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Abstract

In this paper, we study generalized (C)-conditions, specifically the Kannan-Suzuki- (C) con-

dition (abbreviated as the (KSC)-condition). We employ the M-iteration process to investigate

the convergence behavior of mappings satisfying the KSC-condition and demonstrate that this

approach offers improved convergence speed and computational efficiency compared to other

well-known iteration schemes in the literature. To illustrate the advantages of the M-iteration

process, we present new numerical examples that highlight its effectiveness. Additionally, we

validate our theoretical findings by applying the method to fractional delay differential equa-

tions, showcasing its applicability in solving complex mathematical models. Furthermore, we

compare the polynomiographs generated by the M-iteration process with those produced by

other well-known iteration methods, demonstrating superior visualization properties and com-

putational performance. These results establish the M-iteration process as a powerful tool for

studying generalized contraction conditions.
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1 Introduction

In many cases, it is well known that the theory of fixed points is a celebrated area of research

in nonlinear analysis, providing efficient and alternative tools for approximating solutions to both
1
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linear and nonlinear problems [34]. In fixed-point theory, a sought-after solution to a linear or

nonlinear problem is often expressed as a fixed point of some mapping, whose domain is typically

an appropriate subset of a distance space (e.g., Hilbert or Banach space). It should be noted that

any fixed-point theorem not only establishes the existence of a fixed point but, when possible, also

proves its uniqueness for a given mapping in a specified domain. In the existing literature, several

researchers have extensively investigated the existence of solutions for various classes of integral and

differential equations by employing techniques and methods from fixed-point theory. Furthermore,

once the existence of a solution for a nonlinear problem is established, attention naturally shifts to

numerical methods for approximating such solutions. In this context, we introduce the concept of

contractions: A mapping K defined on a subset U of a Banach space V is called a contraction [6] if

||Kz−Ky|| ≤ a||z− y||, (1.1)

where a is a real number in the interval[0, 1), and z, y are any points in U. The number a is

sometimes called the contraction factor of K. Notice that a fixed point of a self-map K : U → U

is a point p ∈ U that satisfies the condition Kp = p. We shall denote the set of fixed points of K

by Fix(K). In 1922, Banach [6] proposed a fundamental result on the existence of fixed points for

contractions, stated as follows:

Theorem 1.1. Suppose that K is a contraction on a closed subset U of a Banach space, with a

contraction factor a. Then K has a unique fixed point p, and the sequence of Picard iterates, defined

byzn+1 = Kzn, converges strongly to p for every initial guess z1 ∈ U.

Theorem 1.1 is a fundamental result in analysis that establishes both the existence of a fixed

point and, at the same time, provides an approximation process for obtaining its value under mild

conditions. Furthermore, it is now known that for a nonexpansive map K, i.e., a map satisfying

the condition ∥Kz − Ky∥ ≤ ∥z − y∥, ∀z, y ∈ U, a fixed point of K may exist. However, the

approximation method suggested in Theorem 1.1 may no longer converge to this fixed point. It

is easy to see that the class of nonlinear nonexpansive maps is more general and includes all

contractions as a special case. Moreover, the study of nonexpansive nonlinear maps has its origins

in applications of computer science and other fields of applied sciences.

In 1965, Browder [7] and Gohde [10] independently conducted pioneering studies on the ex-

istence of fixed points for nonexpansive mappings in certain classes of Banach spaces. They es-

tablished that every nonexpansive self-mapping defined on a bounded, closed, convex subset of

a uniformly convex Banach space (UCBS), a special type of Banach space denoted by U admits

at least one fixed point, though uniqueness is not guaranteed in general. In the same year, Kirk

[17] extended the Browder-Gohde result to the setting of reflexive Banach spaces (RBS). To illus-

trate that the Picard iteration method may fail to converge to a fixed point for a nonexpansive

self-mapping, we present the following numerical example.

Definition 1.2. ([9]) Let V be a Banach space. V is called a uniformly convex Banach space

(UCBS) if for each ψ ∈ (0, 2] there exists ϑ > 0 such that s, x ∈ V A space V is termed as
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uniformly convex Banach space if;

∥s∥ ≤ 1,

∥x∥ ≤ 1,

∥s− x∥ > ψ,

 ⇒
∥∥∥∥s− x

2

∥∥∥∥ ≤ ϑ. (1.2)

Example 1.3. [18] Let us consider U = [0, 1], which is a closed, bounded, and convex subset of

the uniformly convex Banach space (UCBS) R. We define a mapping K on U by Kz = 1− z. It is

easy to verify that K is a nonexpansive mapping with a unique fixed point at z = 0.5.

In 2008, Suzuki [32] studied the class of nonexpansive mappings and established the following

generalization: A mapping K defined on a subset U of a Banach space is called a Suzuki mapping

(or a mapping satisfying condition (C)) if, for all z, y ∈ U,

1

2
∥z−Kz∥ ≤ ||z− y|| ⇒ ||Kz−Ky|| ≤ ||z− y||.

Suzuki proved the existence of fixed points for mapping satisfying condition (C). Obviously,

every nonexpansive mapping is a Suzuki mapping; however, the following example demonstrates

that the converse does not hold in general.

Example 1.4. [32] Let us consider U = [0, 3], which is closed and bounded convex subset of UCBS

R. We define a map K on U as

Kz =


z+24
5 , if z ∈ [0, 6],

5, if z ∈ (6, 7].

The mapping presented in Example 1.4 is a Suzuki mapping but not a nonexpansive mapping.

Motivated by Suzuki [32], Karapinar [13] introduced a generalized condition (C) for mappings.

