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Abstract In this paper, we mainly study the solvability for some classes
of convolution singular integral equations with finite translations in the case
of normal type. Via using Fourier transforms, we transform these equations
into Riemann boundary value problems with nodes. By means of the classical
theory of Riemann-Hilbert problems and the principle of analytic continuation,
we discuss the general solutions and conditions of solvability in the normal
type. Due to the coefficients of Riemann boundary value problems contain
discontinuous points, thus we discuss the solvable conditions and the properties
for the equation near the nodes. Unlike the general convolution equations, the
unknown function in the questions has finite translations on the real axis, so it
is a further generalization of the classical theory of singular integral equations.
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1. Introduction

Singular integral equations is a class of important equations involving the intersec-
tion and fusion of many branches of mathematics. Its development can be traced
back to the work of some mathematicians in the late nineteenth and early twenti-
eth centuries, and it has broad application value in many fields. For example, in
electromagnetism, singular integral equations can be used to solve the distribution
and boundary problems of electromagnetic fields. In fluid mechanics, it can be used
to describe and calculate the velocity field and pressure of a fluid. Singular inte-
gral equations are also used to solve perturbation theory problems and to calculate
scattering processes in quantum mechanics. This has been extensively studied by
many scholars, see [1–10] for more details. Singular integral equation with shifts
generalize further the theory of the classical equations, and it is widely used in
the theory of boundary value problems with the differential operators (see [11] and
references). At present, many mathematicians have systematically investigated the
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singular integral equations with shift and achieved a series of results. Chuan and
Nguyen [12] discussed the solvability and explicit solutions for a class of singular
integral equations on the unit circle with Carleman shift and degenerate kernels
using the Riemann-Hilbert method. Amer and Dardery [13] studied a nonlinear
singular integral equation with Carleman shift on a closed Lyapunov curve and ob-
tained solution in the generalized Hölder space. Recently, Bliev and Tulenov [14]
gave the conditions of Noether solvability and index formulas for singular integral
equations with Cauchy kernel and Carleman shift in Besov space. Therefore, in
addition to Carleman shift, singular integral equation with translations is also the
focus of research.

In this paper, we mainly study the following four classes of singular integral
equations with translations on the real axis.

(1) Singular integral equations with one convolution kernel and finite translations

af(t+ λ) +
b

πi

∫ +∞

−∞

f(τ + λ)

τ − t
dτ +

1√
2π

∫ +∞

−∞
k(t− τ)Tf(τ + λ)dτ = g(t), t ∈ R.

(2) Singular integral equations with two convolution kernels and finite transla-
tions

af(t+ λ) +
b

πi

∫ +∞

−∞

f(t+ λ)

τ − t
dτ +

1√
2π

∫ +∞

0

k(t− τ)Tf(τ + λ)dτ

+
1√
2π

∫ 0

−∞
h(t− τ)Tf(τ + λ)dτ = g(t), t ∈ R.

(3) Singular integral equations of Wiener-Hopf type with convolution and finite
translations

af(t+λ)+
b

πi

∫ +∞

0

f(τ + λ)

τ − t
dτ +

1√
2π

∫ +∞

0

k(t−τ)Tf(τ +λ)dτ = g(t), t ∈ R+.

(4) Singular integral equations of dual type with convolution and finite transla-
tionsa1f(t+ λ) + b1

πi

∫ +∞
−∞

f(τ+λ)
τ−t dτ + 1√

2π

∫ +∞
−∞ k1(t− τ)Tf(τ + λ)dτ = g(t), t ∈ R+;

a2f(t+ λ) + b2
πi

∫ +∞
−∞

f(τ+λ)
τ−t dτ + 1√

2π

∫ +∞
−∞ k2(t− τ)Tf(τ + λ)dτ = g(t), t ∈ R−.

For the above equations (1)-(4), their notations can be found in Section 2.
In this paper, the classical theory of Fredholm integral equations is no longer

applicable to solving singular integral equations (1)-(4). Thus, we use the Fourier
transform to transform singular integral equations into Riemann boundary value
problems with discontinuous coefficients, and we study the existence and asymptotic
property of solutions. In the course of solution, since the coefficients of equations
possess the nodes, to overcame the difficulties appearing at nodes, we separate the
discontinuous point of equations. Our method is innovative and effective, and we
further generalize the results presented in [15–17].

