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Abstract

This paper aims to study a (2+1)-dimensional Biological population model with the porous medium by Lie symmetry method.
By Using commutation tables, the one-dimensional optimal subalgebras for the porous medium equation is given. Group invariant
solutions of this model are constructed by the reduction equations. Further, the dynamic behavior of the model graphically is
presented.
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1. Introduction

Nonlinear partial differential equations(NPDEs) are studied by many scholars in various fields such as plasma physics, chem-
ical physics, applied mathematics, mechanical systems, ocean waves, optics, quantum mechanics, biological mathematics and so
on [1]-[7]. Because the solutions of NPDEs can describe different complicated physical phenomena, there are a variety of math-
ematical methods to construct the exact solutions, such as the bi-factor method [8], the inverse scattering method [9], Lagrange
characteristic method [10], extended transformed rational function method [11], the first integral method [12], the modified ex-
tended tanh-function method [13], the modified simple equation method [14], the extended F-expansion method [15] and so on.
Recently, Silem et al [16] studied the vc-nNLS equation by the Hirota method. The authors [17] studied the Mixed Integer Linear
Programming models with strong relaxations for the shallow water waves. Lie symmetry analysis [18] plays a significant role
in obtaining exact solutions, linearization and conservation laws of nonlinear PDEs. A number of the literatures have referred to
the method [19]-[26].

The dispersal or emigration is a key factor in the regulation of population of the species. Gurtin and MacCamy [27] gave
a special transformation and confirmed existence and uniqueness for the one-dimensional initial-value problem as well as the
solution for an initial point source, which could be applied to the above equation.

d
dt

∫
Γ

udV +

∫
∂Γ

u~ν · n̂dV =

∫
Γ

gdV,

where Γ represents any regular subregion, u is the population density, ~ν is the diffusion velocity and n̂ is the outward unit normal
to the ∂Γ of Γ, g stands for the population supply due to births and deaths. Denote ~ν = −F(u) M u and g = g(u) [28], the
degenerate parabolic equations are given by

ut = F(u)xx + F(u)yy + g(u), t ≥ 0, x, y ∈ R. (1.1)

When g(u) = αu, α = constant, it satisfies Malthusian Law [27]. When g(u) = α1u − α2u2 and α1, α2 are constants, it satisfies
Verhulst model[27]. When g(u) = αuk, α > 0, 0 < k ≤ 1, it is a porous media model [29, 30]. Different graphical representations
generated by (1.1) show the specific spread. It is very helpful in demonstrating the enlargement of viruses, parasites and diseases,
finding the greatest harvest for farmers, working and controlling the delicate species and many other fields [31, 32].

To consider a walk through a rectangular mesh, in which individuals may either stay at their present location or may move in
a direction of the lowest population density, a model leads to the normal biological population model

ut = u2
xx + u2

yy + g(u), (1.2)
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which means F(u) = u2 in Eq. (1.1). In [33], Lu investigated the Hölder estimates of solutions of Eq. (1.2). Shakeri and Dehghan
[34] used the variational iteration method and Adomian decomposition method to study numerical solution of a more general
form of g as g(u) = hua(1 − rub). Liew et al [35] considered numerical modeling of the biological population problems by using
an improved element-free Galerkin method. Shagolshem et al [36] constructed exact solutions for biological population model
with Malthusian law by using Lie point symmetry method, furthermore, the conservation laws were analysed. Arora et al [37]
considered invariant solutions of a Verhulst biological population model by using Lie symmetry analysis and conservation laws
for this model by the multiplier method. However, Lie symmetry analysis of Eq. (1.2) with porous media law is still open.

Some authors tackled the time fractional-order biological population model

∂θt u = u2
xx + u2

yy + g(u). 0 < θ < 1. (1.3)

For example, Srivastava et al [38] found the analytical solution of two-dimensional time fractional-order biological population
model. Zhang et al [39] firstly studied exact solutions of Eq. (1.3) by Lie symmetry analysis and the F-expansion method. Khater
[40] considered the nonlinear fractional biology population model

∂θt u = ∂2θ
xxu2 + ∂2θ

yyu2 + c(u2 − s), 0 < θ ≤ 1. (1.4)

in which θ, c and s are random constants, the exact solutions are constructed by using the generalized Khater (GK) technique and
utilizing Atangana’s conformable fractional derivative operator. Various forms of solutions of the biological population model
with a novel beta−time derivative operators were obtained via the extended Sinh−Gordon equation expansion method and the
Expa function method by Nisar et al [41]. Sarwar [42] studied the fractional-order biological population models with Malthusian,
Verhulst, and porous media laws by the optimal homotopy asymptotic method.

