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Abstract This paper concerns the following elliptical problem with discontinuous nonlinearity{
−ϵ2∆u+ V (x)u = f(u) + |u|2∗−2u, x ∈ RN ,

u > 0,

where N ≥ 3, ϵ > 0 and f(u) is a discontinuous function. We obtain the existence and con-
centration results of this problem. Our results generalize some recent results on this kind of
problems. In order to obtain these results, a suitable truncation, concentration compactness
principle, new analytic technique and variational method are used.
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1. Introduction

In this paper, we will concern the existence and concentration behavior of positive solutions
for the following problem{

−ϵ2∆u+ V (x)u = f(u) + |u|2∗−2u, x ∈ RN ,

u > 0,
(1.1)

where ϵ > 0, N ≥ 3 and f(x) is defined by

f(u) =

{
g(u), u ∈ [0, a],

(1 + δ)g(u), u ∈ [a,+∞),

g(u) ∈ C(R,R), which can be rewritten as{
−∆u+ V (ϵx)u = f(u) + |u|2∗−2u, x ∈ RN ,

u > 0.
(1.2)

Assume that V (x) and g(u) satisfy the following basic assumptions:

(V1) there exists an open and bounded set Ω compactly contained in RN such that 0 < ϱ =
infx∈RN V (x) ≤ V0 = infx∈Ω V (x) < minx∈∂Ω V (x) < lim inf |x|→∞ V (x) = V∞;

(g1) for all t ∈ R, there exist C > 0 and s ∈ (2, 2∗) such that |g(t)| ≤ C(1 + |t|s−1);
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(g2) for all t ∈ R, there is ζ ∈ (2, 2∗) such that

0 < ζG(t) = ζ

∫ t

0
g(s)ds ≤ tg(t),

where 2∗ =

{
2N
N−2 , if N > 2,

+∞, if N ≤ 2.

(g3) there is ϖ > 0, which will be fixed later, such that g(t) ≥ ϖ for all t ≥ 2a;

(g4) lim supt→0
g(t)
t = 0;

(g5) g(t)
t is increasing for t > 0.

It is easy to see that there exist lots of functions verifying (g1)-(g5), for example, set g(t) =∑k
i=1

ϖ|t|qi−1

(2a)qi−1 if t ≥ 0 and g(t) = 0 if t ≤ 0. Then g(t) satisfies (g1)-(g5).

We say that u is a weak solution of problem (1.2), if u ∈ H1(RN ) and

−∆u+ V (ϵx)u ∈ [f
δ
(u(x)) + |u|2∗−2u, f δ(u(x)) + |u|2∗−2u] a.e. in RN ,

where f
δ
(t) = limδ→0+ f(t− δ) and f δ(t) = limδ→0+ f(t+ δ).

Our main result is the following:

Theorem 1.1 If (V 1) and (g1) − (g6) hold, then there exist ϵ∗, δ∗, a∗ > 0 such that problem
(1.2) has a positive solution uϵ,δ,a for ϵ ∈ (0, ϵ∗), δ ∈ (0, δ∗), and a ∈ (0, a∗). Furthermore, if
θϵ,δ,a ∈ RN denotes a maximum point of uϵ,δ,a, then lim(ϵ,δ,a)→(0,0,0) V (ϵθϵ,δ,a) = V0.

We would like to point out that this kind of equation in (1.1) arises from the problem of
deriving standing waves solutions of the nonlinear Schrödinger equation

iϵ
∂Ψ

∂t
= −ϵ2∆Ψ+ (V (x) + E)− |Ψ|−1h(|Ψ|)Ψ in RN , (1.3)

where h(s) = f(s) + s2
∗−1. A standing wave solution to problem (1.3) is one in the form

where Ψ(x, t) = exp(−iϵ−1Et)u(x). In this case u is a solution of (1.2). For the case where
δ = 0, the right-hand side function is a continuous function with critical term. Then its energy
functional is differentiable and there exist many results on discussing this type of problem (1.2),
see [6–8,22,27–31] and references therein.

However, in this paper, the parameter δ is stipulated to be non-zero, thereby rendering the
right-hand side nonlinearity of equation (1.2) discontinuous and its associated energy functional
non-differentiable. This characteristic presents a significant challenge in the pursuit of under-
standing the solutions to equation (1.2). The academic interest in nonlinear partial differential
equations featuring discontinuous nonlinearities has burgeoned, as numerous free boundary prob-
lems in mathematical physics can be articulated in this framework. Prominent examples include
the seepage surface problem, the obstacle problem, and the Elenbass equation, as detailed in
references [14–16]. A plethora of scholarly contributions have addressed problems of discontinu-
ity. Notably, Corvellec et. al. [13], Alves et. al. [2, 3, 5], Grossi et. al. [20], Yuan and Yu [23],
Yuan and Wang [24], Liu et. al. [25], Chang et. al. [17], Yue et. al. [26], Iannizzotto and Papa-
georgiou [1], and their respective bibliographies, have all made significant strides. These studies
have harnessed a variety of methodologies, including variational methods for non-differentiable
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functionals, fixed point theory, global branching, lower and upper solution techniques, and the
theory of multivalued mappings. These diverse approaches collectively enrich our analytical
toolkit and deepen our comprehension of these complex mathematical phenomena.

To the best of our knowledge, there exist few papers involving the existence of solution for
elliptic problems with discontinuous nonlinearity and critical growth by variational methods
for non-differentiable energy functional. Noting that the classical critical points theory and
variational methods for C1 functional are not suitable for problem (1.2), inspired by the methods
used in [14–16], we need to use variational methods and nonsmooth analysis for non-differentiable
functionals. On the other hand, unlike [19], their solutions found are C2, while in this paper, we
don’t have this regularity, since the nonlinearity is discontinuous. Then, some new arguments
are needed to overcome the without of regularity of solutions. Furthermore, in order to obtain
some estimates involving the mountain levels, the authors in [19] used a characterization of
the Mountain Pass level involving infimum of energy functional on Nehari Manifolds. But
the Nehari Manifolds is not well known yet for non-differentiable functionals, and so, we need
to develop some some new arguments to derive good estimates involving the Mountain Pass
levels. Also, in [19] del Pino and Felmer obtained the complete treatment (concentration and
existence behavior of solutions) under condition (V1) with δ = 0. They derived bound state
solutions, but not ground state solutions. Of course, it is reasonable, since under condition (V1)
some problems don’t have any ground state solution. For this reason, we cannot find minimax
critical points of the energy functional of problem (1.2). In order to solve this difficulty, we
modify the nonlinearity to apply the Mountain Pass Lemma. Then we establish the existence
of positive solutions. Finally, since the energy functional of (1.2) contains critical growth term,
and the working space H1(RN ) ↪→ Lp(RN ), p ∈ [2, 2∗], is not compact, we adapt a penalization
method and the concentration compactness principle by Lions [11, Lemma 2.1] to overcome
these difficulties.