Our paper is constructed as follows. In Section 2, we introduce the necessary
definitions and lemmas, especially the function classes H1 and H2. Furthermore, we
prove the connection between the Fourier transform and a specific class of Cauchy
type integrals. In Sections 3-6, we apply Fourier analysis theory, complex analysis
theory, and harmonic analysis theory to solving equations (1)-(4) in the case of
normal type, and we discuss in detail the behavior of solutions near the nodes.
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2. Definitions and lemmas

In this section, we give some definitions and lemmas. We mainly introduce two
important function classes H1, H2, and prove their properties.

Definition 2.1. Let F (x) be a continuous function on R, if there exists L, B ∈ R+,
such that

|F (x1)− F (x2)| ≤ L |x1 − x2|ω , ∀x1, x2 ∈ [−B,B], (2.1)

and

|F (x1)− F (x2)| ≤ L

∣∣∣∣ 1x1
− 1

x2

∣∣∣∣ω , ∀x1, x2 ∈ R \ [−B,B], (2.2)

are fulfilled, we say that F (x) ∈ Ĥ, where 0 < ω ≤ 1. If the following inequality∫ +∞

−∞
|F (x)|2 dx < +∞, x ∈ R, (2.3)

is true, then we say that F (x) ∈ L2(R). Obviously, the set of functions

O
(
|x|−µ

)
=

{
F (x) : |xµF (x)| ≤ M with µ >

1

2
and M ∈ R+

}
(2.4)

is a subspace of L2(R). we say that H1 = Ĥ ∩ L2(R) and H2 = Ĥ ∩O(|x|−µ
).

It is obvious that H2 ⊆ H1.

Definition 2.2. The Fourier transform and inverse transform are defined as follows

F (x) = Ff(t) =
1√
2π

∫ +∞

−∞
f(t) exp(ixt)dt,

f(t) = F−1F (x) =
1√
2π

∫ +∞

−∞
F (x) exp(ixt)dx.

(2.5)

When F (x) ∈ Hj , we say that f(t) ∈ H∗
j (j = 1, 2). As we know aboveH∗

2 ⊆ H∗
1 .

Definition 2.3. The convolution of two functions k(t), f(t) can be defined as
follows

k(t) ∗ f(t) = 1√
2π

∫ +∞

−∞
k(τ − t)f(t)dt, τ ∈ R. (2.6)

Obviously, k(t)∗f(t) = f(t)∗k(t) and F(k(t)∗f(t)) = K(x)F (x), where K(x) =
Fk(t), F (x) = Ff(t).

Definition 2.4. Define the Hilbert transform as follows

Tf(t) = P.V.
1

πi

∫ +∞

−∞

f(τ)

τ − t
dτ, t ∈ R, (2.7)

where P.V. stands for Cauchy principal value integral.

According to the Poincaré-Bertrand formula [1, 6, 18], we get T2 = I.

Definition 2.5. The reflection and symbolic operators are defined as follows

Lf(t) = f(−t), Sf(t) = f(t)sgn(t). (2.8)
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It is easy to prove that
L2 = I, S2 = I.

Definition 2.6. The positive and negative parts of a function f(t) are defined as
follows

f±(t) =
Sf(t)± If(t)

2
. (2.9)

Obviously, we have
f(t) = f+(t)− f−(t).

The relationship between Fourier transform and boundary values of analytic
functions, as elucidated by Lemma 2.1, plays a pivotal role in this paper.

Lemma 2.1. Assume that f(t) ∈ L2(R), then we have

Ff±(t) = (TF (x))±. (2.10)

Proof. By Sokhotski-Plemelj formula and Poincaré-Bertrand formula [1, 2, 6], we
have

(TF (x))± = ±1

2
F (x) +

1

2πi

∫ +∞

−∞

F (τ)

τ − x
dτ,

then we get

(TF (x))± =
±1

2
√
2π

∫ +∞

−∞
f(t) exp(ixt)dt

+
1

2πi

∫ +∞

−∞

1

τ − x

(
1√
2π

∫ +∞

−∞
f(t) exp(iτ t)dt

)
dτ

=
±1

2
√
2π

∫ +∞

−∞
f(t) exp(ixt)dt+

1

2
√
2π

∫ +∞

−∞
f(t)sgn(t) exp(ixt)dt

=
1√
2π

∫ +∞

−∞

Sf(t)± If(t)

2
exp(ixt)dt,

(2.11)

thus the positive (or negative) Fourier transform of f(t) is equal to the positive (or
negative) boundary value of the Hilbert transform of F (x), and therefore (2.10) is
valid.

