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Abstract

This paper introduces a two-grid multipoint flux mixed finite element (MFMFE)
method for solving nonlinear parabolic problems. The MFMFE method is advan-
tageous due to its ability to decouple saddle point algebraic systems. The two-grid
algorithm transforms nonlinear problems into smaller nonlinear systems on coarse
grids and linear problems on fine grids, facilitating rapid decoupling of nonlinear
equations. We present semi-discrete and fully discrete backward Euler schemes
for the model problem. Theoretical results demonstrate the convergence order of
velocity and pressure. A numerical example validates the effectiveness of the pro-
posed algorithm, showing that the two-grid MFMFE method significantly reduces
CPU running time compared to the standard MFMFE method.

Keywords: nonlinear parabolic problems, multipoint flux mixed finite element,
two-grid method, error estimates, numerical example

1 Introduction

We consider the following nonlinear parabolic problem:

∂p

∂t
−∇ · (K∇p) = f(p), (x, y, t) ∈ Ω× (0, T ], (1.1)

p(x, y, 0) = p0(x, y), (x, y) ∈ Ω, (1.2)

K∇p · n = 0, (x, y, t) ∈ ∂Ω× (0, T ], (1.3)

1



where the polygon domain Ω ⊂ R2 has a boundary ∂Ω, in flow in porous media
modeling, p denotes the fluid pressure, n is the outward unit normal on ∂Ω, K is the
symmetric positive definite tensor, and f(p) represents the external flow rate.

The assumptions for the solution of (1.1)-(1.3) are given as follows:
(1) For some positive constants k0, k1,

k0ξ
T ξ ≤ ξTK(x)ξ ≤ k1ξ

T ξ, ∀x ∈ Ω, ∀ξ ∈ R2. (1.4)

(2) We assume that the solution p ∈ L2(0, T ;W 2,4(Ω)), and f(p) is twice continuously
differentiable.

Parabolic equations have been widely used in physical phenomena such as heat
conduction processes, electromagnetic field transmission, and wave propagation prob-
lems in porous media. In the past few decades, scholars have conducted extensive
research, and classic numerical methods include the finite difference method [1, 2],
finite element method [3, 4], finite volume element method [5, 6], and so on.

Moreover, to obtain local mass conservation and to accurately approximate the
gradient of the principal variable, the mixed finite element (MFE) method is widely
used [7, 8]. However, the disadvantage of the MFE method is that it requires solving
a saddle point type algebraic system, which is computationally intensive. Mary F.
Wheeler and Ivan Yotov proposed a multipoint flux mixed finite element (MFMFE)
method [9]. This method can not only keep the advantages of the MFE method but also
decouple the saddle point type algebraic system. The development and application of
this method can be found in [10–16]. In [10], a posterior error estimation for MFMFE
method was studied. In [11, 14], the MFMFE method was presented to solve the
Darcy-Forchheimer model. The MFMFE method of decoupling miscible displacement
problem was studied in [12, 15].

The model problem is a large nonlinear system. It is necessary to study an efficient
algorithm. Inspired by Xu [17, 18], the two-grid algorithm is a suitable candidate. The
main idea of the algorithm is to generate a rough approximation of the solution using
the coarse grid space, then correct it by solving a linear system on the fine grid space.
Many scholars have applied this method to different model problems [19–25]. As far
as we know, no one has used the two-grid method to the MFMFE approximation
schemes for strongly nonlinear parabolic problems to achieve equation decoupling and
accelerate solutions.

In this paper, we will consider a novel two-grid MFMFE method for nonlinear
parabolic problems (1.1)-(1.3). Solving a large nonlinear system on the fine grid is
reduced to solving a linear problem on the fine grid space and a small nonlinear
problem on the coarse grid space. Theoretical deduction and numerical experiment
show that the new method can decouple nonlinear equations quickly and have certain
theoretical and practical application values. The rest of this paper is arranged as
follows. In section 2, the MFMFE spaces and the semi-discrete and fully discrete
approximation scheme for nonlinear parabolic problems are presented. A two-grid
algorithm of the MFMFE discretization is proposed and error estimates of the schemes
are derived in section 3. In section 4, a numerical example is given to illustrate the
theoretical analysis and to indicate that the computing time is greatly reduced.
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2 Multipoint flux mixed finite element method

2.1 Some notations and weak formulation

For the domain Ω ⊂ R2, let W k,q(Ω) be a standard Sobolev space, where 1 ≤ q ≤ ∞.
The norm is defined as

‖u‖Wk,q(Ω) = ‖u‖k,q = (

∫
Ω

∑
|α|≤k

|∂αu|q)1/q, 1 6 q <∞,

‖u‖Wk,∞(Ω) = max
|α|6k

‖∂αu‖0,∞ = max
|α|6k

(ess sup
x∈Ω
|∂αu|).

When q = 2, let W k,2(Ω) = Hk(Ω) be a Hilbert space equipped with the norm ‖ · ‖k,2.
We denote by Ls(0, T ;W k,q(Ω)) the Banach spaces of all Ls integrable functions from
[0, T ] into W k,q(Ω) with norm

‖u‖Ls(0,T ;Wk,q(Ω)) = (

∫ T

0

‖u‖sWk,q(Ω)dt)
1
s .

Let 0 = t0 < t1 < · · · < tN = T be the partition of time interval [0, T ] with tn = n∆t.
We will also use the space

H(div; Ω) = {v ∈ (L2(Ω))2 : ∇ · v ∈ L2(Ω)},

equipped with the norm

‖v‖div = (‖v‖2 + ‖∇ · v‖2)1/2. (2.1)

Denoting u = −K∇p, the weak formulation of (1.1)-(1.3) is the following: find
(u, p) ∈ V ×W such that

(K−1u, v)− (p,∇ · v) = 0, ∀v ∈ V, (2.2)

(
∂p

∂t
, w) + (∇ · u, w) = (f(p), w), ∀w ∈W, (2.3)

where

V = {v ∈ H(div; Ω) : v · n = 0 on ∂Ω}, W = L2(Ω).