This paper is organized as follows. In Section 2, some results involving locally Lipschitz
continuous functionals are provided. In Section 3, the existence of solutions for an auxiliary
problem are proved. In Section 4, based on Theorem 3.1, Theorem 1.1 is proved.

2. Preliminaries

We firstly give some notations. (X, ∥·∥) denotes a (real) Banach space and (X∗, ∥·∥∗) denotes
its topological dual. C and Ci(i = 1, 2, ...) denote estimated constant(the concrete values may
be different from line to line). ’→’ means the stronger convergence in X and ′ ⇀′ stands for the
weak convergence in X. |u|p denotes the norm of Lp(RN ).
Definition 2.1( [18]) A function J : X → R is locally Lipschitz if for every v ∈ X there exist a
neighborhood U of v and L > 0 such that for every ν, η ∈ U

|J(ν)− J(η)| ≤ L∥ν − η∥.

Definition 2.2( [18]) Let J : X → R be a locally Lipschitz function. The generalized derivative
of J in v along the direction ν is defined by

J0(v; ν) = lim sup
η→u,τ→0+

J(η + τν)− J(η)

τ
,
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where v, ν ∈ X.

It is easy to see that the function ν 7→ J0(v; ν) is sublinear, continuous and so is the support
function of a nonempty, convex and w∗-compact set ∂J(v) ⊂ X∗, defined by

∂J(v) = {v∗ ∈ X∗ : ⟨v∗, ν⟩X ≤ J0(v; ν) for all ν ∈ X}.

m(vn) = infv∗n∈∂J(vn) ∥v
∗
n∥X∗ . If J ∈ C1(X), then

∂J(v) = {J ′(v)}.

Clearly, these definitions extend those of the Gâteaux directional derivative and gradient. A
critical point of J is an element v0 ∈ E such that 0 ∈ ∂J(v0) and a critical value of J is a real
number c such that J(v0) = c for some critical point v0 ∈ E.

Proposition 2.1 ( [10, 15]) Let {vn} ⊂ X and {v∗n} ⊂ X∗ with v∗n ∈ ∂J(vn). If vn → v in X
and v∗n ⇀ v∗ in X∗, then v∗ ∈ ∂J(v) .

Proposition 2.2 ( [10, 15]) Let Ψ(v) =
∫
RN G(v)dx, where G(t) =

∫ t
0 g(s)ds. Then, Ψ ∈

Liploc(L
p+1(RN ),R), ∂Ψ(v) ⊂ L

p+1
p (RN ) and if ρ ∈ ∂Ψ(v), it satisfies

ρ(x) ∈ [g(v(x)), ḡ(v(x))] a.e. in RN .

3. An auxiliary problem

Let H1(RN ) be the usual Sobolev space and

E =

{
u ∈ H1(RN ) :

∫
RN

(|∇u|2 + V (x)|u|2)dx < +∞
}
,

equipped with the inner product and norm

⟨u, v⟩ :=
∫
RN

(∇u∇v + V (x)uv)dx, ∥u∥ = ⟨u, u⟩
1
2 .

It follows from (g4) and (g5) that

lim
t→0

[
f(t)

t
+ t2

∗−2

]
= 0 and lim

t→+∞

[
f(t)

t
+ t2

∗−2

]
= +∞,

which means that for a small enough, there exists b > a > 0 such that

(1 + δ)g(b)

b
+ b2

∗−2 =
V0

k
(k > 1),

where V0 is defined by (V1) and k > 1 + δ. By (g3) we can choose b > 0 such that a < b < 2a.
Based on the above facts, we define the function

f̂(t) =


0, if t < 0,

f(t) + t2
∗−1, if 0 < t < b,

V0
k t, if t ≥ b.
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Fixing Ω ⊂ RN be a bounded domain and using the function f̂ , we give the function

h(x, t) = χΩ(x)(f(t) + t2
∗−1) + (1− χΩ(x))f̂(t), (3.4)

where χΩ is the characteristic function related to Ω, and consider the auxiliary problem{
−∆u+ V (ϵx)u = h(ϵx, u),

u ∈ H1(RN ), u(x) > 0, ∀x ∈ RN .
(3.5)

From hypotheses (g1)− (g4), h satisfies the following conditions for x ∈ RN .

(h1) h(x, t) = 0 for all t < 0 and lim sup|t|→0
h(x,t)
|t| = 0;

(h2) h(x, t) = f(t) + t2
∗−1 for all x ∈ Ω, t > 0, or x ∈ Ωc and t ∈ [0, b];

(h3) h(x, t) ≤ (1 + δ)g(t) + t2
∗−1 for all x ∈ RN , t ∈ R;

(h4) 0 < ζH(x, t) = ζ
∫ t
0 h(x, s)dx ≤ h(x, t)t for all x ∈ Ω, t > 0 and 0 < 2H(x, t) ≤ h(x, t)t ≤

h(x, t)t ≤ 1
kV0t

2 for all x ̸∈ Ω, t ≥ 0.

Set

Iϵ(u) := Iϵ,a,δ(u) =
1

2

∫
RN

(|∇u|2 + V (ϵx)u2)−
∫
RN

H(ϵx, u),

Qϵ(u) :=
1
2

∫
RN (|∇u|2 + V (ϵx)u2), and Ψϵ(u) :=

∫
RN H(ϵx, u).

Lemma 3.1 Let {un} be a (PS)c sequence for Iϵ. Then {un} is bounded in Hϵ.

