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1 Introduction

In this paper, we consider the following generalized absolute value equation with nonlinear

term (NGAVE) :

Ax−B|x|+ f(x) = b, (1.1)

where A,B ∈ Rn×n, b ∈ Rn, f : Rn 7→ Rn are known, x ∈ Rn is unknown. Here, |x| =

(|x1|, |x2|, · · · , |xn|)T . While f(x) = c ∈ Rn in (1.1), NGAVE becomes generalized absolute

value equation (GAVE)

Ax−B|x| = e, (1.2)

where e ∈ Rn. When f(x) = c ∈ Rn, B = I in (1.1), NGAVE becomes to absolute value

equation (AVE)

Ax− |x| = f, (1.3)

in [7] where f ∈ Rn. Absolute value equation may arise in diverse fields, including comple-

mentarity problem, programming problem, and so on, see [1,13–18]. For instance, on the basis
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of the equivalence of a > 0, b > 0, ab = 0 and a+ b = |a− b|, we known that NGAVE (1.1) also

can be reformulated as a generalized nonlinear complementarity problems (GNCP):

H(x)TZ(x) = 0, H(x) = Hx+ b
′
+ f

′
(x) > 0, Z(x) = Zx− b′ + f

′
(x) > 0, (1.4)

where H = B−1A+I
2 , Z = B−1A−I

2 , b
′

= B−1b
2 , f

′
(x) = B−1f(x)

2 .

Recently, in [12], AVE (1.3) is expressed as the nonlinear equation

F (x) = Ax− |x| − b = 0, (1.5)

and using the Newton iterative method x(k+1) = x(k) − F ′(x(k))
−1
F (x(k)), then generalized

Newton method (GN)

x(k+1) = x(k) − (A−D(x(k)))−1(Ax(k) − |x(k)| − b) (1.6)

is obtained, where F
′
(x(k)) denote the Jacobin of F at x(k) and D(x(k)) = diag(sign(x(k))). In

the calculation, due to the change of matrix A−D(x(k)) in the GN method, the computations

of the generalized Newton method may be very expensive. To avoid changing the Jacobian,

Wang, Cao and Chen utilize A+ Ω as the approximation of F
′
(x(k)) and then get the modified

Newton method (MN):

x(k+1) = x(k) − (A+ Ω)−1(Ax(k) − |x(k)| − b), (1.7)

Ω is positive semi-definite here.

This method does not need to recalculate F
′
(x(k)) at every step, thus reducing the amount

of calculation.

But if A+ Ω is ill-conditioned, the MN method may be expensive in practical calculations.

Furthermore, in [6], the author proposes a Newton-basedd matrix splitting method

x(k+1) = x(k) − (M + Ω)−1(Ax(k) − |x(k)| − b), (1.8)

where A = M −N.
Besides, a block matrix splitting method is proposed to solve the absolute value equation

in [5]. The AVE (1.3) is equivalent to the block system(
A −I

−D(x) I

)(
x

y

)
=

(
b

0

)
, (1.9)

where D(x) = diag(sign(x)). When A is invertible, from (1.9), it is hold that{
x(k+1) = A−1(y(k) + b),

y(k+1) = (1− τ)y(k) + τ |x(k+1)|.
(1.10)

Based on the above methods, a new iterative scheme is constructed in this paper by using

the characteristics of NGAVE with nonlinear term f(x) to solve NGAVE (1.1). We give a
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sufficient condition for the existence of a unique solution to NGAVE and several cases in which

the new iterative method converges. Some sufficient conditions for convergence of the method

are given when the splitting is H-compatible splitting.

The rest of the paper is organized as follows: In the remainder of this section, some defini-

tions and notations are given, which are suitable for the later discussion. In section 2, sufficient

conditions for the existence of the unique solution of NGAVE (1.1) are given. In Section 3, we

propose the algorithm for solving NGAVE (1.1). In Section 4, the convergence of this iterative

method is discussed. In Section 5, the numerical results of proposed method is reported. In

Section 6, we summarize the work done in this paper.