Lemma 2.2. Assume that F, T, L, S are as described above, we have

(1) TF = FS; (2) F2 = L; (3) F−1 = LF = FL. (2.12)

Proof. Without loss of generality, we only prove the case (1). By Sokhotski-
Plemelj formula, we obtain

TFf(t) =
1

πi

∫ +∞

−∞

F (τ)

τ − x
dτ = (TF (x))+ + (TF (x))−. (2.13)

On the other hand, we have

FSf(t) =
1√
2π

∫ +∞

−∞
f(t)sgn(t) exp(ixt)dt

=
1√
2π

∫ +∞

−∞
f+(t) exp(ixt)dt+

1√
2π

∫ +∞

−∞
f−(t) exp(ixt)dt.

(2.14)
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According to Lemma 2.1, we know that (2.13) and (2.14) are equal, thus (1) is valid.
The similar methodology can be applied to prove (2) and (3).

Lemma 2.3. Assume that f(t) ∈ H∗
1 , λ ∈ R and |λ| < +∞, we have

(1) Ff(t+ λ) = F (x) exp(−iλx);

(2) FTf(t+ λ) = −F (x)sgn(x) exp(−iλx);
(2.15)

Proof. (1) This can be proved by simply substituting s = t+ λ and performing a
transformation of variables.

(2) According to Lemma 2.2, we have

FTf(t+ λ) = FFSF−1f(t+ λ) = LSLFf(t+ λ)

= LSF (−x) exp(−iλx) = −F (x)sgn(x) exp(−iλx).
(2.16)

Lemma 2.4. If f(t) ∈ H∗
j and F (0) = 0, then Tf(t) ∈ H∗

j (j = 1, 2).

Proof. Since f(t) ∈ H∗
j and F (0) = 0, we have F (x) ∈ Hj and

F (∞) = F (0) = 0,

thus F (x)sgn(x) ∈ Hj . In Lemma 2.3, if we take λ = 0, we have

FTf(t) = −F (x)sgn(x) ∈ Hj , j = 1, 2, (2.17)

thus Tf(t) ∈ H∗
j (j = 1, 2).

3. Singular integral equations with one convolution
kernel and finite translations

First, we solve a basic class of convolution equations with finite translations by
rewriting equation (1) in the following form

af(t+ λ) + bTf(t+ λ) + k(t) ∗ Tf(t+ λ) = g(t), t ∈ R, (3.1)

where a, b, λ ∈ R with ab ̸= 0 and |λ| < +∞, k(t), g(t) ∈ H∗
1 . We require that the

unknown function f(t) ∈ H∗
1 . Taking Fourier transforms on the both sides of (3.1),

we get the following equation

[a− bsgn(x) +K(x)sgn(x)] exp(−iλx)F (x) = G(x), x ∈ R, (3.2)

where

K(x) = Fk(t), G(x) = Fg(t), F (x) = Ff(t). (3.3)

Here, we only consider the case of normal type, that is

K(x) ̸=

b− a, x ∈ R+;

b+ a, x ∈ R−.
(3.4)
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From (3.2), we have

F (x) =
G(x)

a− bsgn(x) +K(x)sgn(x)
exp(iλx). (3.5)

On the other hand, since G(x) ∈ H1, it follows from (3.2) that

G(0) = Fg(0) = 0, (3.6)

which implies that F (0) = 0. Denote

G0(x) =
G(x)

a− bsgn(x)
exp(iλx), P0(x) =

K(x)sgn(x)

a− bsgn(x) +K(x)sgn(x)
exp(iλx),

(3.7)
then, (3.5) can be rewritten as

F (x) = G0(x)−G0(x)P0(x), (3.8)

therefore, (3.1) has a unique solution

f(t) = F−1F (x) = F−1G0(x)− F−1 [G0(x)P0(x)]

= g0(t)−
1√
2π

∫ +∞

−∞
g0(t− τ)p0(τ)dτ,

(3.9)

where

g0(t) =
1√
2π

∫ +∞

−∞

G(x)

a− bsgn(x)
exp(ix(λ− t))dx, (3.10)

and

p0(t) =
1√
2π

∫ +∞

−∞

K(x)sgn(x)

a− bsgn(x) +K(x)sgn(x)
exp(ix(λ− t))dx. (3.11)

Based on the above discussion, we obtain

Theorem 3.1. If k, g ∈ H∗
1 , and (3.4) is valid, then (3.1) is solvable in H1 if and

only if (3.6) holds. In this case, (3.1) has a unique solution

f(t) = F−1F (x), (3.12)

where F (x) is given by (3.5) or (3.8).

