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Abstract

To study the impact of disease awareness on infectious diseases with direct and indirect
transmission, we develop a mathematical model by coupling the transmission dynamics at
the population level and the environmental level. The basic reproduction number R0 of the
coupled model is calculated, and the existence and stability of the disease-free and endemic
equilibrium are analyzed in detail. By using center manifold theory, it is verified that the
model undergoes backward bifurcation under certain conditions. Numerical simulations
verify our theoretical results and indicate that enhancing disease awareness can help reduce
both the risk of direct and indirect disease transmission. Interestingly, increasing disease
awareness decreases the backward regime of the bifurcation curve, thereby the R0 interval in
which the endemic equilibrium and the disease-free equilibrium showed bistability becomes
smaller, and the R0 interval in which the disease-free equilibrium showed global stability
becomes greater. If the disease cannot be eliminated, the number of infected persons at
the steady state decreases with the increase in disease awareness. The findings have certain
reference values for the development of effective non-pharmaceutical intervention policies.

Keywords: Coupled epidemic model; Disease awareness; Backward bifurcation; Global
stability.

1. Introduction

Infectious diseases seriously threaten human health and economic development. Since
the 21st century, there have been many large-scale outbreaks of infectious diseases, such as
H1N1 in 2009 and COVID-19 in 2019, etc [1]. Some infectious diseases, like viral respiratory
infections (VRIs), cholera, and hand, foot and mouth disease (HFMD) can be spread not
only directly by contact with infected individuals but also indirectly by contact with the
contaminated surfaces or objects [2–15]. For example, some respiratory viruses, such as
human rhinovirus (HRV), respiratory syncytial virus (RSV), and influenza virus (IFV), can
survive in the environment, especially in cold and dry environments, for a long time and
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remain infectious, thus presenting a risk of indirect transmission [2–5]. SARS-CoV-2 can
survive in the environment, especially on plastic and stainless steel, for several days [6], thus
indirect transmission has had a significant impact on the COVID-19 outbreak [7–9]. Cholera
is an acute intestinal infectious disease caused by the bacteria Vibrio cholerae (V. cholerae),
which can survive in contaminated environments, especially river water and seawater, for
several weeks [10–12], and indirect transmission is one of the main transmission routes of
cholera. The human enterovirus (EV) that causes HFMD can also survive for 2 to 12 days on
the surfaces of a wide variety of household items [13–15], so indirect transmission cannot be
ignored. In the process of disease transmission, people may get information about the disease
gradually, and people who are aware of the disease may engage in protective behaviors to
reduce the risk of infection, such as maintaining personal hygiene and maintaining social
distancing. Thus, people’s disease awareness has a great effect on disease transmission,
especially in today’s society, where the media is highly developed and information spreads
rapidly. Hence, it is of great significance to study how disease awareness affects the direct
and indirect transmission of infectious diseases.

Many mathematical models have been proposed to investigate the impact of disease
awareness on the spread of infectious diseases [16–24]. Agaba et al. [17] have proposed a
SIRS model considering the influence of public and private awareness on infectious diseases.
The study found that the spread of awareness reduces disease transmission, and increases the
recovery rate of infected people. Das et al. [20] have established a SEIR model by introducing
a media awareness related infection rate function to research the influence of awareness on
tuberculosis transmission. The research found that increasing media awareness can reduce
the peak level of infected people. Sharmin et al. [21] have investigated how awareness affects
disease transmission by introducing a media compartment to the classical SIR model. Their
findings indicate continuous publicity is effective in preventing disease transmission. By
supposing that the infection rate is a decreasing function and removal rate of mosquitoes is
a non-decreasing saturation function of disease awareness, Basir et al. [22] have studied the
influence of awareness on malaria transmission. The study found that increasing people’s
awareness would reduce the abundance of mosquitoes in the environment. Recently, Aldila
[24] has studied how media awareness impacts dengue eradication by introducing the control
variable media publicity and found that high-intensity media attention significantly reduced
the scale of infection. However, to our knowledge, current studies have not examined the
effects of awareness on diseases that can be transmitted both directly and indirectly.

To study the indirect transmission of infectious diseases, many researchers have intro-
duced an environmental compartment into their models [25–31]. Feng et al. [25] have
studied toxoplasmosis infectious diseases by explicitly linking epidemiology and immunology
through an environmental compartment. Taking bacterial infection as an example, Xiao et
al. [27] have established a model considering the pathogen concentration in the environ-
ment to study the impact of individual movement and spatial control measures on disease
outbreaks. In this article, we shall establish a mathematical model with disease awareness,
which takes into account both direct transmission between people and indirect transmission
between people and the environment. It should be noted that the environmental time scale
is slower than the epidemiological time scale [25], so our model couples two different time
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scales and contains multiple transmission routes of the disease.
Based on the proposed multiscale model, we shall study how disease awareness affects

both the direct and indirect transmission of infectious diseases. For this model, detailed
theoretical analyses of the local and global dynamics are presented. Choosing the basic
reproduction number as the bifurcation parameter, the emergence of backward bifurcation
under certain conditions is proved. Moreover, by numerical simulations, we verify our the-
oretical conclusions, and it is found that disease awareness significantly affects both the
direct and indirect transmission. A great reduction in the peak level of the number of
exposed individuals, infected individuals, and the virus concentration is observed when dis-
ease awareness increases. Interestingly, increasing disease awareness decreases the backward
regime of the bifurcation curve, so that the R0 interval in which the endemic equilibrium
and the disease-free equilibrium showed bistability becomes smaller, and the R0 interval in
which the disease-free equilibrium showed global stability becomes greater. If the disease
cannot be eliminated, the number of infected persons at the steady state decreases with the
increase in disease awareness.

The paper is organized as follows: the mathematical model is given in Section 2. In
Section 3, the expression of the basic reproduction number is given, and the existence and
stability of the disease-free equilibrium and the endemic equilibrium are analyzed. In Section
4, the possibility of backward bifurcation at R0 = 1 is proved. Section 5 validates the
theoretical results and assesses the impact of disease awareness on disease transmission
through numerical simulations. In Section 6, some discussions and summaries are given.

2. Mathematical model

A mathematical model with disease awareness is formulated by coupling the transmission
dynamics at the population level and the environmental level. The total population (N)
is divided into five compartments, including unaware susceptible individuals (Sn), aware
susceptible individuals (Sa), exposed individuals (E), infected individuals (I), and recovered
individuals (R). The environmental contamination level is denoted byW . There is a constant
recruitment rate A for the susceptible population, and a natural death rate ϵ for the whole
population. It is assumed that all the newly recruited susceptibles are unaware of the
disease. The unaware susceptible individuals could become aware susceptibles due to disease
awareness at a rate of a. The awareness acquisition rate, denoted as a, can be regarded
as a constant, as this rate is primarily influenced by stable external factors such as the
efficiency of information dissemination and the level of public attention. Both unaware
and aware susceptible individuals could be infected directly by contacting with exposed and
infected individuals or indirectly through contacting the contaminated environment, and the
infection rate of the aware susceptibles is decreased by proportion σ compared with unaware
susceptibles, where σ (0 ≤ σ < 1) represents the effect of disease awareness on direct and
indirect transmission. Since the viral dynamics in the environment is slow relative to the
epidemic dynamics between hosts, two different time scales are coupled by a constant ζ
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(0 < ζ < 1). The following equations can be used to describe the mathematical model:

dSn

dt
= A− (β1E + β2I + β3W )Sn − aSn + θSa − ϵSn,

dSa

dt
= aSn − (1− σ)(β1E + β2I + β3W )Sa − θSa − ϵSa,

dE
dt

= (β1E + β2I + β3W )Sn + (1− σ)(β1E + β2I + β3W )Sa − δE − ϵE,
dI
dt

= δE − γI − ϵI,
dR
dt

= γI − ϵR,
dW
dt

= ζ(η1E + η2I − µW ),

(1)

with initial conditions

Sn(0) > 0, Sa(0) > 0, E(0) > 0, I(0) > 0, R(0) > 0, W (0) > 0.

