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Abstract

In this paper, we investigate the center-focus problem and the number of limit cycles
bifurcating from three foci for a family of piecewise smooth planar septic Z2-equivariant
systems, which include (±1, 0) and infinity as their singularities. We achieve a compre-
hensive classification of the conditions under which (±1, 0) act as centers. Moreover,
we rigorously prove that, under small Z2-equivariant perturbations, the perturbed sys-
tem possesses at least 15 limit cycles, comprising 14 with small amplitude and 1 large
amplitude with the scheme 1 ⊃ (7 ∪ 7).
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1 Introduction

For the past few years, the center and bifurcation problems for planar differential systems have
been extensively studied. Theoretically, the center and bifurcation problems are closely related
to the well-known Hilbert’s 16th problem, one of the 23 mathematical problems proposed by D.
Hilbert in 1900 [19]. A simplified form of this problem was also proposed by S. Smale [35] as one of
the 18 most challenging mathematical problems for 21st century. In practical applications, many
complex dynamical behaviors are triggered by the bifurcation of limit cycles.
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In the study of dynamical systems, center problems, which are closely related to the Hilbert’s
16th problem, are far from being solved. A complete study on the bi-center problem for Z2-
equivariant cubic vector fields was given in [39, 41], and the bi-center problem for some Z2-
equivariant quintic systems was studied in [34]. In 2017, the bi-isochronous center problem for
cubic systems in Z2-equivariant vector fields with real coefficients was considered in [15]. In 2020,
the isochronous center problem for the Z2-equivariant cubic vector fields with complex coefficients
was completely solved [25]. The Z2-equivariant cubic vector fields with weak saddles or resonant
saddles were studied in [26, 27, 28]. Weak centers and local bifurcation of critical periods in a
Z2-equivariant vector field of degree 5 were studied in [42]. For degenerate singular point, a nor-
mal form method was given in [40] and bifurcation of limit cycles and center problem for p : q
homogeneous weight systems were studied in [36].

A great many problems appearing frequently in science, particularly in mechanics, electrical
engineering and automatic control, are described by dynamical systems whose vector fields (i.e.,
the right-hand sides of the equations) are not continuous or not differentiable. These systems are
indistinctly called discontinuous or non-smooth systems and discussed in the classical books [16, 23].
In recent years, there has been considerable interest in studying bifurcations and chaos in non-
smooth systems because these systems are widely encountered in applications. Examples include
the squealing noise in car brakes [2, 20], the absence of a thermal equilibrium in gases modeled
by scattering billiards [21, 22], relay feedback systems in control theory [1, 6], switching circuits in
power electronics [3], impact and dry frictions in mechanical engineering [7, 13, 14], etc. Due to
various forms of non-smoothness, non-smooth systems can exhibit not only all kinds of bifurcations
belonging to smooth systems, but also complicated nonstandard bifurcation phenomena that are
exclusive to non-smooth ones, such as grazing [4, 8], sliding effects [7], border collision [32] etc.

A non-smooth system is called a switching system if such a system is divided by one or more
curves which may not be continuous on these curves. In recent decades increasing attention has
been paid to the following switching system(

dx

dt
,
dy

dt

)
=

{
(F+(x, y, µ), G+(x, y, µ)), for y > 0,
(F−(x, y, µ), G−(x, y, µ)), for y < 0,

(1.1)

where F±(x, y, µ) and G±(x, y, µ) are analytic functions in x and y. It is seen that system (1.1)
actually includes two systems: the first equation is called the upper system, defined for y > 0, and
the second is called the lower system, defined for y < 0. Note that y = 0 (i.e., the x-axis) is a
switching line.

Analogous to the study of smooth dynamical systems, we are interested in the following two
fundamental problems in the analysis of Hopf bifurcation in switching systems (1.1)

• The center-focus problem, determining if a singular point on the line y = 0 is either a center,
an attractor or a repeller.

• The cyclicity problem, finding the maximal number of limit cycles around the singular point
under the variation of the parameters inside the systems.

Discontinuous planar differential equations have richer dynamical behavior than smooth dy-
namical systems. For the center problem, it is well-known that a singular point is a center in
planar smooth systems if and only if there exists a local first integral around the singular point.
However, the situation is quite complicated in switching systems. The origin of system (1.1) can
be a center even if it is not a center of either the upper system or the lower system. On the other
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hand, if the origin is a center for both the upper system and the lower system of (1.1), system (1.1)
may not have a center at the origin.