Motivated by the above nonlinear population system, in this paper, we perform Lie symmetry analysis method for the (2+1)-
dimensional Biological population model with porous media law

ut − (u2)xx − (u2)yy + α
√

u = 0. (1.5)

In Section 2, Lie symmetry analysis and the one-dimensional optimal system of infinitesimal generators by commutator table are
considered. Section 3 constructs several exact solutions of Eq. (1.5) by the reduction equations based on the optimal subalgebras.
In Section 4, physical analysis of some exact solutions are discussed. Finally we conclude the results in Section 5.

2. Lie point symmetry and optimal system

In this Section, Lie point symmetries [43] can be analyzed and an optimal system is derived. Consider the Lie group of point
transformations

t = t + ετ(t, x, y, u) + O(ε2),

x = x + εζ(t, x, y, u) + O(ε2),

y = y + εχ(t, x, y, u) + O(ε2),

u = u + εψ(t, x, y, u) + O(ε2),

in which ε is a parameter, the functions τ, ζ, η, ψ are the infinitesimals generators. Then the vector field associated with Lie
algebra of Eq.(1.5) is

< = τ(t, x, y, u)∂t + ζ(t, x, y, u)∂x + χ(t, x, y, u)∂y + ψ∂u.

By applying the second prolongation Pr2< to Eq. (1.5), and solving the determined equations, we obtain

τ = c1t + c2, ζ = −c3y +
3
2

c1x + c5, χ =
3
2

c1y + c3x + c4, ψ = 2c1u

in which c1, · · · , c5 are arbitrary constants. Then< can be rewritten as

< = (−c3y +
3
2

c1x + c5)∂x + (
3
2

c1y + c3x + c4)∂y + (c1t + c2)∂t + 2c1u∂u.

Furthermore, corresponding to the vector field<i,

<1 = t∂t +
3
2

x∂x +
3
2

y∂y + 2u∂u,<2 = ∂t,<3 = −y∂x + x∂y,<4 = ∂y,<5 = ∂x. (2.1)

we get the symmetry groups Gi : (t, x, y, u)→ (t, x, y, u):
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G1 : (t, x, y, u)→ (teε , xe
3
2 ε , ye

3
2 ε , ue2ε),

G2 : (t, x, y, u)→ (t + ε, x, y, u),

G3 : (t, x, y, u)→ (t, x cos ε − y sin ε, x sin ε + y cos ε, u),

G4 : (t, x, y, u)→ (t, x, y + ε, u),

G5 : (t, x, y, u)→ (t, x + ε, y, u),

Theorem. If u = f (t, x, y) satisfies Eq.(1.5), the new solutions ui, (i = 1, · · · , 5) can be given by

u1 = e2ε f (te−ε , xe−
3
2 ε , ye−

3
2 ε),

u2 = f (t − ε, x, y),

u3 = f (t, x cos ε + y sin ε, y cos ε − x sin ε),

u4 = f (t, x, y − ε),

u5 = f (t, x − ε, y).

For (2.1), by the definition of Lie brackets [<i,< j] = <i< j −< j<i, the following Table can be obtained.

Table 1: Commutator Table of Lie algebra for Eq.(1.5).
∗ <1 <2 <3 <4 <5

<1 0 −<2 0 − 3
2<4 − 3

2<5
<2 <2 0 0 0 0
<3 0 0 0 <5 −<4

<4
3
2<4 0 −<5 0 0

<5
3
2<5 0 <4 0 0

Generators<1, · · · ,<5 are linearly independent so that any infinitesimal of Eq.(1.5) can be expressed by

< = l1<1 + l2<2 + l3<3 + l4<4 + l5<5.

