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Abstract

In this note, based on the published work by Li [A general modulus-based matrix
splitting method for linear complementarity problems of H-matrices, Appl. Math.
Lett. 26 (2013) 1159-1164], we further study the convergence property of the gen-
eral modulus-based matrix splitting (GMMS) method for linear complementarity
problems. A new sufficient condition of the GMMS method is obtained, which is
weaker than the result in the above work.
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1 Introduction

The linear complementarity problems (denoted by LCP(q, A)) is that we need to find that
z ∈ Rn satisfies

w := Az + q ≥ 0, z ≥ 0 and zTw = 0, (1.1)
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where A ∈ Rn×n and q ∈ Rn are given in [1,2]. Li in [3] presented a general modulus-based
matrix splitting (GMMS) method for solving the LCP(q, A) with matrix A being an H-
matrix. Essentially, the idea of the GMMS method is to introduce two positive diagonal
matrices for the equivalent absolute value equation of the LCP(q, A). Concretely, using

z = Ω1(|x|+ x) and w = Ω2(|x| − x), (1.2)

where | · | denotes the absolute value, the LCP(q, A) can be equivalently transformed into
the following absolute value equation

(Ω2 +MΩ1)x = NΩ1x+ (Ω2 − AΩ1)|x| − q, (1.3)

where AΩ1 = MΩ1 −NΩ1 with det(MΩ1) ̸= 0 is a matrix splitting of matrix AΩ1, Ω1 and
Ω2 are two positive diagonal matrices.

Based on (1.3), the GMMS method works below.
Method 1.1 [3] Let Ω1 and Ω2 be given positive diagonal matrices. Then for any

initial vector x(0) ∈ Rn, calculate x(k+1) by

(Ω2 +MΩ1)x
(k+1) = NΩ1x

(k) + (Ω2 − AΩ1)|x(k)| − q, for k = 0, 1, 2, . . . , (1.4)

where AΩ1 = MΩ1 −NΩ1 is a matrix splitting of matrix AΩ1. Then set

z(k+1) = Ω1(|x(k+1)|+ x(k+1))

until the iteration sequence {z(k)}+∞
k=1 ⊂ Rn is convergent.

Let A = M −N . For γ > 0, if we set

Ω1 =
1

γ
I,Ω2 =

1

γ
Ω,MΩ1 =

1

γ
M,NΩ1 =

1

γ
N,

then the GMMS method reduces to the modulus-based matrix splitting (MMS) method,
see Method 3.1 in [4].

For later discussion, some necessary concepts, notations and lemmas are reminded. Let
A = (aij) ∈ Rn×n. It is called as a Z-matrix if aij ≤ 0 for i ̸= j; a nonsingular M -matrix if
A is a Z-matrix and A−1 ≥ 0; an H-matrix if its comparison matrix ⟨A⟩ = (⟨a⟩ij) ∈ Rn×n

(⟨a⟩ii = |aii| and ⟨a⟩ij = −|aij| for i ̸= j) is a nonsingular M -matrix; a strictly diagonally
dominant (SDD) (by rows) matrix if

|aii| >
∑
j ̸=i

|aij|, i = 1, 2, . . . , n,

see [6]. In addition, an H-matrix with positive diagonal is called an H+-matrix in [4]. If
A ≤ B with A being an M -matrix and B being a Z-matrix, then B is an M -matrix [6].
The matrix splitting, A = M −N , of A ∈ Rn×n is called as an H-splitting if ⟨M⟩ − |N |
is a nonsingular M -matrix with |N | = (|nij|). ρ(A), ∥A∥∞ and DA denote the spectral
radius, the infinite norm and the diagonal part of the matrix A, respectively. It is well
known that LCP(q, A) has a unique solution if A is an H+-matrix.
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Lemma 1.1 [5] Let A ∈ Rn×n with A ≥ 0. If there exists u ∈ Rn with u > 0 such that
Au < u, then ρ(A) < 1.

Lemma 1.2 [7] Let A ∈ Rn×n be an H-matrix, and B = DA − A. Then |A−1| ≤ ⟨A⟩−1

and ρ(|DA|−1|B|) < 1.

For the convergence of the GMMS method, Li in [3] gave the following main result.