Based on references [17, 18], and [27], we assign specific values to the parameters a, θ,
and η2. The remaining parameters are assigned ranges based on their biological relevance.
Notably, as this paper employs a bilinear incidence rate, the three transmission rates must
be scaled in proportion to the reciprocal of the total population. Furthermore, we assume
that the virus release rate from individuals during the latent period is lower than that from
infected individuals. Table 1 lists all the parameters involved in the model (1).

Table 1: Interpretation of the parameters in the model (1).

Param Biological Meaning Value Source

A Recruitment rate of susceptible individuals 0.1 ∼ 2/day Assumed
ϵ Natural death rate 0 ∼ 1/day Assumed
a Awareness acquisition rate 0.4/day [17]
θ Awareness lossing rate 0.2/day [18]
β1 Direct transmission rate of exposed individuals 0.4×10−3∼ 0.045/day Assumed
β2 Direct transmission rate of infected individuals 0.5×10−3∼ 0.053/day Assumed
β3 Environmental Indirect transmission rate 0.2×10−3∼ 0.023/day Assumed
σ The impact of disease awareness on both direct and indirect transmission 0 ∼ 1/day Assumed
δ Probability of conversion of exposed persons to infected persons 0.16 ∼ 0.45/day Assumed
γ Recovery rate for those with infection 0.18 ∼ 0.45/day Assumed
η1 Viral shedding rate of exposed individuals 0 ∼ 0.6/day Assumed
η2 Viral shedding rate of infected individuals 0.6/day [27]
µ Environmental clearance rate 0 ∼ 1/day Assumed
ζ Scale parameter 0 ∼ 1/day Assumed

Adding the first five equations of the model (1), we obtain

dN

dt
= A− ϵ(Sn + Sa + E + I +R) = A− ϵN. (2)

Therefore, we have

N(t) = N(0)e−ϵt +
A

ϵ
(1− e−ϵt) and lim

t→∞
N(t) =

A

ϵ
.

From the last equation of the model (1), we obtain
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dW

dt
= ζ(η1E + η2I − µW )

≤ ζ[(η1 + η2)
A

ϵ
− µW ].

Hence, the biological feasible region of model (1) is given as

Ω =
{
(Sn, Sa, E, I, R,W ) ∈ R6

+ | 0 ≤ Sn + Sa + E + I +R ≤ A
ϵ
, 0 ≤ W ≤ A(η1+η2)

ϵµ

}
.

Throughout this paper, the dynamical behaviors of system (1) will be discussed in the
region Ω.

3. Model Analysis

In this section, we shall calculate the basic reproduction number and analyze the existence
and stability of the disease-free equilibrium and endemic equilibrium of model (1).

Letting the right-hand sides of model (1) be 0, it is obvious that the disease-free equilib-

rium E0 = (S0
n, S

0
a, 0, 0, 0, 0) = ( A(θ+ϵ)

ϵ(a+θ+ϵ)
, Aa
ϵ(a+θ+ϵ)

, 0, 0, 0, 0) always exists. The basic reproduc-
tion number R0 gives the average number of secondary infection caused by a single infected
individual in a whole susceptible population [32]. According to the next-generation matrix
method illustrated by Van den Driessche et al. [33], the transmission (F ) and transition (V )
matrix of system (1) evaluated in E0 as follows

F =

β1S0
n + (1− σ)β1S

0
a β2S

0
n + (1− σ)β2S

0
a β3S

0
n + (1− σ)β3S

0
a

0 0 0
0 0 0

,

and

V =

δ + ϵ 0 0
−δ γ + ϵ 0
−ζη1 −ζη2 ζµ

.

Then, R0 can be calculated by

R0 = ρ(FV −1) = R0E +R0I +R0W =
Ahδ[θ + ϵ+ (1− σ)a]

ϵ(δ + ϵ)(γ + ϵ)(a+ θ + ϵ)
, (3)

where

h = β1
γ + ϵ

δ
+ β2 + β3

η1(γ + ϵ) + η2δ

δµ
,

R0E = [β1S
0
n + (1− σ)β1S

0
a]

1

δ + ϵ
,

R0I = [β2S
0
n + (1− σ)β2S

0
a]

δ

(δ + ϵ)(γ + ϵ)
,

R0W = [β3S
0
n + (1− σ)β3S

0
a]
η1(γ + ϵ) + δη2
µ(δ + ϵ)(γ + ϵ)

.

Here, R0E and R0I are the average number of secondary infections caused by the ex-
posed and infected individuals, respectively. And R0W measures the contribution of indirect
transmission by contacting the contaminated environment.
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3.1. Existence of endemic equilibria

Let Q∗(S∗
n, S

∗
a, E

∗, I∗, R∗,W ∗) be an arbitrary endemic equilibrium of system (1), we have

S∗
n =

A[(1− σ)hI∗ + θ + ϵ]

(hI∗ + a+ ϵ)[(1− σ)hI∗ + θ + ϵ]− aθ
,

S∗
a =

Aa

(hI∗ + a+ ϵ)[(1− σ)hI∗ + θ + ϵ]− aθ
,

E∗ =
γ + ϵ

δ
I∗, R∗ =

γ

ϵ
I∗, W ∗ =

η1(γ + ϵ) + η2δ

δµ
I∗.

Here, I∗ satisfies
m(I∗)2 + nI∗ + c = 0, (4)

where
m = (δ + ϵ)(γ + ϵ)(1− σ)h2,

n = (γ + ϵ)(δ + ϵ)[(1− σ)(a+ ϵ) + θ + ϵ]h− Aδ(1− σ)h2,

c = ϵ(a+ ϵ+ θ)(δ + ϵ)(γ + ϵ)(1−R0).

(5)

Note that m > 0 and

c < 0 ⇔ R0 > 1; c = 0 ⇔ R0 = 1; c > 0 ⇔ R0 < 1.

According to the discriminant of equation (4) that △ = n2 − 4mc = n2 − 4mϵ(a + ϵ +
θ)(δ + ϵ)(γ + ϵ)(1−R0), solving for △ = 0 by R0, we have R0 = Rc, where

Rc = 1− n2

4mϵ(a+ ϵ+ θ)(δ + ϵ)(γ + ϵ)
.

Clearly, Rc < 1, and the following equivalent relations are true

R0 < Rc ⇔ △ < 0; R0 = Rc ⇔ △ = 0; R0 > Rc ⇔ △ > 0.

Through detailed analyses, the following conclusions on the existence of endemic equilibria
are obtained.