Next, for constructing the one-dimensional optimal system, l = (l1, l2, l3, l4, l5), for i,= 1, · · · , 5, we have

Ei = ck
i jl j∂lk

in which ck
i j can be derived by [<i,< j] = ck

i j<k. Then E1, E2, E3, E4, E5 are given by

E1 = c2
12l2∂l2 + c4

14l4∂l4 + c5
15l5∂l5 = −l2∂l2 −

3
2 l4∂l4 −

3
2 l5∂l5 ,

E2 = c2
21l1∂l2 = l1∂l2 ,

E3 = c5
34l4∂l5 + c4

35l5∂l4 = l4∂l5 − l5∂l4 ,

E4 = c4
41l1∂l4 + c5

43l3∂l5 = 3
2 l1∂l4 − l3∂l5 ,

E5 = c5
51l1∂l5 + c4

53l3∂l4 = 3
2 l1∂l5 + l3∂l4

(2.2)

With the parameters a j and l |a j=0= l, j = 1, · · · , 5, Lie equations can be expressed as

dl1
da1

= 0, dl2
da1

= −l2,
dl3
da1

= 0, dl4
da1

= − 3
2 l4,

dl5
da1

= − 3
2 l5,

dl1
da2

= 0, dl2
da2

= l1,
dl3
da2

= 0, dl4
da2

= 0, dl5
da2

= 0.
dl1
da3

= 0, dl2
da3

= 0, dl3
da3

= 0, dl4
da3

= −l5,
dl5
da3

= l4.
dl1
da4

= 0, dl2
da4

= 0, dl3
da4

= 0, dl4
da4

= 3
2 l1,

dl5
da2

= −l3.
dl1
da5

= 0, dl2
da5

= 0, dl3
da5

= 0, dl4
da5

= l3,
dl5
da2

= 3
2 l1

(2.3)
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By solving Eqs. (2.3), we obtain the linear transformations

T1 : (l1, l2, l3, l4, l5) =
(
l1, e−a1 l2, l3, e−

3
2 a1 l4, e−

3
2 a1 l5

)
,

T2 : (l1, l2, l3, l4, l5) = (l1, a2l1 + l2, l3, l4, l5),
T3 : (l1, l2, l3, l4, l5) = (l1, l2, l3,−l5 sin a3 + l4 cos a3, l4 sin a3 + l5 cos a3),
T4 : (l1, l2, l3, l4, l5) =

(
l1, l2, l3, 3

2 l1a4 + l4,−l3a4 + l5
)
,

T5 : (l1, l2, l3, l4, l5) =
(
l1, l2, l3, l3a5 + l4, 3

2 l1a5 + l5
)
.

(2.4)

Simplify the vector l through the transformation T1 − T5 in (2.4).

Case 1 l1 , 0. Let a2 = −
l2
l1
, a4 = −

2
3

l4
l1
, a5 = −

2
3

l5
l1

in T2,T4 and T5, the simplified vector is

(l1, 0, l3, 0, 0).

we get the representatives as follows
<1,<1 ±<3.

Case 2 l1 = 0, l3 , 0. The vector reduces to
(0, l2, l3, l4, l5)

Let a4 =
l5
l3
, a5 = −

l4
l3

in T4 and T5, we let l4 = 0, l5 = 0. Thus we can get the vector

(0, l2, l3, 0, 0).

The representatives can be given by
<3,<3 ±<2.

Case 3 l1 = 0, l3 = 0 and l4 , 0. The vector is
(0, l2, 0, l4, l5).

Let a3 = − arctan
l5
l4

in T3 and get l5 = 0. The simplified vector is

(0, l2, 0, l4, 0),

which means
<4,<4 ±<2.

Case 4 l1 = l3 = l4 = 0. Then the vector is
(0, l2, 0, 0, l5).

The representatives should be
<2,<5,<2 ±<5.

Theorem. <1,<2,<3,<4,<5 generate the one-dimensional optimal system S : generated by

<1,<1 ±<3,<3,<3 ±<2,<4,<4 ±<2,<2,<5,<2 ±<5.

3. Symmetry reductions and exact solutions

In this section, symmetry reductions and exact solutions of Eq.(1.5) will be discussed.