Theorem 1.1 [3] Let AΩ1 = MΩ1 −NΩ1 be an H-splitting of the H+-matrix A, and Ω1

and Ω2 be two positive diagonal matrices. If

Ω2e > DAΩ1e− V −1(⟨MΩ1⟩ − |NΩ1|)V e (1.5)

for any positive diagonal matrix V such that (⟨MΩ1⟩ − |NΩ1|)V is an SDD matrix, where
e = (1, 1, . . . , 1)T , then Method 1.1 is convergent for any initial guess x(0) ∈ Rn.

The purpose of this paper is to establish a new sufficient condition for convergence of
the GMMS method, which is superior to those previously published works in [3, 4, 9].

2 Main result

To give our main result, we first present Lemma 2.1.

Lemma 2.1 Let A ∈ Rn×n be an H+-matrix, and A = M − N be its an H-splitting.
Then ⟨M⟩ − |N | ≤ ⟨A⟩.

Proof. By the simple computations, we have

aii = mii − nii = |mii − nii| ≥ |mii| − |nii|

and
−|aij| = −|mij − nij| ≥ −|mij| − |nij|,

where A = (aij),M = (mij) and N = (nij). Hence, the result of Lemma 2.1 is valid. 2

Next, for the GMMS method, we give the following main result, see Theorem 2.1.

Theorem 2.1 Let A, Ω1 and Ω2 be defined in Theorem 1.1, and AΩ1 = MΩ1 − NΩ1 be
an H-splitting of AΩ1. If

Ω2e > DAΩ1e−
1

2
V −1(⟨AΩ1⟩+ ⟨MΩ1⟩ − |NΩ1 |)V e (2.1)

for any positive diagonal matrix V such that (⟨MΩ1⟩ − |NΩ1|)V is an SDD matrix, where
e = (1, 1, . . . , 1)T , then Method 1.1 is convergent for any initial guess x(0) ∈ Rn.
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Proof. Assume that (z∗, w∗) is a solution of the LCP(q, A). Using Eq. (1.2), we get that
x∗ = 1

2
(Ω−1

1 z∗ − Ω−1
2 w∗) and |x∗| = 1

2
(Ω−1

1 z∗ + Ω−1
2 w∗), which meets

(Ω2 +MΩ1)x
∗ = NΩ1x

∗ + (Ω2 − AΩ1)|x∗| − q. (2.2)

Combining (1.4) with (2.2), we obtain

(Ω2 +MΩ1)(x
(k+1) − x∗) = NΩ1(x

(k) − x∗) + (Ω2 − AΩ1)(|x(k)| − |x∗|). (2.3)

Since AΩ1 = MΩ1 − NΩ1 is an H-splitting of AΩ1, ⟨MΩ1⟩ − |NΩ1| is an M -matrix.
Clearly, we have

⟨MΩ1⟩ − |NΩ1| ≤ ⟨MΩ1⟩,
which implies that matrix ⟨MΩ1⟩ is an M -matrix. Further, we can obtain that Ω2 +MΩ1

is an H+-matrix. Based on Lemma 1.2, we have

|(Ω2 +MΩ1)
−1| ≤ ⟨Ω2 +MΩ1⟩−1 = (Ω2 + ⟨MΩ1⟩)−1.

From (2.3), we have

|x(k+1) − x∗| = |(Ω2 +MΩ1)
−1||NΩ1(x

(k) − x∗) + (Ω2 − AΩ1)(|x(k)| − |x∗|)|
≤ T |x(k) − x∗|, (2.4)

where
T = (Ω2 + ⟨MΩ1⟩)−1(|NΩ1|+ |Ω2 − AΩ1|).

Obviously, the GMMS method is convergent for ρ(T ) < 1.
Next, we consider two cases: Ω2e ≥ DAΩ1e and

DAΩ1e−
1

2
V −1(⟨AΩ1⟩+ ⟨MΩ1⟩ − |NΩ1|)V e < Ω2e < DAΩ1e.

Case (I): Since Ω2e ≥ DAΩ1e, we know that Ω2 ≥ DAΩ1. In this case, we have

Ω2 − |Ω2 − AΩ1| = ⟨AΩ1⟩

and

T = (Ω2 + ⟨MΩ1⟩)−1(Ω2 + ⟨MΩ1⟩ − Ω2 − ⟨MΩ1⟩+ |NΩ1|+ |Ω2 − AΩ1|)
= I − (Ω2 + ⟨MΩ1⟩)−1(Ω2 + ⟨MΩ1⟩ − |NΩ1| − |Ω2 − AΩ1|)
= I − (Ω2 + ⟨MΩ1⟩)−1(⟨MΩ1⟩ − |NΩ1|+ ⟨AΩ1⟩)
≤ I − 2(Ω2 + ⟨MΩ1⟩)−1(⟨MΩ1⟩ − |NΩ1|).

