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Abstract

In this paper, we mainly study the finite spectrum of Sturm-Liouville problems with n
transmission conditions and spectral parameters in the boundary conditions. For any positive
integer n and a set of positive integers mi, i = 0, 1, · · · , n, it has at most m0+m1+ · · ·+mn+
2n+ 1 eigenvalues. And further we show that these m0 +m1 + · · ·+mn + 2n+ 1 eigenvalues
can be distributed arbitrarily throughout the complex plane in the non-self-adjoint case and
anywhere along the real line in the self-adjoint case. The key to this analysis is an iterative
construction of the characteristic function, the main tool used in this paper is Rouche’s
theorem and iterative construction of initial value.
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1 Introduction

Sturm-Liouville problems (SLPs for short) [1–3] with transmission conditions and spectral
parameters in the boundary conditions have always been an important research topic in mathe-
matical physics. Such a problem connected with many assortment of physics problems, such as
heat conduction and the chord vibration of the boundary on the slider.
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As is well-known, the classic Sturm-Liouville theory [4] states that the spectrum of a regular or
singular, self-adjoint SLP is unbounded and therefore infinite. This result is generally established
under the assumption that the leading cofficient p and the weight function w are both positive.
Atkinson in his book [5] studied that if the cofficients of Sturm-Liouville equation satisfy some
conditions, it may have finite eigenvalues, but he did not elaborate with an example. In 2001,
Kong, Wu and Zettl [1] constructed a class of SLP with finite eigenvalues. In 2011, Ao, Sun and
Zhang [6] obtained that the following regular SLP with a transmission condition

− (py′)′ + qy = λwy, t ∈ J,
AY (a) +BY (b) = 0,

CY (c−) +DY (c+) = 0

has exactly n eigenvalues, where n is positive integer and n is connected with the partition of
the interval J = (a, c) ∪ (c, b), A,B,C and D are all matrices, and the coefficients satisfy the
minimal conditions r = 1

p
, q, w ∈ L(J, C). Their technique was a combination of the iterative

construction of characteristic function and the fundamental theorem of Algebra. In 2013, by
applying the iteration of the characteristic function and the fundamental theorem of Algebra, Ao,
Sun and Zhang [7] obtained that the following regular SLP with a transmission condition and
spectral parameters in the boundary conditions

− (py′)′ + qy = λwy, t ∈ J,
AλY (a) +BλY (b) = 0,

CY (c−) +DY (c+) = 0

has at most m + n + 4 eigenvalues, where m and n are positive integer, and m,n are connected
with the partition of the interval J = (a, c) ∪ (c, b). It is divided into a = a0 < a1 < a2 < · · · <
a2m < a2m+1 = c, c = b0 < b1 < b2 < · · · < b2n < b2n+1 = b. Recently, Xu, Wang and Ao [8]
researched that the following SLP with n transmission conditions

− (py′)′ + qy = λwy, t ∈ J,
AY (a) +BY (b) = 0,

CiY (ci−) +DiY (ci+) = 0

has exactly
n+1∑
i=1

mi + n+ 1 eigenvalues for any positive integer n and a set of positive integers

mi, i = 1, 2, · · · , n + 1, where mi and n are connected with the partition of the interval J =
(a, c1)∪ (c1, c2)∪· · ·∪ (cn, b). They used similar tools to [6]. These results indicate the existence of
finite spectrum of SLP. It also should be pointed out that although many excellent achievements
have been made in researches on the finite spectrum of SLP, such as literature [1, 2, 4, 7, 9, 13, 14]
and its references, but the conditions involved are relatively simple. It is worth mentioning that
some scholars have done outstanding work on boundary value problems of differential equations
with finite spectrum [4, 10–12, 15–20]. In addition, for other articles on whether boundary value
problems of differential equations have finite spectrum, please refer to Ao and Sun’s articles [21,22].

Motivated and inspired by the above-mentioned works, in this paper, we consider the following

2



SLP 
−(py′)′ + qy = λwy, (1)

AλY (a) +BλY (b) = 0, (2)

CiY (ci−) +DiY (ci+) = 0, (3)

where Y =

(
y
py′

)
, y = y(t), t ∈ J = (a, c1) ∪ (c1, c2) ∪ ... ∪ (cn, b), −∞ < a < b <

+∞, ci ∈ (a, b), Ci, Di ∈ M2(R), det(Ci) = ρi > 0, det(Di) = θi > 0, i = 1, 2, · · · , n. Aλ =(
λα′1 − α1 −λα′2 + α2

0 0

)
, Bλ =

(
0 0

λβ′1 + β1 −λβ′2 − β2

)
, αj, α

′
j, βj, β

′
j ∈ R, j = 1, 2, and sat-

isfies det

(
α1 α2

α′1 α′2

)
6= 0, det

(
β1 β2
β′1 β′2

)
6= 0. λ is the spectral parameter. The coefficients

satisfy the minimal conditions

r =
1

p
, q, w ∈ L(J, C), (4)

where L(J, C) denotes the complex-valued functions which are Lebesgue integrable on J . Con-
dition (4) is minimal in the sense that it is necessary and sufficient for all initial value problems
of Eq.(1) to have unique solutions on [a, b]; see [23]. In this paper, we assume that condition (4)
holds and we will prove that SLP (1)∼(3) still has finite spectrum.

2 Notation and preliminaries

In this section, we let u = y, v = py′. Then Eq.(1) can be transferred into the following first
order system

u′ = rv, v′ = (q − λw)u. (5)

This can be written in the following matrix form(
u
v

)′
=

(
0 r

q − λw 0

)(
u
v

)
.

.

Definition 2.1 By a trivial solution of Eq.(1) on some interval we mean a solution y which is
identically zero and whose quasi-derivative v = py′ is also identically zero on this interval.

In this part, we give some related concepts to introduce Lemma 2.1.