Specifically, a mapping K defined on a subset U of a Banach space is said to satisfy the (KSC)-

condition if

1

2
∥z−Kz∥ ≤ ∥z− y∥ ⇒ ∥Kz−Ky∥ ≤ 1

2
(∥z−Ky∥+ ∥y −Kz∥), ∀ z, y ∈ U.

Karapinar [13] investigated several properties of mappings with (KSC)-condition and provided some

fixed-point results for these mappings. Now, we give an example to show that the (KSC)-condition

is more general than the condition (C).

Example 1.5. Define a self-mapping K on the interval [−1, 1] as follows:

Kz =


− z

10 , if z ∈ [−1, 0)

−z, if z ∈ [0, 1]/ 1
10

0, if z = 1
10

Solution: When z = 1
10 and y = 1, it is easy to verify that K does not satisfy condition (C). Next,

we aim to prove that K satisfies the (KSC)-condition. To do so, we consider the following cases.
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1. For any z, y ∈ [−1, 0), we have Kz = − z
10 and Ky = − y

10 . Thus

1

2
(|z−Kz|+ |y −Ky|) = 1

2

(∣∣∣z+ z

10

∣∣∣+ ∣∣∣y + y

10

∣∣∣)
=

1

2

(∣∣∣∣11z10

∣∣∣∣+ ∣∣∣∣11y10
∣∣∣∣) =

11

20
(|z|+ |y|)

≥ 11

20
(|z− y|) ≥ 1

10
(|z− y|)

= |Kz−Ky|.

2. For any z, y ∈ [0, 1]/ 1
10 , we have Kz = −z and Ky = −y. Hence

1

2
(|z−Kz|+ |y −Ky|) = 1

2
(|z+ z|+ |y + y|)

= |z|+ |y|

≥ |z− y| = |Kz−Ky|.

3. For any z ∈ [−1, 0) and y ∈ [0, 1]/ 1
10 , we have Kz = −z

10 and Ky = −y. Thus

1

2
(|z−Kz|+ |y −Ky|) = 1

2

(∣∣∣z+ z

10

∣∣∣+ |y + y|
)

=
1

2

(∣∣∣∣11z10

∣∣∣∣+ |2y|
)

≥ 1

2

(∣∣∣∣ 2z10
∣∣∣∣+ |2y|

)
=

(∣∣∣ z
10

∣∣∣+ |y|
)

≥ 1

2

(∣∣∣ z
10

− y
∣∣∣) = |Kz−Ky|.

4. For any z ∈ [−1, 0) and y = 1
10 , we have Kz = −z

10 and Ky = 0. Thus

1

2
(|z−Kz|+ |y −Ky|) = 1

2

(∣∣∣z+ z

10

∣∣∣+ |y − 0|
)

=
1

2

(∣∣∣∣11z10

∣∣∣∣+ |y|
)

≥ 1

2

(∣∣∣∣11z10

∣∣∣∣) =
11

20
|z|

≥
∣∣∣ z
10

∣∣∣ = |Kz−Ky|.

5. For any y ∈ [0, 1]/ 1
10 and z = 1

10 , we have Ky = −y and Kz = 0. Thus

1

2
(|z−Kz|+ |y −Ky|) = 1

2
(|z− 0|+ |y + y|)

=
1

2
(|z|+ |2y|)

≥ 1

2
(|2y|) = |y| = |Kz−Ky|.

From the above cases, we conclude that K satisfies the (KSC)-condition.
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Numerous researchers have developed various iterative methods for approximating fixed points

of different generalizations of nonexpansive mappings. The primary motivation behind the extensive

study of iterative approaches to fixed-point computation stems from their widespread applications

across multiple disciplines, including root-finding, game theory, and image restoration. In such

applications, the need for efficient and rapidly converging methods is paramount. Let {αn}, {βn},
{γn} be sequences in (0, 1]. Following is the Mann[20] iteration process:

z1 ∈ U,

zn+1 = (1− αn)zn + αnKzn,
(1.3)

Khan [14] suggested iteration process which converges faster than the Mann iteration for contraction

mappings in Banach spaces:


z1 ∈ U,

yn = (1− αn)zn + αnKzn,

zn+1 = Kyn.

(1.4)

Agarwal [2] introduced the following two-step iteration process:
z1 ∈ U,

yn = (1− βn)zn + βnKzn,

zn+1 = (1− αn)zn + αnKyn.

(1.5)

Noor [25] extended this approach by introducing a three-step iteration process:

z1 ∈ U,

zn = (1− γn)zn + γnKzn,

yn = (1− βn)zn + βnKzn,

zn+1 = (1− αn)zn + αnKyn.

(1.6)

Ullah and Arshad [33] further developed a three-step iteration, referred to as the M-iteration

process, defined as follows:



z1 ∈ U,

wn = (1− αn)zn + αnKzn,

yn = Kwn,

zn+1 = Kyn.

(1.7)

The authors in [33] studied several convergence results of the M-iteration process for mappings

satisfying condition (C). In this paper, we extend their results by investigating the weak and strong

convergence of the M-iteration process under a generalized condition (C). Our convergence analysis

is further supported by new numerical examples and comparisons with existing iterative meth-

ods from the literature. Additionally, we validate our findings through graphical representations

generated via polynomiography.
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2 Preliminaries

The following results will pave the way toward the derivation of the main result.

Definition 2.1. Assume that V is a given Banach space and {zn} ⊆ V is any bounded sequence.