3.1. <1 = t∂t + 3
2 x∂x + 3

2 y∂y + 2u∂u

The corresponding characteristic equation for<1 is

dx
3
2 x

=
dy
3
2 y

=
dt
t

=
du
2u
,

which generates
u(t, x, y) = t2φ(ξ, η),
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where ξ = x

t
3
2

and η =
y

t
3
2

are the invariants. Then Eq.(1.5) reduces to

−3
2
φξξ +

−3
2
φηη + 2φ − 2φ2

ξ − 2φφξξ − 2φ2
η − 2φφηη + α

√
φ = 0. (3.1)

The symmetry group of Eq. (3.1) is spanned by

ψφ = 0, ζξ = −C1η, ζη = C1ξ,

where C1 is a constant. Then we can get the characteristic equation

dξ
−C1η

=
dη

C1ξ
=

dφ
0
,

which means Eq. (3.1) has a solution given by
φ(ξ, η) = ρ(τ),

where τ = ξ2 + η2. Then the reduction equation is

8τρρ′′ + (8ρ + 8τρ′ + 3τ)ρ′ − (α + 2
√
ρ)
√
ρ = 0, (3.2)

which can be rewritten as
(8τρρ′ + 3τρ)′ = (α

√
ρ + 5ρ). (3.3)

Integrate (3.3) once, we obtain

8ρρ′ + 3ρ =
1
τ

∫ τ

0
(α
√
ρ + 5ρ)dω. (3.4)

Then we can get an implicit solution

ρ(τ) = ρ(0) − 3τ +

∫ τ

0

∫ χ

0 (α
√
ρ + 5ρ)dω

8χρ(χ)
dχ, (3.5)

and a special solution

ρ =
α2

4
.

Then we get an exact solutions of Eq.(1.5)

u(t, x, y) =
α2t2

4
. (3.6)

3.2. <3 = −y∂x + x∂y

The invariance are t, u, r = x2 + y2, which means the invariant solution is

u(t, x, y) = φ(t, r).

Then Eq. (1.5) can be transformed to
− 4φ2

r r − 4φφrrr − 4φφr + α
√
φ + φt = 0. (3.7)

The infinitesimals generators are given by

ψφ = 2C1φ, ζt = C1t + C2, ζr = 3C1r.

The characteristic equations is
dr

3C1r
=

dt
C1t + C2

=
dφ

2C1φ
.

Let C1 = 1,C2 = 0, thus the solution of (3.7) is
φ(t, r) = ρ(τ)t2,

in which τ = r
t3 can be obtained. The reduced equation of Eq.(3.7) is

− 4τρ′2 − 4τρρ′′ − 4ρρ′ − 3τρ′ + α
√
ρ + 2ρ = 0, (3.8)
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which can be rewritten as
(4τρρ′ + 3τρ)′ = (α

√
ρ + 5ρ). (3.9)

Integrate (3.9) once,

4ρρ′ + 3ρ =
1
τ

∫ τ

0
(α
√
ρ + 5ρ)dω, (3.10)

then we can get an implicit solution

ρ(τ) = ρ(0) − 3τ +

∫ τ

0

∫ χ

0 (α
√
ρ + 5ρ)dω

4χρ(χ)
dχ, (3.11)

and a special solution

ρ =
α2

4
.

Then we get the same exact solutions as (3.6).

3.3. <4 = ∂y

The invariant solution of Eq.(1.5) is
u(x, y, t) = φ(x, t),

Then Eq.(1.5) can be written as
φt − 2φ2

x − 2φφxx + α
√
φ = 0. (3.12)

The infinitesimal generators of Eq.(3.12) are

ψφ = 2C1φ, ζt = C1t + C2, ζx =
3
2

C1x + C3,

where Ci, i = 1, 2, 3 are arbitrary constants. Then we have

dx
3
2C1x + C3

=
dt

C1t + C2
=

dφ
2C1φ

.

By making C3 = 1,C1 = C2 = 0, φ is given as
φ(x, t) = ρ(t),

Eq. (3.12) reduces to
ρ′ + α

√
ρ = 0.

The solution is
ρ =

(c − αt
2

)2
.