Let u1(t, λ), v1(t, λ) be two linearly independent solutions of Eq.(1) on (a, c1) satisfying the
following initial conditions

u1(a, λ) = 1, (pu′1)(a, λ) = 0, v1(a, λ) = 0, (pv′1)(a, λ) = 1.
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Now we can define the solutions ui+1(t, λ), vi+1(t, λ)(i = 1, 2, ..., n) of Eq.(1) on (ci, ci+1)(cn+1 = b)
satisfying the following initial conditions

ui+1(ci+, λ) = gi,11ui(ci−, λ) + gi,12(pu
′
i)(ci−, λ),

(pu′i+1)(ci+, λ) = gi,21ui(ci−, λ) + gi,22(pu
′
i)(ci−, λ),

vi+1(ci+, λ) = gi,11vi(ci−, λ) + gi,12(pv
′
i)(ci−, λ),

(pv′i+1)(ci+, λ) = gi,21vi(ci−, λ) + gi,22(pv
′
i)(ci−, λ).

For convenience, we let

φ11(t, λ) =

{
u1(t, λ), t ∈ (a, c1),

ui+1(t, λ), t ∈ (ci, ci+1)(i = 1, 2, ..., n, cn+1 = b),

φ12(t, λ) =

{
v1(t, λ), t ∈ (a, c1),

vi+1(t, λ), t ∈ (ci, ci+1)(i = 1, 2, ..., n, cn+1 = b),

φ21(t, λ) =

{
(pu′1)(t, λ), t ∈ (a, c1),

(pu′i+1)(t, λ), t ∈ (ci, ci+1)(i = 1, 2, ..., n, cn+1 = b),

φ22(t, λ) =

{
(pv′1)(t, λ), t ∈ (a, c1),

(pv′i+1)(t, λ), t ∈ (ci, ci+1)(i = 1, 2, ..., n, cn+1 = b).

Then

Φ(t, λ) =

(
φ11(t, λ) φ12(t, λ)
φ21(t, λ) φ22(t, λ)

)
, t ∈ J.

So Φ(t, λ) = [φef (t, λ)](e, f = 1, 2, t ∈ J) denotes the fundamental matrix of the system (5)
determined by the initial condition Φ(a, λ) = I.

Lemma 2.1 The complex number λ is an eigenvalue of the SLP (1)∼(3) if and only if

4(λ) = det[Aλ +BλΦ(b, λ)] = 0. (6)

Particularly, 4(λ) can be written as

4(λ) = h11(λ)φ11(b, λ) + h12(λ)φ12(b, λ) + h21(λ)φ21(b, λ) + h22(λ)φ22(b, λ), (7)

where

H(λ) =

(
h11(λ) h12(λ)
h21(λ) h22(λ)

)
:=

(
(λα′2 − α2)(λβ

′
1 + β1) (λα′1 − α1)(λβ

′
1 + β1)

−(λα′2 − α2)(λβ
′
2 + β2) −(λα′1 − α1)(λβ

′
2 + β2)

)
.
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Proof. If λ is an eigenvalue of the SLP (1)∼(3), then there exists a non-trivial solution

y(t, λ) =


k1u1 + l1v1, t ∈ (a, c1),

k2u2 + l2v2, t ∈ (c1, c2),

......

kn+1un+1 + ln+1vn+1, t ∈ (cn, b)

(8)

of Eq.(1), where ki, li(i = 1, 2, ..., n+ 1) are not all zero. Since y(t, λ) satisfies Eq.(2), we have

AλΦ(a, λ)

(
k1
l1

)
+BλΦ(b, λ)

(
kn+1

ln+1

)
= 0. (9)

From Eq.(3), we get
DiΦ(ci+, λ) = −CiΦ(ci−, λ). (10)

When i = 1, we can obtain

C1Φ(c1−, λ)

(
k1
l1

)
+D1Φ(c1+, λ)

(
k2
l2

)
= 0,

so

C1Φ(c1−, λ)

(
k1 − k2
l1 − l2

)
= 0.

It means that k1 = k2, l1 = l2. Using the same method we can get the following results

k1 = k2 = ... = kn+1, l1 = l2 = ... = ln+1,

so we have

AλΦ(a, λ)

(
k1
l1

)
+BλΦ(b, λ)

(
k1
l1

)
= 0. (11)

Since k1 and l1 are not all zero, then 4(λ) = det[Aλ +BλΦ(b, λ)] = 0.

Let 4(λ) = 0. Then Eq.(11) has non-trivial solution. Now, we consider the next initial value
problem 

− (py′)′ + qy = λwy, t ∈ J
y(a, λ) = λα′2 − α2,

(py′)(a, λ) = λα′1 − α1,

we have
y(t, λ) = (λα′2 − α2)φ11(t, λ) + (λα′1 − α1)φ12(t, λ), t ∈ J.

Substituting y(t, λ) into Eq.(2), we have

(λα′1 − α1)y(a, λ) + (λα′1 − α1)(py
′)(a, λ) = (λα′1 − α1)(λα

′
2 − α2) + (−λα′2 + α2)(λα

′
1 − α1) = 0.

Similarly, we can get

(λβ′1 + β1)y(b, λ) + (−λβ′2 − β2)(py′)(b, λ) = (λβ′1 + β1)(λβ
′
2 + β2) + (−λβ′2 − β2)(λβ′1 + β1) = 0.

So y(t, λ) satisfies Eq.(2). Recalling that the solution y(t, λ) satisfies Eq.(3), it’s means that y(t, λ)
is an eigenfunction of the SLP (1)∼(3) corresponding to eigenvalue λ. And Eq.(7) comes from a
straightforward computation.
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Definition 2.2 The SLP (1)∼(3), or equivalently (5), (2), (3) is said to be degenerate if in (6)
either 4(λ) ≡ 0 for all λ ∈ C or 4(λ) 6= 0 for any λ ∈ C.