Next, we provide some definitions and notations to conclude this section.

Let A = (aij) ∈ Rn×n. A is called as a Z-matrix if aij 6 0 for i 6= j. A is a Z-

matrix and A−1 > 0 then it is called a nonsingular M -matrix. Further, A is called an

H-matrix when its comparison matrix 〈A〉 = (〈a〉ij) ∈ Rn×n is a nonsingular M -matrix

where 〈a〉ii = |aii| and 〈a〉ij = −|aij | for i 6= j. A is an H+-matrix which is an H-matrix

with diag(A) > 0, see [10]. The strictly diagonally dominant (SDD) matrix is defined as

|aii| >
∑

j 6=i |aij |, i = 1, 2, · · · , n. ρ(A) and ‖A‖ denote the spectral radius and the 2-norm of

the matrix A, respectively.

2 Unique solvability of the generalized absolute value equation
with nonlinear term

NGAVE (1.1) can be reformulated as a fixed point equation

x = A−1(B|x| − f(x) + b) := G(x), (2.1)

where A is nonsingular.

First, the following definition and assumption are given:

Definition 2.1. [21] There is a constant L 6= 0 that satisfy

‖F (x)− F (y)‖ 6 L‖x− y‖,

then F is called Lipschitz continuous.

Assumption 2.1. [22] The nonlinear term f(x) in the NGAVE (1.1) is Lipschitz continuous.

Definition 2.2. [22] Let G : D ⊂ Rn 7→ Rn. If there is α ∈ (0, 1) that satisfy ‖G(x)−G(y)‖ 6
α‖x − y‖ for any x, y ∈ D0 ⊂ D, G is called a contractive mapping in D0 and α is called a

compression coefficient.

Lemma 2.1. [22] (Contraction Mapping Principle) Let G : D ⊂ Rn 7→ Rn is a contractive

mapping in closed set D0 ⊂ D and G(D0) ⊂ D0, then G has a unique fixed point in D0.

3



Lemma 2.2. For any vectors x ∈ Rn, y ∈ Rn, it holds that ‖|x| − |y|‖ 6 ‖x− y‖.

Proof. According to the definition of vector norm and inequation ||α| − |β|| 6 |α−β|, this

conclusion can be directly obtained. �

Theorem 2.1. Under the condition of Assumption 2.1, if ‖A−1‖(‖B‖+L) < 1, then NGAVE

(1.1) has a unique solution.

Proof. According to Assumption 2.1, it can be seen that there is a constant L 6= 0 which

satisfies ‖f(x)− f(y)‖ 6 L‖x− y‖.
For any x, y ∈ Rn, we have

‖G(x)−G(y)‖ = ‖A−1B|x| −A−1f(x)−A−1B|y|+A−1f(y)‖
= ‖A−1B(|x| − |y|)−A−1(f(x)− f(y))‖
6 ‖A−1‖(‖B‖+ L)‖x− y‖.

(2.2)

The last inequality holds according to the Lemma 2.2. Let ‖A−1‖(‖B‖ + L) = α0. Then by

Definition 2.2, it follows that G is a contractive mapping in Rn. According to Lemma 2.1, G(x)

has a unique fixed point. Thus NGAVE (1.1) has a unique solution. �

3 Solve generalized absolute value equations with nonlinear
term

In this section, we first propose a new iterative method to solve absolute value equation with

nonlinear term.

We express the matrix A as A = M −N. Using matrix M + Ω to approximate the Jacobi

matrix F
′
(xk), we have the following iteration form.

Algorithm 3.1. (A new Newton-based Matrix Splitting Iterative Method)

Step 1 Give initial point x(0), y(0) ∈ Rn and the parameter ε > 0. Assume the split of the

matrix A is A = M −N. Given Ω ∈ Rn×n which satisfies M + Ω is invertible. Set k = 0.