Then we obtain invariant solution of Eq.(1.5)

u(t, x, y) =
c2

4
−
αct
2

+
α2t2

4
. (3.13)

If considering C1 = 0,C2 = C3 = 1, thus we can obtain

φ(x, t) = ρ(W),

where W = x − t. Eq. (3.12) reduces to
− 2ρρ′′ − (1 + 2ρ′)ρ′ + α

√
ρ = 0, (3.14)

The implicit solution of Eq. (3.14) is

ρ2 + ρ = c0 −

∫ W

0
α
√
ρdω. (3.15)

If α = 0, we have

ρ = 2c1

[
LambertW

(
−

1
2e

e−
W+c2

4c1

)
+ 1

]
and

ρ =
1
2

W + c.
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Hence we get the invariant solutions of Eq.(1.1)

u(t, x, y) = ρ = 2c1

[
LambertW

(
−

1
2e

e−
x−t+c2

4c1

)
+ 1

]
(3.16)

and
u(x, y, t) =

1
2

(x − t) + c.

When C1 = 1,C2 = C3 = 0, we have
φ(x, t) = ρ(W)t2,

where W = x

t
3
2
. Eq.(3.12) can be reduced to

− 2ρρ′′ +
(
−

3
2

W − 2ρ′
)
ρ′ + α

√
ρ + 2ρ = 0. (3.17)

which can be rewritten as (
2ρρ′ +

3
2

Wρ
)′

=
(
α
√
ρ +

7
2
ρ
)
. (3.18)

Integrate (3.18) once,

2ρρ′ +
3
2

Wρ =

∫ W

0

(
α
√
ρ +

7
2
ρ
)
dω, (3.19)

then we can get an implicit solution

ρ(τ) = ρ(0) −
3
8

W2 +

∫ W

0

∫ χ

0

(
α
√
ρ + 7

2ρ
)
dω

2ρ(χ)
dχ, (3.20)

and a special solution

ρ =
α2

4
.

Then an exact solutions of Eq.(1.5) is the same as (3.6).

3.4. <5 = ∂x

The invariant solution of Eq.(1.5) is
u(x, y, t) = φ(y, t),

We can get
φt − 2φ2

y − 2φφyy + α
√
φ = 0. (3.21)

Furthermore, Eq. (3.21) yields

ψφ = 2C1φ, ζt = C1t + C2, ζy =
3
2

C1t + C3,

where C1,C2,C3 are the arbitrary constants. So that the characteristic equations is

dy
3
2C1y + C3

=
dt

C1t + C2
=

dφ
2C1φ

.

If C1 = 0,C2 = C3 = 1, φ is given by
φ(y, t) = ρ(W),

where W = y − t. The reduced equation is
− 2ρρ′′ − (1 + 2ρ′)ρ′ + α

√
ρ = 0. (3.22)

Similar to (3.14), we can get the implicit solution of Eq. (3.22) is

ρ2 + ρ = c0 −

∫ W

0
α
√
ρdω. (3.23)
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If α = 0, the invariant solutions of Eq.(1.5) are given by

u(t, x, y) = ρ = 2c1

[
LambertW

(
−

1
2e

e−
y−t+c2

4c1

)
+ 1

]
(3.24)

and
u(x, y, t) =

1
2

(y − t) + c.

When C1 = 1,C2 = C3 = 0, φ can be given by

φ(y, t) = ρ(W)t2,where W =
y

t
3
2

.

Then we get the equation as follow

− 2ρρ′′ +
(
−

3
2

W − 2ρ′
)
ρ′ + α

√
ρ + 2ρ = 0. (3.25)

which is similar to Eq. (3.17).

3.5. <4 +<2 = ∂y + ∂t
The characteristic equation for<2 +<4 is

dy
1

=
dt
1
,

Then corresponding invariant solution is
u(t, x, y) = φ(x, z)

where z = y − t. Substituting u into Eq.(1.1),

− φz − 2φ2
z − 2φφzz − 2φ2

x − 2φφxx + α
√
φ = 0. (3.26)

Correspondingly we have
ηφ = 0, ζz = C2, ζx = C1.

Therefore, the characteristic equation is
dx
C1

=
dz
C2

=
dφ
0
.

Choose C1 = 1,C2 = −1, φ could be given as
φ(x, z) = ρ(ω),

where ω = z + x = y + x − t. Then
− 4ρρ′′ − ρ′ − 4ρ′2 + α

√
ρ = 0 (3.27)

is obtained. One special solution is given by

ρ = 4c1

[
LambertW

[
1
4

e−
ω+c2
16c1
−1

]
+ 1

]
.