In the derivation of our main results an important role is played by the “Continuity Principle”
established in Kong et al. See [20], which reads.

3 Statement of the Problem

In this section, we assume that there exists a partition of the interval J



a = a0 < a1 < a2 < · · · < a2m0 < a2m0+1 = c1−,
c1+ = c1,0< c1,1< c1,2< · · · < c1,2m1 < c1,2m1+1 = c2−,
· · · · · ·

cn−1+ = cn−1,0< cn−1,1< cn−1,2< · · · < cn−1,2mn−1 < cn−1,2mn−1+1 = cn−,
cn+ = cn,0< cn,1< cn,2< · · · < cn,2mn < cn,2mn+1 = b,

(12)

for some positive integers m0,m1, · · · ,mn, when r(t) = 1
p(t)

= 0, such that



∫ a2k+1

a2k

w(t)dt 6= 0, k = 0, 1, · · · ,m0, t ∈ (a2k, a2k+1),∫ c1,2i+1

c1,2i

w(t)dt 6= 0, i = 0, 1, · · · ,m1, t ∈ (c1,2i , c1,2i+1 ),

· · · · · ·∫ cn,2z+1

cn,2z

w(t)dt 6= 0, z = 0, 1, · · · ,mn, t ∈ (cn,2z , cn,2z+1 ),

(13)

and when q(t) = w(t) = 0, we have



∫ a2k+2

a2k+1

r(t)dt 6= 0, k = 0, 1, · · · ,m0 − 1, t ∈ (a2k+1, a2k+2),∫ c1,2i+2

c1,2i+1

r(t)dt 6= 0, i = 0, 1, · · · ,m1 − 1, t ∈ (c1,2i+1 , c1,2i+2 ),

· · · · · ·∫ cn,2z+2

cn,2z+1

r(t)dt 6= 0, z = 0, 1, · · · ,mn, t ∈ (cn,2z+1 , cn,2z+2 ).

(14)
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Let 

qk =

∫ a2k+1

a2k

q(t)dt, k = 0, 1, · · · ,m0,

wk =

∫ a2k+1

a2k

w(t)dt, k = 0, 1, · · · ,m0,

rk =

∫ a2k+2

a2k+1

r(t)dt, k = 0, 1, · · · ,m0 − 1,



q1,i =

∫ c1,2i+1

c1,2i

q(t)dt, i = 0, 1, · · · ,m1,

w1,i =

∫ c1,2i+1

c1,2i

w(t)dt, i = 0, 1, · · · ,m1,

r1,i =

∫ c1,2i+2

c1,2i+1

r(t)dt, i = 0, 1, · · · ,m1 − 1,

· · · · · ·



qn,z =

∫ cn,2z+1

cn,2z

q(t)dt, z = 0, 1, · · · ,mn,

wn,z =

∫ cn,2z+1

cn,2z

w(t)dt, z = 0, 1, · · · ,mn,

rn,z =

∫ cn,2z+2

cn,2z+1

r(t)dt, z = 0, 1, · · · ,mn − 1.

In the following lemma and theorem, we let (12)∼(14) always hold.

Lemma 3.1 For each λ ∈ C,
Φ(t, λ) = [φef (t, λ)](t ∈ (a, c1)) denotes the fundamental matrix of the system (5) determined by
Φ(a, λ) = I;
Ψi(t, λ) = [ψi,ef (t, λ)](t ∈ (ci, ci+1), cn+1 = b = cn,2mn+1 , i = 1, 2, ..., n) denotes the fundamental
matrix of the system (5) determined by Ψi(ci+, λ) = I (here Ψi(ci+, λ) = Ψi(ci,0, λ) = Φ(ci+, λ)).
So we have

(1)

Φ(a1, λ) =

(
1 0

q0 − λw0 1

)
, (15)

Φ(a3, λ) =

(
1 + (q0 − λw0)r0 r0

φ21(a3, λ) 1 + (q1 − λw1)r0

)
, (16)

where

φ21(a3, λ) = (q0 − λw0) + (q1 − λw1) + (q0 − λw0)(q1 − λw1)r0.
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In general, for 1 ≤ k ≤ m0,

Φ(a2k+1, λ) =

(
1 rk−1

qk − λwk 1 + (qk − λwk)rk−1

)
Φ(a2k−1, λ). (17)

(2)

Ψi(ci,1 , λ) =

(
1 0

qi,0−λwi,0 1

)
, (18)

Ψi(ci,3 , λ) =

(
1 + (qi,0−λwi,0 )ri,0 ri,0

ψi,21 (ci,3 , λ) 1 + (qi,1−λwi,1 )ri,0

)
, (19)

where

ψi,21 (ci,3 , λ) = (qi,0−λwi,0 ) + (qi,1−λwi,1 ) + (qi,0−λwi,0 )(qi,1−λwi,1 )ri,0 .

In general, for 1 ≤ κ ≤ mi(κ = i, j, ..., z),

Ψi(ci,2κ+1 , λ) =

(
1 ri,κ−1

qi,κ−λwi,κ 1 + (qi,κ−λwi,κ )ri,κ−1

)
Ψi(ci,2κ−1 , λ). (20)

Proof. We can see from the system (5) that u is constant on each subinterval where r identically
zero and v is constant on each subinterval where both q and w are identically zero. The result
follows from repeated applications of system (5).

Lemma 3.2 For each λ ∈ C,
Φ(t, λ) = [φef (t, λ)](t ∈ (a, c1)) denotes the fundamental matrix of the system (5) determined by
Φ(a, λ) = I;
Ψi(t, λ) = [ψi,ef (t, λ)](t ∈ (ci, ci+1), cn+1 = b, i = 1, 2, ..., n) denotes the fundamental matrix of the
system (5) determined by Ψi(ci+, λ) = I.
So we have

Φ(b, λ) = Ψn(b, λ)GnΨn−1(cn−, λ)Gn−1Ψn−2(cn−1−, λ) · · ·G1Φ(c1−, λ),

where
Gi = [gi,ef ]2×2(i = 1, 2, ..., n; e, f = 1, 2).