Step 2 If ‖Ax
(k)−B|x(k)|+f(x(k))−b‖

‖b‖ < ε, stop;

Step 3 Compute x(k+1) and y(k+1) by{
x(k+1) = (M + Ω)−1

(
(N + Ω)x(k) +B|x(k)| − y(k) + b

)
,

y(k+1) = 1
α+1(f(x(k+1)) + αy(k)),

(3.1)

where α is a positive real number.

Step 4 Set k := k + 1 and go to Step 2.

Algorithm 3.1 produces different iterative forms for different ways of splitting.

(1)When M = A,N = 0, Algorithm 3.1 turns into the improvement of the method in [8]{
x(k+1) = A−1

(
B
∣∣x(k)

∣∣− y(k) + b
)
,

y(k+1) = 1
α+1(f(x(k+1)) + αy(k)),

(3.2)
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which can be called an improved Newton-based Method.

(2)When M = D,N = L + U where D = diag(A), −L,−U represent the strictly lower-

triangular and upper-triangular part of A, respectively, Algorithm 3.1 will be expressed as{
x(k+1) = (D + Ω)−1

(
(L+ U + Ω)x(k) +B

∣∣x(k)
∣∣− y(k) + b

)
,

y(k+1) = 1
α+1(f(x(k+1)) + αy(k)),

(3.3)

which can be called a new Newton-based Jacobi Method (NNJ).

(3)When M = D − L,N = U where D = diag(A), −L,−U represent the strictly lower-

triangular and upper-triangular part of A, respectively, Algorithm 3.1 will be expressed as{
x(k+1) = (D − L+ Ω)−1

(
(U + Ω)x(k) +B

∣∣x(k)
∣∣− y(k) + b

)
,

y(k+1) = 1
α+1(f(x(k+1)) + αy(k)),

(3.4)

which can be called a new Newton-based Gauss-Seidel Method (NNGS).

(4)When M = 1
α′
D − L,N = ( 1

α′
− 1)D + U where D = diag(A), −L,−U represent the

strictly lower-triangular and upper-triangular part of A, respectively, Algorithm 3.1 will be

expressed as x(k+1) = ( 1
α′
D − L+ Ω)−1

(
(( 1
α′
− 1)D + U + Ω)x(k) +B

∣∣x(k)
∣∣− y(k) + b

)
,

y(k+1) = 1
α+1(f(x(k+1)) + αy(k)),

(3.5)

which can be called a new Newton-based SOR Method (NNSOR).

(5)When M = 1
α′

(D−βL), N = 1
α′

((1−α′)D+(α
′−β)L+α

′
U) where D = diag(A), −L,−U

represent the strictly lower-triangular and upper-triangular part of A, respectively, Algorithm

3.1 will be expressed as x(k+1) = (D − βL+ α
′
Ω)−1

(
((1− α′)D + (α

′ − β)L+ α
′
U + α

′
Ω)xk + α

′ (
B
∣∣xk∣∣− y(k) + b

))
,

y(k+1) = 1
α+1(f(x(k+1)) + αy(k)),

(3.6)

which can be called a new Newton-based AOR Method (NNAOR).

4 Global convergence

In this section, we turn to analyze the convergence properties of Algorithm 3.1 and the following

lemmas are required.

Lemma 4.1. [2] Let λ be any root of the quadratic equation x2 − bx+ c = 0 where b, c ∈ R.

Then |λ| < 1 if and only if |c| < 1 and |b| < 1 + c.

Lemma 4.2. [5] Let x, y ∈ Rn, then ||x| − |y|| 6 |x− y|.

Let x∗ is the solution of NGAVE (1.1), y∗ = f(x∗). The iteration errors exk = x∗−x(k), eyk =

y∗ − y(k) where xk, yk is generated by Algorithm 3.1.
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Theorem 4.1. Let b ∈ Rn, A ∈ Rn×n,M + Ω ∈ Rn×n is nonsingular and f : Rn 7→ Rn.
Denote ‖(M+Ω)−1‖ = β, ‖N+Ω‖ = γ, ‖B‖ = δ. Under the Assumption 2.1, if β(γ+L+δ) < 1,

then the Algorithm 3.1 is convergent.

