (f, g) = (f(0)− g(0))2, f, g ∈ C([0, 1]).

In this case, the exact metric is the mapping d : C([0, 1])× C([0, 1]) → [0,∞) defined by

d(f, g) =

∫ 1

0

|f(t)− g(t)| dt, f, g ∈ C([0, 1]).

Remark that D is symmetric and D(f, g) = 0 if and only if f = g. However, D is not a
metric on C([0, 1]). Namely, consider three constant functions

f1 ≡ C1, f2 ≡ C2, f3 ≡ C3.

Then
D(f1, f3) = |C1 − C3|+ (C1 − C3)

2,

D(f1, f2) = |C1 − C2|+ (C1 − C2)
2

and
D(f2, f3) = |C2 − C3|+ (C2 − C3)

2.

In particular, for (C1, C2, C3) =
(
0, 1

2
, 1
)
, we get

D(f1, f3) = 2, D(f1, f2) =
3

4
, D(f2, f3) =

3

4
,

which yields
D(f1, f3) > D(f1, f2) +D(f2, f3).

This shows that the triangle inequality is violated by D.

Example 2.4. Let D : N× N → [0,∞) be the mapping defined by

D(n,m) = (n−m)2, n,m ∈ N. (2.1)

Then D is a perturbed metric on N, where the perturbed mapping P : N × N → [0,∞) is
given by

P (n,m) = (n−m)2 − |n−m|, n,m ∈ N, (2.2)

and the exact metric d : N× N → [0,∞) is given by

d(n,m) = |n−m|, n,m ∈ N. (2.3)

Remark that D is not a metric on N but it is a b-metric on N, see e.g. [6] for more details
about b-metric spaces.
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In the following example, we construct a perturbed metric with respect to different per-
turbed mappings.

Example 2.5. Let X = 2N be the set of nonnegative even integers, that is,

X = {0, 2, · · · , 2k, · · · }.

Let D : 2N× 2N → [0,∞) be the b-metric on 2N defined by (2.1). From Example (2.4), D
is a perturbed metric on 2N with respect to the perturbed mapping P : 2N × 2N → [0,∞)
given by (2.2), and the exact metric d : 2N × 2N → [0,∞) is given by (2.3). Consider now
the mapping Q : 2N× 2N → [0,∞) defined by

Q(n,m) = (n−m)2 − 2|n−m|, n,m ∈ 2N.

Then D is also a perturbed metric on 2N with respect to the perturbed mapping Q, and the
exact metric is 2d.

We provide below some elementary properties of perturbed metric spaces.

Proposition 2.6. Let D,P,Q : X ×X → [0,∞) be three given mappings and α > 0.

(i) If (X,D, P ) and (X,D,Q) are two perturbed metric spaces, then
(
X,D, P+Q

2

)
is a

perturbed metric space.

(ii) If (X,D, P ) is a perturbed metric space, then (X,αD, αP ) is a perturbed metric space.

Proof. (i) Since D − P and D −Q are two metrics on X, then

1

2
[(D − P ) + (D −Q)] = D − P +Q

2

is a metric on X, which proves (i).
(ii) Since D − P is a metric on X and α > 0, then

α(D − P ) = αD − αP

is a metric on X, which proves (ii).

We now introduce some topological concepts in perturbed metric spaces.

Definition 2.7. Let (X,D, P ) be a perturbed metric space, {zn} a sequence in X and
T : X → X.

(i) We say that {zn} is a perturbed convergent sequence in (X,D, P ), if {zn} is a conver-
gent sequence in the metric space (X, d), where d is the exact metric (i.e., d = D−P ).

(ii) We say that {zn} is a perturbed Cauchy sequence in (X,D, P ), if {zn} is a Cauchy
sequence in the metric space (X, d).

(iii) We say that (X,D, P ) is a complete perturbed metric space, if (X, d) is a complete
metric space, or, equivalently, if every perturbed Cauchy sequence in (X,D, P ) is a
perturbed convergent sequence in (X,D, P ).