In this paper, we will use C to represent a general positive constant that is independent
of the discretization parameter.

2.2 Multipoint flux finite element spaces

Let Γh be a shape regular and quasi-uniform finite element partition [26] of Ω consisting
of convex quadrilaterals, where h = maxE∈Γh

diam(E). For any element E ∈ Γh,

3



there exists a bijection mapping FE : Ê → E, where Ê is the reference unit square
with vertices r̂1 = (0, 0)T , r̂2 = (1, 0)T , r̂3 = (1, 1)T , r̂4 = (0, 1)T . Denote by ri =
(xi, yi)

T (i = 1, ..., 4) the four corresponding vertices of element E, the Jacobian matrix
by DFE and JE = |det(DFE)|. Denote the inverse mapping by F−1

E , its Jacobian
matrix by DF−1

E , and JF−1
E

= |det(DF−1
E )|. We have that

DF−1
E (x) = (DFE)−1(x̂), JF−1

E
(x) =

1

JE(x̂)
.

The bilinear mapping given by

FE(r̂) = r1(1− x̂)(1− ŷ) + r2x̂(1− ŷ) + r3x̂ŷ + r4(1− x̂)ŷ. (2.4)

We define the lowest order BDM1 mixed finite element space [27, 28], which is
defined on the reference unit as

V̂ (Ê) = P1(Ê)2 + r curl(x̂2ŷ) + s curl(x̂ŷ2)

=

(
α1x̂+ β1ŷ + γ1 + rx̂2 + 2sx̂ŷ

α2x̂+ β2ŷ + γ2 − 2rx̂ŷ − sŷ2

)
,

(2.5)

Ŵ (Ê) = P0(Ê), (2.6)

where r, s, α1, α2, β1, β2, γ1, γ2 are real constants and Pk represents the space of
polynomials of degree less than or equal to k.

The outward unit normal vectors to the edges of E and Ê are denoted by ni and
n̂i, i = 1, ..., 4. The degrees of freedom for v̂ ∈ V̂ (Ê) can be chosen to be the values
of v̂ · n̂ê at any two points on each edge ê. We can obtain the velocity space on any
element E by Piola transformation to v ↔ v̂ : v = 1

JE
DFE v̂ ◦ F−1

E , and the pressure

space can be obtained by transformation to w ↔ ŵ : w = ŵ ◦ F−1
E .

The BDM1 spaces are given by

Vh = {v ∈ V : v |E↔ v̂, v̂ ∈ V̂ (Ê),∀E ∈ Γh}, (2.7)

Wh = {w ∈W : w |E↔ ŵ, ŵ ∈ Ŵ (Ê),∀E ∈ Γh}. (2.8)

We define a BDM1 projection operator Πh : V → Vh, which satisfies

(∇ · (u−Πhu), w) = 0, ∀w ∈Wh, (2.9)

‖u−Πhu‖0,q ≤ C‖u‖r,qhr,
1

q
≤ r ≤ 2, (2.10)

‖∇ · (u−Πhu)‖0,q ≤ C‖∇ · u‖r,qhr, 0 ≤ r ≤ 1. (2.11)

In addidition, we define L2 orthogonal projection Qh : W →Wh , which satisfies

(p−Qhp, w) = 0, ∀w ∈Wh, (2.12)

‖p−Qhp‖0,q ≤ C‖p‖r,qhr, 0 ≤ r ≤ 1. (2.13)
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For u,v ∈ Vh, we introduce the global quadrature rule

(K−1u,v)Q =
∑
E∈Γh

(K−1u,v)Q,E . (2.14)

The integration on any element E is performed by mapping to the reference element
Ê. The quadrature rule is defined on Ê. Using the transformation of the reference unit
and the physical unit, we have

(K−1u,v)Q,E ≡
∫
E

K−1u · vdx

=

∫
Ê

K̂−1 1

JE
DFEû ·

1

JE
DFE v̂JEdx̂

=

∫
Ê

1

JE
DFTE K̂

−1DFEû · v̂dx̂

=

∫
Ê

κ−1û · v̂dx̂

≡ |Ê|
4

4∑
i=1

κ−1(r̂i)û(r̂i) · v̂(r̂i),

(2.15)

where

κ = JEDF
−1
E K̂(DF−1

E )T . (2.16)

We define the quadrature error on the element to be

σE(K−1u,v) ≡ (K−1u,v)E − (K−1u,v)Q,E . (2.17)

For the subsequent error analysis, the following lemmas are listed.
Lemma 2.1. [9] If u ∈ Vh(E), for all constant vectors v0, then

σE(u,v0) = 0. (2.18)

Lemma 2.2. [9] There exists a positive constant C independent of h, such that

(K−1v,v)Q ≥ C‖v‖2, ∀v ∈ Vh. (2.19)

Lemma 2.3. [29] If K−1 ∈W 1,∞ for all elements E, then there exists a constant C
independent of h, such that

|σ(K−1Πhu,v)| ≤ Ch‖u‖1‖v‖. (2.20)
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Lemma 2.4. [30] Suppose g is the fragment smooth function on partition Γh, and ḡ is
the mean value on the partition unit and ‖∇g‖0,∞ ≤M , then it has the following form

|(g(p)θ, φ)− (ḡθ, φ)| ≤ CMh‖θ‖‖φ‖. (2.21)

Next, two MFMFE approximation schemes for the model problem are proposed,
where the semi-discrete scheme is: Find (uh, ph) ∈ Vh ×Wh, such that

(K−1uh,vh)Q − (ph,∇ · vh) = 0, ∀vh ∈ Vh, (2.22)

(
∂ph
∂t

, wh) + (∇ · uh, wh) = (f(ph), wh), ∀wh ∈Wh. (2.23)

And the fully discrete backward Euler scheme is: Find (unh, p
n
h) ∈ Vh ×Wh, such that

(K−1unh,vh)Q − (pnh,∇ · vh) = 0, ∀vh ∈ Vh, (2.24)

(
pnh − p

n−1
h

∆t
, wh) + (∇ · unh, wh) = (f(pnh), wh), ∀wh ∈Wh. (2.25)

In order to prove the main theorem of this article, we will use some projection
techniques and estimates between the solution of the formulation (2.22)-(2.23) and
the elliptic-mixed projection defined below.