Proof Set {u∗n} ⊂ H−1(RN ) be such that Iϵ(un) → c, m(un) = ∥u∗n∥∗ = on(1). Due to
u∗n ∈ ∂Iϵ(un), there exists ξ∗n ∈ ∂Ψϵ(un) satisfying

⟨u∗n, η⟩ = ⟨Q′
ϵ(un), η⟩ − ⟨ξ∗n, η⟩ (3.6)

for all η ∈ H1(RN ). From (h4) and k > 1, we have

c+ on(1) = Iϵ(un)−
1

ς
⟨u∗n, η⟩

=

(
1

2
− 1

ς

)
∥un∥2 +

∫
Ωc

ϵ

(
1

ς
ξnun −H(ϵx, un)

)
≥
(
1

2
− 1

ς

)
∥un∥2 +

2− ς

ς

∫
Ωc

ϵ

G(ϵx, un)|un|2

≥
(
1

2
− 1

ς

)
∥un∥2 +

2− ς

2kς

∫
Ωc

ϵ

V (ϵx)|un|2

=
ς − 2

2ς

∫
RN

[
|∇un|2 +

(
1− 1

k

)
V (ϵx)u2n

]
≥ C∥un∥2,

where ξn ∈ [h(ϵx, un), h(ϵx, un)], which deduces that {un} is bounded in H1(RN ). �
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Lemma 3.2 Let {un} be a (PS)c sequence for Iϵ. Then for each σ > 0, there is ρ = ρ(σ) > 0
such that

lim sup
n→∞

∫
RN\Bρ(0)

[|∇un|2 + V (ϵx)|un|2] < σ.

Proof Put u∗n, ξ
∗
n and ξn be the same as that used in the proof of Lemma 3.1, and φR ∈

C∞(RN , [0, 1]) such that φR(x) = 0 in BR(0), φR(x) = 1 in B2R(0)
c and |∇φR(x)| ≤ C

R in
RN , where C is a constant independent on R. Recalling that {un} is bounded in H1(RN ) and
⟨u∗n, φRun⟩ = on(1), by (3.6), we have∫

RN

φR[|∇un|2 + V (ϵx)|un|2] ≤
∫
RN

ξnφRun −
∫
RN

un∇φR∇un + on(1).

Fixed ρ > 0 such that Ωϵ ⊂ B ρ
2
(0), by ξn ∈ [h(ϵx, un), h(ϵx, un)], (h4), and∫
RN

ξnφRun ≤ 1

k

∫
RN

φRV (ϵx)|un|2,

we obtain (
1− 1

k

)∫
RN

φR[|∇un|2 + V (ϵx)|un|2] ≤
C

R
|un|2|∇un|2 + on(1) < σ

for some R sufficiently large. �

Denote by D1,2(RN ) the closure of C∞
0 (RN ) under the norm ∥u∥2 =

(∫
RN |∇u|2

) 1
2 and set

S be the best constant for Sobolev embedding D1,2(RN ) ↪→ L2∗(RN ).

Lemma 3.3 If (V1) and (g1)-(g4) hold, then Iϵ satisfies the (PS)c condition in H1(RN ) for

c <
(
1
2 − 1

ς

)
S

N
2 .

Proof According to Lemma 3.1, {un} is bounded in H1(RN ). Choosing a subsequence, we
may suppose that un ⇀ u in H1(RN ), un(x) → u(x) a.e. in RN ,

|∇un|2 ⇀ |∇u|2 + µ and |un|2
∗
⇀ |u|2∗ + ν (weak∗ − sense of measure).

Thanks to the concentration compactness principle by Lions [21, Lemma 2.1], we derive at most
countable index set i, and sequences {xi} ⊂ RN , {µi}, {νi} ⊂ [0,∞), such that

ν =
∑
i∈i

νiδxi , µ ≥
∑
i∈i

µiδxi and Sν
2
2∗
i ≤ µi (3.7)

for all i ∈ i, where δxi is the Dirac mass at xi.
We claim that i = ∅. Proceeding by contradiction, suppose that i ̸= ∅ and fix i ∈ i. Set

u∗n, ξn and ξ∗n be the same as that used in the proof of Lemma 3.1. Consider η ∈ C∞
0 (RN , [0, 1]),

such that η ≡ 1 in B1(0); η ≡ 0 in RN \ B2(0) and |∇η|L∞ ≤ 2. Defining ηR(x) = η(x−xi
R ),

where R > 0, we obtain that {ηRun} is bounded in H1(RN ), which means that∫
RN

(∇un∇(ηRun) + V (ϵx)ηRu
2
n) =

∫
Ωϵ

ξnηRun +

∫
Ωc

ϵ

ξnηRun + on(1).
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From (h3) and (h4), we obtain∫
RN

ηR|∇un|2 ≤ C

∫
RN

|un|qηR +

∫
RN

|un|2
∗
ηR + C

∫
RN

|un|2ηR

−
∫
RN

(un∇un∇ηR + V (ϵx)ηRu
2
n).

(3.8)

Since {un} is bounded in H1(RN ), the support of ηR is contained in B2R(xi),

lim
R→0

lim
n→∞

∫
RN

(un∇un∇ηR + V (ϵx)ηRu
2
n) = 0,

lim
R→0

lim
n→∞

∫
RN

|un|2ηR = 0 and lim
R→0

lim
n→∞

∫
RN

|un|qηRun = 0,

which follows from (3.8) that ∫
RN

ηRdµ ≤
∫
RN

ηRdν + oR(1).

Letting R → 0 and by the standard theory of Radon measures, we infer that νi ≥ µi ≥ Sν
2
2∗
i ,

i.e., νi > S
N
2 . Once that {un} is a sequence of (PS)c, Proceeding as in the proof of Lemma 3.1,

we have that

c = Iϵ(un)−
1

ς
⟨u∗n, un⟩+ on(1)

≥
(
1

2
− 1

ς

)∫
RN

|∇un|2ηR + C0

∫
RN

V (ϵx)|un|2ηR + on(1)

≥
(
1

2
− 1

ς

)
S

N
2 ,

which leads to a contradiction. Hence, it follows that i is empty and un → u in L2∗
loc(RN ). By

(h2), (g1) and (3.4), we derive a constant C = C(a) > 0 such that

|h(ϵx, t)| ≤ C|t|2∗−1 (3.9)

for all x ∈ RN , t ∈ R. Since ∥un∥2 =
∫
RN ξnun + on(1), and ξn ∈ [h(ϵx, un), h̄(ϵx, un)], the

boundedness of {un} in H1(RN ), infers that {ξn} is bounded in L
2∗

2∗−1 (RN ). Then, passing to a
subsequence if necessary

∥un∥ → λ in R, ξn ⇀ ξ in L
2∗

2∗−1 (RN ) and un ⇀ u in H1(RN ), (3.10)

it follows from (3.6) that

∥u∥2 =
∫
RN

ξu. (3.11)