Theorem 1. System (1) has
(1)If n > 0, system (1) has one unique endemic equilibrium Q∗

1(S
∗
n1, S

∗
a1, E

∗
1 , I

∗
1 , R

∗
1,W

∗
1 )

for R0 > 1, but no endemic equilibrium for R0 ≤ 1.
(2)If n < 0, system (1) has one endemic equilibrium Q∗

1(S
∗
n1, S

∗
a1, E

∗
1 , I

∗
1 , R

∗
1,W

∗
1 ) for R0 ≥

1, two unequal endemic equilibria Q∗
1(S

∗
n1, S

∗
a1, E

∗
1 , I

∗
1 , R

∗
1,W

∗
1 ) and Q

∗
2(S

∗
n2, S

∗
a2, E

∗
2 , I

∗
2 ,

R∗
2,W

∗
2 ) for Rc < R0 < 1, and the two equilibria degenerates to one unique endemic

equilibrium Q3(S
∗
n3, S

∗
a3, E

∗
3 , I

∗
3 , R

∗
3,W

∗
3 ) for Rc = R0 < 1, where

I∗1 =
−n+

√
△

2m
, I∗2 =

−n−
√
△

2m
, I∗3 =

−n
2m

.
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Table 2: Existence of endemic equilibria for the system (1).

Cases Ranges of Threshold Existence of Endemic Equilibria

(1) n > 0 and R0 ≤ 1 -

(2) n > 0 and R0 > 1 Q∗
1

(3) n < 0 and R0 ≥ 1 Q∗
1

(4) n < 0 and Rc < R0 < 1 Q∗
1, Q

∗
2

(5) n < 0 and Rc = R0 < 1 Q∗
3

(6) n < 0 and R0 < Rc -

By Theorem 1, we summarize the conditions for the existence of endemic equilibria in
Table 2 to facilitate subsequent analysis and discussion.

Due to the complexity of the n form, we further simplify it to (6) in order to observe its
biological significance, where (6) is as follows

n > 0 ⇔ (γ + ϵ)(δ + ϵ)[(1− σ)(a+ ϵ) + θ + ϵ]h− Aδ(1− σ)h2 > 0,

⇔ (γ + ϵ)(δ + ϵ)[(1− σ)(a+ ϵ) + θ + ϵ]− Aδ(1− σ)h > 0,

⇔ Aδ(1− σ)h

(γ + ϵ)(δ + ϵ)[(1− σ)(a+ ϵ) + θ + ϵ]
< 1.

(6)

It is evident that as h increases, the left-hand side of the last equation of (6) becomes larger,
making it more likely that the value of n is greater than 0. Since h reflects the transmission
intensity of the disease per unit time to a certain extent, it follows that the weaker the
transmission intensity per unit time, the more likely it is for the coexistence of a disease-free
equilibrium and an endemic equilibrium, presenting a bistable phenomenon.

3.2. Stability of the disease-free equilibrium

Theorem 2. The disease-free equilibrium E0 of system(1) is locally asymptotically stable if
R0 < 1 and is unstable if R0 > 1.

Proof. Let a1 = β1[S
0
n+(1−σ)S0

a]−δ−ϵ, a2 = β2[S
0
n+(1−σ)S0

a], a3 = β3[S
0
n+(1−σ)S0

a].
The Jacobian matrix of the system (1) at E0 is calculated as follows

J(E0) =


−a− ϵ θ −β1S0

n −β2S0
n 0 −β3S0

n

a −θ − ϵ −(1− σ)β1S
0
a −(1− σ)β2S

0
a 0 −(1− σ)β3S

0
a

0 0 a1 a2 0 a3
0 0 δ −γ − ϵ 0 0
0 0 0 γ −ϵ 0
0 0 ζη1 ζη2 0 −ζµ

.

Its characteristic equation is

7



λ3 + b1λ
2 + b2λ+ b3 = 0.

Here, b1 = ζµ+ γ + ϵ+ (δ + ϵ)(1−R0E), b2 = ζµ(γ + ϵ) + (γ + ϵ)(δ + ϵ)(1−R0E −R0I)

+ζµ(δ + ϵ)(1−R0E − η1(γ + ϵ)

η1(γ + ϵ) + η2δ
R0W ), b3 = ζµ(δ + ϵ)(γ + ϵ)(1−R0). Clearly, whenR0

< 1, we have b1 > 0, b2 > 0, b3 > 0 and b1b2 − b3 > 0. According to the Routh-Hurwitz
criteria, we conclude that all eigenvalues of the Jacobian matrix J(E0) have negative real
parts, which means E0 is locally asymptotically stable when R0 < 1. If R0 > 1, then E0 is
unstable as b3 < 0 holds.

Theorem 3. The disease-free equilibrium E0 of system (1) is globally asymptotically stable
if R∗

0 < 1, where R∗
0 =

Aδh
ϵ(δ+ϵ)(γ+ϵ)

.

Proof. Define the Lyapunov function V (t) as follows

V (t) = E(t) +
A(β2µ+ η2β3)

ϵµ(γ + ϵ)
I(t) +

Aβ3
ϵζµ

W (t).

Clearly, V (t) ≥ 0, and V (t) = 0 holds only at E0. Along the solution of the model (1), the
derivative of V (t) is given as

dV (t)

dt
=

dE

dt
+
A(β2µ+ η2β3)

ϵµ(γ + ϵ)

dI

dt
+
Aβ3
ϵζµ

dW

dt

= [(β1E + β2I + β3W )(Sn + (1− σ)Sa)− (δ + ϵ)E]

+
A(β2µ+ η2β3)

ϵµ(γ + ϵ)
[δE − (γ + ϵ)I] +

Aβ3
ϵµ

(η1E + η2I − µW )

= [β1(Sn + (1− σ)Sa) +
A(β2µ+ η2β3)

ϵµ(γ + ϵ)
δ +

Aβ3η1
ϵµ

− (δ + ϵ)]E

+ [β2(Sn + (1− σ)Sa) +
Aβ3η2
ϵµ

− A(β2µ+ η2β3)

ϵµ
]I

+ [β3(Sn + (1− σ)Sa)−
Aβ3
ϵ

]W

≤ [β1
A

ϵ
+
A(β2µ+ η2β3)

ϵµ(γ + ϵ)
δ +

Aβ3η1
ϵµ

− (δ + ϵ)]E + [β2
A

ϵ

+
Aβ3η2
ϵµ

− A(β2µ+ η2β3)

ϵµ
]I + [β3

A

ϵ
− Aβ3

ϵ
]W

= [
A

ϵ
(β1 + β2

δ

(γ + ϵ)
+ β3

η1(γ + ϵ) + η2δ

µ(γ + ϵ)
)− (δ + ϵ)]E

= (δ + ϵ)[
Aδh

ϵ(δ + ϵ)(γ + ϵ)
− 1]E

= (δ + ϵ)(R∗
0 − 1)E.
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It is clear that if R∗
0 < 1, dV (t)

dt
≤ 0 holds, and dV (t)

dt
= 0 if and only if E = I = W = 0.

Consequently, E0 is globally asymptotically stable for R∗
0 < 1 by using LaSalle’s invariance

principle [34]. It needs to mention that n = (γ+ϵ)(δ+ϵ)h[(1−σ)a+ϵ +θ+ϵ(1−σ)(1−R∗
0)],

thus n > 0 holds if R∗
0 < 1. Meanwhile, it is simple to calculate that R0 < R∗

0 always holds.
Hence, if R∗

0 < 1, then n > 0 and R0 < 1 hold, and E0 is globally asymptotically stable.