So the invariant solutions of Eq. (1.5) can be given by

u(t, x, y) = 4c1

[
LambertW

[
1
4

e−
y+x−t+c2

16c1
−1

]
+ 1

]
. (3.28)

3.6. <5 +<2 = ∂x + ∂t
The process is similar to that when<4 +<2. First, we can get

dx
1

=
dt
1
,

Then the invariant solution of Eq. (1.5) is
u(t, x, y) = φ(y, z)

where z = x − t. Substituting u into Eq.(1.5),

− φz − 2φ2
z − 2φφzz − 2φ2

y − 2φφyy + α
√
φ = 0. (3.29)
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Correspondingly we have
ηφ = 0, ζy = C2, ζz = C1.

Therefore, the characteristic equation is
dy
C2

=
dz
C1

=
dφ
0
.

Choose C2 = 1,C1 = −1, φ could be given as
φ(y, z) = ρ(ω),

where ω = z + y = y + x − t. Then
− 4ρρ′′ − ρ′ − 4ρ′2 + α

√
ρ = 0 (3.30)

is obtained. Hence the invariant solutions are the same as (3.28).

3.7. <2 +<3 = ∂t − y∂x + x∂y

The similarity variables are ψ = x sin t+y cos t and ς = x cos t−y sin t. The group invariant solution of Eq. (1.5) is u = φ(ψ, ς).
Then Eq. (1.5) can be rewritten as

φψς − ψφς − 2φ2
ψ − 2φ2

ς − 2φφψψ − 2φφςς + α
√
φ = 0. (3.31)

Correspondingly we have
ηφ = 0, ζψ = −C1ς, ζς = C1ψ.

Therefore, the characteristic equation is
dψ
−C1ς

=
dψ

C1ψ
=

dφ
0
.

Then φ could be given as
φ(ψ, ς) = ρ(ω),

where ω = ψ2 + ς2 = x2 + y2. Obviously, we can get

− 8ωρ′2 − 8ρρ′ − 8ωρρ′′ + α
√
ρ = 0 (3.32)

is obtained. Thus one special solution of Eq. (1.5) is

u(x, y, t) =

√
2c1 ln(x2 + y2) + 2c2.

4. Results and discussion

It’s better to use graphical analysis to express mathematical expressions and understand the dynamical behavior physically.
In this section, we provide the solutions with the physical presentations. The solutions include arbitrary constants and functions.
So we can take the appropriate constants. The solution (3.24) in the form of LambertW function. In Figure 1(c), the population
density u rises over time but decreases with increasing y. This phenomenon occurs only when the population reproduce or migrate
into a region. For the solution (3.28) in the form of LambertW function, when we take a fixed time, the population density can
be visually represented in Figure 1. The population density is increasing over time, decreasing with both x and y. One of the key
factor to this phenomenon is an expand in the birth rate.

Zhang et al [35] applied an improved element-free Galerkin method for numerical modeling of the biological population
problems and our model is a special case studied in this article. The results of this paper can provide theoretical knowledge for
numerical simulation in [35]. Compared with [37], the exact solutions of Eq. (1.5) show some different phenomenon from a
Verhulst biological population model.
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(a) (b) (c)

Figure 1: The solution (3.24) at c1 = −1, c2 = 10 : (a). 3D profile; (b). the density of the solution; (c). 2D profile of the solution with respect to y at t = 5, t = 7,
t = 8.

(a) (b) (c)

Figure 2: The solution (3.28) at c1 = 2, c2 = 3 : (a). 3D profile with t = 1; (b). 2D sketch of (3.28) for t at x = 5, x = 10, x = 15 and y = 0; (c). 2D profile of
(3.28) with respect to x at t = 5, t = 7, t = 8 and y = 1.

5. Conclusion

This paper constructs group invariant solution of the (2+1)-dimensional Biological population model with porous media law
by exploring Lie symmetry analysis method. Lie point symmetries of Eq. (1.5) are analysed and the optimal system with the help
of commutator table is obtained. Furthermore, we find group invariant solutions of this model according to the corresponding
reduced nonlinear ordinary differential equations, which are related to the population density and affect the population control.
Finally we present the discussion and dynamical analysis by the graphical representations. In the future, numerical simulations
and machine learning for the biological population model will overcome the paper’s drawbacks and advance the population
dynamics study.
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