Let ∅ ̸= U ⊆ V be any convex and closed set. In this case, the asymptotic radius (AR, for short)

associated with {zn} on the set U is given as

r(U, {zn}) = inf{lim sup
n→∞

∥zn − s∥ : s ∈ U}.

Similarly, the asymptotic center (AC, for short) associated with {zn} on the set U is given as

A(U, {zn}) =
{
s ∈ U : lim sup

n→∞
∥zn − s∥ = r(U, {zn})

}
.

Definition 2.2. [26] A Banach space V is said to satisfy Opial’s condition if, for any sequence

{zn} ⊆ V that weakly converges to some s0 ∈ V , we have

lim sup
n→∞

∥zn − s0∥ < lim sup
n→∞

∥zn − e0∥, ∀e0 ̸= s0.

Hilbert spaces are known to satisfy Opial’s condition.

Definition 2.3. [31] Condition (I) for a self-map K on a subset U of a Banach space V is defined

as follows: There exists a function γ such that γ(0) = 0 and γ(u) > 0 for all u > 0, satisfying

∥z−Kz∥ ≥ γ(dist(z, F ix(K))), ∀z ∈ U,

where the notation dist(z, F ix(K)) denotes the distance of the point z from the set Fix(K), given

by

dist(z, F ix(K)) = inf{∥z− y∥ : y ∈ Fix(K)}.

Lemma 2.4. [13] Suppose that V is a Banach space and ∅ ̸= U ⊆ V . If K : U → U satisfies

the (KSC)-condition and Fix(K) ̸= ∅, then for any z ∈ U and any fixed point p ∈ Fix(K), the

following holds:

∥Kz− p∥ ≤ ∥z− p∥.

Lemma 2.5. [13] Suppose that V is a Banach space and ∅ ̸= U ⊆ V . If K is a self-map on U

satisfying the (KSC)-condition, then for any z, y ∈ U, the following inequality holds:

∥z−Ky∥ ≤ 5∥z−Kz∥+ ∥z− y∥.

Lemma 2.6. [13] Let U ⊆ V be equipped with Opial’s property, and let K be a self mapping on U

satisfying (KSC)-condition. If {zn} converges weakly to z and ∥Kzn − zn∥ = 0, then Kz = z.

Lemma 2.7. [30] Assume 0 < j ≤ bn ≤ k < 1 for all n ≥ 1. Consider {zn} and {yn} in a UCBS

V that satisfy lim sup
n→∞

∥zn∥ ≤ c , lim sup
n→∞

∥yn∥ ≤ c and lim sup
n→∞

∥(1− bn)yn + bnzn∥ = c for all c ≥ 0,

then one has lim
n→∞

∥zn − yn∥ = 0.
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3 Main results

We now present our main results.

Lemma 3.1. Let V be a UCBS and let ∅ ̸= U ⊆ V be a closed and convex set. Assume that a

self-map K : U → U satisfies condition (KSC) and that Fix(K) ̸= ∅. If {zn} is a sequence generated

by the M-iteration process (1.7), then for each p ∈ Fix(K), the limit

lim
n→∞

∥zn − p∥

exists.

Proof. Let p ∈ Fix(K) be an arbitrary fixed point. By applying Lemma 2.4, we obtain

∥wn − p∥ = ∥(1− αn)zn + αnKzn − p∥

≤ (1− αn)∥zn − p∥+ αn∥Kzn − p∥

≤ (1− αn)∥zn − p∥+ αn∥zn − p∥

= ∥zn − p∥.

(3.1)

Similarly, we obtain

∥yn − p∥ = ∥Kwn − p∥ ≤ ∥wn − p∥, (3.2)

and

∥zn+1 − p∥ = ∥Kyn − p∥ ≤ ∥yn − p∥. (3.3)

Consequently, we observe that

∥zn+1 − p∥ ≤ ∥yn − p∥ ≤ ∥wn − p∥ ≤ ∥zn − p∥.

From (3.1), (3.2) and (3.3), we can note that the sequence {∥zn−p∥} is non-increasing and bounded

below. Therefore, we conclude that

lim
n→∞

∥zn − p∥

exists for any choice of p ∈ Fix(K).

We now establish another elementary result as follows:

Theorem 3.2. Let V be a UCBS, and let ∅ ̸= U ⊆ V be a closed and convex subset. Assume that

a self-map U → U satisfies (KSC)-condition. If {zn} is a sequence generated by the M-iteration

process, then then Fix(K) ̸= ∅ if and only if {zn} is bounded and satisfies lim
n→∞

∥Kzn − zn∥ = 0.

Proof. Assume that Fix(K) ̸= ∅. Therefore, for any p ∈ Fix(K), Lemma 3.1 suggests that {zn} is

bounded and lim
n→∞

||zn − p|| exists. Assume that

lim
n→∞

||zn − p|| = e. (3.4)

We need to prove lim
n→∞

||zn −Kzn|| = 0. Now, from (3.1), we get

||wn − p|| ≤ ||zn − p||,

⇒ lim sup
n→∞

||wn − p|| ≤ lim sup
n→∞

||zn − p|| = e.
(3.5)
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Since p ∈ Fix(K) , we can apply Lemma 2.4 to get

||Kzn − p|| ≤ ||zn − p||,

⇒ lim sup
n→∞

||Kzn − p|| ≤ lim sup
n→∞

||zn − p||.
(3.6)

Owing to Lemma 3.1, we have

||zn+1 − p|| ≤ ||wn − p||. (3.7)

Using (3.7) together with (3.5), we obtain

e ≤ lim inf
n→∞

||wn − p||. (3.8)

From (3.5) and (3.8), we obtain

lim
n→∞

||wn − p|| = e (3.9)

Since

||wn − p|| = ||(1− αn)(zn − p) + αn(Kzn − p)|| (3.10)

Using (3.10) together with (3.9), we get

e = lim
n→∞

||(1− αn)(zn − p) + αn(Kzn − p)||. (3.11)

Considering (3.4), (3.6) and (3.11) along with Lemma 2.7, one gets

lim
n→∞

||zn −Kzn|| = 0.