A good deal of work has been done to invest whether some classical bifurcation methods for
smooth systems, such as the Hopf, homoclinic and subharmonic bifurcation methods, can be gen-
eralized to non-smooth cases, see, for example, [5, 10, 11, 17, 29, 30, 37] and the references therein.
Both of the center problem and cyclicity problem of switching systems can be investigated via the
computation of Lyapunov constants [10, 11, 17]. Gasull and Torregrosa [17] proposed a new method
to compute the return map near the critical point based on a suitable decomposition of certain
one-forms associated with the expression of (1.1) in polar coordinates. The studies on center-focus
problem for switching systems were started in [31, 33]. Up to now, some center conditions have
been obtained for some switching Kukles systems [17], switching Liénard systems [12, 29] and
switching Bautin systems [11]. It is well known that planar linear systems can not possess limit
cycles. However, compared to smooth systems, piecewise linear switching systems may have 2 or
3 limit cycles. Han and Zhang [18] proved that 2 limit cycles can appear near a focus of either FF
(focus-focus), FP (focus-parabolic) or PP (parabolic-parabolic) type. The number of small ampli-
tude limit cycles bifurcating from a focus of quadratic switching Bautin systems was investigated in
[10, 11, 17, 30]. Particularly, examples with linear lower system possessing 5 small amplitude limit
cycles were constructed in [17]. By using the perturbation method, it was shown in [10] that the
cyclicity of discontinuous quadratic systems is at least 9. Recently, Tian and Yu [38] constructed an
example of switching systems to show the existence of 10 small amplitude limit cycles bifurcating
from a center, which is a new lower bound of the maximal number of small amplitude limit cycles
obtained in quadratic switching systems near a singular point. Nilpotent center conditions in cubic
switching polynomial Liénard systems by higher-order analysis were studied in [9].

In this paper, we deal with the center problem and bifurcation of limit cycles for a class of
planar septic Z2-equivalent systems with 4 switching lines expressed as follows:{ dx

dt = −x4y +A1x
3y2 + (3 +A2 + 2A3)x

2y3 − (A1 − 2A4)xy
4 −A2y

5 − y(x2 + y2)3,
dy
dt = −x5 − (5 +A3)x

3y2 + (2A1 −A4)x
2y3 + (2A2 +A3)xy

4 +A4y
5 + x(x2 + y2)3,

(x > 0, y > 0),

{ dx
dt = −x4y +B1x

3y2 + (3 +B2 + 2B3)x
2y3 − (B1 − 2B4)xy

4 −B2y
5 − y(x2 + y2)3,

dy
dt = −x5 − (5 +B3)x

3y2 + (2B1 −B4)x
2y3 + (2B2 +B3)xy

4 +B4y
5 + x(x2 + y2)3,

(x < 0, y > 0),

{ dx
dt = −x4y +A1x

3y2 + (3 +A2 + 2A3)x
2y3 − (A1 − 2A4)xy

4 −A2y
5 − y(x2 + y2)3,

dy
dt = −x5 − (5 +A3)x

3y2 + (2A1 −A4)x
2y3 + (2A2 +A3)xy

4 +A4y
5 + x(x2 + y2)3,

(x < 0, y < 0),

{ dx
dt = −x4y +B1x

3y2 + (3 +B2 + 2B3)x
2y3 − (B1 − 2B4)xy

4 −B2y
5 − y(x2 + y2)3,

dy
dt = −x5 − (5 +B3)x

3y2 + (2B1 −B4)x
2y3 + (2B2 +B3)xy

4 +B4y
5 + x(x2 + y2)3,

(x > 0, y < 0).

(1.2)

It is easy to verify that system (1.2) is unchanged under a real planar counterclockwise rotation
through π, so it lies in a Z2-equivariant vector field. System (1.2) admits three singular points:
(±1, 0) and the infinity, the former two have the same topological structure.

The remaining sections are depicted as follows. A method of computing Lyapunov constants
for switching systems is given in Section 2 as preliminary. Section 3 is devoted to looking for center
conditions. The bifurcation of limit cycles generated from the equilibria is considered in Section 4.
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2 Preliminary

Lyapunov constants are effective in distinguishing weak foci from centers and in determining
the cyclicity of linear center type equilibria. The vanishing of all Lyapunov constants is a necessary
and sufficient condition for a singular point to become a center. We will give some properties and
technical results about the Poincaré return map and Lyapunov constants associated to switching
systems, as offered by [24].