(iv) We say that T is a perturbed continuous mapping, if T is continuous with respect to
the exact metric d.
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3 A generalization of Banach’s fixed point theorem

In this section, we extend the Banach fixed point theorem from standard metric spaces to
perturbed metric spaces.

Theorem 3.1. Let (X,D, P ) be a complete perturbed metric space and T : X → X be a
given mapping. Assume that

(i) T is a perturbed continuous mapping;

(ii) There exists λ ∈ (0, 1) such that

D(Tu, Tv) ≤ λD(u, v) (3.1)

for all u, v ∈ X.

Then T admits one and only one fixed point.

Proof. Let z0 ∈ X be fixed. Consider the Picard sequence {zn} ⊂ X defined by

zn+1 = Tzn, n ∈ N.

Taking (u, v) = (z0, z1) in (3.1), we obtain

D(Tz0, T z1) ≤ λD(z0, z1),

thai is,
D(z1, z2) ≤ λD(z0, z1). (3.2)

Similarly, taking (u, v) = (z1, z2) in (3.1), we obtain

D(z2, z3) ≤ λD(z1, z2),

which implies by (3.2) that
D(z2, z3) ≤ λ2D(z0, z1).

Continuing in the same way, by induction, we get

D(zn, zn+1) ≤ λnτ, n ∈ N, (3.3)

where τ = D(z0, z1). Let d = D − P be the exact metric. From (3.3), we deduce that

d(zn, zn+1) + P (zn, zn+1) ≤ λnτ, n ∈ N.

Since d(zn, zn+1) ≤ d(zn, zn+1) + P (zn, zn+1), it holds that

d(zn, zn+1) ≤ λnτ, n ∈ N.

Following a standard argument, the above inequality implies that {zn} is a Cauchy sequence
in the metric space (X, d), that is, {zn} is a perturbed Cauchy sequence in the perturbed
metric space (X,D, P ). By the completeness of the perturbed metric space (X,D, P ), we
deduce that there exists z∗ ∈ X such that

lim
n→∞

d(zn, z
∗) = 0. (3.4)
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We now show that z∗ is a fixed point of T . Since T is a perturbed continuous mapping, then
(3.4) yields

lim
n→∞

d(Tzn, T z
∗) = 0,

that is,
lim
n→∞

d(zn+1, T z
∗) = 0. (3.5)

Since d = D − P is a metric on X, by the uniqueness of the limit, we get z∗ = Tz∗, that is,
z∗ is a fixed point of T .

We now show that T admits a unique fixed point. We argue by contradiction supposing
that u, v ∈ X are two distinct fixed points of T . By (3.1), we have

D(u, v) = D(Tu, Tv) ≤ λD(u, v),

which yields
d(u, v) + P (u, v) ≤ λ(d(u, v) + P (u, v)).

Since u ̸= v, then d(u, v) + P (u, v) ̸= 0, and the above inequality yields λ ≥ 1, which
contradicts the condition λ ∈ (0, 1). Consequently, z∗ is the unique fixed point of T . This
completes the proof of Theorem 3.1.

We now show that Theorem 3.1 includes Banach’s fixed point theorem.

Corollary 3.2 (Banach’s fixed point theorem). Let (X, d) be a complete metric space and
T : X → X be a given mapping. Assume that there exists λ ∈ (0, 1) such that

d(Tu, Tv) ≤ λd(u, v) (3.6)

for all u, v ∈ X. Then T admits one and only one fixed point.

Proof. Let D = d and P ≡ 0 (P (u, v) = 0 for all u, v ∈ X). Then (X,D, P ) is a perturbed
metric space. Furthermore, by (3.6), T is continuous with respect to the exact metric d, and
(3.1) holds. Then Theorem 3.1 applies.

We provide below an interesting example to illustrate Theorem 3.1.