4. Singular integral equations with two convolution
kernels and finite translations

In this section, we consider the equation with two convolution kernels and finite
translations, and equation (2) can be rewritten as

af(t+λ)+ bTf(t+ τ)+ k(t) ∗Tf+(t+λ)+h(t) ∗Tf−(t+λ) = g(t), t ∈ R, (4.1)

where a, b, λ ∈ R with ab ̸= 0, |λ| < +∞, k(t), h(t), g(t) ∈ H∗
1 , and the unknown

function f(t) ∈ H∗
1 . Similar to Section 3, taking the Fourier transforms on the both

sides of (4.1), we get

[a− bsgn(x)]F (x)−K(x)sgn(x)F+(x)+H(x)sgn(x)F−(x) = G(x) exp(iλx), x ∈ R,
(4.2)
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where

K(x) = Fk(t), G(x) = Fg(t), H(x) = Fh(t), F (x) = Ff(t), (4.3)

and

F±(x) =
1

2
√
2π

∫ +∞

−∞
(sgn(t)± 1)f(t) exp(ixt)dt. (4.4)

By further simplifying (4.2), we obtain the following Riemann boundary value
problem with discontinuous coefficients

F+(x) = Ω(x)F−(x) + Λ(x), x ∈ R, (4.5)

where

Ω(x) =
a− bsgn(x)−H(x)sgn(x)

a− bsgn(x)−K(x)sgn(x)
, (4.6)

and

Λ(x) =
G(x)

a− bsgn(x) +K(x)sgn(x)
exp(iλx). (4.7)

Here, we still consider the normal types with restrictions on K(x) and H(x),
that is

K(x) ̸=

a− b, x ∈ R+;

a+ b, x ∈ R−,
, H(x) ̸=

a− b, x ∈ R+;

a+ b, x ∈ R−.
(4.8)

We can easily see that the coefficients Ω(x) (or Λ(x)) of Riemann boundary
value problem (4.5) may exist the discontinuities points.

Next, we consider the continuity of Ω(x) at x = 0. Since

lim
x→+0

Ω(x) =
a− b−H(0)

a− b−K(0)
, lim

x→−0
Ω(x) =

a+ b+H(0)

a+ b+K(0)
, (4.9)

and ab ̸= 0, thus
lim

x→+0
Ω(x) ̸= lim

x→−0
Ω(x),

then we know that x = 0 is the node of (4.5). Furthermore, at x = ∞, one has

lim
x→+∞

Ω(x) = lim
x→−∞

Ω(x) = 1, (4.10)

thus x = ∞ is not the node of problem (4.5). It can be observed that (4.5) only
contains one node x = 0.

Denote

γ0 = α0 + iβ0 =
1

2πi
{log Ω(−0)− log Ω(+0)}, (4.11)

we choose the integer κ = [α0] such as

0 ≤ α0 − κ < 1, (4.12)

then we say that κ is the index of (4.5).
To solve (4.5), we need to consider the following function

Y (z) =

 exp(Γ(z)), z ∈ Z+;

( z+i
z−i )

κ(expΓ(z)), z ∈ Z−,
(4.13)
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where

Γ(z) =
1

2πi

∫ +∞

−∞

log Ω0(x)

x− z
dx, (4.14)

and

Ω0(x) = (
x+ i

x− i
)κΩ(x), (4.15)

here Ω0(x) is a holomorphic function, but we have taken the definite branch of

log Ω0(x) = κ log
x+ i

x− i
+ logΩ(x), (4.16)

and chosen

lim
x→∞

log
x+ i

x− i
= 0, lim

x→±0
log

x+ i

x− i
= ±iπ. (4.17)

The Sokhotski-Plemelj formula for (4.14) yields the following result

Γ±(x) = ±1

2
log Ω0(x) + TΩ0(x), (4.18)

so we obtian

Y +(x) =
√

Ω0(x) exp(TΩ0(x)), Y −(x) =

(
x+ i

(x− i)Ω0(x)
1
2κ

)κ

exp(TΩ0(x)).

(4.19)
According to the principle of analytic continuation and Liouville theorem [6,23,

25], we have the following conclusion.
When κ ≥ 0, the general solution of (4.5) is

F (z) =
Y (z)

2πi

∫ +∞

−∞

Λ(x)

Y +(x)(x− z)
dx+

Y (z)

(z + i)κ
Pκ−1(z), (4.20)

where
Pκ−1(z) = C0 + C1z + . . .+ Cκ−1z

κ−1, (4.21)

is a polynomial of the order κ− 1 and P−1(z) ≡ 0.
When κ ≤ −1, (4.5) has a unique solution

F (z) =
Y (z)

2πi

∫ +∞

−∞

Λ(x)

Y +(x)(x− z)
dx. (4.22)

Observing (4.13), it can be prove that Y (z) has a pole of the order −κ at z = −i.
For which the following solvability conditions needs to be satisfied∫ +∞