3.3. Stability of the endemic equilibrium

Firstly, by studying the Jacobian matrix of the system (1) at the endemic equilibrium
Q∗

1, we can get the local stability of the equilibrium by Routh-Hurwitz criteria, as given in
the following theorem.

Theorem 4. The endemic equilibrium Q∗
1 of system (1) is locally asymptotically stable if

B3(B1B2 −B3) > B1(B1B4 −B5) and (B4B3 −B2B5)(B1B2 −B3) > (B1B4 −B5)
2.

See the appendix A for the proof and expressions of Bi (i = 1, 2, · · · , 5).
Note that by Theorem 2, E0 is locally asymptotically stable when R0 < 1. Therefore, if

n < 0, then E0 and Q
∗
1 may be bistable for Rc < R0 < 1. This bistable phenomenon is caused

by the backward bifurcation at R0 = 1, which we will investigate later. In the following,
we shall construct a Lyapunov function to analyze the global stability of equilibrium Q∗

1 for
R0 > 1.

Theorem 5. The unique endemic equilibrium Q∗
1 of system (1) is globally asymptotically

stable if R0 > 1.

Proof. Define the Lyapunov function L(t) as follows

L(t) = Sn(t)− S∗
n1 − S∗

n1 ln
Sn(t)

S∗
n1

+ Sa(t)− S∗
a1 − S∗

a1 ln
Sa(t)

S∗
a1

+ E(t)− E∗
1 − E∗

1 ln
E(t)

E∗
1

+ ℓ1(I(t)− I∗1 − I∗1 ln
I(t)

I∗1
) + ℓ2(W (t)−W ∗

1 −W ∗
1 ln

W (t)

W ∗
1

),

where

ℓ1 =
(µβ2 + η2β3)[S

∗
n1 + (1− σ)S∗

a1]

µ(γ + ϵ)
, ℓ2 =

β3[S
∗
n1 + (1− σ)S∗

a1]

ζµ
.

Then, the derivative of L(t) is given as

dL(t)
dt

=
dSn

dt
(1− S∗

n1

Sn

) +
dSa

dt
(1− S∗

a1

Sa

) +
dE

dt
(1− E∗

1

E
) + ℓ1

dI

dt
(1− I∗1

I
) + ℓ2

dW

dt
(1− W ∗

1

W
)

= (1− S∗
n1

Sn

)[A− (β1E + β2I + β3W )Sn − aSn + θSa − ϵSn] + (1− S∗
a1

Sa

)[aSn

− (1− σ)(β1E + β2I + β3W )Sa − θSa − ϵSa] + (1− E∗
1

E
)[(β1E + β2I + β3W )Sn

+ (1− σ)(β1E + β2I + β3W )Sa − δE − ϵE] + ℓ1(1−
I∗1
I
)[δE − γI − ϵI]

+ ℓ2(1−
W ∗

1

W
)ζ(η1E + η2I − µW ).
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By denoting
Sn

S∗
n1

= y1,
Sa

S∗
a1

= y2,
E

E∗
1

= z1,
I

I∗1
= z2,

W

W ∗
1

= z3, we obtain

dL(t)
dt

= A+ (ϵ+ a)S∗
n1 + (θ + ϵ)S∗

a1 + (δ + ϵ)E∗
1 + ℓ1(γ + ϵ)I∗1 + ℓ2ζµW

∗
1

− y1(ϵS
∗
n1 + β1E

∗
1S

∗
n1)−

1

y1
A− y2

y1
θS∗

a1 −
y1
y2
aS∗

n1 − y2[ϵS
∗
a1 + (1− σ)β1E

∗
1S

∗
a1]

− y1z2
z1

β2I
∗
1S

∗
n1 −

y1z3
z1

β3W
∗
1S

∗
n1 −

y2z2
z1

(1− σ)β2I
∗
1S

∗
a1 −

y2z3
z1

(1− σ)β3W
∗
1S

∗
a1

− ℓ1
z1
z2
δE∗

1 −
z1
z3
ℓ2ζη1E

∗
1 −

z2
z3
ℓ2ζη2I

∗
1

= (ϵS∗
n1 + β1E

∗
1S

∗
n1)(2− y1 −

1

y1
) + [ϵS∗

a1 + (1− σ)β1E
∗
1S

∗
a1](3− y2 −

y1
y2

− 1

y1
)

+ θS∗
a1(2−

y2
y1

− y1
y2
) + β2I

∗
1S

∗
n1(3−

y1z2
z1

− z1
z2

− 1

y1
) +

η1(γ + ϵ)

µδ
β3S

∗
n1I

∗
1 (3−

y1z3
z1

− z1
z3

− 1

y1
) + (1− σ)β2I

∗
1S

∗
a1(4−

y2z2
z1

− y1
y2

− z1
z2

− 1

y1
) + (1− σ)

η1(γ + ϵ)

µδ
β3S

∗
a1I

∗
1 (4

− y2z3
z1

− z1
z3

− y1
y2

− 1

y1
) +

η2
µ
β3S

∗
n1I

∗
1 (4−

y1z3
z1

+
z2
z3

− z1
z2

− 1

y1
)

+ (1− σ)
η2
µ
β3S

∗
a1I

∗
1 (5−

y2z3
z1

− z2
z3

− z1
z2

− y1
y2

− 1

y1
).

Since the arithmetic mean is greater than the geometric mean, according to the above
analysis, we have dL(t)

dt
≤ 0. And dL(t)

dt
= 0 if and only if yi = 1 (i = 1, 2), z1 = 1, z2 = z3 = z1

that is, dL(t)
dt

= 0 if and only if Sn = S∗
n1, Sa = S∗

a1, E = E1
∗, I = I∗1 , W = W ∗

1 . Substituting
relations I = I∗1 into the fifth equation of system (1), we get γI∗1 − ϵR = 0, then we have
R = R∗

1 =
γ
ϵ
I∗1 . Consequently, we obtain that Q∗

1 is globally asymptotically stable if R0 > 1
by using LaSalle’s invariance principle [34].

Based on the detailed analysis of the dynamics of system (1), the stability of the relevant
equilibria is summarized in Table 3. The asterisk (*) in Table 3 indicates that the result is
numerically verified.

4. Backward bifurcation analysis

In this section, combined with the previous analysis of the existence of endemic equilibria,
we shall discuss the backward bifurcation problem of system (1). In addition, the influence
of disease awareness on backward bifurcation is investigated.

From Theorem (1), it shows that if n < 0, there exists a unique endemic equilibrium of
the system (1) for R0 ≥ 1, and there are two endemic equilibria for Rc < R0 < 1, which
indicates that the system (1) may occur backward bifurcation. Thus, based on the general
center manifold theory proposed by Castillo-Chavez and Song, the threshold conditions under
which backward bifurcation may exhibit in the system (1) are investigated.
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Table 3: Stability of equilibria for the system (1).

Ranges of Threshold E0 Q∗
1 Q∗

2 Q∗
3

n > 0 and R0 < 1 LAS - - -

n > 0 and R∗
0 < 1 GAS - - -

n > 0 and R0 > 1 Unstable GAS - -

n < 0 and R0 > 1 Unstable GAS - -

n < 0 and Rc < R0 < 1 LAS LAS∗ Unstable∗ -

n < 0 and Rc = R0 < 1 LAS - - LAS∗

• LAS: Locally asymptotically stable; GAS: Globally asymptotically stable.