Observing that∣∣∣∣ ∫
BR(0)

ξnun −
∫
BR(0)

ξu

∣∣∣∣ ≤ |un − u|L2∗ (BR(0))|ξn|
L

2∗
2∗−1 (RN )

+

∣∣∣∣ ∫
BR(0)

(ξn − ξ)u

∣∣∣∣,
from (3.9), (3.10) and Riesz representation theorem, one has∫

BR(0)
ξnun →

∫
BR(0)

ξu. (3.12)
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Lemma 3.2 means that

lim sup
n→∞

∣∣∣∣ ∫
Bc

R(0)
ξnun

∣∣∣∣ = oR(1). (3.13)

Combining (3.12) and (3.13), we infer that∫
RN

ξnun →
∫
RN

ξu, (3.14)

from which it follows that ∥un∥2 = ∥u∥2 + on(1). Consequence, un → u in H1(RN ). �

Lemma 3.4 If hypotheses (V1) and (g1)-(g4) hold, fixed ϵ∗ > 0, a > 0 small, for each ϵ ∈
(0, ϵ∗), then there exist γ̂0 > 0 and v0 ∈ H1(RN ), which are independent of ϵ∗ and a, such that

(i) maxt∈[0,γ̂0] Iϵ(tv0) <
(
1
2 − 1

ς

)
S

N
2 ;

(ii) there are r, α > 0 such that Iϵ(u) ≥ α for u ∈ H1(RN ), ∥u∥ = r;

(iii) Iϵ(γ̂v0) < 0 and γ̂0v0 ∈ Br(0)
c.

Proof Without loss of generality, we may assume that 0 ∈ Ω and V0 = V (0). Fixed ϵ∗ ∈ (0, 1),
set v0 ∈ C∞

0 (RN ) such that
∫
RN (|∇v0|2 + V∞|v0|2) = 1, v0 ≥ 0, suppv0 ⊂ BR(0) ⊂ Ω. Since

V (ϵx) ≤ V∞, for all x ∈ BR(0) and ϵ ∈ (0, ϵ∗), one has ϵx ∈ Ω, then, from (h2), we derive

Iϵ(tv0) ≤ L(t)−
∫
BR(0)

∫ tv0(x)

0
f(s)dsdx ≤ L(t) (3.15)

for all t ≥ 0, where L(t) = t2

2 − t2
∗

2∗

∫
BR(0) |v0|

2∗ .

Since the function L(t) is increasing in (0, t∗) for some t∗ > 0 and limt→0 L(t) = 0, there is

γ̂ > 0, independent on ϵ∗ and δ such that γ̂ < t∗ and maxt∈[0,γ̂] Iϵ(tv0) ≤ L(γ̂0) <
(
1
2 − 1

ς

)
S

N
2 ,

which proves (i).
Since Iϵ(0) = 0, from (g1), (h3) and choosing ∥u∥ = r < γ̂0

2 , there is α > 0 such that
Iϵ(u) ≥ α for u ∈ H1(RN ), ∥u∥ = r. (ii) is proved.

We now prove (iii). It follows from (g3) that∫
BR(0)

∫ γ̂0v0(x)

0
f(s)dsdx ≥

∫
BR(0)

∫ γ̂0v0(x)

0
g(s)dsdx

≥
∫
BR(0)

∫ γ̂0v0(x)

2a
ldsdx =

∫
BR(0)

(γ̂0v0 − 2a)dx.

From (3.15) we have

Iϵ(γ̂0v0) ≤ L(γ̂0)−
∫
BR(0)

(γ̂0v0 − 2a)dx

=
1

2
γ̂20 −

γ̂2
∗

0

2∗

∫
BR(0)

|v0|2
∗
+ 2aωNRN − γ̂0

∫
BR(0)

v0dx

< 0

for both γ̂0 > 0 and a > 0 small enough.
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Remark 3.1

(i) The above lemma shows the restriction of the constant a given in (g3).

(ii) From the proof of this lemma, we know that the set {u(x) : u(x) > a} has positive measure,
otherwise, we cannot ensure Iϵ(γ̂0v0) < 0.

The following result establishes the existence of a ground solution to (3.5), which means that
there exists a function uϵ such that Iϵ(uϵ) = cϵ := cϵ,a,δ, and 0 ∈ ∂Iϵ(uϵ), where cϵ denotes the
mountain pass level associated to Iϵ.

Theorem 3.1 If (g1)-(g4) and (V1) hold, then there exist ϵ∗, a > 0 small such that for all
ϵ ∈ (0, ϵ∗), problem (3.5) has a positive solution uϵ satisfying

(i) uϵ is a weak solution of problem (3.5) for all ϵ ∈ (0, ϵ∗);

(ii) The set |Λϵ,a| = {x ∈ RN : uϵ(x) = a} has null measure;

(iii) The set {x ∈ RN : uϵ(x) > a} has positive measure.

Proof (i) Set a, V0 and γ̂0 be the same as that in Lemma 3.4. It follows from Lemma 3.4 that
Iϵ has the Mountain Pass geometry, and there exist sequences {un} ⊂ H1(RN ), {u∗n} ⊂ ∂Iϵ(un)
and {ξ∗n} ⊂ ∂Ψϵ(un) such that u∗n = Q′

ϵ − ξ∗n in H−1(RN ),

∥u∗n∥∗ = on(1), Iϵ(un) = cϵ + on(1),

where cϵ = infγ∈Γmaxt∈[0,1] Iϵ(γ(t)) and Γ = {γ ∈ C([0, 1],H1(RN )) : γ(0) = 0 and γ(1) =

γ0v0}. Noting that {un} is bounded in H1(RN ) and ξn ∈ [h(ϵx, un), h̄(ϵx, un)]. From (3.9) we

derive that {ξn} is bounded in L
2∗

2∗−1 (RN ). According to Lemma 3.3, it follows that un → uϵ in

H1(RN ) and ξn ⇀ ξϵ in L
2∗

2∗−1 (RN ). Therefore,∫
RN

(∇uϵ∇η + V (ϵx)η) =

∫
RN

ξϵη (3.16)

for all η ∈ H1(RN ), where ξϵ ∈ [h(ϵx, uϵ), h̄(ϵx, uϵ)]. Once that ξϵ ∈ L
2∗

2∗−1 (RN ), by the elliptic

regularity theory, uϵ ∈ W 2, 2∗
2∗−1 (RN ) and

−∆uϵ + V (ϵx)uϵ ∈ [h(ϵx, uϵ), h̄(ϵx, uϵ)] a.e. in RN . (3.17)

Taking a test function u−ϵ , we derive uϵ = u+ϵ ≥ 0. By Harnack inequality [9, Theorem 8.20],
one deduces that uϵ > 0. Consequently, uϵ is a positive solution of (3.5) and (i) is proved.