−∞

Λ(x)

Y +(x)(x+ i)l
dx = 0, l = 1, 2, . . . ,−κ, (4.23)

thus, (4.5) has a unique solution (4.22) if and only if (4.23) holds. We also know
that, when κ ≥ 0, (4.5) has κ linearly independent solutions; when κ ≤ −1, (4.5)
has −κ solvability conditions. In summary, we say that (4.5) has |κ| degrees of
freedom. Applying the Sokhotski-Plemelj formula to (4.20), we can obtain

F+(x) =
Λ(x)

2
+

Y +(x)

2πi

∫ +∞

−∞

Λ(t)

Y +(t)(t− x)
dx+

Y +(x)

(x+ i)κ
Pκ−1(x), (4.24)
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and

F−(x) = − Λ(x)

2Ω(x)
+

Y −(x)

2πi

∫ +∞

−∞

Λ(t)

Y +(t)(t− x)
dx+

Y −(x)

(x+ i)κ
Pκ−1(x), (4.25)

thus

F (x) =F+(x)− F−(x)

=
Λ(x)

2

(
1 +

1

Ω(x)

)
+ (Y +(x)− Y −(x))

(
1

2πi

∫ +∞

−∞

Λ(t)

Y +(t)(t− x)
dx

+
Pκ−1(x)

(x+ i)κ

)
.

(4.26)

It is easy to verify that F±(x), F (x) ∈ H1 in any closed interval except x = 0.
Next we discuss the solvability conditions for (4.5) near the node x = 0, and we

denote
α = α0 − κ

and
γ = α+ iβ0.

Now, we will discuss two cases, respectively.
(1) Suppose that x = 0 is an ordinary node, that is, 0 < α < 1, we have

Y +(x) = xγ
√
Ω0(x) expΓ0(x), (4.27)

where
Γ0(x) = T log Ω0(x)− γ log x.

Denote

Φ(z) =
1

2πi

∫ +∞

−∞

Λ(x)

xγ(x− z)
√
Ω0(x)

exp(−Γ0(x))dx, (4.28)

by [1, 17,21,24], when x > 0, we have

Φ(x) =
Λ(+0) exp(−Γ0(x) + iγπ)

4ixγ sin γπ
√
Ω0(+0)

+
Λ(+0)

√
Ω0(−0)− 2Λ(−0)

√
Ω0(+0)

4ixγ sin γπ
√
Ω0(+0)Ω0(−0)

exp(−Γ0(x)− iγπ) + Φ∗(x),

(4.29)

where

Φ∗(x) =
Φ∗∗(x)

|x|α
′ , 0 < α′ < α < 1, Φ∗∗(x) ∈ Ĥ. (4.30)

In addition, we have

lim
x→+0

xγ
√

Ω0(x) expΓ0(x)

(
Φ∗(x) +

Pκ−1(x)

(x+ i)κ

)
= 0, (4.31)

thus, we get

F+(+0) =
Λ(+0)

2i sin γπ
exp iγπ − Λ(−0)

2i sin γπ
exp(−2iγπ). (4.32)
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Similarly, when x < 0, we have

Φ(x) =
2Λ(+0)

√
Ω0(−0)− Λ(−0)

√
Ω0(+0)

4ixγ sin γπ
√
Ω0(+0)Ω0(−0)

exp(−Γ0(x) + iγπ)

− Λ(−0) exp(−Γ0(x)− iγπ)

4ixγ sin γπ
√

Ω0(−0)
+ Φ∗(x),

(4.33)

and

F+(−0) =
Λ(+0)

2i sin γπ
exp (2iγπ)− Λ(−0)

2i sin γπ
exp(−2iγπ). (4.34)

Since F+(x) is continuous at x = 0, we must have

Λ(+0) exp 3iγπ = Λ(−0). (4.35)

It can be shown that F+(±0) = 0 if and only if (4.35) holds. Moreover, in order
to F−(±0) = 0, (3.6) is once again holds, so we have

F (0) = F+(0) = F−(0) = 0.

From the above discussion, we can obtian F (x) ∈ H1.

(2) Suppose that x = 0 is a special node, that is, α = 0.

(2a) If β0 ̸= 0, (4.31) is not necessarily holds. In this case, it is necessary to
assume that (3.6) and (4.35) are also valid. Since

Λ(0) = G(0) = 0,

we have

Φ(0) = Φ∗(0).