Firstly, we consider the following ordinary system with a parameter ψ:

dX

dt
= f(X,ψ), (7)

where f : Rn × R → R and f ∈ C2(Rn × R). Without loss of generality, we assume that 0
is an equilibrium of system (7)) with the parameter ψ,that is, f(0, ψ) = 0, for all ψ.

Lemma 1. Assume that (Castillo-Chavez and Song [35]) :
(H1) G = DXf(0, 0) =

∂fi
∂Xi

(0, 0) is the Jacobian matrix of system (7) around the equilib-
rium X=0. 0 is a simple eigenvalue of G and all other eigenvalues of G have negative
real parts;

(H2) A right eigenvector w and a left eigenvector v of matrix G , corresponding to
zero eigenvalues, respectively.

Let fk be the kth component of f and

α =
n∑

k,i,j=1

vkwiwj
∂2fk
∂xi∂xj

(0, 0) ,

b =
n∑

k,i=1

vkwi
∂2fk
∂xi∂ψ

(0, 0) .

Then, the local dynamics of system (7) around X = 0 are totally determined by α and b.
(1) α > 0, b > 0. If ψ < 0 with |ψ| ≪ 1, X = 0 is locally asymptotically stable and there
exists a positive unstable equilibrium; if 0 < ψ ≪ 1, X = 0 is unstable and there
exists a negative and locally asymptotically stable equilibrium;

(2) α < 0, b < 0. If ψ < 0 with |ψ| ≪ 1, X = 0 is unstable; if 0 < ψ ≪ 1, X = 0 is
locally asymptotically stable and there exists a positive unstable equilibrium;

(3) α > 0, b < 0. If ψ < 0 with |ψ| ≪ 1, X = 0 is unstable and there exists a locally
asymptotically stable negative equilibrium; if 0 < ψ ≪ 1, X = 0 is stable and a
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positive unstable equilibrium appears;
(4) α < 0, b > 0. When ψ changes from negative to positive, X = 0 changes its stability

from stable to unstable. Correspondently, a negative unstable equilibrium becomes a
locally asymptotically stable positive equilibrium.

Next, by using Lemma 1, we shall discuss the conditions under which system (1) under-
goes backward bifurcation.

Theorem 6. If n < 0, system (1) exhibits a backward bifurcation at R0 = 1.

Proof. Introducing change of variables: Sn = x1, Sa = x2, E = x3, I = x4, R = x5,
W = x6. Further, using the vector notation X = (x1, x2, x3, x4, x5, x6)

T, our system (1) can
be rewritten in the form as dX

dt
= f(X) with f(X) = (f1, f2, f3, f4, f5, f6)

T, where

f1 = A− (β1x3 + β2x4 + β3x6)x1 − ax1 + θx2 − ϵx1,

f2 = ax1 − (1− σ)(β1x3 + β2x4 + β3x6)x2 − (θ + ϵ)x2,

f3 = (β1x3 + β2x4 + β3x6)x1 + (1− σ)(β1x3 + β2x4 + β3x6)x2 − (δ + ϵ)x3,

f4 = δx3 − (γ + ϵ)x4,

f5 = γx4 − ϵx5,

f6 = ζ(η1x3 + η2x4 − µx6).

We focus on the case where R0 = 1, choosing β2 as a bifurcation parameter. Solving for β2
from the formula (3), we obtain

β2 = β∗
2 =

ϵ(δ + ϵ)(γ + ϵ)(a+ θ + ϵ)

δA[θ + ϵ+ (1− σ)a]
− β1

(γ + ϵ)

δ
− β3

η1(γ + ϵ) + δη2
δµ

.

Further, the Jacobian matrix J(E0, β
∗
2) at E0 is given as

J(E0, β
∗
2) =


−a− ϵ θ −β1S0

n −β∗
2S

0
n 0 −β3S0

n

a −θ − ϵ −(1− σ)β1S
0
a −(1− σ)β∗

2S
0
a 0 −(1− σ)β3S

0
a

0 0 a1 β∗
2 [S

0
n + (1− σ)S0

a] 0 a3
0 0 δ −γ − ϵ 0 0
0 0 0 γ −ϵ 0
0 0 ζη1 ζη2 0 −ζµ

 .

So we obtain that the Jacobian matrix J(E0, β
∗
2) has a simple zero eigenvalue if and only

if R0 = 1 and all the other eigenvalues have negative real parts. Thus, E0 is a nonhyperbolic
equilibrium when β2 = β∗

2 . It is evident that model (1) satisfies assumption (H1) in Lemma
1.
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Assume that the right eigenvector of the matrix J(E0, β
∗
2) is w = (w1, w2, w3, w4, w5, w6)

T,
which is given by

(−a− ϵ)w1 + θw2 − β1S
0
nw3 − β∗

2S
0
nw4 − β3S

0
nw6 = 0,

aw1 − (θ + ϵ)w2 − (1− σ)β1S
0
aw3 − (1− σ)β∗

2S
0
aw4 − (1− σ)β3S

0
aw6 = 0,

[β1(S
0
n + (1− σ)S0

a)− δ − ϵ]w3 + β∗
2(S

0
n + (1− σ)S0

a)w4 + β3(S
0
n + (1− σ)S0

a)w6 = 0,

δw3 − (γ + ϵ)w4 = 0,

γw4 − ϵw5 = 0,

ζ(η1w3 + η2w4 − µw6) = 0.

(8)
Solving the equation (8), we get

w1 =
(1− σ)δϵh1S

0
a − (γ + ϵ)(δ + ϵ)(θ + ϵ)

δϵ(a+ ϵ+ θ)
w4,

w2 =
δϵh1S

0
n − (γ + ϵ)(δ + ϵ)(a+ ϵ)

δϵ(a+ ϵ+ θ)
w4,

w3 =
(γ + ϵ)

δ
w4, w4 = w4, w5 =

γ

ϵ
w4, w6 =

η1(γ + ϵ) + η2δ

δµ
w4,

(9)

where

h1 = β1
(γ + ϵ)

δ
+ β∗

2 + β3
η1(γ + ϵ) + η2δ

δµ
.

By calculation, we have h1 =
h
R0
, then h1 = h when R0 = 1. Additionally, the left eigenvector

v = (v1, v2, v3, v4, v5, v6) of the matrix J(E0, β
∗
2), which satisfies v · w = 1, is given by



(−a− ϵ)v1 + av2 = 0,

θv1 + (−θ − ϵ)v2 = 0,

−β1S0
nv1 − (1− σ)β1S

0
av2 + [β1(S

0
n + (1− σ)S0

a)− δ − ϵ]v3 + δv4 + ζη1v6 = 0,

−β∗
2S

0
nv1 − (1− σ)β∗

2S
0
av2 + β∗

2 [S
0
n + (1− σ)S0

a]v3 − (γ + ϵ)v4 + γv5 + ζη2v6 = 0,

−ϵv5 = 0,

−β3S0
nv1 − (1− σ)β3S

0
av2 + β3[S

0
n + (1− σ)S0

a]v3 − ζµv6 = 0.

(10)

Solving the equation (10), we get

v1 = v2 = v5 = 0, v3 = v3,

v4 =
δζµ2 − v3w4[ζµ

2(γ + ϵ) + β3(η1(γ + ϵ) + η2δ)(S
0
n + (1− σ)S0

a)]

δζw4µ2
,

v6 =
β3[S

0
n + (1− σ)S0

a]

ζµ
v3.