Example 3.3. Let X = {A1, A2, A3, A4} ⊂ R3, where Ai, i = 1, 2, 3, 4, are the vertices of a
regular tetrahedron (see Figure 1) with

∥Ai − Aj∥ = 1, i ̸= j.

Here, ∥ · ∥ denotes the Euclidean norm in R3. We consider the mapping T : X → X defined
by

TA1 = A1, TA2 = A3, TA3 = A4, TA4 = A1.

We introduce the mapping P : X ×X → [0,∞) defined by

P (A1, A2) = P (A2, A1) = 4,

P (A1, A3) = P (A3, A1) = 3,

P (A1, A4) = P (A4, A1) = 2,

P (A2, A3) = P (A3, A2) = 4,

P (A2, A4) = P (A4, A2) = 9,

P (A3, A4) = P (A4, A3) = 3,

P (Ai, Ai) = 0, i = 1, 2, 3, 4.
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Figure 1: The set X

We also consider the mapping D : X ×X → [0,∞) defined by

D(Ai, Aj) = ∥Ai − Aj∥+ P (Ai, Aj), i, j ∈ {1, 2, 3, 4}.

Observe that (X,D, P ) is a perturbed metric space. In this case, the exact metric is the
discrete metric d : X ×X → [0,∞) defined by

d(Ai, Aj) = ∥Ai − Aj∥, i, j ∈ {1, 2, 3, 4},

that is,

d(Ai, Aj) =

{
1 if i ̸= j,
0 if i = j.

(3.7)

Remark also that D is not a metric on X. Namely, we have

D(A2, A4) = 1 + P (A2, A4) = 1 + 9 = 10,

D(A2, A3) = 1 + P (A2, A3) = 1 + 4 = 5,

D(A3, A4) = 1 + P (A3, A4) = 1 + 3 = 4,

which shows that D(A2, A4) > D(A2, A3) +D(A3, A4).
We now show that the mapping T satisfies conditions (i) and (ii) of Theorem 3.1. It is

clear that T is a perturbed continuous mapping, that is, (i) is satisfied. On the other hand,
(3.1) is equivalent to

∥TAi − TAj∥+ P (TAi, TAj) ≤ λ (∥Ai − Aj∥+ P (Ai, Aj)) , i, j ∈ {1, 2, 3, 4}. (3.8)

Observe that, if i = j, by the definition of the perturbed mapping P , we have

∥TAi − TAi∥+ P (TAi, TAi) = 0,

which shows that (3.8) is satisfied for all λ > 0. Assume now that i ̸= j. Table 1 provides
the values of ∥TAi − TAj∥ + P (TAi, TAj) and ∥Ai − Aj∥ + P (Ai, Aj). From Table 1, we
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(i, j) ∥TAi − TAj∥+ P (TAi, TAj) ∥Ai − Aj∥+ P (Ai, Aj)
(1, 2) 4 5
(1, 3) 3 4
(1, 4) 0 3
(2, 3) 4 5
(2, 4) 4 10
(3, 4) 3 4

Table 1: The values of ∥TAi − TAj∥+ P (TAi, TAj) & ∥Ai − Aj∥+ P (Ai, Aj)

deduce that

max
1≤i<j≤4

∥TAi − TAj∥+ P (TAi, TAj)

∥Ai − Aj∥+ P (Ai, Aj)
≤ 4

5
,

Then, by symmetry (notice that P is a symmetric mapping), we deduce that (3.8) holds for
all λ ∈

[
4
5
, 1
)
, which shows that condition (ii) of Theorem 3.1 is satisfied.

Observe that the only fixed point of T is the point A1, which confirms the result provided
by Theorem 3.1.

We point out that the Banach fixed point theorem (see Corollary 3.2) is not applicable
in the metric space (X, d), where d is the exact metric defined by (3.7). This can be easily
seen observing for instance that

d(TA1, TA2)

d(A1, A2)
=

d(A1, A3)

d(A1, A2)
= 1.
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