Then F (x) is continuous at x = 0 if and only if

Φ(0) =

C0i
−κ−2, κ ≥ 0;

0, κ ≤ −1,
(4.36)

that is, when κ ≥ 0, the constant term of Pκ−1(z) satisfies the following equality

C0 =
iκ+1

2π

∫ +∞

−∞

Λ(x)

Y +(x)x
dx; (4.37)

when κ ≤ −1, we have ∫ +∞

−∞

Λ(x)

Y +(x)x
dx = 0. (4.38)

(4.37) and (4.38) ensure that F (x) is continuous at x = 0, that is, F (0) = F±(0) = 0.

(2b) If β0 = 0, γ = 0, then Ω(x) is continuous at x = 0. In this case, the
coefficients of (4.5) does not contain node.

Based on the above discussion, we have
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Theorem 4.1. Under supposition, in the case that (4.8) is satisfied, (4.1) is solvable
in H1 provided that (3.6) holds. Consequently, we have

(1) Let x = 0 be an ordinary node, (4.35) is valid. When κ ≥ 0, (4.1) always
has the solution; when κ ≤ −1, if (4.23) is true, (4.1) has a unique solution.

(2) Let x = 0 be a special node, and (4.35) is still valid. When κ ≥ 0, (4.1) has
a general solution if and only if (4.37) holds; when κ ≤ −1, both (4.23) and (4.38)
are holds, (4.1) has a unique solution.

In short, if the above conditions are satisfied, the solution of (4.1) is

f(t) = F−1F (x), (4.39)

where F (x) is given by (4.26).

5. Singular integral equations of Wiener-Hopf type
with convolution and finite translations

In this section, we investigate the Wiener-Hopf type equations on the positive real
axis. Equation (3) can be reformulated as follows

af(t+ λ) + bTf+(t+ τ) + k(t) ∗ Tf+(t+ λ) = g(t), t ∈ R+, (5.1)

where a, b, λ ∈ R with ab ̸= 0 and |λ| < +∞, k(t), g(t) ∈ H∗
2 , f(t) is required to

be in H∗
2 . Add an unknown function f−(t) in the right side of (5.1) to extend the

equation to the whole real axis, we have

af+(t+ λ) + bTf+(t+ τ) + k(t) ∗ Tf+(t+ λ) = g(t) + f−(t), t ∈ R. (5.2)

Taking Fourier transforms on the both sides of (5.2), we obtian

[a− bsgn(x)−K(x)sgn(x)]F+(x) exp(−iλx) = G(x) + F−(x), x ∈ R. (5.3)

Further simplifying (5.3), we obtain the following Riemann boundary value prob-
lem

F+(x) = ∆(x)F−(x) + Θ(x), x ∈ R, (5.4)

where

∆(x) =
exp(iλx)

a− bsgn(x)−K(x)sgn(x)
, Θ(x) = G(x)∆(x), (5.5)

and we also require that K(x) satisfy the following conditions

K(x) ̸=


a− b, x ∈ R+;

−b, x = 0;

−a− b, x ∈ R−.

(5.6)

It is clear that ∆(x) is discontinuous at both x = 0 and x = ∞, so (5.4) has two
nodes. Denote

σ∞ = ν∞ + iι∞ =
1

2πi
(log∆(−∞)− log∆(+∞)), (5.7)



12 Y. Lei, W. Zhang, H. Wang & P. Li

form [19,22], we must have 0 ≤ ν∞ < 1 and σ∞ ̸= 0. Again take

σ0 = ν0 + iι0 =
1

2πi
(log∆(−0)− log∆(+0)), (5.8)

and χ = [ν0] as the index of (5.4). Note that 0 ≤ ν = ν0−χ < 1, we take σ = ν+ ι0
and σ ̸= 0. Once more, using the principle of analytical continuation and Liouville
theorem, we can obtain

when χ ≥ −1, (5.4) always has a general solution

F (z) =
V (z)

2πi

∫ +∞

−∞

z + i

x+ i

Θ(x)

V +(x)(x− z)
dx+

V (z)

(z + i)χ
Pχ(z), (5.9)

where

V (z) =

 expΞ(z), z ∈ Z+;

( z+i
z−i )

χ expΞ(z), z ∈ Z−,
(5.10)

and

Ξ(z) =
1

2πi

∫ +∞

−∞

z + i

x+ i

log∆0(x)

x− z
dx, ∆0(x) = (

x+ i

x− i
)χ∆(x), (5.11)

Pχ(z) is a polynomial of order χ similar to the form (4.23); when χ ≤ −2, (5.4) has
a unique solution

F (z) =
V (z)

2πi

∫ +∞

−∞

z + i

x+ i

Θ(x)

V +(x)(x− z)
dx, (5.12)

if and only if the conditions∫ +∞

−∞

Θ(x)

V +(x)(x+ i)l
dx = 0, l = 2, 3, . . . ,−χ, (5.13)

are satisfied. Thus, via using Sokhotski-Plemelj formula, we get

F+(x) =
Θ(x)

2
+

V +(x)

2πi

∫ +∞

−∞

x+ i

t+ i

Θ(t)

V +(t)(t− x)
dt+

V +(x)

(x+ i)χ
Pχ(x). (5.14)

Similarly to (4.24), we know that F+(x) ∈ H2 in any closed interval excluding x = 0
and x = ∞.