Proof. From the Eq.(3), we know that

CiΦ(ci−, λ) +DiΦ(ci+, λ) = 0,

so

Φ(ci+, λ) = −D−1i CiΦ(ci−, λ) = GiΦ(ci−, λ),
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where
Gi = [gi,ef ]2×2(i = 1, 2, ..., n; e, f = 1, 2).

When i = 1, Ψ1(c1+, λ) = I, combining Lemma 3.1

Ψ1(t, λ) = Φ(t, λ)[G1Φ(c1−, λ)]−1, c1+ ≤ t ≤ c2−,

let t = c2−, then
Ψ1(c2−, λ) = Φ(c2−, λ)[G1Φ(c1−, λ)]−1,

Φ(c2−, λ) = Ψ1(c2−, λ)G1Φ(c1−, λ).

When i = 2, Ψ2(c2+, λ) = I, we find that condition Φ(ci+, λ) = −D−1i CiΦ(ci−, λ) = GiΦ(ci−, λ)
always holds, so

Ψ2(t, λ) = Φ(t, λ)[G2Φ(c2−, λ)]−1, c2+ ≤ t ≤ c3−,

let t = c3−, then
Ψ2(c3−, λ) = Φ(c3−, λ)[G2Φ(c2−, λ)]−1

Φ(c3−, λ) = Ψ2(c3−, λ)G2Φ(c2−, λ).

· · · · · ·

By repeated application of the above process, we have

Φ(b, λ) = Ψn(b, λ)GnΨn−1(cn−, λ)Gn−1Ψn−2(cn−1−, λ) · · ·G1Φ(c1−, λ).

Lemma 3.3 For each λ ∈ C,
Φ(t, λ) = [φef (t, λ)](t ∈ (a, c1)) denotes the fundamental matrix of the system (5) determined by
Φ(a, λ) = I;
Ψi(t, λ) = [ψi,ef (t, λ)](t ∈ (ci, ci+1), cn+1 = b, i = 1, 2, ..., n) denotes the fundamental matrix of the
system (5) determined by Ψi(ci+, λ) = I.
For Φ(b, λ), we have the following result

φ11(b, λ) = R

n∏
i=1

RiG
∗G∗∗

m0−1∏
k=0

(qk − λwk)
m1−1∏
i=1

(q1,i−λw1,i )
n∏
i=2

[

mi−1∏
j=1

(qi,j −λwi,j )] + φ′11(b, λ),

φ12(b, λ) = R

n∏
i=1

RiG
∗G∗∗

m0−1∏
k=1

(qk − λwk)
m1−1∏
i=1

(q1,i−λw1,i )
n∏
i=2

[

mi−1∏
j=1

(qi,j −λwi,j )] + φ′12(b, λ),

φ21(b, λ) = R

n∏
i=1

RiG
∗G∗∗

m0−1∏
k=0

(qk − λwk)
m1−1∏
i=1

(q1,i−λw1,i )
n∏
i=2

[

mi∏
j=1

(qi,j −λwi,j )] + φ′21(b, λ),

φ22(b, λ) = R

n∏
i=1

RiG
∗G∗∗

m0−1∏
k=1

(qk − λwk)
m1−1∏
i=1

(q1,i−λw1,i )
n∏
i=2

[

mi∏
j=1

(qi,j −λwi,j )] + φ′22(b, λ),

where

G∗ = g1,12 (qm0 − λwm0)(q1,0−λw1,0 ) + g1,11 (q1,0−λw1,0 ) + g1,22 (qm0 − λwm0) + g1,21 ,
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G∗∗ =
n∏
i=2

{[gi,11 +gi,12 (qi−1,mi−1
−λwi−1,mi−1

)](qi,0−λwi,0 )+[gi,21 +gi,22 (qi−1,mi−1
−λwi−1,mi−1

)]},

R =

m0−1∏
k=0

rk, Ri =

mi−1∏
j=0

ri,j , φ
′
ef (b, λ) = o(R

n∏
i=1

Ri).

Proof. From Lemma 3.1 we know that

Φ(c1−, λ) = Φ(a2m0+1, λ)

=

(
1 rm0−1

qm0 − λwm0 1 + (qm0 − λwm0)rm0−1

)
Φ(a2m0−1, λ)

=

(
1 rm0−1

qm0 − λwm0 1 + (qm0 − λwm0)rm0−1

)(
1 rm0−2

qm0−1 − λwm0−1 1 + (qm0−1 − λwm0−1)rm0−2

)
Φ(a2m0−3, λ)

=

(
θ11 θ12
θ21 θ22

)
Φ(a2m0−3, λ),

where

θ11 = 1 + rm0−1(qm0−1 − λwm0−1)

= rm0−1(qm0−1 − λwm0−1) + o(rm0−1(qm0−1 − λwm0−1)),

θ12 = rm0−2 + rm0−1 + rm0−2rm0−1(qm0−1 − λwm0−1)

= rm0−2rm0−1(qm0−1 − λwm0−1) + o(rm0−2rm0−1(qm0−1 − λwm0−1)),

θ21 = (qm0−1 − λwm0−1) + (qm0 − λwm0) + rm0−1(qm0−1 − λwm0−1)(qm0 − λwm0)

= rm0−1(qm0−1 − λwm0−1)(qm0 − λwm0) + o(rm0−1(qm0−1 − λwm0−1)(qm0 − λwm0)),

θ22 = rm0−2(qm0 − λwm0) + 1 + rm0−2(qm0−1 − λwm0−1)

+rm0−1(qm0 − λwm0) + rm0−2rm0−1(qm0−1 − λwm0−1)(qm0 − λwm0)