If the functions F±(x, y, µ) and G±(x, y, µ) in system (1.1) are analytic functions in x and y in
the neighborhood of the origin, systems (1.1) can be expanded as the following system

dx
dt = δ+x− y +

∞∑
k=2

X+
k (x, y),

dy
dt = x+ δ+y +

∞∑
k=2

Y +
k (x, y),

y ≥ 0


dx
dt = δ−x− y +

∞∑
k=2

X−k (x, y),

dy
dt = x− δ−y +

∞∑
k=2

Y −k (x, y),
y ≤ 0,

(2.1)

where X±k (x, y), Y ±k (x, y) are homogeneous polynomials in x, y of degree k. According to Lemma
2.1 of [17], a Poincare map can be defined by using the upper and lower systems of (2.1). At first,
the lower system of (2.1) can be changed to

dx
dt = −δ−x− y −

∞∑
k=2

X−k (x,−y),

dy
dt = x− δ−y +

∞∑
k=2

Y −k (x,−y),
on y ≥ 0, (2.2)

by the transformation (x, y, t)→ (x,−y,−t) . Then, under the transformation

x = r cos θ, y = r sin θ, (2.3)

the upper system (2.1) and system (2.2) become

dr
dt = r

[
δ± +

∞∑
k=1

ϕ±k+2(θ)r
k

]
,

dθ
dt = 1 +

∞∑
k=1

ψ±k+2(θ)r
k,

(2.4)

where ϕk(θ), ψk(θ) are polynomials of cos θ and sin θ, given by

ϕ±k (θ) = cos θX±k−1(cos θ, sin θ) + sin θY ±k−1(cos θ, sin θ),

ψ±k (θ) = cos θY ±k−1(cos θ, sin θ)− sin θX±k−1(cos θ, sin θ).
(2.5)

We see from (2.4) that

dr

dθ
= r

δ± +
∞∑
k=1

ϕ±k+2(θ)r
k

1 +
∞∑
k=1

ψ±k+2(θ)r
k

. (2.6)

4



To study the solutions of this equation, we shall consider a general differential equation

dr

dθ
= r

∞∑
k=0

R±k (θ)rk, (2.7)

where θ ∈ (0, π). Suppose system (2.7) have the following solution of convergent power series

r1 = r̃1(θ, h) =
∞∑
k=1

uk(θ)h
k (2.8)

and

r2 = r̃2(θ, h) =

∞∑
k=1

vk(θ)h
k, (2.9)

respectively, satisfying the initial condition r1|θ=0 = r2|θ=0 = h, where h is sufficiently small and

u1(0) = v1(0) = 0, uk(0) = vk(0) = 0, k = 2, 3, · · · . (2.10)

We can then define the following functions

∆1(h) = r̃1(π, h)− h (2.11)

and
∆2(h) = r̃2(π, h)− h (2.12)

for the upper system of (2.1) and the system (2.2), respectively. Therefore, the successive function
for the switching system (2.1) can be defined as

∆(h) = ∆1(h)−∆2(h) = r̃1(π, h)− r̃2(π, h). (2.13)

Definition 2.1. (See [24]) Define

∆(h) =
∞∑
k=1

[uk(π)− vk(π)]hk =
n∑
k=1

Vkh
k, (2.14)

where Vk is called the kth order Lyapunov constant of the switching system (2.1).

Definition 2.2. (See [24]) If the functions on the right-hand side of system (2.1) satisfy the
following conditions:

X+(x, y) = −X−(x,−y), Y +(x, y) = Y −(x,−y), (2.15)

then system (2.1) is said to be symmetric with the x-axis; If the functions on the right-hand side
of system (2.1) satisfy the following conditions:

X+(x, y) = X+(−x, y), Y +(x, y) = −Y +(−x, y), X−(x, y) = X−(−x, y), Y −(x, y) = −Y −(−x, y),
(2.16)

then system (2.1) is said to be symmetric with the y-axis.

With the above definitions, we have the following result.

Theorem 2.1. (See [24]) If system (2.1) is symmetric with the x-axis or the y-axis, then the origin
is a center.

Theorem 2.2. (See [24]) If the upper half plane and lower half plane of system (2.1) have analytic
first integrals H1(x, y) and H2(x, y), respectively, then the origin of system (2.1) is a center if and
only if for x1 > 0 small there exists x2 < 0 such that Hj(x1, 0) = Hj(x2, 0), j = 1, 2.
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3 Center conditions

This section is dedicated to finding the center conditions of system (1.2) with the aid of symbolic
computation.