Conversely, we shall assume that {zn} is essentially bounded with the property lim
n→∞

||zn−Kzn|| = 0

and prove that Fix(K) ̸= ∅. To do this, we consider any p ∈ A(U, {zn}). By Lemma 2.5, we have

r(Kp, {zn}) = lim sup
n→∞

||zn −Kp|| ≤ 5 lim sup
n→∞

∥zn −Kzn∥+ lim sup
n→∞

∥zn − p∥

= lim sup
n→∞

||zn − p|| = r(p, {zn}).

Thus Kp ∈ A(U, {zn}). As V is a UCBS, the set A(U, {zn}) contains only one point, hence Kp = p.

This implies that p ∈ Fix(K) i.e., Fix(K) ̸= ∅.

We first suggest a weak convergence result. This result is mainly based on Opial’s property.

Theorem 3.3. Let V be a UCBS and ∅ ≠ U ⊆ V be closed and convex. Assume that self-map

K : U → U satisfies (KSC)-condition and Fix(K) is non-empty. If {zn} denotes a sequence of

M-iteration process (1.7) and V satisfies Opial’s condition, then {zn} converges weakly to a fixed

point of K.

Proof. Notice that V is reflexive due to the convexity of V . Now, according to Theorem 3.2, {zn}
is bounded. It follows that there is a point, namely, z0 ∈ U such that a subsequence, namely, {znm}
of {zn} weakly converges to it. From Theorem 3.2, it is clear that lim

m→∞
||znm −Kznm || = 0. Using

Lemma 2.6, z0 ∈ Fix(K). We want to prove that the point u0 is the only weak limit of {zn},
on contrary we suppose that z0 is not a weak limit for {zn} i.e., there exists another subsequence,
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namely, {zns} of {zn} with a weak limit, namely, z′0 ̸= z0. From Theorem 3.2, it is annotated that

lim
s→∞

||zns −Kzns || = 0. Using Opial’s condition of V along with Lemma 3.1, we get

lim
n→∞

||zn − z0|| = lim
m→∞

||znm − z0|| < lim
m→∞

||znm − z′0||

= lim
n→∞

||zn − z′0|| = lim
s→∞

||zns − z′0||

< lim
s→∞

||zns − z0|| = lim
n→∞

||zn − z0||.

As a whole, we obtain lim
n→∞

||zn − z0|| < lim
n→∞

||zn − z0||, which is a contradiction. This finishes the

proof.

The following theorem is based on the notion of compactness:

Theorem 3.4. Let V be a UCBS and ∅ ≠ U ⊆ V be closed and compact. Assume that a self-map K

defined on U satisfies (KSC)-condition and Fix(K) ̸= ∅. If {zn} denotes a sequence of M-iteration

process (1.7) and U is compact, then {zn} converges strongly to a fixed point of K.

Proof. As assumed, the set U is closed and compact, the sequence of iterates {zn} is contained in

the set U and has a subsequence {znm} of {zn} that converges strongly to p ∈ U. So, in the view of

Theorem 3.2, we get lim
nm→∞

||znm − p|| = 0. Hence using these facts together with Lemma 2.5, we

have

∥znm −Kp∥ ≤ 5∥znm −Kznm∥+ ∥znm − p∥. (3.12)

By Theorem 3.2, lim
nm→∞

||znk
−Kznk

|| = 0 and also lim
nm→∞

||znm − p|| = 0. Accordingly the equation

(3.12) provides lim
nm→∞

znm = Kp. It follows that {znm} converges to p and Kp. Thus, we have

Kp = p. Appealing Lemma 3.1, one gets the existence of lim
n→∞

||zn − p||. Hence, our sequence of

iterates {zn} converges to a fixed point of K.

For the next result, we need the following proposition:

Proposition 3.5. [8] Let U be a nonempty closed subset of a Banach space. Let {zn} be a Fejer-

monotone sequence with respect to U. Then, {zn} converges (strongly) to the point of U if and only

if lim
n→∞

dist(zn,U) = 0.

Theorem 3.6. Let V be a UCBS and ∅ ≠ U ⊆ V be closed and convex. Assume that a self-map K

of U is with (KSC)-condition and Fix(K) ̸= ∅. If {zn} denotes a sequence of M-iteration process

(1.7) and lim infn→∞ dist(zn, F ix(K)) = 0. Eventually, the sequence {zn} converges strongly to a

fixed point of K.

Proof. Since ||zn+1 − p|| ≤ ||zn − p|| for any fixed point p, it follows that lim
n→∞

dist(zn, F ix(K))

exists. The given condition now gives that

lim
n→∞

dist(zn, F ix(K)) = 0. But the fixed point set is closed here and {zn} is Fejer-monotone by

Lemma 2.5. Eventually, Proposition 3.5 gives that {zn} is strongly convergent to a fixed point of

K.
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Theorem 3.7. Let V be a UCBS and ∅ ̸= U ⊆ V is closed and convex. If K be a self-mapping

defined on U satisfying (KSC)-condition with Fix(K) ̸= ∅, then M-iteration process (1.7) converges

strongly to a fixed point of K as long as K satisfies the condition (I).