Next, we consider the behavior of (5.14) near x = 0 and x = ∞. Again denote

Ψ(x) =
x+ i

2πi

∫ +∞

−∞

Θ(t)

V +(t)(t− x)(t+ i)
dt. (5.15)

(1) Suppose that x = ∞ is an ordinary node. Note that V (x) = x−σ∞V ∗(x) in
the neighborhood of x = ∞, where V ∗(x) ∈ H2.

(1a) When 1
2 < ν∞ < µ < 1, since G(x) ∈ H2, we have

Θ(x) = O(|x|−µ
), (5.16)

and (5.15) is bounded, we get

V +(x)Ψ(x) = O(|x|−ν∞). (5.17)
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If χ ≥ −1, we know that

V +(x)

(x+ i)χ
Pχ(x) = O(|x|−ν∞). (5.18)

If χ ≤ −2, then Pχ(x) = 0. From (5.16)–(5.18), we get

F+(x) = O(|x|−µ
). (5.19)

(1b) When 1
2 < µ ≤ ν∞ < 1, (5.16) and (5.18) still hold, but for (5.17) we can

prove that there exists a sufficiently small positive real number ε > 0 such that
ν∞ > 1+2ε

2 , then (5.17) is expressed in the following form

V +(x)Ψ(x) = O(|x|−ν∞+ε
), (5.20)

we have
F+(x) = O(|x|−ν∞+ε

). (5.21)

Denote ξ = min{µ, ν∞ − ε}, when ν∞ > 1
2 , we have

F+(x) = O(|x|−ξ
). (5.22)

(1c) When ν∞ ≤ 1
2 < µ < 1, (5.15) still holds, from [1, 6, 23], (5.17) and (5.20)

can transformed into the following form

V +(x)Ψ(x) = O(|x|−µ
). (5.23)

But in this case, (5.18) may not be valid.
If χ ≥ 0, the highest power term coefficient Cχ of Pχ(z) should be satisfied

Cχ =
1

2πi

∫ +∞

−∞

Θ(x)

V +(x)(x+ i)
dx. (5.24)

If χ ≤ −1, then Pχ(z) = 0, and we need to add the following solvability condition∫ +∞

−∞

Θ(x)

V +(x)(x+ i)
dx = 0. (5.25)

Thus, (5.13) can be rewritten as∫ +∞

−∞

Θ(x)

V +(x)(x+ i)l
dx = 0, l = 1, 2, . . . ,−χ. (5.26)

It can be seen that when (5.24) and (5.26) holds, (5.22) still holds.
(2) Suppose that x = ∞ is a special node, then ν∞ = 0, σ∞ = iι∞ ̸= 0. In this

case, we have F+(x) ∈ H2, and the discussion is similar to case (1c) above.
Next we consider the case in the neighborhood of x = 0. The discussion is similar

to Section 4, and we only state the differences from the previous text. According to

F+(+0) = F−(+0),

we get the following equality

G(0) [∆(−0) exp 3iσπ −∆(+0)] = 0. (5.27)



14 Y. Lei, W. Zhang, H. Wang & P. Li

Note that (5.8), we have

∆(−0) = ∆(+0) exp 2iσ0π,

thus (5.27) can be rewritten as

G(0)∆(+0)(1− exp(−iσπ)) = 0. (5.28)

Thus, we can obtain that (3.6) holds, if and only if (5.27) is valid.

On the other hand, we also note that when ν∞ > 1
2 and χ ≥ 0, the following

equality is also fulfilled

Pχ(0) =
iκ−1

2π

∫ +∞

−∞

Θ(x)

V +(x)(x+ i)x
dx. (5.29)

And when χ ≤ −1, then (4.38) should be rewritten as the following form

∫ +∞

−∞

Θ(x)

V +(x)(x+ i)x
dx = 0. (5.30)

In all of the above cases, we know that F+(x) ∈ H2 undoubtedly.

Based on the above discussion, we can formulate the main results about solutions
of the equation (5.1) in the following form

Theorem 5.1. Under supposition, (5.6) holds, then (5.1) is solvable in H2 if and
only if (3.6) holds.