We define the following mixed elliptic projection (Rhu, Rhp) ∈ Vh ×Wh by

(K−1Rhu,vh)Q − (Rhp,∇ · vh) = 0, ∀vh ∈ Vh, (2.26)

(∇ ·Rhu, wh) = (f(p)− ∂p

∂t
, wh), ∀wh ∈Wh, (2.27)

in order to perform error estimation related to the next section of the two-grid
algorithm, we need the following theorems.
Theorem 2.1. (u, p) is the solution of (2.2)-(2.3), (Rhu, Rhp) is the solution of
(2.26)-(2.27), then there exists the following convergence

‖u−Rhu‖ ≤ Ch‖u‖1, (2.28)

‖∇ · (u−Rhu)‖ ≤ Ch‖∇ · u‖1. (2.29)

Proof. Subtracting the scheme (2.2)-(2.3) from (2.26)-(2.27), we have the error
equation

(K−1(Πhu−Rhu),vh)Q − (Qhp−Rhp,∇ · vh) = −(K−1(u−Πhu),vh)

− σ(K−1Πhu,vh), ∀vh ∈ Vh, (2.30)

(∇ · (u−Rhu), wh) = 0, ∀wh ∈Wh. (2.31)

From (2.30)-(2.31), taking vh = Πhu−Rhu and wh = Qhp−Rhp, we can obtain that

(K−1(Πhu−Rhu),Πhu−Rhu) =− (K−1(u−Πhu),Πhu−Rhu)
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− σ(K−1Πhu,Πhu−Rhu). (2.32)

Combining (2.10) and Lemma 2.3, we deduce that

‖Πhu−Rhu‖2 ≤ Ch‖u‖1‖Πhu−Rhu‖, (2.33)

(2.28) can be easily derived.
Then, it is obvious that (∇ · (u−Rhu), wh) = (∇ · (Πhu−Rhu), wh) = 0, so that

∇ · (Πhu−Rhu) = 0. Hence, according to (2.11), we have

‖∇ · (u−Rhu)‖ ≤ ‖∇ · (u−Πhu)‖ ≤ Ch‖∇ · u‖1, (2.34)

so (2.29) is proved, thus we complete the proof of the theorem.

Theorem 2.2. Rhp is the mixed elliptic solution of (2.26)-(2.27), then we have the
following estimate

‖Qhp−Rhp‖ ≤ Ch2(‖u‖1 + ‖∇ · u‖1). (2.35)

Proof. We suppose the Dirchlet problem as follows [8]{
−∆φ = ψ, in Ω,

φ = 0, on ∂Ω.
(2.36)

For ψ ∈ Lq(Ω), the system (2.36) has a unique solution φ, and for ψ ∈W r,q(Ω), there
has

‖φ‖r+2,q ≤ ‖ψ‖r,q. (2.37)

Let ψ ∈ L2(Ω) and φ ∈W 1,2
0 (Ω) satisfy (2.36), then by (2.9) and (2.30)-(2.31), we

derive

(Qhp−Rhp, ψ)

=(Qhp−Rhp,−∆φ)

=(Qhp−Rhp,−∇ · (Πh(∇φ))

=− (K−1(u−Rhu),Πh(∇φ))− σ(K−1(Rhu),Πh(∇φ))

=− (K−1(u−Rhu),∇φ−Qh(∇φ)) + (K−1∇ · (u−Rhu), φ−Qhφ)

+ (K−1(u−Rhu),∇φ−Qh(∇φ)) + (K−1(u−Rhu),∇φ−Πh(∇φ))

− σ(K−1(Rhu),Πh(∇φ)).

(2.38)

By using the approximation properties (2.11) and (2.13), we see that the first four
terms on the right side of (2.38) are estimated as

C(‖∇ · (u−Rhu)‖‖φ−Qhφ‖+ ‖u−Rhu‖‖∇φ−Πh(∇φ)‖). (2.39)
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For the last term on the right side of (2.38), by (2.18), we can derive that

σ(K−1(Rhu),Πh(∇φ)) = σ(K−1(Rhu),Πh(∇φ)−Πh(∇φ)), (2.40)

where Πh(∇φ) are the mean value of Πh(∇φ) on E. Therefore,

|σ(K−1(Rhu),Πh(∇φ))| ≤ Ch‖u‖1‖Πh(∇φ)−Πh(∇φ)‖
≤ Ch2‖u‖1‖φ‖2.

(2.41)

Combining (2.39) and (2.41), by using the approximation properties (2.10) and (2.13),
we see that

|(Qhp−Rhp, ψ)| ≤ C(h‖u−Rhu‖‖∇φ‖1 + h‖∇ · (u−Rhu)‖‖φ‖1 + h2‖u‖1‖φ‖2)

≤ C(h2‖u‖1 + h2‖∇ · u‖1)‖φ‖2
≤ Ch2(‖u‖1 + ‖∇ · u‖1)‖ψ‖,

(2.42)

hence, we derive formula (2.35).