Proof. To prove this result, we shall apply Theorem 3.6. From Theorem 3.2, one has lim infn→∞ ||Kzn−
zn|| = 0. The given condition (I) associated with the map K, gives lim infn→∞ d(zn, F ix(K)) = 0.

Accordingly, all the conditions of Theorem 3.6 are proved, we have {zn} is strongly convergent to

a fixed point of K.

4 Numerical example

Now, we prove that {zn} generated by the M-iteration process converges faster than some other

well-known iterative processes.

Example 4.1. Define a mapping K on [7, 9] as follows:

Kz =


z+42
7 , if z ∈ [7, 9),

6, if z = 9.

It can be seen that K fails to satisfy condition (C) at z = 8 and y = 9.

For the (KSC)-condition, we proceed as follows:

Case I: When z, y ∈ [7, 9), we have Kz = z+42
7 , Ky = y+42

7

1

2
(∥z−Kz∥+ ∥y −Ky∥) = 1

2

(
∥z− z+ 42

7
∥+ ∥y − y + 42

7
∥
)

=
1

2

(
∥6z− 42

7
∥+ ∥6y − 42

7
∥
)

=
1

2

(
6

7
∥(z− 7)∥+ 6

7
∥(y − 7)∥

)
= 3

(
1

7
(∥(z− 7)∥+ ∥(y − 7)∥)

)
≥ 3

(
1

7
(∥(z− 7 + y − 7)∥)

)
= 3

(
1

7
(∥(z+ y − 14)∥)

)
≥

(
1

7
(∥(z− y)∥)

)
= ∥Kz−Ky∥.

Case II: When z, y = 9, we have Kz = 6, Ky = 6

1

2
(∥z−Kz∥+ ∥y −Ky∥) =

1

2
(∥6− 6∥) ≥ ∥Kz−Ky∥.

Case III: When z ∈ [7, 9), y = 9, we have Kz = z+42
7 , Ky = 6

1

2
(∥z−Kz∥+ ∥y −Ky∥) = 1

2

(
∥z− z+ 42

7
∥+ ∥9− 6∥

)
≥ 1

2
(∥9− 6∥)

=
3

2
>

z

7
∀ z ∈ [7, 9]

= ∥Kz−Ky∥.
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Case IV: When y ∈ [7, 9), z = 9, then we have Ky = y+42
7 , Kz = 6

1

2
(∥z−Kz∥+ ∥y −Ky∥) = 1

2

(
∥9− 6∥+ ∥y − y + 42

7
∥
)

≥ 1

2
∥9− 6∥

=
3

2
>
y

7
∀ y ∈ [7, 9]

= ∥Kz−Ky∥.

In the numerical example, we set αn = 0.75, βn = 0.65, γn = 0.65, and the initial value z1 = 8

for all the considered iteration schemes, i.e., M, Khan, Agarwal, and Noor iterations. The stopping

criterion is defined as ||xn − xn+1|| < 10−7. The results are presented in Tab. 1 and Fig. 2.

The numerical results in Tab. 1 illustrate the performance of the M-iteration process in com-

parison with the Khan, Agarwal, Noor, and Mann iterative schemes. The primary objective is to

analyze the convergence behavior of each method and determine the efficiency of the M-iteration

process in estimating the fixed point of K. From the table, we observe that after the first itera-

tion, the M-iteration (7.0072886) provides a closer approximation to the fixed point (i.e., 7) than

the other methods. Specifically, it converges to the fixed point at the 4th iteration, while the

Khan and Agarwal methods require additional iterations to reach the same accuracy. In contrast,

the Noor and Mann methods exhibit relatively slower convergence, requiring 12 and 14 iterations,

respectively, to reach the fixed point.

Table 1: Numerical results produced by M, Khan Agarwal and Noor iterative schemes for K of the

Example 4.1.

n M Khan Agarwal Noor Mann

iteration iteration iteration iteration iteration

1 8 8 8 8 8

2 7.0072886 7.0510200 7.0831632 7.2919060 7.3571430

3 7.0000531 7.0026030 7.0069161 7.0852090 7.1275510

4 7 7.0001330 7.0005751 7.0248730 7.0455540

5 7 7.0000070 7.0000480 7.0072605 7.0162690

6 7 7 7.0000040 7.0021190 7.0058100

7 6 7 7 7.0006186 7.0020750

8 7 7 7 7.0001810 7.0007410

9 7 7 7 7.0000530 7.0002650

10 7 7 7 7.0000150 7.0000950

11 7 7 7 7.0000040 7.0000340

12 7 7 7 7.0000010 7.0000120

13 7 7 7 7 7.0000040

14 7 7 7 7 7.0000020

14 7 7 7 7 7.0000010

15 7 7 7 7 7

In Tab. 2, we present the results obtained for various starting points z1 with fixed parameter
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Figure 1: Convergence behavior of M (1.7), Khan (1.4), Agarwal (1.5), Noor (1.6), and Mann (1.3)

iteration processes corresponding to Tab. 1.
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Figure 2: Graphical analysis of iterates of iteration processes corresponding to Tab. 1.