Proof. From (1.1), we have

Ax∗ −B|x∗|+ f(x∗) = b. (4.1)

Then (4.1) is equivalent to

(M + Ω)x∗ = (N + Ω)x∗ +B|x∗| − f(x∗) + b,

i.e. x∗ = (M + Ω)−1((N + Ω)x∗ +B|x∗| − y∗ + b).
(4.2)

And we know
(α+ 1)f(x∗) = f(x∗) + αf(x∗),

i.e. f(x∗) = 1
α+1(f(x∗) + αy∗).

(4.3)

Form (3.1), (4.2), (4.3), we can get

‖exk+1‖ = ‖(M + Ω)−1((N + Ω)(x∗ − xk) +B(|x∗| − |xk|)− (y∗ − y(k)))‖
= ‖(M + Ω)−1((N + Ω)exk +B(|x∗| − |xk|)− eyk)‖
6 ‖(M + Ω)−1‖(‖N + Ω‖‖exk‖+ ‖B‖‖|x∗| − |xk|‖+ ‖eyk‖)
= β(γ + δ)‖exk‖+ β‖eyk‖,

(4.4)

and
‖eyk+1‖ = ‖ 1

α+1((f(x∗)− f(x(k+1))) + α
α+1(y∗ − y(k)))‖

6 1
α+1‖f(x∗)− f(x(k+1))‖+ α

α+1‖y
∗ − y(k)‖

6 L
α+1‖e

x
k+1‖+ α

α+1‖e
y
k‖

6 L
α+1(β(γ + δ)‖exk‖+ β‖eyk‖) + α

α+1‖e
y
k‖

= Lβ(γ+δ)
α+1 ‖e

x
k‖+ Lβ+α

α+1 ‖e
y
k‖.

(4.5)

Further, (
‖exk+1‖
‖eyk+1‖

)
6

(
β(γ + δ) β
Lβ(γ+δ)
α+1

Lβ+α
α+1

)(
‖exk‖
‖eyk‖

)

6

(
β(γ + δ) β
Lβ(γ+δ)
α+1

Lβ+α
α+1

)2(
‖exk−1‖
‖eyk−1‖

)
...

6

(
β(γ + δ) β
Lβ(γ+δ)
α+1

Lβ+α
α+1

)k+1(
‖ex0‖
‖ey0‖

)
.

(4.6)

Let W =

(
β(γ + δ) β
Lβ(γ+δ)
α+1

Lβ+α
α+1

)
, we know that when ρ(W ) < 1, lim

k→∞
W k = 0. It is shown

that lim
k→∞

‖exk‖ = 0, lim
k→∞

‖eyk‖ = 0. In other words, the Algorithm 3.1 converges to the unique

solution x∗.
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Next, we need to prove ρ(W ) < 1 under Assumption 2.1.

Let λ be the eigenvalue of the matrix W. Then λ satisfies

λ2 − (β(γ + δ) +
Lβ + α

α+ 1
)λ+ (

β(γ + δ)(Lβ + α)

α+ 1
− Lβ2(γ + δ)

α+ 1
) = 0.

After simple calculations, we have

λ2 − (β(γ + δ) +
Lβ + α

α+ 1
)λ+ (

βα(γ + δ)

α+ 1
) = 0. (4.7)

From β(γ + L + δ) < 1, we can get β(γ + δ) < 1 − βL. Then αβ(γ + δ) < α − αβL.

Thus βα(γ + δ)− 1− α < α− αβL− α− 1 = −αβL− 1 < 0, i.e. |βα(γ+δ)
α+1 | =

βα(γ+δ)
α+1 < 1. By

direct calculations, we get β(γ+δ)+Lβ+α
α+1 −

βα(γ+δ)
α+1 = β(γ+δ+L)+α

α+1 < 1.Hence |β(γ+δ)+Lβ+α
α+1 | =

β(γ+ δ) + Lβ+α
α+1 < 1 + βα(γ+δ)

α+1 . According to Lemma 4.1, ρ(W ) < 1. This completes the proof.