Noticing that ⟨MΩ1⟩ − |NΩ1| is an M -matrix, there exists a positive vector u so that

(⟨MΩ1⟩ − |NΩ1 |)u > 0.
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Therefore,
Tu ≤ (I − 2(Ω2 + ⟨MΩ1⟩)−1(⟨MΩ1⟩ − |NΩ1 |))u < u.

It follows that ρ(T ) < 1 from Lemma 1.1.
Case (II): Since ⟨MΩ1⟩− |NΩ1| is an M -matrix, there exists a positive diagonal matrix

V such that (⟨MΩ1⟩ − |NΩ1|)V is an SDD matrix. Then from the equivalent statement
M35 of the nonsingular M -matrix in [Page 137, 6], we have

⟨MΩ1⟩V e ≥ (⟨MΩ1⟩ − |NΩ1|)V e > 0.

So,

⟨MΩ1⟩V e+ Ω2V e > (|NΩ1 |+ Ω2)V e > 0.

Moreover, we can get that the interval (DAΩ1e− 1
2
V −1(⟨AΩ1⟩+⟨MΩ1⟩−|NΩ1|)V e,DAΩ1e)

is nonempty from Lemma 2.1.
Since

DAΩ1e−
1

2
V −1(⟨AΩ1⟩+ ⟨MΩ1⟩ − |NΩ1|)V e < Ω2e,

we obtain

2V DAΩ1e− (⟨AΩ1⟩+ ⟨MΩ1⟩ − |NΩ1|)V e < 2V Ω2e

⇔ [2DAΩ1 − (⟨AΩ1⟩+ ⟨MΩ1⟩ − |NΩ1|)]V e < 2Ω2V e

⇔ (2DAΩ1 − ⟨AΩ1⟩ − ⟨MΩ1⟩+ |NΩ1|)V e < 2Ω2V e

⇔ (|AΩ1| − ⟨MΩ1⟩+ |NΩ1|)V e < 2Ω2V e

⇔ (2Ω2 + ⟨MΩ1⟩ − |NΩ1| − |AΩ1|)V e > 0.

In addition, when Ω2e < DAΩ1e, we have

|Ω2 − AΩ1| = |AΩ1| − Ω2 ≥ 0.

Let
M̄ = Ω2 + ⟨MΩ1⟩, N̄ = |NΩ1|+ |Ω2 − AΩ1|.

Then T = M̄−1N̄ and

(M̄ − N̄)V e = (Ω2 + ⟨MΩ1⟩ − |NΩ1| − |Ω2 − AΩ1|)V e

= (2Ω2 + ⟨MΩ1⟩ − |NΩ1| − |AΩ1|)V e

> 0.

By using Theorem 3 in [8], we have

ρ(T ) =ρ(V −1TV )

≤∥V −1TV ∥∞
=∥((Ω2 + ⟨MΩ1⟩)V )−1(|NΩ1|+ |Ω2 − AΩ1|)V ∥∞

≤ max
1≤i≤n

((|NΩ1 |+ |Ω2 − AΩ1|)V e)i
((Ω2 + ⟨MΩ1⟩)V e)i

<1.
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Combining Case (I) with Case (II), the result of Theorem 2.1 is valid. 2

Comparing the condition (2.1) with the condition (1.5), the former is weaker than the
latter. In fact, by simple computation,

DAΩ1e− V −1(⟨MΩ1⟩ − |NΩ1|)V e− [DAΩ1e−
1

2
V −1(⟨AΩ1⟩+ ⟨MΩ1⟩ − |NΩ1|)V e]

=− V −1(⟨MΩ1⟩ − |NΩ1|)V e+
1

2
V −1(⟨AΩ1⟩+ ⟨MΩ1⟩ − |NΩ1|)V e

=
1

2
V −1(⟨AΩ1⟩ − (⟨MΩ1⟩ − |NΩ1|))V e ≥ 0.

This implies that the convergence condition (1.4) of Theorem 1.1 in [3] is improved.
When Ω2 = Ω and Ω1 = I, Corollary 2.1 is obtained.