We now assume that |Λϵ,a| := {x ∈ RN : uϵ(x) = a} has positive measure. It follows from
Stampachia Theorem [4] that −∆uϵ(x) = 0 a.e. in Λϵ,a. (3.17) infers that

V (ϵx)a ∈ [h(ϵx, uϵ(x)), h̄(ϵx, uϵ(x))] a.e. in Λϵ,a. (3.18)

Once that a < b and

|h(x, t)| ≤ V0t

k
(3.19)

for all x ∈ RN , t ∈ [0, a], it follows from (3.18) that 1 ≤ 1
k , which contradicts to k > 1. Hence

|Λϵ,a| = 0, which shows (ii).
Next, we prove (iii). If the conclusion was false, i.e., |{x ∈ RN : uϵ(x) > a}| = 0, then

uϵ(x) ≤ a (3.20)

a.e. in RN . This, combining (3.16), (3.19), infers that
(
1− 1

k

)
∥uϵ∥2 ≤ 0, which is a contradic-

tion to Iϵ(uϵ) = cϵ > 0. Hence uϵ ≥ 0. �
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4. Proof of Theorem 1.1

The following Lemma is very important to show that the solution proved in Theorem 3.1 is
a solution of the original problem (1.2) for a small enough.

Lemma 4.1 If uϵ is the solution found in Theorem 3.1 for ϵ ∈ (0, ϵ∗), then maxt≥0 Iϵ(tuϵ) =
Iϵ(uϵ).

Proof We firstly give A : [0,+∞) → R the locally Lipschitz continuous function defined by

A(t) = Iϵ(tuϵ), ∀t ≥ 0.

It is straightforward to prove that there exist σ, t0 > 0 such that

A(t) > 0, ∀t ∈ (0, σ) and A(t) < 0 ∀t ≥ t0,

from which it follows that A has a maximum value. Hereafter, set t∗ > 0 be a number where A
attains its maximum, i.e.,

A(t∗) = max
t≥0

A(t).

We now claim that the number t∗ is equal to 1. Indeed, noting that A is locally Lipschitz
continuous function, we have that A is a.e. differentiable. Write Ω̃ be the set of these points,
where A′ does’t exist, then we derive |Ω̃| = 0. Now it needs to prove that

(i) A′(t) > 0, ∀t ∈ (0, 1) ∩ Ω̃c;

(ii) A′(t) < 0, ∀t ∈ (1,+∞) ∩ Ω̃c.

From (i) and (ii) we know that A has a global maximum value at t = 1. Furthermore, t = 1 is
the unique point where the global maximum is attained.

In the following, we firstly prove (i). Without loss of generality, we assume that b < 1. By
the Chain Rule for locally Lipschitz continuous function, we obtain that there exists u∗t ∈ ∂Iϵ(tu)
such that

A′(t) = ⟨u∗t , u⟩,

or equivalently, there exists ξt ∈ ∂Ψϵ(tu) verifying

A′(t) = t

∫
RN

(|∇u|2 + V (ϵx)|u|2)−
∫
RN

ξtu.

Thanks to 0 ∈ ∂Iϵ(uϵ) and |Λϵ,a| = 0, it follows that∫
RN

(|∇u|2 + V (ϵx)|u|2) =
∫
RN

h(ϵx, u)u,

and so

A′(t) = t

∫
RN

h(ϵx, u)u−
∫
RN

ξtu.

According to Proposition 2.1 and Proposition 2.2, one has

ξt(x) ∈ [h(ϵx, tu), h̄(ϵx, tu)] a.e. in RN ,

10



thus, from |Λϵ,a| = 0, (g5) and the boundedness of h̄(ϵx, u) at u = a, we have

A′(t) ≥ t

(∫
RN

h(ϵx, u)u−
∫
RN

h̄(ϵx, tu)

t
u

)
≥ t

(∫
{u≤a}

(
g(u)

u
− g(tu)

tu

)
u2 + (1 + δ)

∫
{a<u<b}

(
g(u)

u
− g(tu)

tu

)
u2

+

∫
{u≤b}

(
u2

∗−2 − t2
∗−2u2

∗−2
)
u2 +

V0

k

∫
{b<u<1}

(u− tu)

)
> 0, ∀t ∈ (0, 1),

which deduces that
A′(t) > 0, ∀t ∈ (0, 1) ∩ Ω̃c.

(ii) can be proved by the same method as that employed in (i). It follows from (i) and (ii) that
Lemma 4.1 is proved. �

As we know, it is crucial to discuss the problem{
−∆u+ V0u = (1 + δ)g(u) + u2

∗−1, x ∈ RN ,

u ∈ H1(RN ), u(x) > 0, ∀x ∈ RN .
(4.21)

The energy functional associated to problem (4.21) is defined by

IV0(u) =
1

2

∫
RN

(|∇u|2 + V0u
2)− (1 + δ)

∫
RN

G(u+)−
1

2∗

∫
RN

u2
∗

+ ,

where u+ = max{u, 0}. Then I0 ∈ C1(H1(RN ,R)) and

I ′V0
(u)v =

∫
RN

(∇u∇v + V0uv)− (1 + δ)

∫
RN

g(u+)v −
∫
RN

u2
∗−1

+ v, ∀u, v ∈ H1(RN ).

There exists a positive function u0 ∈ H1(RN ) such that I ′V0
(u0) = 0 and IV0(u0) = cV0 , where

cV0 is the Mountain Pass level. Define the Nehari manifold corresponding to IV0

NV0 = {u ∈ H1(RN ) \ {0} : I ′V0
(u)u = 0},

then cV0 = infu∈NV0
IV0(u) �.

Lemma 4.2 limϵn,an,δn→0 cϵn = cV0 .