�

Corollary 4.1. Set Ω = ε0I. Assume that M,N are symmetric positive definite matrices.

Under the Assumption 2.1, if λmax(N) + L + δ < λmin(M) where λmin(M), λmax(N) are the

smallest eigenvalue of matrix M and the largest eigenvalue of matrix N , respectively, then the

Algorithm 3.1 is convergent.

Proof. By simple calculations, we obtain

β(γ + L+ δ) = ‖(M + ε0I)−1‖(‖N + ε0I‖+ L+ δ)

= λmax(N)+ε0+L+δ
λmin(M)+ε0

.
(4.8)

If λmax(N) + L+ δ < λmin(M), then β(γ + L+ δ) < 1. Thus the Algorithm 3.1 is convergent.

�

Corollary 4.2. Under the Assumption 2.1, if ‖M‖ < 1
‖Ω‖ − (γ + L + δ), then the Algorithm

3.1 is convergent.

Proof. Set Â = Ω, B̂ = M+Ω. Then ‖Â−B̂‖ = ‖M‖ 6 1
‖Ω‖−(γ+L+δ). Further, ‖Ω‖( 1

‖Ω‖−
(γ + L+ δ)) = 1− ‖Ω‖(γ + L+ δ) < 1. Based on the perturbation lemma in [3], we get

β = ‖(M + Ω)−1‖
6 ‖Ω‖

1−‖Ω‖‖M‖

< ‖Ω‖
1−‖Ω‖( 1

‖Ω‖−(γ+L+δ))

= 1
γ+L+δ .

(4.9)

Therefore, β(γ + L+ δ) < 1. From Theorem 2.1, Algorithm 3.1 is convergent. �

Lemma 4.3. [4] Let A ∈ Rn×n, B ∈ Rn×n. If |A| 6 B, then ρ(A) 6 ρ(B).

Proposition 4.1. Let A ∈ Rn×n, B ∈ Rn×n. If |A| 6 B, then ‖A‖ 6 ‖B‖.
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Proof. From |A| 6 B, it is following that |ATA| 6 |AT ||A| 6 BTB. By the Lemma 4.3,

ρ(ATA) 6 ρ(BTB). Therefore, ‖A‖ 6 ‖B‖. �

Next, in order to obtain Theorems 4.2 and 4.3, we introduce the definition of H-compatible

splitting and some useful lemmas.

Definition 4.1. Let A = M −N with det(M) 6= 0. Then it is named an H-compatible splitting

if 〈A〉 = 〈M〉 − |N | is a nonsingular M-matrix with |N | = (|nij |).

Lemma 4.4. [7] If A 6 B, where A,B are M-matrix and Z-matrix, respectively, then B is

M-matrix.

Lemma 4.5. [11] Let A ∈ Rn×n, then the following properties hold:

(1) If A is a H-matrix, then |A−1| 6 〈A〉−1;

(2) Strictly diagonally dominant or irreducible diagonally dominant matrix is H-matrix.

Lemma 4.6. [11] Let A,B ∈ Rn×n are nonsingular M-matrices, and A 6 B, then A−1 > B−1.

Theorem 4.2. Let A = M − N is an H-compatible splitting of H+−matrix A and Ω is a

positive diagonal matrix. When ‖(Ω + 〈M〉)−1‖ < 1
γ+L+δ , Algorithm 3.1 is convergent.

Proof. Since A = M −N is an H-compatible splitting of matrix A, we obtain 〈A〉 6 〈M〉.
Because A is an H-matrix, 〈A〉 is a M -matrix. This shows that 〈M〉 is M -matrix according to

Lemma 4.4.