= rm0−2rm0−1(qm0−1 − λwm0−1)(qm0 − λwm0) + o(rm0−2rm0−1(qm0−1 − λwm0−1)(qm0 − λwm0)),

and

Φ(a2m0−3, λ) =

(
1 rm0−3

qm0−2 − λwm0−2 1 + (qm0−2 − λwm0−2)rm0−3

)
Φ(a2m0−5, λ),
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so we have

Φ(c1−, λ) =

(
θ11 θ12
θ21 θ22

)
Φ(a2m0−3, λ)

=

(
θ11 θ12
θ21 θ22

)(
1 rm0−3

qm0−2 − λwm0−2 1 + (qm0−2 − λwm0−2)rm0−3

)
Φ(a2m0−5, λ)

=

(
η11 η12
η21 η22

)
Φ(a2m0−5, λ),

where

η11 = θ11 + (qm0−2 − λwm0−2)θ12

= rm0−2rm0−1(qm0−2 − λwm0−2)(qm0−1 − λwm0−1)

+o(rm0−2rm0−1(qm0−2 − λwm0−2)(qm0−1 − λwm0−1)),

η12 = rm0−3θ11 + (1 + (qm0−2 − λwm0−2)rm0−3)θ12

= rm0−3rm0−2rm0−1(qm0−2 − λwm0−2)(qm0−1 − λwm0−1)

+o(rm0−3rm0−2rm0−1(qm0−2 − λwm0−2)(qm0−1 − λwm0−1)),

η21 = θ21 + (qm0−2 − λwm0−2)θ22

= rm0−2rm0−1(qm0−2 − λwm0−2)(qm0−1 − λwm0−1)(qm0 − λwm0)

+o(rm0−2rm0−1(qm0−2 − λwm0−2)(qm0−1 − λwm0−1)(qm0 − λwm0)),

η22 = rm0−3θ21 + (1 + (qm0−2 − λwm0−2)rm0−3)θ22

= rm0−3rm0−2rm0−1(qm0−2 − λwm0−2)(qm0−1 − λwm0−1)(qm0 − λwm0)

+o(rm0−3rm0−2rm0−1(qm0−2 − λwm0−2)(qm0−1 − λwm0−1)(qm0 − λwm0)).

· · · · · ·

By repeated application of the above method, finally we can get

Φ(c1−, λ) =

(
ξ11 ξ12
ξ21 ξ22

)
Φ(a1, λ),

11



where

ξ11 =

m0−1∏
k=1

rk

m0−1∏
k=1

(qk − λwk) + o(

m0−1∏
k=1

rk

m0−1∏
k=1

(qk − λwk)),

ξ12 =

m0−1∏
k=0

rk

m0−1∏
k=1

(qk − λwk) + o(

m0−1∏
k=0

rk

m0−1∏
k=1

(qk − λwk)),

ξ21 =

m0−1∏
k=1

rk

m0∏
k=1

(qk − λwk) + o(

m0−1∏
k=1

rk

m0∏
k=1

(qk − λwk)),

ξ22 =

m0−1∏
k=0

rk

m0∏
k=1

(qk − λwk) + o(

m0−1∏
k=0

rk

m0∏
k=1

(qk − λwk)).

And

Φ(a1, λ) =

(
1 0

q0 − λw0 1

)
,

so

Φ(c1−, λ) =

(
ξ11 ξ12
ξ21 ξ22

)
Φ(a1, λ)

=

(
ξ11 ξ12
ξ21 ξ22

)(
1 0

q0 − λw0 1

)
=

(
ξ11 + ξ12(q0 − λw0) ξ12
ξ21 + ξ22(q0 − λw0) ξ22

)
=

(
φ11(c1−, λ) φ12(c1−, λ)
φ21(c1−, λ) φ22(c1−, λ)

)
.

It means that

φ11(c1−, λ) =

m0−1∏
k=0

rk

m0−1∏
k=0

(qk − λwk) + o(

m0−1∏
k=0

rk

m0−1∏
k=0

(qk − λwk)),

φ12(c1−, λ) =

m0−1∏
k=0

rk

m0−1∏
k=1

(qk − λwk) + o(

m0−1∏
k=0

rk

m0−1∏
k=1

(qk − λwk)),

φ21(c1−, λ) =

m0−1∏
k=0

rk

m0∏
k=0

(qk − λwk) + o(

m0−1∏
k=0

rk

m0∏
k=0

(qk − λwk)),

φ22(c1−, λ) =

m0−1∏
k=0

rk

m0∏
k=1

(qk − λwk) + o(

m0−1∏
k=0

rk

m0∏
k=1

(qk − λwk)),

(21)

12



and

ψ1,11 (c2−, λ) =

m1−1∏
i=0

r1,i

m1−1∏
i=0

(q1,i−λw1,i ) + o(

m1−1∏
i=0

r1,i

m1−1∏
i=0

(q1,i−λw1,i )),

ψ1,12 (c2−, λ) =

m1−1∏
i=0

r1,i

m1−1∏
i=1

(q1,i−λw1,i ) + o(

m1−1∏
i=0

r1,i

m1−1∏
i=1

(q1,i−λw1,i )),

ψ1,21 (c2−, λ) =

m1−1∏
i=0

r1,i

m1∏
i=0

(q1,i−λw1,i ) + o(

m1−1∏
i=0

r1,i

m1∏
i=0

(q1,i−λw1,i )),

ψ1,22 (c2−, λ) =

m1−1∏
i=0

r1,i

m1∏
i=1

(q1,i−λw1,i ) + o(

m1−1∏
i=0

r1,i

m1∏
i=1

(q1,i−λw1,i )).