Proof Firstly, for simplicity, we denote by un = uϵn,an,δn , In = Iϵn,an,δn and cn = cϵn,an,δn
where cn denotes the Mountain Pass level associated to In. Take ϵn, an, δn → 0 as n → ∞. For
any ρ > 0, set η ∈ C∞

0 (Ω) satisfying 0 ≤ η(x) ≤ 1, η(x) = 1 for all x ∈ B1(0), and η(x) = 0
for all x ∈ Bc

2(0) ⊂⊂ Ω. Moreover, for each ρ > 1. We denote by ηρ and by uρ the functions,
ηρ(x) = η(xρ ) and uρ(x) = ηρ(x)u0(x). It is not difficult to show that uρ → u0 in H1(RN ) as
ρ → +∞. For each R > 0, there is tρ > 0 such that

IV0(tρuρ) = max
t≥0

IV0(tuρ),

hence I ′V0
(tρuρ) = 0 and

1

tρ

∫
RN

(|∇uρ|2 + V0u
2
ρ) = (1 + δ)

∫
RN

g(tρuρ)

tρ
uρ + t2

∗−3
ρ

∫
RN

u2
∗

ρ ,
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which means by I ′V0
(u0) = 0 that tρ → 1 as ρ → ∞. Then, we can see that tρuρ → u0 in

H1(RN ) and IV0(tρuρ) → IV0(u0) as ρ → ∞. From a simple computation it follows that there
exists t∗ > 0 such that Iϵ(t∗tρuρ) < 0 uniformly for ϵ, a > 0 small enough. Taking γ(t) = tt∗tρuρ
for t ∈ [0, 1], and from the definition of cϵ, we derive

cϵ ≤ max
t∈[0,1]

Iϵ(γ̂(t)) ≤ max
t≥0

Iϵ(γ̂(t)) = Iϵ(t̂tρuρ)

for some t̂ = t̂(ϵ, a, ρ) > 0. A straightforward computation means that for each given ρ > 0,
there exist positive constants C1 and C2 such that C1 < t̂ < C2 for ϵ, a > 0 small enough. Once
that V (0) = V0, For any ν > 0, there exists ϵ0 > 0 such that 0 < V (ϵnx)−V0 < ν for ϵn ∈ (0, ϵ0)
and x ∈ B2R(0). Consequently,∫

RN

V (ϵnx)t
2
ρu

2
ρ <

∫
RN

(V0 + ν)t2ρu
2
ρ.

Then,

cn ≤ In(t̂tρuρ) ≤ IV0(t̂tρuρ) +
t̂

2
ν

∫
B2R(0)

t2ρu
2
ρ + δ

∫
RN

G(t̂tρuρ),

which leads to
lim sup
n→0

cn ≤ cV0 . (4.22)

We now verify
lim inf
n→∞

cn ≥ cV0 . (4.23)

Indeed, we proceed by contradiction, and assume that there is an integer N large and σ > 0
small such that

cn ≤ cV0 − σ for all n > N.

By Theorem 3.1 and the definition of cϵn , we derive

cn = In(un) = max
t>0

In(tun) < cV0 − σ

for any fixed n > N . From the definition of cV0 one has that cV0 ≤ maxt>0 IV0(tuϵn). Then,
from the fact that, for all given n > N, x ∈ RN , V0 ≤ V (ϵnx), (1 + δ)

∫
RN G(u) + 1

2∗

∫
RN u2

∗ ≥∫
RN H(ϵx, u), it follows that

cV0 − σ > max
t>0

In(tun) ≥ max
t>0

IV0(tun) ≥ cV0 ,

which derives a contradiction. Then (4.23) is true. Finally, (4.22) and (4.23) deduce this
lemma. �

Lemma 4.3 Assume the same hypotheses of Theorem 3.1. Let {zn} ⊂ NV0 be such that
IV0(zn) → cV0 and zn → z in H1(RN ). Then, there exists a sequence {ỹn} ⊂ RN such that
zn(· + ỹn) → z0 ∈ NV0 with IV0(z0) = cV0. Furthermore, if z ̸= 0, then {ỹn} can be taken
identically zero, thus , for this case, zn → z in H1(RN ).
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Proof Similar as the method used in Lemma 3.1, we obtain that the sequence {zn} is bounded
in H1(RN ), thus passing to a subsequence if necessary, still denoted by {zn}, we can suppose
that there is z ∈ H1(RN ) satisfying

zn ⇀ z in H1(RN ).

From the Ekeland’s Variational Principle [12], we can suppose that {zn} satisfying the following
result

IV0(zn) → cV0 and I ′V0
(zn) → 0. (4.24)

Based on (4.24), we divide our proof into two cases: z ̸= 0 and z = 0.
Case 1. z ̸= 0. Using the same argument as in the proof of Lemmas 3.3 and 3.4, we can also

derive that
∇zn(x) → ∇z(x) a.e. in RN ,

z2
∗

n (x) → z2
∗
(x) a.e. in RN .

(4.25)

From the fact that ⟨I ′V0
(zn), zn⟩ = 0, (4.24), it follows that ⟨I ′V0

(z), z⟩ = 0, hence

cV0 ≤ IV0(z) = IV0(z)−
1

ς
⟨I ′V0

(z), z⟩,

which infers that

cV0 ≤
(
1

2
− 1

ς

)∫
RN

(|∇z|2 + z2) + (1 + δ)

∫
RN

[
1

ς
g(z)z −G(z)

]
+

(
1

ς
− 1

2∗

)∫
RN

z2
∗
:= D.

Then, by Fatou’s Lemma

cV0 ≤ D ≤ lim inf
n→∞

(
1

2
− 1

ς

)∫
RN

(|∇zn|2 + z2n) + (1 + δ)

∫
RN

[
1

ς
g(zn)zn −G(zn)

]
+

(
1

ς
− 1

2∗

)∫
RN

z2
∗

n ≤ cV0 .

Consequently,

lim
n→∞

∫
RN

(|∇zn|2 + z2n) →
∫
RN

(|∇z|2 + z2). (4.26)

It follows from (4.25) and (4.26) that zn → z in H1(RN ).
Case 2: z = 0. For this case, there are ρ, β > 0 and {yn} ⊂ RN such that

lim sup
n→∞

∫
Bρ(yn)

|zn|2 ≥ β.