Obviously, 〈M + Ω〉 is a nonsingular M -matrix, so M + Ω is an H-matrix. Based on

Lemma 4.5, we can get |(M + Ω)−1| 6 〈M + Ω〉−1 = (〈M〉 + Ω)−1. According to Proposition

4.1, ‖(M + Ω)−1‖ 6 ‖(〈M〉+ Ω)−1‖ 6 1
γ+L+δ . Therefore, Algorithm 3.1 is convergent. �

Theorem 4.3. Let A = M − N is an H-compatible splitting of H-matrix A, M is an H+-

matrix and Ω is a strictly diagonally dominant H+-matrix. When ‖(〈Ω〉+ 〈M〉)−1‖ < 1
γ+L+δ ,

Algorithm 3.1 is convergent.

Proof. Since A = M −N is an H-compatible splitting of matrix A, it is hold that 〈A〉 =

〈M〉 − |N |. And M is an H+-matrix, therefore, 〈A〉 6 〈M〉 6 diag(M). We know that A is

an H-matrix, then 〈A〉 is a M -matrix. From Lemma 4.4, 〈M〉 is a M -matrix.

According to Assumption, Ω is a strictly diagonally dominant H+-matrix, then 〈Ω〉 is a

M -matrix. Therefore, 〈Ω〉+ 〈M〉 is a M -matrix.

〈M + Ω〉 > 〈M〉+ 〈Ω〉 holds where off-diagonal part is based on inequality −|mij + ωij | >
−|mij | − |ωij | and diagonal part holds naturally. Then 〈M + Ω〉 is a M -matrix, i.e., M + Ω

is H+-matrix. Further, we have |(M + Ω)−1| 6 〈M + Ω〉−1 6 (〈M〉+ 〈Ω〉)−1, where the second

inequality follows from lemma 4.6. From Proposition 4.1, ‖(M + Ω)−1‖ 6 ‖(〈M〉+ 〈Ω〉)−1‖ 6
1

γ+L+δ . Therefore, Algorithm 3.1 is convergent. �
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5 Numerical results

In this section, we use the following two examples to verify the feasibility of the algorithm

we proposed. And we intuitively analyze the effect of the algorithm from the iteration count

(indicated as IT), the relative residual error (indicated as RES) and the elapsed CPU time

(indicated as CPU) where RES is defined as RES = ‖Axk−B|xk|+f(xk)−b‖
‖b‖ . While RES < 10−4 or

the prescribed iteration count kmax = 500 is surpassed, all iterations are terminated. The

programming language used was MATLAB R2018a.

Example 5.1. Let

S =



4 −0.5 0 0 0

−1.5 4 −0.5 0 0

0
. . .

. . .
. . . 0

0 0 −1.5 4 −0.5

0 0 0 −1.5 4


∈ Rm×m,

M1 =



S −0.5I0 0 0 0

−1.5I0 S −0.5I0 0 0

0
. . .

. . .
. . . 0

0 0 −1.5I0 S −0.5I0

0 0 0 −1.5I0 S


∈ Rn×n,

where I0 ∈ Rm×m is an identity matrix. Consider the NGAVE Ax−B|x|+f(x) = b where A =

M+I, B = M−I, b = Ax∗−B|x∗|+f(x∗), f(·) = sin(·). Here, x∗ = (−0.6,−0.6, · · · ,−0.6)T

and M = M1 + µI. I ∈ Rn×n is an identity matrices with n dimensions, n = m2.

For Example 5.1, to improve the convergence speed of all the tested methods, the choice

of Ω is Ω = 1.2M1. we take the parameter µ = 4, α = 0.5. The initial iteration points x(0), y(0)

are

x(0) = y(0) = (1, 0, 1, 0, · · · , 1, 0)T ∈ Rn.

In the implementation of the algorithm, inverse matrices of D−L+ Ω, 1
α′
D−L+ Ω, 1

α′
(D−

βL)+Ω, can be determined by the sparse LU factorization or the sparse Cholesky factorization.

And according to Figure 1, we choose the parameter value to be α
′

= 0.9, β = 0.6.