Since system (1.2) is a Z2-equivariant system with two symmetric critical points (±1, 0), without
loss of generality, it suffices to discuss the case of (1, 0). It is well-known that the Hopf bifurcation
is always considered in a small neighborhood of the critical point. Therefore, when we consider the
Hopf bifurcation in the neighborhood of (1, 0) of system (1.2), it is equivalent to consider the Hopf
bifurcation in the neighborhood of (1, 0) of the following switching system,{ dx

dt = −x4y +A1x
3y2 + (3 +A2 + 2A3)x

2y3 − (A1 − 2A4)xy
4 −A2y

5 − y(x2 + y2)3,
dy
dt = −x5 − (5 +A3)x

3y2 + (2A1 −A4)x
2y3 + (2A2 +A3)xy

4 +A4y
5 + x(x2 + y2)3,

(y > 0),

{ dx
dt = −x4y +B1x

3y2 + (3 +B2 + 2B3)x
2y3 − (B1 − 2B4)xy

4 −B2y
5 − y(x2 + y2)3,

dy
dt = −x5 − (5 +B3)x

3y2 + (2B1 −B4)x
2y3 + (2B2 +B3)xy

4 +B4y
5 + x(x2 + y2)3,

(y < 0).

(3.1)

Namely, the Lyapunov constants at (1, 0) of system (1.2) are the same as system (3.1) in the
neighborhood of (1, 0). With the translation substitution (x, y, t) → (x + 1, y, 2t), system (3.1) is
transformed to the form

dx
dt = −y − 5xy + 1

2A1y
2 − 21

2 x
2y + 3

2A1xy
2 + 1

2(A2 + 2A3)y
3 − 12x3y

−(3−A2 − 2A3)xy
3 − 1

2(A1 − 2A4)y
4 − 8x4y + 1

2A1x
3y2

−1
2(15−A2 − 2A3)x

2y3 − 1
2(A1 − 2A4)xy

4 − 1
2(3 +A2)y

5

−3xy(x2 + y2)2 − 1
2y(x2 + y2)3,

dy
dt = x+ 11

2 x
2 − 1

2(2 +A3)y
2 + 25

2 x
3 − 3

2A3xy
2 + 1

2(2A1 −A4)y
3 + 15x4

+3
2(5−A3)x

2y2 + (2A1 −A4)xy
3 + 1

2(3 + 2A2 +A3)y
4 + 10x5

+1
2(25−A3)x

3y2 + 1
2(2A1 −A4)x

2y3 + 1
2(9 + 2A2 +A3)xy

4

+1
2(7x2 + y2)(x2 + y2)2 + 1

2x(x2 + y2)3,

(y > 0),



dx
dt = −y − 5xy + 1

2B1y
2 − 21

2 x
2y + 3

2B1xy
2 + 1

2(B2 + 2B3)y
3 − 12x3y

−(3−B2 − 2B3)xy
3 − 1

2(B1 − 2B4)y
4 − 8x4y + 1

2B1x
3y2

−1
2(15−B2 − 2B3)x

2y3 − 1
2(B1 − 2B4)xy

4 − 1
2(3 +B2)y

5

−3xy(x2 + y2)2 − 1
2y(x2 + y2)3,

dy
dt = x+ 11

2 x
2 − 1

2(2 +B3)y
2 + 25

2 x
3 − 3

2B3xy
2 + 1

2(2B1 −B4)y
3 + 15x4

+3
2(5−B3)x

2y2 + (2B1 −B4)xy
3 + 1

2(3 + 2B2 +B3)y
4 + 10x5

+1
2(25−B3)x

3y2 + 1
2(2B1 −B4)x

2y3 + 1
2(9 + 2B2 +B3)xy

4

+1
2(7x2 + y2)(x2 + y2)2 + 1

2x(x2 + y2)3,

(y < 0).

(3.2)

Executing the Mathematica program for computing the Lyapunov constants results in

Theorem 3.1. The first 7 Lyapunov constants at the origin of system (3.2) are given as follows:

V1 = −2
3(A3 −B3),

V2 = 1
16(2A1 −A1A3 − 3A4 + 2B1 −A3B1 − 3B4)π,

V3 = 2
45(4A2

1 + 9A2 − 2A2
1A3 − 3A2A3 − 6A1A4 + 4A1B1

− 2A1A3B1 − 6A4B1 − 9B2 + 3A3B2),

(3.3)
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Case (I): for A3 6= 3,