(11)

Because v1, v2, and v5 are zero and the second-order partial derivatives of f4 and f6 are zero,
only nonzero partial derivatives of f3 need to be calculated. Then, we obtain
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∂2f3
∂x1∂x3

(E0, β
∗
2) = β1,

∂2f3
∂x1∂x4

(E0, β
∗
2) = β∗

2 ,
∂2f3
∂x1∂x6

(E0, β
∗
2) = β3,

∂2f3
∂x2∂x3

(E0, β
∗
2) = (1− σ)β1,

∂2f3
∂x2∂x4

(E0, β
∗
2) = (1− σ)β∗

2 ,

∂2f3
∂x2∂x6

(E0, β
∗
2) = (1− σ)β3,

∂2f3
∂x4∂β2

(E0, β
∗
2) = S0

n + (1− σ)S0
a.

Next, we calculate the bifurcation coefficients α and b, it follows that

α =
6∑

k,i,j=1

vkwiwj
∂2fk
∂xi∂xj

(E0, β
∗
2)

= 2v3w1w3
∂2f3
∂x1∂x3

(E0, β
∗
2) + 2v3w1w4

∂2f3
∂x1∂x4

(E0, β
∗
2) + 2v3w1w6

∂2f3
∂x1∂x6

(E0, β
∗
2)

+ 2v3w2w3
∂2f3
∂x2∂x3

(E0, β
∗
2) + 2v3w2w4

∂2f3
∂x2∂x4

(E0, β
∗
2) + 2v3w2w6

∂2f3
∂x2∂x6

(E0, β
∗
2) ,

and

b =
6∑

k,i=1

vkwi
∂2fk
∂xi∂β2

(E0, β
∗
2) = v3w4

∂2f3
∂x4∂β2

(E0, β
∗
2) .

In view of (9) and (11), we obtain

α = 2v3[β1w1w3 + β∗
2w1w4 + β3w1w6 + (1− σ)(β1w2w3 + β∗

2w2w4 + β3w2w6)]

= 2v3(β1w3 + β∗
2w4 + β3w6)[w1 + (1− σ)w2]

=
2h

δϵ(a+ ϵ+ θ)
[

(1− σ)δϵh(S0
n + S0

a)

(γ + ϵ)(δ + ϵ)[θ + ϵ+ (1− σ)(a+ ϵ)]
− 1]

=
2h

δϵ(a+ ϵ+ θ)
[

(1− σ)δAh2

(1− σ)δAh2 + n
− 1],

(12)

and

b = S0
n + (1− σ)S0

a =
A[θ + ϵ+ (1− σ)a]

ϵ(θ + ϵ+ a)
. (13)

Obviously, b is positive. And from the expression (12), we can observe that if n < 0, we
have α > 0. Hence, it follows from Lemma 1 that system (1) occurs backward bifurcation
at R0 = 1 if n < 0.

The emergence of backward bifurcation makes the disease control strategy more chal-
lenging, the elimination of epidemics cannot be guaranteed even if R0 is below 1. From the
expressions (12) of the bifurcation coefficient α, we find that α decreases with the increase of
the disease awareness impact factor σ, indicating that α is a decreasing function of σ. Hence,
the possibility of backward bifurcation in system (1) is influenced by disease awareness, that
is, it decreases with the increase of disease awareness.
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5. Numerical simulation

In this section, we numerically verify the theoretical results and analyze the impact of
disease awareness on disease spread. The values of parameters are provided in Table 1.

5.1. The influence of disease awareness on disease transmission

Figure 1: Variation in the number of exposed and infected people and virus concentration in the environment
under different values of σ.

To assess the effect of disease awareness on both direct and indirect transmission, we
set A = 2, β1 = 3 × 10−3, β2 = 3.6 × 10−3, β3 = 1.5 × 10−3, δ = 0.16, θ = 0.3, γ = 0.28
and µ = 0.33. The curves of the number of exposed and infected individuals and the virus
concentration in the environment under different values of the disease awareness impact fac-
tor σ over time are plotted in Figure 1. As shown in Figure 1, the number of exposed
individuals and infected individuals and the virus concentration in the environment all de-
crease significantly when the value of σ changes from 0.3 to 0.8. Moreover, the increased
disease awareness impact factor σ decreases the peak level of the number of exposed individ-
uals, infected individuals, and virus concentration. This illustrates that when people have a
higher level of awareness, they are motivated to take preventive measures, thereby slowing
virus transmission. Thus, increasing disease awareness helps prevent and control direct and
indirect disease transmission.

5.2. The effect of environmental clearance and viral shedding on R0

Set A = 1, β1 = 0.4 × 10−3, β2 = 0.5 × 10−3, β3 = 0.2 × 10−3, δ = 0.35, γ = 0.26
and σ = 0.36, the change of the basic reproduction number R0 under various environmental
clearance rates µ and various viral shedding rates ηi is drawn, as shown in Figure 2. It
shows that as the environmental clearance rate µ increases and the viral shedding rate ηi
(i = 1, 2) decreases, R0 decreases significantly (as shown in Figure 2(c-e)). This illustrates
that strengthening environmental health management and improving the personal hygiene
of exposed and infected people can effectively reduce disease transmission.
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(a) (b)

(c) (d) (e)

Figure 2: The impact of µ and ηi (i = 1, 2) on R0.

5.3. The stability of the equilibrium

Firstly, the stability of the disease-free equilibrium E0 is verified. We take the parameter
values A = 2, β1 = 0.4 × 10−3, β2 = 0.5 × 10−3, β3 = 0.3 × 10−3, δ = 0.42, γ = 0.25,
σ = 0.45, θ = 0.2 and µ = 0.23, then we have R∗

0 = 0.6926 < 1, R0 = 0.4915 < 1 and
n = 1.0319 × 10−4 > 0, which obviously satisfies the condition that equilibrium E0 global
stability in Theorem 3. The simulation result is shown in Figure 3(a), where the number
of exposed and infected individuals and the virus concentration decrease over time and
eventually approach to 0. Thus, E0 is globally asymptotically stable and the disease will
become extinct when the condition R∗

0 < 1 is satisfied.
Next, we verify the globally stability of the endemic equilibrium Q∗

1 when R0 > 1. Set
A = 2, β1 = 2 × 10−3, β2 = 3 × 10−3, β3 = 1 × 10−3, δ = 0.45, γ = 0.18, σ = 0.41, θ = 0.2
and µ = 0.25, then we get R0 = 2.5272 > 1, which satisfies the condition that equilibrium
Q∗

1 global stability in Theorem 5. As illustrated in Figure 3(b), exposed people, infected
people, and viruses in the environment persist, while the number of unaware susceptible and
aware susceptible decreases rapidly over time and then increases slowly. Finally, system (1)
is stabilized to the unique endemic equilibrium Q∗

1, which verifies Theorem 5.
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(a) (b)

Figure 3: (a) shows that E0 is globally asymptotically stable if n > 0 and R∗
0 < 1. (b) shows that Q∗

1 is
globally asymptotically stable if R0 > 1.

Figure 4: Taking different initial values, E0 and Q∗
1 are bi-stable when n < 0 and Rc < R0 < 1.