Indeed, if this case is not true, we have

lim sup
n→∞

sup
y∈RN

∫
Bρ(y)

|zn|2 = 0,

and by Lions result [21]

lim
n→∞

∫
RN

|zn|q = 0 ∀s ∈ (2, 2∗).
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By the above result and the fact that {zn} ⊂ NV0 , we have∫
RN

(|∇zn|2 + V0z
2
n) =

∫
RN

z2
∗

n . (4.27)

Suppose that
∫
RN z2

∗
n → l as n → ∞. Using the definition of the constant S, we obtain

S

(∫
RN

z2
∗

n

) 2
2∗

≤
∫
RN

|∇zn|2 ≤
∫
RN

(|∇zn|2 + V0z
2
n) =

∫
RN

z2
∗

n ,

which implies that l ≥ Sl
2
2∗ , i.e., l > S

N
2 , which is a contradiction to cV0 <

(
1
2 − 1

ς

)
S

N
2 .

According to the Sobolev embedding, we have that |yn| → ∞. Defining vn = zn(x + yn), one
derives

IV0(vn) → cV0 and I ′V0
(vn) → 0.

It is obvious to see that {vn} is bounded in H1(RN ), and there is a v ∈ H1(RN ) with v ̸= 0 such
that vn ⇀ v in H1(RN ). Proceeding the same argument as in Case 1, we derive that vn → v in
H1(RN ).

We now verify (4.24). From Ekeland’s Variational Principle, it follows that there is a sequence
{zn} ⊂ NV0 verifying

zn = un + on(1), IV0(zn) → cV0 and I ′V0
(zn)− γnJ

′
V0
(zn) = on(1),

where γn is a real number and JV0(z) = I ′V0
(z)z, ∀z ∈ H1(RN ). Then there exists σ > 0 such

that
|⟨J ′

V0
(zn), zn⟩| ≥ σ, ∀n ∈ N.

Indeed, by the definition of JV0 and (g5), one has

−⟨J ′
V0
(zn), zn⟩ = (1 + δ)

∫
RN

(g′(zn)z
2
n − g(zn)zn) + (2∗ − 2)

∫
RN

z2
∗

n

≥ (2∗ − 2)

∫
RN

z2
∗

n > 0.

Since I ′V0
(zn)zn = on(1), we have J ′

V0
(zn)zn = on(1), which derives γn = on(1). Therefore,

IV0(zn) → cV0 and I ′V0
(zn) → 0.

Consequently, without loss of generality, we can suppose that

IV0(zn) → cV0 and I ′V0
(zn) → 0.

Lemma 4.4 Let {un} ⊂ H1(RN ) be a sequence with 0 ∈ ∂Jϵn(un) and IV0(un) → cV0, where
ϵn, an, δn → 0+. Then, there is a sequence {ỹn} ⊂ RN such that wn(x) := un(x + ỹn) has a
convergent subsequence in H1(RN ,R). Furthermore, up to a subsequence ϵnỹn → y0 ∈ Λ̃, where
Λ̃ = {x ∈ Ω : V (x) = V0}.

Proof Lemma 3.1 means that {un} is bounded in H1(RN ). We claim that there exists a
sequence {ỹn} ⊂ RN and constants ρ, σ > 0 such that

lim inf
n→∞

∫
Bρ(ỹn)

|un|2 ≥ σ > 0. (4.28)
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Indeed, suppose that (4.28) were false. Then, from Lion’s result (see [21]), it follows that∫
RN

|un|q = on(1)

as n → ∞, for all 2 < q < 2∗, which infers that∫
RN

G(un) =

∫
RN

ung(un) = on(1).

Thus ∫
RN

H(ϵx, un) ≤
1

2∗

∫
Ω∪{un≤a}

(u+n )
2∗ +

V0

2k

∫
Ωc∩{un≤a}

u2n + on(1) (4.29)

and ∫
RN

unh(ϵx, un) ≤
∫
Ω∪{un≤a}

(u+n )
2∗ +

V0

k

∫
Ωc∩{un≤a}

u2n + on(1). (4.30)

This, combining 0 ∈ ∂Iϵn(un), we conclude that

∥un∥2 −
V0

k

∫
Ωc∩{un≤a}

u2n + on(1) =

∫
Ω∪{un≤a}

(u+n )
2∗ . (4.31)

Set m ≥ 0 be such that

∥un∥2 −
V0

k

∫
Ωc∩{un≤a}

u2n → m.

It is easily seen that m > 0. Otherwise, we can derive un → 0, which is a contradiction to
cV0 > 0. By (4.31), it follows that ∫

Ω∪{un≤a}
(u+n )

2∗ → m.

From the fact that Iϵ(un) → cV0 and (4.29), one has

m ≤ NcV0

and thus m > 0. Since

∥un∥2 −
V0

k

∫
Ωc∩{un≤a}

u2n ≥ S

(∫
Ω∪{un≤a}

(u+n )
2∗

) 2
2∗

,

passing to the limit in the above inequality, it follows that

m ≥ Sm
2
2∗ ,

which deduces that

cV0 ≥ 1

N
S

N
2 ,

which is impossible. Hence (4.28) is true, and along to a subseuence

vn := un(·+ ỹn) ⇀ v ̸= 0 in H1(RN ).
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In the following, we take tn > 0 such that tnvn ∈ NV0 . It follows from Lemma 4.1 that

cV0 ≤ IV0(tnvn) ≤ max
t≥0

Iϵn(tun) = Iϵn(un) = cV0 + on(1),

which means IV0(tnvn) → cV0 , thus tnvn ̸→ 0 in H1(RN ). Because {vn} and {tnvn} are bounded
in H1(RN ) and tnvn ̸→ 0 in H1(RN ), the suquence {tn} is bounded. Passing to a subsequence
if necessary, tn → t0 ≥ 0, for some t0 independent of ϵ, a and δ. For ϵ, a and δ small enough, if
t0 = 0, we have tnvn → 0 in H1(RN ), which cannot occur. Therefore t0 > 0, and {tnvn} verifies

IV0(tnvn) → cV0 , tnvn ⇀ t0v ̸= 0 in H1(RN ).