V4 = − 1
2304(A3−3)(A1 +B1)(864 + 90A2

1 + 540A2 − 252A3 − 55A2
1A3 − 360A2A3 − 120A2

3

+5A2
1A

2
3 + 60A2A

2
3 + 36A3

3 + 45A1A4 − 75A1A3A4 − 270A2
4 + 30A1B1 − 25A1A3B1

+5A1A
2
3B1 − 45A4B1 + 15A3A4B1)π,

V5 = − 4
141754(A1 +B1)(270A1 + 10A3

1 − 144A1A3 − 5A3
1A3 + 18A1A

2
3 − 324A4 − 15A2

1A4

+108A3A4 − 54B1 + 20A2
1B1 − 36A3B1 − 10A2

1A3B1 + 18A2
3B1 − 30A1A4B1

+10A1B
2
1 − 5A1A3B

2
1 − 15A4B

2
1),

(3.4)

Subcase (Ia): for A3 6= 1
36 [108 + 5(A1 +B1)

2],

V6 = 1
737280[108−36A3+5(A1+B1)2]2

(A3 − 3)(1 +A3)(A1 +B1)f6π,

V7 = − 1
1134[108−36A3+5(A1+B1)2]3[48+35(A1+B1)2]

(A3 − 3)(1 +A3)(A1 −B1)
3

× (A1 +B1)
3[144 + 5(A1 +B1)

2]f7,

(3.5)

Subcase (Ib): for A3 = 1
36 [108 + 5(A1 +B1)

2],

V6 = − 1
7464960A1

g6π,

V7 = 64
14467005(5A2

1−12)
A3

1(9072− 24A2
1 + 35A4

1)(9A1 + 5A3
1 + 27A4),

(3.6)

Case (II): for A3 = 3,
V4 = − 5

256(A1 + 3A4)(A2 −B2)π,
V5 = V6 = V7 = 0,

(3.7)

In the above expression of Vk, it is assumed that: V1 = V2 = · · · = Vk−1 = 0, k = 2, 3, 4, 5, 6, 7, and

f6 = 4478976 + 5857920A2
1 + 160800A4

1 − 875A6
1 − 2985984A3 − 2315520A2

1A3

−100800A4
1A3 + 497664A2

3 + 362880A2
1A

2
3 + 3006720A1B1 + 1248000A3

1B1

+26250A5
1B1 − 4631040A1A3B1 − 403200A3

1A3B1 + 725760A1A
2
3B1 + 5857920B2

1

+2174400A2
1B

2
1 + 112875A4

1B
2
1 − 2315520A3B

2
1 − 604800A2

1A3B
2
1 + 362880A2

3B
2
1

+1248000A1B
3
1 + 171500A3

1B
3
1 − 403200A1A3B

3
1 + 160800B4

1 + 112875A2
1B

4
1

−100800A3B
4
1 + 26250A1B

5
1 − 875B6

1 ,
f7 = 145152 + 96A2

1 + 35A4
1 + 192A1B1 + 140A3

1B1 + 96B2
1 + 210A2

1B
2
1

+140A1B
3
1 + 35B4

1 ,
g6 = 61236A2

1 + 59805A4
1 + 43350A6

1 − 875A8
1 + 367416A1A4 + 51030A3

1A4 − 85050A5
1A4

+551124A2
4 − 229635A2

1A
2
4.

By using the expressions of Lyapunov constants obtained in the above theorem, we can get the
center conditions.

Theorem 3.2. The first 7 Lyapunov constants at the origin of system (3.2) vanish if and only if
one of the following conditions holds:

B1 = −A1, B2 = A2, B3 = A3, B4 = −A4; (3.8)

A2 = B2 = A3 = B3 = −1, A4 = A1, B4 = B1; (3.9)

A3 = B3 = 3, A4 = −1

3
A1, B4 = −1

4
B1. (3.10)
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Proof. By linearly solving V7 = 0 for A4 given in (3.6), we have

A4 = − 1

27
A1(9 + 5A1), (3.11)

under which, V6 is rewritten as

V6 =
1

186624
A3

1(36 + 5A2
1)(12 + 35A2

1)π 6= 0. (3.12)

Therefore, the origin of system (3.2) is impossible to be a center in case (Ib).

Using the expressions of Lyapunov constants in subcase (Ia) and solving the nonlinear system
{V1 = V2 = V3 = V4 = V5 = V6 = V7 = 0}, we obtain conditions (3.8) and (3.9). Using the
expressions of Lyapunov constants in case (II) and solving the nonlinear system {V1 = V2 = V3 =
V4 = V5 = V6 = V7 = 0}, we obtain condition (3.10) and

B1 = −A1, B2 = A2, B3 = A3 = 3, B4 = −A4, (3.13)

which is a special case of condition (3.8).

Theorem 3.3. For system (3.2), all the Lyapunov constants at the origin vanish if and only if the
first 7 Lyapunov constants vanish, i.e., one of the three conditions in Theorem 3.2 holds. Relevantly,
the three conditions in Theorem 3.2 are the center conditions of the origin.