(22)

By repeated application of the above method, then

ψi,11 (ci+1−, λ) =

mi−1∏
j=0

ri,j

mi−1∏
j=0

(qi,j −λwi,j ) + o(

mi−1∏
j=0

ri,j

mi−1∏
j=0

(qi,j −λwi,j )),

ψi,12 (ci+1−, λ) =

mi−1∏
j=0

ri,j

mi−1∏
j=1

(qi,j −λwi,j ) + o(

mi−1∏
j=0

ri,j

mi−1∏
j=1

(qi,j −λwi,j )),

ψi,21 (ci+1−, λ) =

mi−1∏
j=0

ri,j

mi∏
j=0

(qi,j −λwi,j ) + o(

mi−1∏
j=0

ri,j

mi∏
j=0

(qi,j −λwi,j )),

ψi,22 (ci+1−, λ) =

mi−1∏
j=0

ri,j

mi∏
j=1

(qi,j −λwi,j ) + o(

mi−1∏
j=0

ri,j

mi∏
j=1

(qi,j −λwi,j )).

i = 2, 3, · · · , n.

(23)

From Lemma 3.2, we have

Φ(cn−, λ) = Ψn−1(cn−, λ)Gn−1Ψn−2(cn−1−, λ) · · ·G1Φ(c1−, λ).

In combination with (21)∼(23), and

Φ(c2−, λ) = Ψ1(c2−, λ)G1Φ(c1−, λ),

we can obtain

φ11(c2−, λ) = RR1G
∗
m0−1∏
k=0

(qk − λwk)
m1−1∏
i=1

(q1,i−λw1,i ) + φ′11(c2−, λ),

φ12(c2−, λ) = RR1G
∗
m0−1∏
k=1

(qk − λwk)
m1−1∏
i=1

(q1,i−λw1,i ) + φ′12(c2−, λ),

φ21(c2−, λ) = RR1G
∗
m0−1∏
k=0

(qk − λwk)
m1∏
i=1

(q1,i−λw1,i ) + φ′21(c2−, λ),
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φ22(c2−, λ) = RR1G
∗
m0−1∏
k=1

(qk − λwk)
m1∏
i=1

(q1,i−λw1,i ) + φ′22(c2−, λ),

where

G∗ = g1,12 (qm0 − λwm0)(q1,0−λw1,0 ) + g1,11 (q1,0−λw1,0 ) + g1,22 (qm0 − λwm0) + g1,21 ,

R =

m0−1∏
k=0

rk, R1 =

m1−1∏
i=0

r1,i , φ
′
ef (c2−, λ) = o(RR1).

Similarly, we know that
Φ(c3−, λ) = Ψ2(c3−, λ)G2Φ(c2−, λ),

so

φ11(c3−, λ) = RR1R2G
∗G2∗

m0−1∏
k=0

(qk − λwk)
m1−1∏
i=1

(q1,i−λw1,i )

m2−1∏
j=1

(q2,j −λw2,j ) + φ′11(c3−, λ),

φ12(c3−, λ) = RR1R2G
∗G2∗

m0−1∏
k=1

(qk − λwk)
m1−1∏
i=1

(q1,i−λw1,i )

m2−1∏
j=1

(q2,j −λw2,j ) + φ′12(c3−, λ),

φ21(c3−, λ) = RR1R2G
∗G2∗

m0−1∏
k=0

(qk − λwk)
m1−1∏
i=1

(q1,i−λw1,i )

m2∏
j=1

(q2,j −λw2,j ) + φ′21(c3−, λ),

φ22(c3−, λ) = RR1R2G
∗G2∗

m0−1∏
k=1

(qk − λwk)
m1−1∏
i=1

(q1,i−λw1,i )

m2∏
j=1

(q2,j −λw2,j ) + φ′22(c3−, λ),

where

G∗ = g1,12 (qm0 − λwm0)(q1,0−λw1,0 ) + g1,11 (q1,0−λw1,0 ) + g1,22 (qm0 − λwm0) + g1,21 ,

G2∗ = [g2,11 +g2,12 (q1,m1 −λw1,m1 )](q2,0−λw2,0 ) + [g2,21 +g2,22 (q1,m1 −λw1,m1 )],

R =

m0−1∏
k=0

rk, R1 =

m1−1∏
i=0

r1,i , R2 =

m2−1∏
j=0

r2,j , φ
′
ef (c3−, λ) = o(RR1R2).

· · · · · ·

Similarly, because

Φ(b, λ) = Ψn(b, λ)GnΨn−1(cn−, λ)Gn−1Ψn−2(cn−1−, λ) · · ·G1Φ(c1−, λ),

we have

φ11(b, λ) = R

n∏
i=1

RiG
∗G∗∗

m0−1∏
k=0

(qk − λwk)
m1−i∏
i=1

(q1,i−λw1,i )
n∏
i=2

[

mi−1∏
j=1

(qi,j −λwi,j )] + φ′11(b, λ),
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φ12(b, λ) = R
n∏
i=1

RiG
∗G∗∗

m0−1∏
k=1

(qk − λwk)
m1−i∏
i=1

(q1,i−λw1,i )
n∏
i=2

[

mi−1∏
j=1

(qi,j −λwi,j )] + φ′12(b, λ),

φ21(b, λ) = R

n∏
i=1

RiG
∗G∗∗

m0−1∏
k=0

(qk − λwk)
m1−i∏
i=1

(q1,i−λw1,i )
n∏
i=2

[

mi∏
j=1

(qi,j −λwi,j )] + φ′21(b, λ),

φ22(b, λ) = R
n∏
i=1

RiG
∗G∗∗

m0−1∏
k=1

(qk − λwk)
m1−1∏
i=1

(q1,i−λw1,i )
n∏
i=2

[

mi∏
j=1

(qi,j −λwi,j )] + φ′22(b, λ),

where

G∗ = g1,12 (qm0 − λwm0)(q1,0−λw1,0 ) + g1,11 (q1,0−λw1,0 ) + g1,22 (qm0 − λwm0) + g1,21 ,

G∗∗ =
n∏
i=2

{[gi,11 +gi,12 (qi−1,mi−1
−λwi−1,mi−1

)](qi,0−λwi,0 )+[gi,21 +gi,22 (qi−1,mi−1
−λwi−1,mi−1

)]},

R =

m0−1∏
k=0

rk, Ri =

mi−1∏
j=0

ri,j , φ
′
ef (b, λ) = o(R

n∏
i=1

Ri).