Table 2: Impact of the starting point z1 on the number of performed iterations for different iteration

processes.

z1 M Khan Agarwal Noor Mann

iteration iteration iteration iteration iteration

7.3 2 3 4 8 9

7.6 2 4 4 8 10

7.9 2 4 4 8 10

8.2 3 4 5 9 10

8.5 3 4 5 9 11

8.8 3 4 5 9 11

values: αn = 0.75, βn = 0.65, γn = 0.65, ε = 10−7. From these results, we observe that for

the initial starting point z1 = 7.3, the M-iteration process approximates the fixed point in just
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2 iterations. For different starting points, the number of iterations required by the M-iteration

process varies between 2 and 3. The Khan iteration requires 3 iterations to reach the fixed point

when z1 = 7.3, and while the number of iterations fluctuates slightly for different starting points, it

remains stable for values between 7.6 and 8.8. The Agarwal iteration requires 4 iterations when z1

but varies between 4 and 5 iterations for different starting points. The Noor and Mann iteration

processes require 8 and 9 iterations, respectively, to find the fixed point when z1 = 7.3. Notably,

the Mann iteration process requires significantly more iterations compared to the other methods.

5 Comparison via polynomiography

Polynomiography is both a visual analysis technique for root-finding methods and a digital art

form, introduced by mathematician and computer scientist Bahman Kalantari [12]. It focuses on

the visualization of complex polynomials, often employing iterative algorithms and mathematical

principles. The term polynomiography is derived from polynomial and graph, emphasizing its

graphical representation of polynomial functions. Polynomiographic methods are widely utilized

for comparing and analyzing various iterative processes (see, for example, [23, 11, 27, 38, 35, 24]).

This approach enables the graphical representation of convergence behavior in iterative root-finding

methods. The roots of polynomials are approximated through iteration functions, and polynomiog-

raphy operates by employing an infinite number of such functions. A well-known example of a root-

finding algorithm used in this context is Newton’s method (also known as the Newton-Raphson

method).

In this section, we embed the well-known Newton’s iterative process [3] within the M-iteration

framework, along with some classical iterative methods from the literature, to generate various

basins of attraction. Let p(tn) be a complex polynomial. Note that for any initial value t0 ∈ C,
Newton’s iterative process is given by:

tn+1 = tn − p(tn)

p′(tn)
for (n = 0, 1, 2, 3...).

Here, p′(tn) denotes the first derivative of p(tn). Newton’s iterative process can now be reformulated

as a fixed-point iteration as follows:

tn+1 = N(tn). (5.1)

If the iterative process given in (5.1) converges to a fixed point t of N , then we have:

t = N(t) = t− p(t)

p′(t)
. (5.2)

If p(t)
p′(t) = 0, then p(t) = 0. Equation (5.2) implies that t = N(t), which means that t is a root of p(t).

The set of all initial points t0 that converge to the same root forms a basin of attraction. Instead

of using the Picard iteration, we can apply other iterative processes, such as the Mann iteration

introduced earlier or those defined in Sec. 1 for different values of αn, βn, and γn. We choose a

grid of length B = [−8.0, 8.0]2 and set N = 20, where N represents the number of iterations. By

applying Newton’s operator within the M, Mann, Khan, Agarwal, and Noor iterative processes, we

generate a complex sequence {tn}, starting from each grid point t0. Suppose t0 is the initial guess;
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0 5 10 15 20

Figure 3: Color map used in the examples.

if the sequence {tn} converges to a root with an accuracy of 0.001, we assign a specific color to t0.

If {tn} does not converge to any root, we assign it a green color. The set of allt0 that converge to

the same root forms a basin of attraction. We use the colormap presented in Figure 3.

To generate polynomiographs, we use the algorithm presented as a pseudocode in Algorithm 1.

Algorithm 1: Generation of a polynomiograpgh.

Input: p ∈ C[Z], deg p ≥ 2 – polynomial; I – iteration process; A ⊂ C – area; N – the

maximum number of iterations; ε – accuracy; colours – colour map.

Output: Polynomiograph for the complex-valued polynomial p within the area A.

1 for t0 ∈ A do

2 n = 0

3 while |p(tn)| > ε and n < N do

4 tn+1 = I(tn, p)

5 n = n+ 1

6 Map n to a colour from the colour map colours and colour t0

In the considered example, polynomiographs were generated for the polynomial p(t) = t4 − 1

using three different sets of iteration parameter values: (1) α = 0.03, β = 0.03, γ = 0.03, (2)

α = 0.4, β = 0.4, γ = 0.4, (3) α = 0.7, β = 0.7, γ = 0.7.

The generated polynomiographs are shown in Figs. 4–6. The obtained Average Number of

Iterations (ANI) values from the polynomiographs are shown in Tab. 3.The Average Number of

Iterations (ANI) is a key metric for evaluating the efficiency of iteration processes in reaching

convergence. It represents the mean number of iterations required for a iteration process to ap-

proximate a root within a given tolerance. A lower ANI value indicates faster convergence, meaning

Table 3: ANI values calculated from polynomiographs presented in Figures 4, 5 and 6.

Iteration α = β = γ = 0.03 α = β = γ = 0.4 α = β = γ = 0.7

M 3.122 2.566 2.418

Khan 5.553 4.08 3.594

Noor 20 16.4 7.432

Agarwal 6.028 4.923 4.066

Mann 20 17.4 9.292
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(a) Agarwal (b) Khan (c) Mann (d) Noor

(e) M

Figure 4: Polynomiographs generated by various iteration processes with parameters α = β = γ =

0.03.

(a) Mann (b) Khan (c) Agarwal (d) Noor

(e) M

Figure 5: Polynomiographs generated by various iteration processes with parameters α = β = γ =

0.4
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(a) Mann (b) Khan (c) Agarwal (d) Noor

(e) M

Figure 6: Polynomiographs generated by various iteration processes with parameters α = β = γ =

0.7.

the iterative process reaches a solution in fewer steps.