Theorem 2.3. Suppose that (uh, ph) ∈ Vh ×Wh is the solution of the semi-discrete
scheme (2.22)-(2.23), and (Rhu, Rhp) ∈ Vh × Wh is the mixed element projection
(2.26)-(2.27), then there exists a constant C independent of h, which satisfies

‖Rhp− ph‖ ≤ Ch2. (2.43)

Proof. Subtracting the scheme (2.22)-(2.23) from the formulation (2.26)-(2.27), then
we can get

(K−1Rhu,vh)Q − (K−1uh,vh)Q = (Rhp− ph,∇ · vh), ∀vh ∈ Vh, (2.44)

(∇ · (Rhu− uh), wh) = (f(p)− f(ph)− ∂p

∂t
+
∂ph
∂t

, wh), ∀wh ∈Wh. (2.45)

Taking the test functions wh = Rhp − ph and vh = Rhu − uh, combining (2.12),
adding (2.44) and (2.45), we can derive that

(K−1(Rhu− uh), Rhu− uh)Q + (
∂

∂t
(Rhp− ph), Rhp− ph)

= (f(p)− f(ph)− ∂

∂t
(Qhp−Rhp), Rhp− ph).

. (2.46)

The left side of (2.46) can be estimated as follows

(K−1(Rhu− uh), Rhu− uh)Q + (
∂

∂t
(Rhp− ph), Rhp− ph)

≥ ‖Rhu− uh‖2 +
1

2

d

dt
‖Rhp− ph‖2.

(2.47)
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For the right side of (2.46), we see that

(f(p)− f(ph)− ∂

∂t
(Qhp−Rhp), Rhp− ph)

= (f(p)− f(Qhp) + f(Qhp)− f(Rhp) + f(Rhp)− f(ph)

− ∂

∂t
(Qhp−Rhp), Rhp− ph),

(2.48)

Due to Taylor expansion f(p) = f(Qhp) + fp(Qhp)(p −Qhp) + f̄pp(p)(p −Qhp)2, we
have

(f(p)− f(Qhp), Rhp− ph) ≤ (fp(p)(p−Qhp), Rhp− ph)

+ (f̄pp(p−Qhp)2, Rhp− ph).
(2.49)

Because of (2.13), (2.21) and ε-inequality,

|(f(p)− f(Qhp), Rhp− ph)|
≤ Ch‖p−Qhp‖‖Rhp− ph‖+ C‖p−Qhp‖20,4‖Rhp− ph‖
≤ Ch4 + ε‖Rhp− ph‖2.

(2.50)

Combining Theorem 2.3 and ε-inequality, we deduce that

|(f(Qhp)− f(Rhp), Rhp− ph)| ≤ C‖Qhp−Rhp‖‖Rhp− ph‖
≤ Ch4 + ε‖Rhp− ph‖2.

(2.51)

|(f(Rhp)− f(ph), Rhp− ph)| ≤ C‖Rhp− ph‖2, (2.52)

|(− ∂

∂t
(Qhp−Rhp), Rhp− ph)| ≤ C‖(Qhp−Rhp)t‖‖Rhp− ph‖

≤ Ch4 + ε‖Rhp− ph‖2.
(2.53)

Substituting (2.47)-(2.53) into (2.46), we get

1

2

d

dt
‖Rhp− ph‖2 ≤ C(h4 + ‖Rhp− ph‖2), (2.54)

integrating over [0, T ] and combining the Gronwall inequality, we can get the theorem.

Theorem 2.4. Suppose that (unh, p
n
h) ∈ Vh ×Wh is the solution of the fully discrete

backward Euler scheme (2.24)-(2.25), and (Rhu
n, Rhp

n) ∈ Vh ×Wh is their mixed
element projection (2.26)-(2.27), then there exists a constant C independent of h,
which satisfies

‖Rhpn − pnh‖ ≤ C(h2 + ∆t). (2.55)
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Proof. At the time t = tn, we rewrite (2.26)-(2.27) as

(K−1Rhu
n,vh)Q − (Rhp

n,∇ · vh) = 0, ∀vh ∈ Vh, (2.56)

(∇ ·Rhun, wh) = (f(pn)− ∂pn

∂t
, wh), ∀wh ∈Wh (2.57)

Subtracting the scheme (2.24)-(2.25) from the formulation (2.56)-(2.57), then we
can get

(K−1(Rhu
n − unh),vh)Q − (Rhp

n − pnh,∇ · vh) = 0, (2.58)

(∇ · (Rhun − unh), wh)− (
pnh − p

n−1
h

∆t
, wh) = (f(pn)− ∂pn

∂t
− f(pnh), wh). (2.59)

Taking vh = ηn = Rhu
n−unh and wh = ζn = Rhp

n−pnh, combining (2.58) and (2.58),
then we have

(K−1ηn, ηn)Q + (
ζn − ζn−1

∆t
, ζn)

=((f(pn)− f(pnh)) + (
1

∆t
(Rhp

n −Rhpn−1)− pnt ), ζn).

(2.60)

The left side of (2.60) can be estimated as

(K−1ηn, ηn)Q + (
ζn − ζn−1

∆t
, ζn) ≥ 1

2∆t
(‖ζn‖2 − ‖ζn−1‖2) + C‖ηn‖2. (2.61)

For the first item on the right side of (2.60), we have

|(f(pn)− f(pnh), ζn)| ≤|(f(pn)− f(Qhp
n), ζn)|+ |(f(Qhp

n)− f(Rhp
n), ζn)|

+ |(f(Rhp
n)− f(pnh), ζn)|

≤|(fp(pn)(pn −Qhpn), ζn)|+ |(f̄pp(pn −Qhpn)2, ζn)|
+ C‖Qhpn −Rhpn‖‖ζn‖+ C‖ζn‖2

≤Ch‖pn −Qhpn‖‖ζn‖+ C‖pn −Qhpn‖20,4‖ζn‖
+ C(h4 + ‖ζn‖2)