Therefore, the conclusion is proved.

Theorem 3.4 Let mi ∈ N(i = 0, 1, · · · , n), g1,12 gi,12 6= 0, i = 2, 3, · · · , n, and H(λ) = (hij(λ))2×2
be defined as in Lemma 2.1. Then

(1) If h21(λ) 6= 0, then the SLP (1)∼(3) has exactly (m0 + m1 + m2 + · · · + mn + 2n + 1)
eigenvalues.

(2) If h21(λ) = 0, h11(λ)w0 +
∏n

i=2 h22(λ)wi,mi
6= 0, then the SLP (1)∼(3) has exactly (m0 +

m1 +m2 + · · ·+mn + 2n) eigenvalues.

(3) If h21(λ) = h11(λ) = h22(λ) = 0, h12(λ) 6= 0, then the SLP (1)∼(3) has exactly (m0 +m1 +
m2 + · · ·+mn + n+ 1) eigenvalues.

(4) If none of the above conditions holds, then the SLP (1)∼(3) either has k eigenvalues,
k ∈ {1, 2, · · · ,m0 +m1 + · · ·+mn + n} or is degenerate.

Proof. From Lemma 2.1 we know

4(λ) = h11(λ)φ11(b, λ) + h12(λ)φ12(b, λ) + h21(λ)φ21(b, λ) + h22(λ)φ22(b, λ),

and observe that from Lemma 3.3 the degree of λ of φ11(b, λ), φ12(b, λ), φ21(b, λ), φ22(b, λ) in 4(λ)
arem0+m1+· · ·+mn+n,m0+m1+· · ·+mn+n−1,m0+m1+· · ·+mn+2n−1,m0+m1+· · ·+mn+2n−
2, respectively. Thus when h21(λ) 6= 0, we can deduce from Eq.(6) that the characteristic function
4(λ) is also a polynomial function of λ and with the degree is m0 +m1 + · · ·+mn + 2n+ 1. Hence
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from Fundamental Theorem of Algebra, we know that4(λ) has exactly m0+m1+ · · ·+mn+2n+1
roots, i.e. SLP (1)∼(3) has exactly m0 + m1 + · · · + mn + 2n + 1 eigenvalues. Then we complete
the proof of case (1), and the other cases can be proved in the same way.

Theorem 3.5 Let mi ∈ N(i = 0, 1, · · · , n), g1,12 gi,12 = 0, i = 2, 3, · · · , n, but g1,12
∏n

i=2(gi,11wi,0
+ gi,22wi−1,mi−1

) 6= 0. Then

(1) If h21(λ) 6= 0, then the SLP (1)∼(3) has exactly (m0 +m1 + · · ·+mn +n+ 2) eigenvalues.

(2) If h21(λ) = 0, h11(λ)w0 +
∏n

i=2 h22(λ)wi,mi
6= 0, then the SLP (1)∼(3) has exactly (m0 +

m1 +m2 + · · ·+mn + 1) eigenvalues.

(3) If h21(λ) = h11(λ) = h22(λ) = 0, h12(λ) 6= 0, then the SLP (1)∼(3) has exactly (m0 +m1 +
m2 + · · ·+mn + 2) eigenvalues.

(4) If none of the above conditions holds, then the SLP (1)∼(3) either has k eigenvalues,
k ∈ {1, 2, · · · ,m0 +m1 + · · ·+mn + 1} or is degenerate.

Proof. The proof is similar to Theorem 3.4.

Theorem 3.6 Let mi ∈ N(i = 0, 1, · · · , n), g1,12 = 0, but (g1,11w1,0 +g1,22wm0)gi,12 6= 0, i =
2, 3, · · · , n. Then

(1) If h21(λ) 6= 0, then the SLP (1)∼(3) has exactly (m0 +m1 + · · ·+mn + 2n) eigenvalues.

(2) If h21(λ) = 0, h11(λ)w0 +
∏n

i=2 h22(λ)wi,mi
6= 0, then the SLP (1)∼(3) has exactly (m0 +

m1 +m2 + · · ·+mn + 2n− 1) eigenvalues.

(3) If h21(λ) = h11(λ) = h22(λ) = 0, h12(λ) 6= 0, then the SLP (1)∼(3) has exactly (m0 +m1 +
m2 + · · ·+mn + n) eigenvalues.

(4) If none of the above conditions holds, then the SLP (1)∼(3) either has k eigenvalues,
k ∈ {1, 2, · · · ,m0 +m1 + · · ·+mn + n− 1} or is degenerate.

Proof. The proof is similar to Theorem 3.4.

Theorem 3.7 Let mi ∈ N(i = 0, 1, 2, · · · , n), g1,12 = (g1,11w1,0 +g1,22wm0)gi,12 = 0, but (g1,11w1,0
+ g1,22wm0)(gi,11wi,0 +gi,22wi−1,mi−1

) 6= 0, i = 2, 3, · · · , n. Then

(1) If h21(λ) 6= 0, then the SLP (1)∼(3) has exactly (m0 +m1 + · · ·+mn +n+ 1) eigenvalues.
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(2) If h21(λ) = 0, h11w0 +
∏n

i=2 h22(λ)wi,mi
6= 0, then the SLP (1)∼(3) has exactly (m0 +m1 +

m2 + · · ·+mn + n) eigenvalues.

(3) If h21(λ) = h11(λ) = h22(λ) = 0, h12(λ) 6= 0, then the SLP (1)∼(3) has exactly (m0 +m1 +
m2 + · · ·+mn + 1) eigenvalues.

(4) If none of the above conditions holds, then the SLP (1)∼(3) either has k eigenvalues, for
k ∈ {1, 2, · · · ,m0 +m1 + · · ·+mn} or is degenerate.