Further, we verify that E0 and Q∗
1 are bistable for Rc < R0 < 1. Set A = 1, β1 =

0.815× 10−3, β2 = 0.91× 10−3, β3 = 0.76× 10−3, σ = 0.3, δ = 0.36, γ = 0.28 and µ = 0.23,
then we have n = −4.0088 × 10−5 < 0, R0 = 0.6642 < 1, Rc = −0.1272 < 0, which
obviously satisfies the condition (2) in Theorem 1. Thus, we obtain two edemic equilibria
Q∗

1(5.4881, 8.2816, 6.5868, 18.5254, 11.1152, 10.9183) and Q
∗
2(19.7058, 17.2252, 1.3857, 1.6629,

10.0204, 7.3504). For Q∗
1, we have B1 = 0.9499, B5 = 3.2117 × 10−5, B1B2 − B3 = 0.2557,

B3(B1B2 −B3)−B1(B1B4 −B5) = 0.0091 and (B4B3 −B2B5)(B1B2 −B3)−B1B4(B1B4 −
B5) = 2.0024×10−5. For Q∗

2, we have B1 = 0.7865, B5 = 5.6351×10−6, B1B2−B3 = 0.1313,
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B3(B1B2−B3)−B1(B1B4−B5) = −0.0017 and (B4B3−B2B5)(B1B2−B3)−B1B4(B1B4−
B5) = −7.5077 × 10−7. Consequently, we conclude that system (1) possesses a locally
asymptotically stable endemic equilibrium Q∗

1 and an unstable endemic equilibrium Q∗
2 if

n < 0 and Rc < R0 < 1. And as illustrated in Figure 4, the system (1) stabilizes to
equilibrium Q∗

1 and equilibrium E0, which verifies Theorem 2 and Theorem 4 and shows
that E0 and Q∗

1 are bistable when n < 0 and Rc < R0 < 1.

5.4. Backward bifurcation

(a) (b)

Figure 5: Bifurcation diagram for different awareness impact factors. (a) shows the backward bifurcation
diagram of system (1), where the dash curve represents unstable equilibrium while the solid curve represents
stable equilibrium. (b) shows the influence of the value of different awareness impact factor σ on the backward
bifurcation curve.

Let A = 0.1 β1 = 0.045, β2 = 0.053, β3 = 0.023, σ = 0.3, δ = 0.42, γ = 0.45,
µ = 0.12, we have n = −0.0015 < 0, R0 = 0.9248, and Rc = 0.1240. It is evident that
condition (2) in Theorem 1 and the condition that system (1) occurs backward bifurcation
in Theorem 6 are satisfied, and the backward bifurcation diagram is depicted in Figure
5(a). We can observe that E0 and Q∗

1 are stable and Q∗
2 is unstable when n < 0 and

Rc < R0 < 1 from Figure 5(a). Moreover, numerically, E0 = (1.4706, 3.5294, 0, 0, 0, 0), Q∗
1 =

(0.5994, 0.4080, 0.8739, 0.7809, 2.3378, 0.2112) andQ∗
2 = (1.4151, 3.2141, 0.0196, 0.0175, 0.3337,

0.0047), where E0 and Q∗
1 satisfy the stability condition, while Q∗

2 does not. Hence, E0 and
Q∗

1 are bistable for Rc < R0 < 1. As R0 increases, when R0 > 1, only the large endemic
equilibrium Q∗

1 exists and is stable, while the small endemic equilibrium Q∗
2 does not exist

and E0 become unstable. The bifurcation diagram in Figure 5(a) verifies the conclusions
of Theorem 1 and Theorem 6 and shows that when Rc < R0 < 1, the disease will not be
extinct.

In addition, Figure 5(b) shows that disease awareness has an impact on backward bi-
furcation of the model (1). Figure 5(b) shows that as awareness impact factor σ increases,
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the interval of backward bifurcation decreases, thereby the R0 interval in which the endemic
equilibrium and the disease-free equilibrium showed bistability gets smaller, and the R0 in-
terval in which the disease-free equilibrium showed global stability gets greater. Moreover,
when the awareness impact factor σ increases, the number of infected people at the stable
endemic equilibrium also decreases. Therefore, it is necessary for society to strengthen health
education and promote effective disease information to raise public disease awareness so that
disease transmission can be effectively controlled.

6. Conclusion and discussion

In this paper, a coupled epidemic model with disease awareness is developed by consider-
ing both direct transmission between people and indirect transmission between people and
the environment.

By analyzing the coupled model in detail, we find that it exhibits rich dynamic behaviors.
The basic reproduction number R0 is computed, which can be divided into three parts:
secondary infections caused by direct transmission from exposed and infected individuals,
and by indirect transmission from the contaminated environment. It is found that the
disease-free equilibrium always exists, and system (1) has at most two endemic equilibria.
By using the Routh-Hurwitz criterion and constructing Lyapunov functions, the local and
global stability of the disease-free and endemic equilibrium under certain conditions are
proved. By using center manifold theory, we verified that the system may undergo backward
bifurcation, where the bi-stability phenomenon of disease-free equilibrium E0 and endemic
equilibrium Q∗

1 can be observed.
Numerically, it is found that strengthening environmental clearance and reducing viral

shedding from exposed and infected persons can reduce R0 (as shown in Figure 2). This
indicates that strengthening environmental health management, as well as regular environ-
mental cleaning and disinfection, can reduce the spread and survival of viruses in the envi-
ronment, thereby reducing new infections. Exposed and infected individuals could improve
their personal hygiene and actively seek treatment to minimize environmental contamina-
tion, thereby reducing the risk of virus transmission. We also observed that the number
of exposed and infected and the virus concentration in the environment show a decreasing
trend with the increase of the disease awareness influence factor σ (as shown in Figure 1).
Interestingly, increasing the value of σ decreases the backward regime of bifurcation curve so
that the bistable interval decreases and the globally stable interval of disease-free equilibrium
increases. Meanwhile, the number of infected people also decreases at the stable endemic
equilibrium (as shown in Figure 5(b)). These findings indicate that enhancing the public’s
disease awareness can effectively reduce the spread of disease. Therefore, society should
strengthen the publicity of disease information in various information channels to raise more
people’s disease awareness.

In summary, our findings show that disease awareness has a positive impact on controlling
the direct and indirect transmission of infectious diseases. By enhancing disease awareness,
the risk of direct and indirect transmission of diseases can be effectively reduced, which pro-
vides new insights into controlling disease transmission with multiple modes of transmission.
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Meanwhile, this paper has shortcomings. Firstly, as the disease spreads, the intensity of
media promotion may vary, and people may experience fatigue when facing the pandemic.
Consequently, the rate of change in people’s awareness, denoted as a, may no longer be a
constant but rather a variable. However, if we treat a as a variable, we need to introduce an
independent compartment in our model to represent the dynamic changes in disease infor-
mation conveyed by media over time, allowing for a more accurate reflection of the impact
of disease transmission on awareness acquisition. Therefore, such adjustments would signifi-
cantly increase the complexity of the model and the difficulty of analysis. Secondly, random
factors are common in disease transmission, which may also impact disease transmission and
awareness acquisition. Therefore, it would be significant to develop a stochastic epidemic
coupled model to further investigate how disease awareness affects both the direct and indi-
rect spread of diseases. Based on these considerations, the model will become more complex,
posing various challenges during the computation and analysis. We will further explore and
address these issues in future research.
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Appendix A. Locally stability of endemic equilibrium of system (1)

Appendix A.1. The endemic equilibrium Q∗
1 of system (1) is locally asymptotically stable

if B3(B1B2 − B3) > B1(B1B4 − B5) and (B4B3 − B2B5)(B1B2 − B3) >
(B1B4 −B5)

2.