≤C(h4 + ‖ζn‖2),

(2.62)

which follows from Taylor expansion, (2.13), (2.35) and schwarz inequality.
Taking αn = pn −Rhpn, we see that

1

∆t
(Rhp

n −Rhpn−1)− pnt =
1

∆t
(pn − pn−1)− pnt −

1

∆t
(αn − αn−1). (2.63)
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Let dn = Qhp
n −Rhpn, from (2.35) and schwarz inequality, we get

|( 1

∆t
(pn − pn−1)− pnt , ζn)| ≤ ‖

∫ tn

tn−1

∂2p

∂t2
dt‖‖ζn‖

≤ ∆t

∫ tn

tn−1

‖∂
2p

∂t2
‖2dt+ ‖ζn‖2

≤ C(∆t+ ‖ζn‖2),

(2.64)

|( 1

∆t
(αn − αn−1), ζn)| = |( 1

∆t
(dn − dn−1), ζn)|

≤ ‖ 1

∆t

∫ tn

tn−1

∂d

∂t
dt‖‖ζn‖

≤ C(
1

∆t
h4 + ‖ζn‖2),

(2.65)

Now, by (2.63)-(2.65), it follows that

|( 1

∆t
(Rhp

n −Rhpn−1)− pnt , ζn)| ≤ C(
1

∆t
h4 + ∆t+ ‖ζn‖2). (2.66)

Combining (2.62) and (2.66), we can get

1

2∆t
(‖ζn‖2 − ‖ζn−1‖2) + ‖ηn‖2 ≤ C(

1

∆t
h4 + ∆t+ ‖ζn‖2). (2.67)

Multiplying 2∆t on both sides of (2.67), then summing for n from 1 to N , we can
obtain

‖ζN‖2 − ‖ζ0‖2 ≤ C(h4 + (∆t)2 +

N∑
n=1

∆t‖ζn‖2). (2.68)

We choose the initial function ζ0 = 0 and by the discrete Gronwall inequality, we can
derive that

‖ζN‖ ≤ C(h2 + ∆t). (2.69)

Thus, we complete the proof of the theorem.

3 Two-grid algorithm and error estimates

3.1 The two-grid scheme

In this section, we introduce an efficient two-grid method for the above MFMFE dis-
crete approximation scheme to the problems (1.1)-(1.3). We present two quadrilateral

11



mesh partiton of Ω, denoted as Γh and ΓH with mesh sizes h and H (h � H < 1).
Based on the partitons Γh and ΓH , we define two finite element spaces VH ×WH and
Vh ×Wh, which are called the coarse grid space and the fine grid space, respectively.
The main idea of the two-grid algorithm involves a nonlinear solver on the coarse grid
space and a linear solver on the fine grid space.

We give the semi-discrete approximation scheme of the MFMFE method based on
the two-grid algorithm for the original problem:

Algorithm3.1:
Step 1: find (uH , pH) ∈ VH ×WH , such that

(K−1uH ,vH)Q − (pH ,∇ · vH) = 0, ∀vH ∈ VH , (3.1)

(
∂pH
∂t

, wH) + (∇ · uH , wH) = (f(pH), wH), ∀wH ∈WH . (3.2)

Step 2: find (uh, ph) ∈ Vh ×Wh, such that

(K−1uh,vh)Q − (ph,∇ · vh) = 0, ∀vh ∈ Vh, (3.3)

(
∂ph
∂t

, wh) + (∇ · uh, wh) = (f(pH) + f ′(pH)(ph − pH), wh), ∀wh ∈Wh, (3.4)

where the VH ×WH and Vh ×Wh are the BDM1 mixed element space.
A two-grid algorithm of the fully discrete backward Euler approximation scheme

by the MFMFE method is given as follows.
Algorithm3.2:
Step 1: find (unH , p

n
H) ∈ VH ×WH , such that

(K−1unH ,vH)Q − (pnH ,∇ · vH) = 0, ∀vH ∈ VH , (3.5)

(
pnH − p

n−1
H

∆t
, wH) + (∇ · unH , wH) = (f(pnH), wH), ∀wH ∈WH . (3.6)

Step 2: find (unh, p
n
h) ∈ Vh ×Wh, such that

(K−1unh,vh)Q − (pnh,∇ · vh) = 0, ∀vh ∈ Vh, (3.7)

(
pnh − p

n−1
h

∆t
, wh) + (∇ · unh, wh) = (f(pnH) + f ′(pnH)(pnh − pnH), wh), ∀wh ∈Wh.

(3.8)

3.2 Error estimate

Theorem 3.1. Let (u, p) ∈ V × W be the solution of problem (2.2)-(2.3), and
(uH , pH) ∈ VH ×WH be the solution of step 1 of Algorithm 3.1(3.1)-(3.2), then there
exists a constant C independent of H, such that

‖u− uH‖L2(0,T ;L2(Ω)) + ‖p− pH‖L∞(0,T ;L2(Ω)) ≤ CH, (3.9)
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Proof. Subtracting the numerical scheme (3.1)-(3.2) from the weak formulation (2.2)-
(2.3), then the error equation is that

(K−1u,vH)− (K−1uH ,vH)Q = (p− pH ,∇ · vH), ∀vH ∈ VH , (3.10)

(
∂

∂t
(p− pH), wH) + (∇ · (u− uH), wH) = (f(p)− f(pH), wH), ∀wH ∈WH .

(3.11)

For (3.10), we derive that

(K−1(ΠHu− uH),vH)Q − (QHp− pH ,∇ · vH)

=− (K−1(u−ΠHu),vH)− σ(K−1ΠHu,vH),
(3.12)

which can be easily get from (2.12) and (2.17). For (3.11), we derive that

(
∂

∂t
(QHp− pH), wH) + (∇ · (ΠHu− uH), wH)

=(
∂

∂t
(QHp− p), wH) + (f(p)− f(pH), wH).