Proof. When condition (3.8) is satisfied, system (3.2) becomes

dx
dt = −y − 5xy + 1

2A1y
2 − 21

2 x
2y + 3

2A1xy
2 + 1

2(A2 + 2A3)y
3 − 12x3y

−(3−A2 − 2A3)xy
3 − 1

2(A1 − 2A4)y
4 − 8x4y + 1

2A1x
3y2

−1
2(15−A2 − 2A3)x

2y3 − 1
2(A1 − 2A4)xy

4 − 1
2(3 +A2)y

5

−3xy(x2 + y2)2 − 1
2y(x2 + y2)3,

dy
dt = x+ 11

2 x
2 − 1

2(2 +A3)y
2 + 25

2 x
3 − 3

2A3xy
2 + 1

2(2A1 −A4)y
3 + 15x4

+3
2(5−A3)x

2y2 + (2A1 −A4)xy
3 + 1

2(3 + 2A2 +A3)y
4 + 10x5

+1
2(25−A3)x

3y2 + 1
2(2A1 −A4)x

2y3 + 1
2(9 + 2A2 +A3)xy

4

+1
2(7x2 + y2)(x2 + y2)2 + 1

2x(x2 + y2)3,

(y > 0),



dx
dt = −y − 5xy − 1

2A1y
2 − 21

2 x
2y − 3

2A1xy
2 + 1

2(A2 + 2A3)y
3 − 12x3y

−(3−A2 − 2A3)xy
3 + 1

2(A1 − 2A4)y
4 − 8x4y − 1

2A1x
3y2

−1
2(15−A2 − 2A3)x

2y3 + 1
2(A1 − 2A4)xy

4 − 1
2(3 +A2)y

5

−3xy(x2 + y2)2 − 1
2y(x2 + y2)3,

dy
dt = x+ 11

2 x
2 − 1

2(2 +A3)y
2 + 25

2 x
3 − 3

2A3xy
2 − 1

2(2A1 −A4)y
3 + 15x4

+3
2(5−A3)x

2y2 − (2A1 −A4)xy
3 + 1

2(3 + 2A2 +A3)y
4 + 10x5

+1
2(25−A3)x

3y2 − 1
2(2A1 −A4)x

2y3 + 1
2(9 + 2A2 +A3)xy

4

+1
2(7x2 + y2)(x2 + y2)2 + 1

2x(x2 + y2)3,

(y < 0).

(3.14)

whose vector field is symmetric with respect to the x-axis according to the Theorem 2.1.
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Under condition (3.9), system (3.2) writes
dx
dt = −y − 5xy + 1

2A1y
2 − 21

2 x
2y + 3

2A1xy
2 − 3

2y
3 − 12x3y + 3

2A1x
2y2 − 6xy3

+1
2A1y

4 − 1
2y(16x2 −A1xy + 2y2)(x2 + y2)− 3xy(x2 + y2)2 − 1

2y(x2 + y2)3,
dy
dt = x+ 11

2 x
2 − 1

2y
2 + 25

2 x
3 + 3

2xy
2 + 1

2A1y
3 + 15x4 + 9x2y2 +A1xy

3

+1
2(20x3 + 6xy2 +A1y

3)(x2 + y2) + 1
2(7x2 + y2)(x2 + y2)2 + 1

2x(x2 + y2)3,

(y > 0),


dx
dt = −y − 5xy + 1

2B1y
2 − 21

2 x
2y + 3

2B1xy
2 − 3

2y
3 − 12x3y + 3

2B1x
2y2 − 6xy3

+1
2B1y

4 − 1
2y(16x2 −B1xy + 2y2)(x2 + y2)− 3xy(x2 + y2)2 − 1

2y(x2 + y2)3,
dy
dt = x+ 11

2 x
2 − 1

2y
2 + 25

2 x
3 + 3

2xy
2 + 1

2B1y
3 + 15x4 + 9x2y2 +B1xy

3

+1
2(20x3 + 6xy2 +B1y

3)(x2 + y2) + 1
2(7x2 + y2)(x2 + y2)2 + 1

2x(x2 + y2)3,

(y < 0).