Proof. Let c1 = −(1 − σ)hI∗ − θ − ϵ, c2 = β1[S
∗
n1 + (1 − σ)S∗

a1] − δ − ϵ, the Jacobian
matrix of system (1) at the endemic equilibrium Q∗

1 is given by

J(Q∗
1) =


−hI∗ − a− ϵ θ −β1S∗

n1 −β2S∗
n1 0 −β3S∗

n1

a c1 −(1− σ)β1S
∗
a1 −(1− σ)β2S

∗
a1 0 −(1− σ)β3S

∗
a1

hI∗1 (1− σ)hI∗1 c2 β2[S
∗
n1 + (1− σ)S∗

a1] 0 β3[S
∗
n1 + (1− σ)S∗

a1]
0 0 δ −γ − ϵ 0 0
0 0 0 γ −ϵ 0
0 0 ζη1 ζη2 0 −ζµ

 .

Then, let

J(Q∗
1) =


k11 θ k13 k14 0 k15
a c1 k23 k24 0 k25
hI∗1 (1− σ)hI∗1 c2 k34 0 k35
0 0 δ −γ − ϵ 0 0
0 0 0 γ −ϵ 0
0 0 ζη1 ζη2 0 −ζµ

 ,

its characteristic equation is

(λ+ ϵ)(λ5 +B1λ
4 +B2λ

3 +B3λ
2 +B4λ+B5) = 0,

where

B1 = ζµ+ γ + ϵ− (k11 + c1 + k33)

= ζµ+ γ + ϵ− (k11 + c1) + (δ + ϵ)[1− β1
(γ + ϵ)

δh
] > 0,

B2 = s1 + ζµ(γ + ϵ)− (ζµ+ γ + ϵ)(k11 + c1 + c2)− ζη1k35 − δk34

= s1 + ζµ(γ + ϵ)− (ζµ+ γ + ϵ)(k11 + c1) + ζµ(δ + ϵ)[1− β1
(γ + ϵ)

δh

− β3
η1(γ + ϵ)

δhµ
] + (γ + ϵ)(δ + ϵ)[1− β1

(γ + ϵ)

δh
− β2

h
] > 0,
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B3 = s1(ζµ+ γ + ϵ) + s2 + ζη1q1 + q3δ − k35ζ[δη2 + (γ + ϵ)η1]− k34δζµ

− ζµ(k11 + c1 + c2)(γ + ϵ)

= s2 + (ζµ+ γ + ϵ)[(hI∗1 + ϵ)((1− σ)hI∗1 + θ + ϵ) + a((1− σ)hI∗1 + ϵ)]

+ ζµ(a+ θ + 2ϵ)[(δ + ϵ)− (β1 + β3
η1
µ
)(S∗

n1 + (1− σ)S∗
a1)] + [(δ + ϵ)

− (β1 + β3
η1
µ
)S∗

n1]ζµ(1− σ)hI∗1 + ζµhI∗1 [(δ + ϵ)− (β1 + β3
η1
µ
)(1− σ)S∗

a1]

+ (γ + ϵ)(a+ θ + 2ϵ)[(δ + ϵ)− (β1 + β2
δ

(γ + ϵ)
)(S∗

n1 + (1− σ)S∗
a1)]

+ (γ + ϵ)(1− σ)hI∗1 [(δ + ϵ)− (β1 + β2
δ

(γ + ϵ)
)S∗

n1] + (γ + ϵ)hI∗1 [(δ + ϵ)

− (β1 + β2
δ

(γ + ϵ)
)(1− σ)S∗

a1]− ζµ(k11 + c1)(γ + ϵ) > 0,

B4 = s1ζµ(γ + ϵ) + s2(ζµ+ γ + ϵ) + q1ζ[δη2 + (γ + ϵ)η1] + q2η1ζ + δq3ζµ+ δq4

= ζµ(γ + ϵ)[(hI∗1 + ϵ)((1− σ)hI∗1 + θ + ϵ) + a((1− σ)hI∗1 + ϵ)] + ζµ(γ + ϵ)hI∗1 [(δ

+ ϵ)− δh

(γ + ϵ)
(1− σ)S∗

a1] + ζµ(γ + ϵ)(1− σ)[(δ + ϵ)− δh

(γ + ϵ)
S∗
n1]hI

∗
1

+ (δ + ϵ)hI∗1 [(1− σ)a+ θ + hI∗1 (1− σ)](ζµ+ γ + ϵ) + ζϵµ(a+ θ + ϵ)[(δ + ϵ)

− (β1 + β3
η1
µ
)(S∗

n1 + (1− σ)S∗
a1)] + ζϵµ(1− σ)hI∗1 [(δ + ϵ)− (β1 + β3

η1
µ
)S∗

n1]

+ ζϵµhI∗1 [(δ + ϵ)− (β1 + β3
η1
µ
)(1− σ)S∗

a1] + ϵ(γ + ϵ)(a+ θ + ϵ)[(δ + ϵ)

− (β1 + β2
δ

(γ + ϵ)
)(S∗

n1 + (1− σ)S∗
a1)] + ϵ(γ + ϵ)(1− σ)hI∗1 [(δ + ϵ)

− (β1 + β2
δ

(γ + ϵ)
)S∗

n1] + ϵ(γ + ϵ)hI∗1 [(δ + ϵ)− (β1 + β2
δ

(γ + ϵ)
)(1− σ)S∗

a1] > 0

B5 = s2ζµ(γ + ϵ) + q2ζ[δη2 + (γ + ϵ)η1] + δq4ζµ

= ζµ(γ + ϵ)(δ + ϵ)hI∗1 [(1− σ)a+ θ + hI∗1 (1− σ)] + ζϵµ(γ + ϵ)hI∗1 [(δ + ϵ)

− δh

(γ + ϵ)
(1− σ)S∗

a1] + ζϵµ(γ + ϵ)(1− σ)hI∗1 [(δ + ϵ)− δh

(γ + ϵ)
S∗
n1] > 0,

s1 = k11c1 + (k11 + c1)c2 − k13hI
∗
1 − k23(1− σ)hI∗1 − aθ,

s2 = c1k13hI
∗
1 + c2θa+ k11k23(1− σ)hI∗1 − θk23hI

∗
1 − (1− σ)hI∗1ak13 − k11c1c2,

q1 = −β3[S∗
n1 + (1− σ)S∗

a1](a+ θ + 2ϵ)− (1− σ)β3hI
∗
1 (S

∗
n1 + S∗

a1),

q2 = −β3ϵ[S∗
n1 + (1− σ)S∗

a1](a+ θ + ϵ)− (1− σ)β3ϵhI
∗
1 (S

∗
n1 + S∗

a1),

q3 = −β2[S∗
n1 + (1− σ)S∗

a1](a+ θ + 2ϵ)− (1− σ)β2hI
∗
1 (S

∗
n1 + S∗

a1),

q4 = −β2ϵ[S∗
n1 + (1− σ)S∗

a1](a+ θ + ϵ)− (1− σ)β2ϵhI
∗
1 (S

∗
n1 + S∗

a1).

By detailed calculation, we have B1B2−B3 > 0. Thus, if the conditions B3(B1B2−B3) >
B1(B1B4 − B5) and (B4B3 − B2B5)(B1B2 − B3) > (B1B4 − B5)

2 are satisfied, then Q∗
1 is

locally asymptotically stable according to the Routh-Hurwitz criteria.
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