(3.13)

Taking vH = ΠHu−uH and wH = QHp− pH , combining (3.12) and (3.13), then
we get

(K−1(ΠHu− uH),ΠHu− uH)Q + (
∂

∂t
(QHp− pH), QHp− pH)

=− (K−1(u−ΠHu),ΠHu− uH)− σ(K−1ΠHu,ΠHu− uH)

+ (f(p)− f(pH), QHp− pH)− (
∂

∂t
(p−QHp), QHp− pH).

(3.14)

From (2.19), the left side of (3.14) can be estimated as follows

(K−1(ΠHu− uH),ΠHu− uH)Q + (
∂

∂t
(QHp− pH), QHp− pH)

≥C‖ΠHu− uH‖2 +
1

2

d

dt
‖QHp− pH‖2.

. (3.15)

Now, we estimate the right side of (3.14), from (2.10), (2.13), (2.20), and
ε-inequality, we have

|(K−1(u−ΠHu),ΠHu− uH)| ≤ C‖u−ΠHu‖‖ΠHu− uH‖
≤ CH2‖u‖21 + ε‖ΠHu− uH‖2,

(3.16)

|σ(K−1ΠHu,ΠHu− uH)| ≤ CH‖u‖1‖ΠHu− uH‖
≤ CH2‖u‖21 + ε‖ΠHu− uH‖2,

(3.17)
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|( ∂
∂t

(p−QHp), QHp− pH)| ≤ C‖(p−QHp)t‖‖QHp− pH‖

≤ CH2‖pt‖21 + ε‖QHp− pH‖2.
(3.18)

By using Taylor expansion, f(p) = f(pH) + f ′(p̄H)(p − pH), where p̄H is between p
and pH , we can derive that

|(f(p)− f(pH), QHp− pH)| ≤ C‖f(p)− f(pH)‖‖QHp− pH‖
≤ C‖f ′(pH)(p− pH)‖‖QHp− pH‖
≤ CH2‖p‖21 + C‖QHp− pH‖2.

(3.19)

Substituting (3.15)-(3.19) into (3.14), we get

‖ΠHu− uH‖2 +
1

2

d

dt
‖QHp− pH‖2

≤CH2(‖u‖21 + ‖p‖21 + ‖pt‖21) + C‖QHp− pH‖2.
(3.20)

Integrating over [0, T ] and combining the Gronwall inequality, we can deduce that∫ T

0

‖ΠHu− uH‖2dt+ ‖QHp− pH‖2

≤CH2

∫ T

0

‖u‖21dt+ CH2

∫ T

0

‖p‖21dt+ CH2

∫ T

0

‖pt‖21.
(3.21)

Then, we can obtain∫ T

0

‖ΠHu− uH‖2dt+ ‖QHp− pH‖2

≤CH2(‖u‖2L2(0,T ;H1(Ω)) + ‖p‖2L2(0,T ;H1(Ω)) + ‖pt‖2L2(0,T ;H1(Ω))).

(3.22)

Combining (2.10) and (2.13) , the theorem 3.1 can be proved.

Proposition 3.2. For the solution pH ∈WH in step 1, there is the following L4 error
estimate

‖p− pH‖0,4 ≤ CH. (3.23)

Proof. By using (2.13) and (2.43), we can derive that

‖p− pH‖0,4 = ‖p−QHp‖0,4 + ‖QHp−RHp‖0,4 + ‖RHp− pH‖0,4
≤ CH + CH

2
4−1(‖QHp−RHp‖+ ‖RHp− pH‖)

≤ CH + CH
2
4−1H2

≤ CH.

(3.24)
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Theorem 3.3. Let (u, p) ∈ V × W be the solution of problem (2.2)-(2.3), and
(uh, ph) ∈ Vh ×Wh be the solution of step 2 of Algorithm 3.1(3.3)-(3.4), then there
exists a constant C independent of h and H, such that

‖u− uh‖L2(0,T ;L2(Ω)) + ‖p− ph‖L∞(0,T ;L2(Ω)) ≤ C(h+H2). (3.25)

Proof. Subtracting the numerical scheme (3.3)-(3.4) from the weak formulation (2.2)-
(2.3), then the error equation is that

(K−1(Πhu− uh),vh)Q − (Qhp− ph,∇ · vh)

=− (K−1(u−Πhu),vh)− σ(K−1Πhu,vh),
(3.26)

(
∂

∂t
(Qhp− ph), wh) + (∇ · (Πhu− uh), wh)

=− (
∂

∂t
(p−Qhp), wh) + (f(p)− f(pH) + f ′(pH)(pH − ph), wh).

(3.27)

By using taylor expansion f(p) = f(pH) + f ′(pH)(p − pH) + f ′′(p̃H)(p − pH)2,
where p̃H is between p and pH , we derive that

(
∂

∂t
(Qhp− ph), wh) + (∇ · (Πhu− uh), wh)

=− (
∂

∂t
(p−Qhp), wh) + (f ′(pH)(p− ph) + f ′′(p̃H)(p− pH)2, wh).

(3.28)

Taking vh = Πhu−uh and wh = Qhp− ph, combining (3.26) and (3.28), then we get

(K−1(Πhu− uh),Πhu− uh)Q + (
∂

∂t
(Qhp− ph), Qhp− ph)

=− (K−1(u−Πhu),Πhu− uh)− σ(K−1Πhu,Πhu− uh)− (
∂

∂t
(p−Qhp), Qhp− ph)

+ (f ′(pH)(p− ph), Qhp− ph) + (f ′′(p̃H)(p− pH)2, Qhp− ph).