For low parameter values (Fig. 4), we observe that two of the iterative processes fail to converge

to any of the four roots of the polynomial p(t). This is indicated by a uniform green color, which

corresponds to the maximum iteration limit of 20. For the remaining three iterative processes, we

notice different convergence speeds. Based on visual analysis, the fastest convergence is achieved by

the M-iteration process, followed by the Khan and Agarwal iterative processes. These observations

are confirmed by the ANI values in Table 3, where the lowest ANI value of 3.122 is obtained by

the M-iteration process, followed by Khan (5.553) and Agarwal (6.028). Similarly, in Fig. 5, the

lowest ANI value (2.556) is again observed for the M-iteration process, demonstrating its strong

convergence compared to Khan (4.08), Agarwal (16.4), Noor (16.4), and Mann (17.4). In Fig. 6, the

M-iteration process once again proves to be the most efficient, with the lowest ANI value (2.418)

compared to Khan (3.594), Agarwal (4.066), Noor (7.432), and Mann (9.292).

In the present analysis, the ANI values serve as a quantitative measure for comparing the

efficiency of different iteration processes. The M-iteration process consistently yields the lowest

ANI values across all cases, indicating its superior rate of convergence. In contrast, the higher ANI

values associated with methods such as Noor and Mann suggest slower convergence or, in some

instances, potential divergence. These numerical findings are consistent with the visual patterns

observed in the polynomiographs, further validating ANI as a reliable metric for assessing the

performance of iterative methods.
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6 Application to fractional delay differential equations

Fractional calculus plays an important role in physics, engineering, and control systems to analyze

their working phenomena. Fractional calculus formulate models of engineering systems that are far

better than developed by ordinary derivatives approaches. Fractional differential equations (FDEs)

are used in electrical networks to model circuits containing capacitors, inductors, and resistors,

particularly when non-integer order dynamics are present. In control systems, FDEs play a crucial

role in robust control theory, helping design controllers that enhance stability and performance in

uncertain or complex systems. Additionally, FDEs are applied in image and audio processing for

edge detection and noise reduction. FDEs also have applications in fluid dynamics, where they

are used to model anomalous diffusion and turbulence. In physics, they are employed in wave

propagation models and dielectric material analysis. In biology, FDEs are utilized for modeling

brain signal processing and memory-dependent neuronal activities. They also aid in understanding

the spread of diseases with memory effects, such as COVID-19 dynamics. In chemistry, FDEs are

used to model chemical reactions and diffusion processes in heterogeneous media. Furthermore, in

fractal and chaos theory, FDEs are instrumental in modeling self-similar structures and complex

patterns found in nature (see, e.g., [19, 21, 22, 28, 15, 29]).

Various researchers have attempted to find numerical solutions for fractional differential equa-

tions (see, e.g., [4, 5, 37]). In this section, we approximate the solution of the following fractional

delay differential equation in the Caputo sense using the M-iteration process (1.7).

Eventually, the DFDE is

cDg(ζ) = h(ζ, ζ(g), g(ζ − σ)), ζ ∈ [e,B], (6.1)

with initial conditions

g(ζ) = ψ(ζ), ζ ∈ [e− µ, e], (6.2)

where the constant σ is stand for time delay, σ > 0, B > 0, µ > 0, g ∈ Rk, ψ ∈ C([e − σ, e] : Rk)

and h : [e,B]×Rk ×Rk → Rk is essentially a continuous function.

Some conditions are needed as follows that must be hold.

(K1): One is able to select a real number Lh > 0 with

∥h(ζ, x1, y1)− h(ζ, x2, y2)∥ ≤ Lh(∥x1 − y1∥+ ∥x2 − y2∥), ∀x1, x2, y1, y2 ∈ Rk.

(K2): One can find a constant, namely, δL > 0 with the property that 2L
δL
< 1

if M ∈ (C([e − σ,B] : Rk)
⋂
C1([e,B] : Rk)) is a function satisfying (6.1) and (6.2), then M is

called a solution to problems (6.1) and (6.2).

In [16], the authors proved that the solution to the problem (6.1) and (6.2) is equivalent to the

solution of the following integral equation:

t(ζ) = ψ(e) +
1

Γ(γ)

∫ ζ

e
(ζ − e)γ−1h(µ, g(µ), g(µ− σ))dµ, ∀ ζ ∈ [e,B], (6.3)

where t(ζ) = ψ(ζ), ∀ζ ∈ [e−µ, e] and Γ(γ) =
∫∞
0 e−x xγ−1dx The solution set of (6.3) and problems

(6.1) and (6.2) are same. Let us define the norm ∥.∥δL on (C([e− σ,B] : Rk) as

∥ψ∥δL =
sup∥ψ(ζ)∥
Eγ(δLζγ)

∀ψ ∈ C([e− σ, e] : Rk), (6.4)
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where the notation Eγ stand for Mittag-Leffler function and it is reads as follows:

Eγ(ζ) :

∞∑
k=0

ζk
Γ(γk + 1)

∀ζ ∈ R.

Clearly, (C([e− σ,B] : Rk), ∥.∥δL) is a Banach space [1].

In [36], the authors from condition (K1), proved that the solution of problem (6.1) and (6.2)

exists and it is also unique. Now, we utilize the M-iteration process (1.7) to appromate the solution

of problem (6.1) and (6.2). The main result in this section is given as follows:

Theorem 6.1. Suppose that assumptions (K1) and (K2) hold true. Then the sequence defined by

(1.7) converges to a unique solution M of (6.3) in G = C([e− σ,B] : Rk)
⋂
C1([e,B] : Rk).