It follows from Lemma 4.3 that tnvn → t0v, or equivalently, vn → v in H1(RN ), with v ̸= 0,
which shows the first part results of this lemma. What is left is to show ϵnỹn → y0 ∈ Λ̃. Set
yn := ϵnỹn and we assert that {yn} has a bounded subsequence. Indeed, if this were false, then
{yn} → ∞. Take R > 0 such that Ω ⊂ BR(0). We assume that |yn| > 2R, for any x̂ ∈ BR/ϵn(0),
then |ϵnx̂+ yn| ≥ |yn| − |ϵnx̂| > R. Put

ηR(x) =

{
0, if |x| ≤ R,

1, if |x| ≤ 2R,

and |∇ηρ(x)| ≤ CR−1 for all x ∈ RN . Applying 0 ∈ ∂Iϵn(un), we have

V0

(
1− 1

k

)∫
RN

v2nηR ≤
∫
RN

[
|∇vn|2 +

(
V (x)− V0

k

)
v2n

]
ηR

= −
∫
RN

vn∇ηR∇vn +

∫
RN

h(ϵx̂+ yn, vn)ηR + on(1).

It follows from (h4) that

V0

(
1− 1

k

)∫
RN

v2nηR ≤ C

R
∥vn∥2 + on(1),

which is impossible as R sufficiently large. This means that {yn} has a bounded subsequence.
Hence, up to a subsequence we derive

yn → y0 ∈ RN .

If y0 ̸∈ Ω̄, we can proceed as above and infer that vn → 0. Therefore, y0 ∈ Ω̄.
In order to show that V (y0) = V0, we proceed by contradiction, and assume that V (y0) > V0.

Once that tnvn → t0v in H1(RN ,R), from Fatou’s Lemma and the invariance of RN , we have

cV0 = IV0(t0v) <
1

2

∫
RN

(|∇(t0v)|2 + V (y0)|t0v|2)− (1 + δ)

∫
RN

G(t0v)−
1

2∗

∫
RN

(t0v)
2∗

≤ lim inf
n→∞

[
1

2

∫
RN

(|∇(tnvn)|2 + V (ϵnx̂+ ỹn)|tnvn|2)
∫
RN

G(tnvn)−
1

2∗

∫
RN

(tnvn)
2∗
]

≤ lim inf
n→∞

Iϵn(tnun) ≤ lim inf
n→∞

Iϵn(un) = cV0 ,

which is absurd. Hence V (y0) = V0 and y0 ∈ Ω̄. The condition (V1) means that y0 ̸∈ ∂Ω, which
deduces that y0 ∈ Λ̃. The proof is completed. �

The following Lemma comes from Lemma 3.7 in [5] and it can show that uϵ obtained in
Theorem 3.1 is a solution of the original problem (1.2).
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Lemma 4.5 Let ϵn → 0+, δn → 0+, un := uϵn,an,δn be a solution of (3.5) with Iϵn(un) → cV0.
Then un ∈ L∞(RN ) and given τ > 0, there are R > 0 and n0 ∈ N such that

|un|L∞(BR(ỹn)c) < τ for all n ≥ n0,

where {ỹn} is the sequence given in Lemma 4.4.

Proof of Theorem 1.1 Our first goal is to show that there exist ϵ̂ > 0, δ̂ > 0 and â > 0 such
that for all ϵ ∈ (0, ϵ̂), δ ∈ (0, δ̂), and a ∈ (0, â), the solution uϵ,δ,a of problem (3.5), given by
Theorem 3.1, satisfies the inequality

|uϵ,δ,a|L∞(RN\Ωϵ) < b. (4.32)

Assume that (4.32) were false, then for some sequence ϵn → 0+, δn → 0+ and an → 0+, the
sequence un = uϵn,δn,an satisfies

|un|L∞(RN\Ωϵn )
≥ b. (4.33)

From Lemmas 4.4-4.5 and Iϵn(un) → cV0 , it follows that there exists a sequence {ỹn} ⊂ RN such
that ϵnỹn → y0 ∈ Λ̃. Putting r > 0 such that Br(y0) ⊂ B2r(y0) ⊂ Ω, one has

Br/ϵn(y0/ϵn) =
1

ϵn
Br(y0) ⊂ Ωϵn .

Furthermore, for any x̂ ∈ Br/ϵn(ỹn), there holds

|x̂− y0
ϵn

| ≤ |x̂− ỹn|+ |ỹn − y0
ϵn

| < 1

ϵn
(r + on(1)) <

2r

ϵn

for n large enough. For these values of n, Br/ϵn(ỹn) ⊂ Ωϵn , from which it follows that RN \Ωϵn ⊂
RN \ Br/ϵn(ỹn). On the other hand, applying Lemma 4.5 with τ = b, there exists n0 such that
r/ϵn > R and

|un|L∞(RN\Ωϵn )
≤ |un|L∞(RN\Br/ϵn (ỹn))

≤ |un|L∞(RN\BR(ỹn)) < b, ∀n ≥ n0,

which contradicts to (4.33) and this proves (4.32).
Then from the definition of h and (4.32), we derive that h(ϵx, u(x)) ≡ f(u(x)) + u2

∗−1,
which proves that u = uϵ,δ,a is a solution of problem (1.2). In order to study the behavior of the
maximum points of {un}, it follows from (H1) that there is τ > 0 such that

h(ϵx, t)t2 ≤ V0

2
t2 (4.34)

for all x ∈ RN and t ≤ τ . According to Lemma 4.5, there exist R > 0 and {ỹn} ⊂ RN such that

|un|L∞(BR(ỹn))c < τ. (4.35)

Passing to a subsequence if necessary, we may suppose that

|un|L∞(BR(ỹn))c ≥ τ. (4.36)

Otherwise, we can choose a subsequence such that |un|L∞(RN ) < τ . Therefore, recalling the fact
that un is a solution of (1.2) and (4.34), one derives∫

RN

(|∇un|2 + V0|un|2) ≤ ∥un∥2ϵn ≤
∫
RN

h(ϵnx, un)u
2
n ≤ V0

2

∫
RN

|un|2,
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which means that ∥un∥ = 0, and this makes no sense. Consequently, (4.36) holds.
From (4.35) and (4.36), it follows that the maximum point ŷn ∈ RN of un belongs to BR(ỹn),

thus, ŷn = ỹn + x̃n with |x̃n| ≤ R. This means that

ϵnŷn = ϵnỹn + ϵnx̃n → y0 ∈ Λ̂.

Consequently,
lim
n→∞

V (ϵnŷn) = V (y0) = V0,

which completes our proof. �
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