(3.29)

From (2.19), (2.10), (2.13), (2.20) and ε-inequality, we derive that

‖Πhu− uh‖2 +
1

2

d

dt
‖Qhp− ph‖2 ≤ Ch2(‖u‖21 + ‖p‖21 + ‖pt‖21)

+ C(‖(p− pH)2‖2 + ‖Qhp− ph‖2) + ε‖Πhu− uh‖2.
(3.30)

Integrating over [0, T ], combining (3.24) and the Gronwall inequality, we can deduce
that ∫ T

0

‖Πhu− uh‖2dt+ ‖Qhp− ph‖2 ≤ C(h2 +H4). (3.31)
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By (2.10) and (2.13), the theorem 3.3 can be proved.

Theorem 3.4. Let (u, p) ∈ V × W be the solution of problem (2.2)-(2.3), and
(unH , p

n
H) ∈ VH×WH be the solution of Step 1 of Algorithm 3.2 (3.5)-(3.6), then there

exists a constant C independent of H, such that

max
1≤n≤N

‖pn − pnH‖2 +

N∑
n=1

∆t‖un − unH‖2 ≤ C(H2 + (∆t)2). (3.32)

Proof. Subtracting the numerical scheme (3.5)-(3.6) from the weak formulation (2.2)-
(2.3), then the error equation is that

(K−1un,vH)− (K−1unH ,vH)Q = (pn − pnH ,∇ · vH), ∀vH ∈ VH , (3.33)

(
∂pn

∂t
−
pnH − p

n−1
H

∆t
, wH) + (∇ · (un − unH), wH) = (f(pn)− f(pnH), wH), ∀wH ∈WH .

(3.34)

By using (2.9), (2.12) and (2.17), we get

(K−1(ΠHun − unH),vH)Q − (QHp
n − pnH ,∇ · vH)

=− (K−1(un −ΠHun),vH)− σ(K−1ΠHun,vH), ∀vH ∈ VH ,
(3.35)

(
(QHp

n − pnH)− (QHp
n−1 − pn−1

H )

∆t
, wH) + (∇ · (ΠHun − unH), wH)

=− (
∂pn

∂t
− pn − pn−1

∆t
, wH) + (f(pn)− f(pnH), wH), ∀wH ∈WH .

(3.36)

Denoting βn = QHp
n − pnH , taking vH = ΠHun −unH and wH = βn, using Taylor

expansion

f(pn) = f(pnH) + f ′(p̄nH)(pn − pnH)

= f(pnH) + f ′(p̄nH)(pn −QHpn +QHp
n − pnH)

= f(pnH) + f ′(p̄nH)(pn −QHpn + βn),

(3.37)

then adding the two formulas (3.35) and (3.36) together, we get

(K−1(ΠHun − unH),Πhu
n − unH)Q + (

βn − βn−1

∆t
, βn)

=− (K−1(un −ΠHun),ΠHun − unH)− σ(K−1ΠHun,ΠHun − unH)

+ (f ′(p̄nH)(pn −QHpn), βn) + (f ′(p̄nH)βn, βn)

− (
∂pn

∂t
− pn − pn−1

∆t
, βn) =

5∑
i=1

Ri.

(3.38)
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Multiplying ∆t on both sides of (3.38), then summing for n from 1 to N , the left
side of (3.38) can be estimated as follows

∆t

N∑
n=1

(K−1(ΠHun − unH),Πhu
n − unH)Q + ∆t

N∑
n=1

(
βn − βn−1

∆t
, βn)

≥C∆t

N∑
n=1

‖ΠHun − unH‖2 +
1

2
(βN , βN ).

(3.39)

Now, we estimate the right side of (3.38), we gain the following results

∆t

N∑
n=1

R1 = ∆t

N∑
n=1

(K−1(un −ΠHun),Πhu
n − unH)

≤ CH2‖u‖2L∞(0,T ;H1) + ε∆t

N∑
n=1

‖Πhu
n − unH‖2,

(3.40)

∆t

N∑
n=1

R2 = ∆t

N∑
n=1

σ(K−1ΠHun,Πhu
n − unH)

≤ C∆t

N∑
n=1

H‖un‖1‖Πhu
n − unH‖

≤ CH2‖u‖2L∞(0,T ;H1) + ε∆t

N∑
n=1

‖Πhu
n − unH‖2,

(3.41)

∆t

N∑
n=1

R3 + ∆t

N∑
n=1

R4 = ∆t

N∑
n=1

(f ′(p̄nH)(pn −QHpn), βn) + ∆t

N∑
n=1

(f ′(p̄nH)βn, βn)

≤ C∆t

N∑
n=1

(‖pn −QHpn‖‖βn‖) + C∆t

N∑
n=1

‖βn‖2

≤ C∆t

N∑
n=1

(H‖pn‖1‖βn‖) + C∆t

N∑
n=1

‖βn‖2

≤ CH2‖p‖2L∞(0,T ;H1) + C∆t

N∑
n=1

‖βn‖2,

(3.42)
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∆t

N∑
n=1

R5 = ∆t

N∑
n=1

(
∂pn

∂t
− pn − pn−1

∆t
, βn)

≤ C(∆t

N∑
n=1

‖∂p
n

∂t
− pn − pn−1

∆t
‖2 + ∆t

N∑
n=1

‖βn‖2)

≤ C((∆t)2

∫ T

0

‖ptt‖2dt+ C∆t

N∑
n=1

‖βn‖2).

(3.43)

Substituting (3.39)-(3.43) into (3.38), combining the Gronwall inequality, then we
can get

∆t

N∑
n=1

‖ΠHun − unH‖2 + ‖βN‖2

≤C(H2‖u‖2L∞(0,T ;H1(Ω)) +H2‖p‖2L∞(0,T ;H1(Ω)) + (∆t)2‖ptt‖L2(0,T ;H0(Ω))).

(3.44)

Thus, we complete the proof of theorem 3.4.