According to the numerical results given in Table 1 and Figure 2, the Guass-Newton method

and the four methods presented in this paper can converge to the solution x∗ quickly for different

problem sizes. Moreover, the performance of the five methods in Example 5.1 is relatively

stable. It can be seen intuitively from Table 1 that CPU time of the NNJ method, the NNGS

method, the NNSOR method and the NNAOR method is obviously less than the Guass-Newton

method. Because the Guass-Newton method needs to calculate the Jacobian matrix of F (x(k))

at each step, it brings a huge amount of computation. However, the method proposed in this
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paper only needs to calculate the inverse of M + Ω once and correct the nonlinear part f(x(k))

in each update, thus the calculation time of the NNJ method, the NNGS method, the NNSOR

method and the NNAOR method are much less than that of Guass-Newton method.

Example 5.2. We consider the NGAVE (1.1) such that

A = Tx ⊗ Im + Im ⊗ Ty + pIn, B = In,
(
n = m2

)
(5.1)

where Tx = tridiag(−1−r, 4,−1+r), Ty = tridiag(−1−r, 0,−1+r), r = (qh)/2 and h = 1/(m+

1) for given real number p and nonnegative constant q. The right-hand side of NGAVE (1.1) is

constructed such that x∗ = (1, 2, · · · , n)T satisfies Ax∗ − |x∗|+ f(x∗) = b where f(·) = cos(·).
For Example 5.2, the choice of Ω is Ω = δIn, δ = −0.9, and α = 0.5. We take the

parameter q = 1, p = 2 and q = 2, p = 4, respectively. In this experiment, the initial iteration

points x(0), y(0) are

x(0) = y(0) = (0, 0, · · · , 0, 0)T ∈ Rn. (5.2)

And according to Figure 3 and 5, we choose the parameter value to be α
′

= 1.1, β = 0.9.

It can be seen from Figure 4 and 6 that all the six methods can effectively and steadily

converge to the solution x∗ when q = 1, p = 2 or q = 2, p = 4. The numerical results in Tables

2 and 3 show that the Guass-Newton method and the NNJ method, the NNGS method have

little difference in iteration counts and residuals in both cases (q = 1, p = 2 and q = 2, p = 4).

However, the CPU time of the NNJ method, the NNGS method is significantly less than that

of the Guass-Newton method. When setting the appropriate values for α′ and β, the NNSOR

method and the NNAOR method also performed better than the Newton method and the

Guass-Newton method in terms of CPU time.

Examples 5.1 and 5.2 show that the new Newton-based matrix splitting iterative method

is effective and the convergence effect is superior to the Guass-Newton method. Through

direct calculation, the NNJ method, the NNGS method, the NNSOR method and the NNAOR

method in Example 5.2 meet the condition proposed in Theorem 4.1 but the condition do not be

satisfied in Example 5.1, indicating that the conditions proposed in Theorem 4.1 are sufficient

conditions rather than necessary conditions for the new Newton-based matrix splitting iterative

method to converge.
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Figure 1. Selection of optimal parameters α
′
, β of the NNAOR method for Example 5.1
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Figure 2. Convergence effect for Example 5.1
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Figure 3. Selection of optimal parameters α
′
, β of the NNAOR method for Example 5.2

(q=1;p=2)
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Figure 4. Convergence effect for Example 5.2 (q=1;p=2)
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Table 1. Numerical comparisons about the mentioned algorithms for Example 5.1