Proof. Define an operator K as

Kg(ζ) =

ψ(e) + 1
Γ(γ)

∫ ζ
e (ζ − e)γ−1h(µ, g(µ), g(µ− σ))dµ if ζ ∈ [e,B]

ψ(ζ) if ζ ∈ [e− µ, e].
(6.5)

We need to show that zn → M as n→ ∞. We must distinguish two cases:

Case (i): If ζ ∈ [e− µ, e], then obviously zn → M when n→ ∞
Case (ii): If ζ ∈ [e,B], then using (1.7), Lemma 3.1 and assumptions (K1) and (K2), we have

||zn+1 −M|| = ||(1− αn)Kzn + αnKun −M||

≤ (1− αn)||zn −M||+ αn||Kzn −M||.
(6.6)

Taking the supremum on [e− σ,B] on both sides, we have

sup
ζ∈[e−σ,B]

||zn+1 −M|| ≤ sup
ζ∈[e−σ,B]

((1− αn)||zn −M||+ αn||Kzn −KM||)

≤ (1− αn) sup
ζ∈[e−σ,B]

||zn −M||+ αn sup
ζ∈[e−σ,B]

||Kzn −KM||.

Using (6.5), we get

≤ (1− αn) sup
ζ∈[e−σ,B]

||zn −M||+ αn sup
ζ∈[e−σ,B]

(||ψ(e)

+
1

Γ(γ)

∫ ζ

e
(ζ − e)γ−1h(µ, zn(µ), zn(µ− σ))dµ − ψ(e)

− 1

Γ(γ)

∫ ζ

e
(ζ − e)γ−1h(µ,M(µ),M(µ− σ))dµ||)

≤ (1− αn) sup
ζ∈[e−σ,B]

||zn − q||+ αn sup
ζ∈[e−σ,B]

1

Γ(γ)

∫ ζ

e
(ζ − e)γ−1

||h(µ, zn(µ), zn(µ− σ))− h(µ,M(µ),M(µ− σ))||dµ.
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Using assumption K1, we obtained

≤ (1− αn) sup
ζ∈[e−σ,B]

||zn −M||+ αn sup
ζ∈[e−σ,B]

1

Γ(γ)

∫ ζ

e
(ζ − e)γ−1dµ ×

Lh(∥zn −M(µ)∥+ ∥zn(µ− σ)−M(µ− σ)∥)

≤ (1− αn) sup
ζ∈[e−σ,B]

||zn −M||+ αn
1

Γ(γ)

∫ w

e
(w − e)γ−1dµ ×

Lh( sup
w∈[e−σ,B]

∥zn −M(µ)∥+ sup
ζ∈[e−σ,B]

∥zn(µ− σ)−M(µ− σ)∥).

Dividing by Eγ(δLζL)

supζ∈[e−σ,B] ||zn+1 −M||
Eγ(δLζL)

≤
(1− αn) supζ∈[e−σ,B] ||zn −M||

Eγ(δLζL)
+ αn

1

Γ(γ)
(∫ ζ

e
(ζ − e)γ−1dµ)× Lh(

supζ∈[e−σ,B] ∥zn −M(µ)∥
Eγ(δLζL)

+
supζ∈[e−σ,B] ∥zn(µ− σ)−M(µ− σ)∥

Eγ(δLζL)
).

Using (6.4), we get

∥zn+1 −M∥δL ≤ (1− αn)∥zn −M∥δL + αn
1

Γ(γ)

∫ ζ

e
(ζ − e)γ−1dµ

× Lh(∥zn −M(µ)∥δL + ∥zn(µ− σ)−M(µ− σ)∥δL)

≤ (1− αn)∥zn −M∥δL + αn
1

Γ(γ)

∫ ζ

e
(ζ − e)γ−1dµ

× 2Lh∥zn −M∥δL

= (1− αn)∥zn −M∥δL +
αn2Lh

Eγ(δLζL)
∥zn −M∥δL

1

Γ(γ)

∫ ζ

e
(ζ − e)γ−1Eγ(δLζL)dµ

= (1− αn)∥zn −M∥δL +
αn2Lh

Eγ(δLζL)
∥zn −M∥δL

cI⃝(cD
Eγ(δLζL

δL
)

= (1− αn)∥zn −M∥δL +
αn2Lh

Eγ(δLζL)

Eγ(δLζL
δL

∥zn −M∥δL

= (1− αn)∥zn −M∥δL +
αn2Lh

δL
∥zn −M∥δL .

Using assumption K2, we get

∥zn+1 −M∥δL ≤ ∥zn −M∥δL .

Put ∥zn −M∥δL = ℘n, then

℘n+1 ≤ ℘n ∀ n ∈ N .

⇒ {℘n} is a sequence of real numbers with monotone decreasing characteristics. Moreover it is
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bounded as well, so we can conclude that

lim
n→∞

℘n = inf{℘n} = 0

⇒ ∥zn −M∥δL = 0.

So {zn} converges to M.

7 Conclusion

In this research article, the three-step M-iteration process is employed to estimate fixed points of

mappings satisfying the (KSC)-condition. We establish weak and strong fixed-point convergence

results for such mappings. Additionally, two new examples are provided to demonstrate that the

(KSC)-condition is more general than condition (C). Several polynomiographs are generated for dif-

ferent settings of iteration parameters, and ANI values are computed to compare their convergence

speed. Furthermore, a comparative numerical simulation is conducted to support our main find-

ings. Finally, an application in a class of fractional differential equations is discussed to highlight

the significance of the M-iteration process.
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