(1) Let x = ∞ be an ordinary node. When ν∞ > 1
2 , if χ ≥ −1, (5.1) always

has the solution; if χ ≤ −2, (5.1) is solvable only if (5.13) is valid. When ν∞ ≤ 1
2 ,

if χ ≥ 0, the necessary condition for (5.1) is (5.24); if χ ≤ −1, (5.1) is solvable if
and only if (5.25) holds.

(2) Let x = ∞ be a special node. When χ ≥ 0, the solvability condition for (5.1)
is (5.24); when χ ≤ −1, the solvability condition for (5.1) is (5.25).

(3) Let x = 0 be an ordinary node, (5.27) holds. When ν∞ > 1
2 , if χ ≥ −1,

(5.1) always has the solution; if χ ≤ −2, (5.1) is solvable when (5.13) holds. When
ν∞ ≤ 1

2 , if χ ≥ 0, (5.24) is a solvable condition for (5.1); if χ ≤ −1, (5.1) is solvable
in H2 if and only if (5.26) holds.

(4) Let x = 0 be a special node, (5.27) still holds. When ν∞ > 1
2 , if χ ≥ 0, ( (5.1)

has a general solution if and only if (5.26) holds; if χ ≤ −1, (5.1) has a unique
solution if and only if both (5.26) and (5.30) holds. When ν∞ ≤ 1

2 , if χ ≥ 0, (5.1)
has a general solution when both (5.24) and (5.29) hold; if χ ≤ −1, both (5.24) and
(5.27) hold, and (5.1) has a unique solution.

If cases (1)-(4) are satisfied, (5.1) is solvable in H2, and the solution is

f+(t) = F−1F+(x), (5.31)

where F+(x) is given by (5.14).
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6. Singular integral equations of dual type with con-
volution and finite translations

Finally, we address the dual equation through convolution and finite translations
by reformulating equation (4) asa1f(t+ λ) + b1Tf(t+ λ) + k1(t) ∗ Tf(t+ λ) = g(t), t ∈ R+;

a2f(t+ λ) + b2Tf(t+ λ) + k2(t) ∗ Tf(t+ λ) = g(t), t ∈ R−,
(6.1)

where aj , bj , λ ∈ R with ajbj ̸= 0 and |λ| < +∞, g(t), kj(t) ∈ H∗
2 (j = 1, 2). We

requires that the unknown function f(t) ∈ H∗
2 . In order to extend the equation to

the whole real axis, we add the unknown function υ±(t) ∈ H∗
2 to the right hand

side of (6.1), respectively, and we geta1f(t+ λ) + b1Tf(t+ λ) + k1(t) ∗ Tf(t+ λ) = g(t) + υ−(t);

a2f(t+ λ) + b2Tf(t+ λ) + k2(t) ∗ Tf(t+ λ) = g(t) + υ+(t),
t ∈ R. (6.2)

Taking the Fourier transforms on the both sides of (6.2), we get[a1 − b1sgn(x)−K1(x)sgn(x)]F (x) exp(−iλx) = G(x) + Υ−(x);

[a2 − b2sgn(x)−K2(x)sgn(x)]F (x) exp(−iλx) = G(x) + Υ+(x),
x ∈ R. (6.3)

We still consider the normal type, that is

Kj(x) ̸=


aj − bj , x ∈ R+;

−bj , x = 0;

−aj − bj , x ∈ R−,

(j = 1, 2) (6.4)

By further simplifying (6.3), we obtain

G(x) + Υ−(x)

a1 − b1sgn(x)−K1(x)sgn(x)
=

G(x) + Υ+(x)

a2 − b2sgn(x)−K2(x)sgn(x)
, (6.5)

thus we get the following Riemann boundary value problem

Υ+(x) = M(x)Υ−(x) +N(x), x ∈ R, (6.6)

where

M(x) =
a2 − b2sgn(x)−K2(x)sgn(x)

a1 − b1sgn(x)−K1(x)sgn(x)
, N(x) = G(x)(M(x)− 1). (6.7)

Note that (6.4) is continuous at x = 0, we have

G(0) + Υ±(0) = 0, (6.8)

we get (3.6) holds again. Similar to Section 5, x = 0 and x = ∞ are still nodes
of (6.6). Therefore, all the results in Theorem 5.1 still holds and we get f(t) =
F−1F (x) where F (x) is given by (6.1).

In addition, we can generalize equations (1)-(4) to singular integral equations
on closed curves with Carleman shifts [26–28], as well as singular integral equations
and boundary value problems in the function of several complex variables [29–34].
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