Proof. The proof is similar to Theorem 3.4.

4 Main Result

Theorem 4.1 Given any γ disjoint open sets Nl, Nl ∈ C and any γ integers nl(l = 1, 2, . . . , γ),
there exists an SLP (1)∼(3) with exactly nl + 2 eigenvalues in Nl.

Proof. By constructing the SLP (1)∼(3), we assume that (4) and (12)∼(14) hold, g1,12 gi,12 6= 0,
a21 = a22 = b11 = b12 = 0, and a11 = λα′1 − α1, a12 = −λα′2 + α2, b21 = λβ′1 + β1, b22 = −λβ′2 − β2.
Let m0 +m1 + · · ·+mn +n =

∑γ
l=0 nl. Then by Lemma 3.3 the characteristic function defined by

Eq.(7),

4(λ) = h11(λ)φ11(b, λ) + h12(λ)φ12(b, λ) + h21(λ)φ21(b, λ) + h22(λ)φ22(b, λ).

Because the calculation of 4(λ) is rather tedious, it is omitted here. Then it follows from Rouche’s
theorem that the 4(λ) has exactly nl + 2 roots in Nl.

5 A case study

In order to demonstrate the analysis results we have obtained, we consider the following SLP
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with three transmission conditions and spectral parameters in the boundary conditions:

− (py′)′ + qy = λwy, t ∈ J = (−6,−3) ∪ (−3, 0) ∪ (0, 3) ∪ (3, 9),

λy(−6) + (py′)(−6) = 0,

3y(9) + (λ− 1)(py′)(9) = 0,

− 2(py′)(−3−) + y(−3+) = 0,

y(−3−) + (py′)(−3+) = 0,

− (py′)(0−) + y(0+) = 0,

2y(0−) + (py′)(0+) = 0,

2(py′)(3−) + y(3+) = 0,

− y(3−) + (py′)(3+) = 0.

(24)

Let n = 2, we choose m0 = 1,m1 = 1,m2 = 2,m3 = 2 and suppose p, q, w are piecewise
polynomial functions defined as follows:

p(t) =



∞, t ∈ (−6,−5),

1, t ∈ (−5,−4),

∞, t ∈ (−4,−3),

∞, t ∈ (−3,−2),

1

2
, t ∈ (−2,−1),

∞, t ∈ (−1, 0),

∞, t ∈ (0, 1),

1, t ∈ (1, 2),

∞, t ∈ (2, 3),

1, t ∈ (3, 4),

∞, t ∈ (4, 5),

∞, t ∈ (5, 6),

1

2
, t ∈ (6, 7),

∞, t ∈ (7, 8),

1, t ∈ (8, 9);

q(t) =



1, t ∈ (−6,−5),

0, t ∈ (−5,−4),

1, t ∈ (−4,−3),

1, t ∈ (−3,−2),

2, t ∈ (−2,−1),

3, t ∈ (−1, 0),

1, t ∈ (0, 1),

1, t ∈ (1, 2),

1, t ∈ (2, 3),

0, t ∈ (3, 4),

1, t ∈ (4, 5),

2, t ∈ (5, 6),

0, t ∈ (6, 7),

1, t ∈ (7, 8),

0, t ∈ (8, 9);

w(t) =



0, t ∈ (−6,−5),

0, t ∈ (−5,−4),

1, t ∈ (−4,−3),

3, t ∈ (−3,−2),

0, t ∈ (−2,−1),

1, t ∈ (−1, 0),

1, t ∈ (0, 1),

1

2
, t ∈ (1, 2),

1, t ∈ (2, 3),

0, t ∈ (3, 4),

1, t ∈ (4, 5),

1, t ∈ (5, 6),

0, t ∈ (6, 7),

2, t ∈ (7, 8),

0, t ∈ (8, 9).

(25)

From the SLP (24), we have

Aλ =

(
1 −λ
0 0

)
, Bλ =

(
0 0
3 λ− 1

)
,

C1 =

(
0 −2
1 0

)
, D1 =

(
1 0
0 1

)
, C2 =

(
0 −1
2 0

)
,

D2 =

(
1 0
0 1

)
, C3 =

(
0 2
−1 0

)
, D3 =

(
1 0
0 1

)
,
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and

det(C1) = det(C2) = det(C3) = 2 > 0, det(D1) = det(D2) = det(D3) = 1 > 0,

G1 = −D−11 C1 =

(
0 2
−1 0

)
, G2 = −D−12 C2 =

(
0 1
−2 0

)
, G3 = −D−13 C3 =

(
0 −2
1 0

)
,

g1,12 = 2 6= 0, g2,12 = 1 6= 0.

We can deduce that the the characteristic function

4(λ) =− 3λ8 − 22λ7 + 43λ6 − 15λ5 − 126λ4 + 138λ3 − 63λ2 + 13λ− 1,

so the SLP (24) has exactly m0 +m1 +m2 +m3 + n = 8 eigenvalues

λ1 = −8.9338, λ2 = −1.6971, λ3 = 0.2107− 0.0438i, λ4 = 0.2107 + 0.0438i,

λ5 = 0.3401− 0.2543i, λ6 = 0.3401 + 0.2543i, λ7 = 1.0979− 1.1932i, λ8 = 1.0979 + 1.1932i.

6 Conclusion

By using the construction method of discontinuous function solution, it is concluded that the
the finite spectrum of SLP with n transmission conditions and spectral parameters in the boundary
conditions has at most m0 +m1 + · · ·+mn + 2n+ 1 eigenvalues. In addition, we show that these
m0 + m1 + · · · + mn + 2n + 1 eigenvalues can be distributed arbitrarily throughout the complex
plane in the non-self-adjoint case and anywhere along the real line in the self-adjoint case. Finally,
we give a specific example to verify the accuracy of this conclusion.
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