Corollary 2.1 Let A = M −N be an H-splitting of the H+-matrix A. If

Ωe > DAe−
1

2
V −1(⟨A⟩+ ⟨M⟩ − |N |)V e (2.5)

for any positive diagonal matrix V such that (⟨M⟩ − |N |)V is an SDD matrix, where
e = (1, 1, . . . , 1)T , then the MMS method (see Method 3.1 in [4]) is convergent for any
initial guess x(0) ∈ Rn.

Further, it is easy to find that the condition (2.5) in Corollary 2.1 is also weaker than
those in Theorem 4.3 in [4] and Theorems 3.1 in [9].

It’s important to note that the matrix V involved in Theorem 2.1 and Corollary 2.1
may be not easily available, including Theorem 1.1 as well. Whereas, when the H+-matrix
A is an SDD matrix, the matrix V can be easily chosen. That is to say, for this situation,
we can choose V = I, and then make use of the condition (2.1) to judge the convergence of
the GMMS method and the condition (2.5) to judge the convergence of the MMS method.

Finally, we use two simple examples to compare Theorem 1.1 [3] with Theorem 2.1.
Example 2.1 To compare Theorem 1.1 [3] with Theorem 2.1, we set V = Ω1 = I and

A =

[
4 1
1 4

]
.

Clearly, AΩ1 = A. Taking

MΩ1 =

[
4 0
2 4

]
, NΩ1 =

[
0 −1
1 0

]
.

Then

⟨AΩ1⟩ =
[

4 −1
−1 4

]
, ⟨MΩ1⟩ =

[
4 0
−2 4

]
, |NΩ1| =

[
0 1
1 0

]
.
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So,

⟨MΩ1⟩ − |NΩ1| =
[

4 −1
−3 4

]
and

1

2
(⟨AΩ1⟩+ ⟨MΩ1⟩ − |NΩ1|) =

[
4 −1
−2 4

]
.

By Theorem 1.1 [3], the choice of matrix Ω2 satisfies Ω2 > 3I to ensure the convergence
of the GMMS method. Whereas, using Theorem 2.1, the choice of matrix Ω2 only need
to satisfy Ω2 > 2I to ensure the convergence of the GMMS method. This shows that
Theorem 2.1 is weaker than Theorem 1.1 [3]. Further, for the interval (2I, 3I], if we take
Ω2 = 3I, then ρ(T ) = 0.4918 < 1. This shows that the GMMS method is convergent.
But, in this case, Theorem 1.1 [3] does not satisfy to judge the convergence of the GMMS
method.

Example 2.2 Let V = Ω1 = I and A = tridiag(1, 4, 1) ∈ Rn×n with n ≥ 3. Taking
MΩ1 = tridiag(2, 4, 0), NΩ1 = tridiag(1, 0,−1). Then, by the simple calculations, we have

⟨MΩ1⟩ − |NΩ1| = tridiag(−3, 4,−1),
1

2
(⟨AΩ1⟩+ ⟨MΩ1⟩ − |NΩ1|) = tridiag(−2, 4,−1).

For n ≥ 3, by Theorem 1.1 [3], the choice of matrix Ω2 satisfies Ω2 > 4I to ensure the
convergence of the GMMS method. Whereas, using Theorem 2.1, the choice of matrix Ω2

only need to satisfy Ω2 > 3I to ensure the convergence of the GMMS method.
Next, we consider Ω2 = 4I for A = MΩ1 − NΩ1 with MΩ1 = tridiag(2, 4, 0) and

NΩ1 = tridiag(1, 0,−1). In our computations, the starting vector is zero, the relative
residual error (denoted by ‘RES’), which is defined by

RES(x(k)) = ∥min(Az(k) + p, z(k))∥2.

All the test results are run on an Intel@ Celeron@ G4900, where the CPU 3.10GHz and
the memory is 8.00 GB, and the language is MATLAB 7.0.

n 300 600 900
ρ(T ) 0.6475 0.6557 0.6591
IT 16 16 16
CPU 0.0156 0.0781 0.1719
RES 3.9499e-7 5.6384e-7 6.9269e-7

Table 1: Numerical results of GMMS with Ω2 = 4I and Ω1 = I.

Table 1 lists some numerical results of the GMMS method with q = −Az∗ and
z∗ = (1, 2, . . . , 1, 2)T , where ‘IT’, ‘CPU’, ‘RES’, respectively, denote elapsed CPU time in
seconds, the iteration steps and the relative residual error. From these numerical results
confirm that GMMS is convergent for Ω2 = 4I.
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