Algorithm n 400 900 1600 2500 3600

IT 14 14 14 13 13

GUASS −NEWTON RES 9.1499e-07 6.2024e-07 4.6938e-07 8.3176e-07 6.9674e-07

CPU 0.207728 1.122682 5.436864 15.670527 40.725230

IT 11 11 11 11 11

NNJ RES 4.7816e-07 4.7522e-07 4.7350e-07 4.7238e-07 4.7160e-07

CPU 0.029603 0.108098 0.379684 1.007731 2.621176

IT 12 12 12 12 12

NNGS RES 8.4979e-07 8.6476e-07 8.5153e-07 8.3644e-07 8.2313e-07

CPU 0.031724 0.113848 0.391762 0.984423 2.536378

IT 11 11 11 11 11

NNSOR RES 4.1578e-07 4.1491e-07 4.1450e-07 4.1426e-07 4.1411e-07

α
′

= 0.9 CPU 0.029993 0.105045 0.346909 1.085007 2.780677

IT 11 11 11 11 11

NNAOR RES 4.5987e-07 4.5975e-07 4.5968e-07 4.5964e-07 4.5961e-07

(α
′

= 0.9;β = 0.6) CPU 0.031198 0.114716 0.421824 1.064167 2.751035

Table 2. Numerical comparisons about the mentioned algorithms for Example 5.2 (q=1, p=2)

Algorithm n 400 900 1600 2500 3600

IT 4 4 5 4 4

GUASS −NEWTON RES 3.4774e-05 5.4918e-05 4.0280e-07 8.4068e-05 9.3288e-05

CPU 0.104606 0.349643 1.872097 4.493567 12.157909

IT 5 5 5 5 5

NNJ RES 5.9439e-05 5.1951e-05 5.2414e-05 5.2997e-05 5.1496e-05

CPU 0.023763 0.061204 0.173787 0.431277 1.222827

IT 4 4 5 4 4

NNGS RES 3.8730e-05 2.5590e-05 2.2263e-05 2.1313e-05 1.7856e-05

CPU 0.025634 0.060369 0.151556 0.467179 1.055523

IT 3 3 3 3 3

NNSOR RES 3.8850e-05 2.3745e-05 1.7794e-05 1.4794e-05 1.2391e-05

α
′

= 1.1 CPU 0.021410 0.059269 0.162472 0.461926 1.020736

IT 3 3 3 2 2

NNAOR RES 3.5429e-05 2.0486e-05 1.5043e-05 9.4872e-05 8.4616e-05

(α
′

= 1.1;β = 0.9) CPU 0.024318 0.060364 0.147851 0.412287 1.147714
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Table 3. Numerical comparisons about the mentioned algorithms for Example 5.2 (q=2, p=4)

Algorithm n 400 900 1600 2500 3600

IT 4 4 4 4 4

GUASS −NEWTON RES 2.8344e-05 3.3656e-05 6.7496e-05 6.2878e-05 6.7983e-05

CPU 0.061057 0.308713 1.111980 3.351973 8.938422

IT 5 5 5 5 5

NNJ RES 3.8659e-05 3.2595e-05 3.1079e-05 3.1558e-05 3.0674e-05

CPU 0.022322 0.059627 0.151547 0.465858 1.131326

IT 4 3 3 3 3

NNGS RES 3.0823e-05 8.8911e-05 8.9703e-05 9.0955e-05 9.1514e-05

CPU 0.023348 0.063185 0.149682 0.464332 0.998092

IT 3 3 3 3 3

NNSOR RES 3.2762e-05 2.0298e-05 1.6252e-05 1.3458e-05 1.1597e-05

α
′

= 1.1 CPU 0.032953 0.058465 0.144290 0.463707 1.075843

IT 3 3 3 2 2

NNAOR RES 3.1594e-05 1.7208e-05 1.2959e-05 8.8250e-05 7.8590e-05

(α
′

= 1.1;β = 0.9) CPU 0.026301 0.058266 0.170766 0.459618 1.065003
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Figure 5. Selection of optimal parameters α
′
, β of the NNAOR method for Example 5.2

(q=2;p=4)
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Figure 6. Convergence effect for Example 5.2 (q=2;p=4)
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6 Conclusions

In this paper, we come up with the generalized absolute value equation with nonlinear term

and a new Newton-based matrix splitting iterative method is proposed for solving generalized

absolute value equation with nonlinear term. We give the global convergence of this method

and show that some new convergence conditions are proposed for certain splitting or properties

of matrix A. Numerical results indicate that the new Newton-based matrix splitting iterative

method for solving generalized absolute value equation with nonlinear term is effective. How-

ever, as there are three parameters in the NNAOR method, it is very difficult to determine the

optimal value for these parameters and it needs further study.
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