Theorem 3.5. Let (un, pn) ∈ V ×W be the solution of problem (2.2)-(2.3) at the time
t = tn, and (unh, p

n
h) ∈ Vh×Wh be the solution of Step 2 of Algorithm 3.2 (3.7)-(3.8),

then there exists a constant C independent of h and ∆t, such that

max
1≤n≤N

‖pn − pnh‖2 +

N∑
n=1

∆t‖un − unh‖2 ≤ C(h2 +H4 + (∆t)2). (3.45)

Proof. Subtracting the numerical scheme (3.7)-(3.8) from the weak formulation (2.2)-
(2.3), then the error equation is that

(K−1(Πhu
n − unh),vh)Q − (QHp

n − pnh,∇ · vh)

=− (K−1(un −Πhu
n),vh)− σ(K−1Πhu

n,vh), ∀vh ∈ Vh,
(3.46)

(
(Qhp

n − pnh)− (Qhp
n−1 − pn−1

h )

∆t
, wh) + (∇ · (Πhu

n − unh), wh)

=(
∂pn

∂t
− pn − pn−1

∆t
, wh) + (f(pn)− f(pnH)− f ′(pnH)(pnh − pnH), wH), ∀vh ∈ Vh.

(3.47)

Taking vh = Πhu
n − unh and wh = ξn = Qhp

n − pnh, using Taylor expansion

f(pn) = f(pnH) + f ′(pnH)(pn − pnH) + f ′′(p̄H)(pn − pnH)2, (3.48)
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then adding (3.46) and (3.47) together, we get

(K−1(Πhu
n − unh),Πhu

n − unh)Q + (
ξn − ξn−1

∆t
, ξn)

=− (K−1(un −Πhu
n),Πhu

n − unh)− σ(K−1Πhu
n,Πhu

n − unh)

+ (f ′(pnH)(pn −Qhpn + ξn), ξn) + (f ′′(p̄H)(pn − pnH)2, ξn)

− (
∂pn

∂t
− pn − pn−1

∆t
, ξn) =

5∑
i=1

ϕi.

(3.49)

Multiplying ∆t on both sides of (3.49), then summing for n from 1 to N , the left
side of (3.49) (denoted as L.S.) can be estimated

L.S. > C∆t

N∑
n=1

‖Πhu
n − unh‖2 +

1

2
‖ξN‖2. (3.50)

Now, we estimate the right side of (3.49), because of (2.10), (2.13), (2.20) and ε−
inequality, we gain the following results

∆t

N∑
n=1

ϕ1 + ∆t

N∑
n=1

ϕ2 + ∆t

N∑
n=1

ϕ5

≤C(h2‖u‖2L∞(0,T ;H1(Ω)) + (∆t)2‖ptt‖2L2(0,T ;H0(Ω)))

+ ε(∆t

N∑
n=1

‖Πhu
n − unh‖2 + ∆t

N∑
n=1

‖ξn‖2),

(3.51)

∆t

N∑
n=1

ϕ3 + ∆t

N∑
n=1

ϕ4

=∆t

N∑
n=1

(f ′(pnH)(pn −Qhpn + ξn), ξn) + ∆t

N∑
n=1

(f ′′(p̃nH)(pn − pnH)2, ξn)

≤C(h2‖p‖2L∞(0,T ;H1(Ω)) + ∆t

N∑
n=1

‖ξn‖2 + ‖pn − pnH‖40,4).

(3.52)

Substituting (3.50)-(3.52) into (3.49), combining the Gronwall inequality and
(3.23), we can get

∆t

N∑
n=1

‖Πhu
n − unh‖2 + ‖ξN‖2 ≤ C(h2 +H4 + (∆t)2). (3.53)

Thus, we complete the proof of the theorem.
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4 Numerical example

In this section, we provide a numerical example to illustrate the efficiency and accuracy
of our proposed two-grid algorithm. For simplicity, we take the domain Ω = (0, 1) ×
(0, 1), and the exact solution satisfies

p = et cos(πx) cos(πy)/π,

then the function f is obtained as

f(p) = p2 + f(x, y). (4.1)

Based on two families ΓH and Γh with h = H2, we use BDM1 mixed finite element
space. In order to confirm the efficiency of the two-grid MFMFE method, we compare
this method with the MFMFE method. The error and CPU time results are shown
in Tables 1-2. The exact solution, the MFMFE solution, and the two-grid MFMFE
solution are shown in Fig. 1-6, the comparison of CPU time is presented in Fig. 7.

From these data, we can see that the two-grid MFMFE method can have the same
convergence order as the MFMFE method, when the coarse grid size and the fine
grid size satisfy h = O(H2). However, the two-grid MFMFE method is more effective
than the MFMFE method judging from the CPU time, for example, when H = 1/12,
the latter requires almost three times the running time of the former, therefore, the
two-grid MFMFE method has significant advantages over the MFMFE method.

Table 1 The error and CPU time of the MFMFE method

h ‖p− ph‖ Order ‖u− uh‖ Order CPUtime/s

1/36 0.01542 0.04842 2.7
1/64 0.008672 1.00 0.02724 0.99 13.8
1/100 0.005550 1.00 00.01743 1.00 51.2
1/144 0.003958 1.00 0.01211 1.00 150.3

Table 2 The error and CPU time of the two-grid MFMFE method

H h ‖p− ph‖ Order ‖u− uh‖ Order CPUtime/s

1/6 1/36 0.01583 0.04842 1.0
1/8 1/64 0.008904 1.00 0.02724 0.99 4.3
1/10 1/100 0.005699 1.00 0.01743 1.00 15.4
1/12 1/144 0.003957 1.00 0.01211 1.00 51.3
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Fig. 3 The MFMFE solution of velocity uh Fig. 4 The MFMFE solution of pressure ph
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Fig. 6 The two-grid MFMFE solution of pres-
sure ph

Fig. 7 The comparison of CPU time
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