(3.15)
By means of complex transformation

z = x+ iy, w = x− iy, T = it, i =
√
−1, (3.16)

system (3.15) is transferred into
dz
dT = 1

8(1 + z)2(1 + w)[8z + (6 + iA1)z
2 + 2(6− iA1)zw

+(2 + iA1)w
2 + 8z2w + 8zw2 + 4z2w2],

dw
dT = −1

8(1 + w)2(1 + z)(8w + (6− iA1)w
2 + 2(6 + iA1)wz

+(2− iA1)z
2 + 8w2z + 8wz2 + 4w2z2),

(Im(z) = Im(w) > 0),


dz
dT = 1

8(1 + z)2(1 + w)[8z + (6 + iB1)z
2 + 2(6− iB1)zw

+(2 + iB1)w
2 + 8z2w + 8zw2 + 4z2w2],

dw
dT = −1

8(1 + w)2(1 + z)[8w + (6− iB1)w
2 + 2(6 + iB1)wz

+(2− iB1)z
2 + 8w2z + 8wz2 + 4w2z2],

(Im(z) = Im(w) < 0).

(3.17)

The upper system and lower one in system (3.17) have the following first integrals

H+
1 (z, w) = (2−iA1)z(2+z)+2(2+iA1+8z+4z2)w+(2+iA1+8z+4z2)w2+2i(2i−A1)(1+z)(1+w) ln(1+w)

8(1+z)(1+w)

+1
4 i(2i+A1) ln(1 + z),

H−1 (z, w) = (2−iB1)z(2+z)+2(2+iB1+8z+4z2)w+(2+iB1+8z+4z2)w2+2i(2i−B1)(1+z)(1+w) ln(1+w)
8(1+z)(1+w)

+1
4 i(2i+B1) ln(1 + z),

(3.18)

respectively. Furthermore,

H+
1 (z, z) = H−1 (z, z) =

1

2
[2z + z2 − 2 ln(1 + z)], (3.19)

which yields that the origin of system (3.2) is a center.
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When condition (3.10) holds, system (3.2) takes the form

dx
dt = −y − 5xy + 1

2A1y
2 − 21

2 x
2y + 3

2A1xy
2 + 1

2(6 +A2)y
3 − 12x3y + 3

2A1x
2y2

+(3 +A2)xy
3 − 5

6A1y
4 − 8x4y + 1

2A1x
3y2 − 1

2(9−A2)x
2y3 − 5

6A1xy
4

−1
2(3 +A2)y

5 − 3xy(x2 + y2)2 − 1
2y(x2 + y2)3,

dy
dt = x+ 11

2 x
2 − 5

2y
2 + 25

2 x
3 − 9

2xy
2 + 7

6A1y
3 + 15x4 + 3x2y2 + 7

3A1xy
3

+(3 +A2)y
4 + 10x5 + 11x3y2 + 7

6A1x
2y3 + (6 +A2)xy

4 − 1
6A1y

5

+1
2(7x2 + y2)(x2 + y2)2 + 1

2x(x2 + y2)3,

(y > 0),



dx
dt = −y − 5xy + 1

2B1y
2 − 21

2 x
2y + 3

2B1xy
2 + 1

2(6 +B2)y
3 − 12x3y + 3

2B1x
2y2

+(3 +B2)xy
3 − 5

6B1y
4 − 8x4y + 1

2B1x
3y2 − 1

2(9−B2)x
2y3 − 5

6B1xy
4

−1
2(3 +B2)y

5 − 3xy(x2 + y2)2 − 1
2y(x2 + y2)3,

dy
dt = x+ 11

2 x
2 − 5

2y
2 + 25

2 x
3 − 9

2xy
2 + 7

6B1y
3 + 15x4 + 3x2y2 + 7

3B1xy
3

+(3 +B2)y
4 + 10x5 + 11x3y2 + 7

6B1x
2y3 + (6 +B2)xy

4 − 1
6B1y

5

+1
2(7x2 + y2)(x2 + y2)2 + 1

2x(x2 + y2)3,

(y < 0).

(3.20)
With the complex substitution (3.16), system (3.20) can be written in the form:

dz
dT = 1

48(1 + z)2[48z + 6(10 + iA1)z
2 + 12(6− iA1)zw + 6(6 + iA1)w

2

+(15 + 4iA1 + 3A2)z
3 + 3(21− 2iA1 − 3A2)z

2w + 9(13 +A2)zw
2

+(21 + 2iA1 − 3A2)w
3 + 72z2w2 + 48zw3 + 24z2w3],

dw
dT = − 1

48(1 + w)2[48w + 6(10− iA1)w
2 + 12(6 + iA1)wz + 6(6− iA1)z

2

+(15− 4iA1 + 3A2)w
3 + 3(21 + 2iA1 − 3A2)w

2z + 9(13 +A2)wz
2

+(21− 2iA1 − 3A2)z
3 + 72w2z2 + 48wz3 + 24w2z3],

(Im(z) = Im(w) > 0),



dz
dT = 1

48(1 + z)2[48z + 6(10 + iB1)z
2 + 12(6− iB1)zw + 6(6 + iB1)w

2

+(15 + 4iB1 + 3B2)z
3 + 3(21− 2iB1 − 3B2)z

2w + 9(13 +B2)zw
2

+(21 + 2iB1 − 3B2)w
3 + 72z2w2 + 48zw3 + 24z2w3],

dw
dT = − 1

48(1 + w)2[48w + 6(10− iB1)w
2 + 12(6 + iB1)wz + 6(6− iB1)z

2

+(15− 4iB1 + 3B2)w
3 + 3(21 + 2iB1 − 3B2)w

2z + 9(13 +B2)wz
2

+(21− 2iB1 − 3B2)z
3 + 72w2z2 + 48wz3 + 24w2z3],

(Im(z) = Im(w) < 0),

(3.21)
whose upper system and lower system have the following first integrals

H+
2 (z, w) = − 1

192(1+z)4(1+w)4
[48 + 192(z + w) + 288(z + w)2 + 8(18 + iA1)z

3

+24(30− iA1)z
2w + 24(30 + iA1)zw

2 + 8(18− iA1)w
3 + (15 + 4iA1 + 3A2)z

4

+4(69− 2iA1 − 3A2)z
3w + 18(45 +A2)z

2w2 + 4(69 + 2iA1 − 3A2)zw
3

+(15− 4iA1 + 3A2)w
4 + 288(z + w)z2w2 + 96z3w3],

H−2 (z, w) = − 1
192(1+z)4(1+w)4

[48 + 192(z + w) + 288(z + w)2 + 8(18 + iB1)z
3

+24(30− iB1)z
2w + 24(30 + iB1)zw

2 + 8(18− iB1)w
3 + (15 + 4iB1 + 3B2)z

4

+4(69− 2iB1 − 3B2)z
3w + 18(45 +B2)z

2w2 + 4(69 + 2iB1 − 3B2)zw
3

+(15− 4iB1 + 3B2)w
4 + 288(z + w)z2w2 + 96z3w3],

(3.22)
respectively. Moreover,

H+
2 (z, z) = H−2 (z, z) = −1 + 4z + 2z2

4(1 + z)4
. (3.23)
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Naturally, we have the following result.

Corollary 3.1. The equilibria (±1, 0) of system (1.2) become centers if and only if one of the three
conditions in Theorem 3.2 is satisfied.

4 Bifurcation of limit cycles

In this section, we will employ the computation method of Lyapunov constants as presented in
Section 2 to demonstrate that system (1.2) can exhibit 14 small amplitude limit cycles bifurcating
from (±1, 0) and one large amplitude limit cycle bifurcating from the infinity.

Theorem 4.1. For system (3.2), the origin is a 7th order weak focus if and only if either

B3 = A3,

B4 = (A1+B1)(2−A3)−3A4

3 ,

B2 =
2A2

1(A3−2)+2A1(3A4−2B1+A3B1)+3A2(A3−3)+6A4B1

3(A3−3) ,

A2 = −864+5A2
1(A3−2)(A3−9)−5A1[3(5A3−3)A4−(A3−2)(A3−3)B1]−3A3(84+40A3−12A2

3−5A4B1)−45A4(6A4+B1)
60(A3−3)2 ,

A4 =
5A2

1(2−A3)(A1+2B1)+A1[18(A3−3)(A3−5)−5(A3−2)B2
1 ]+18(A3−3)(1+A3)B1

3[108−36A3+5(A1+B1)2]
,

f6 = 0,
{36A3 − [108 + 5(A1 +B1)

2]}(A1 −B1)(A1 +B1)(1 +A3)(A3 − 3)(3A3 − 13) 6= 0,
(4.1)

or
B1 = A1,

B3 = A3 =
27+5A2

1
9 ,

B4 = −18A1+10A3
1+27A4

27 ,

B2 =
A2

1(243−60A2
1+125A4

1)+27A4(54A1+50A3
1+81A4)

150A4
1

,

A2 =
A2

1(81−140A2
1−25A4

1)+9A4(54A1+10A3
1+81A4)

50A4
1

, ,

g6 = 0,
A1(5A

2
1 − 12)(9A1 + 5A3

1 + 27A4) 6= 0,

(4.2)

holds.

Proof. In subcase (Ia), it is easy to verify that the equation f7 = 0 has no real solution. Then,
setting {V1 = V2 = V3 = V4 = V5 = V6 = 0, V7 6= 0} gives the desired condition (4.1).

In subcase (Ib), the fifth Lyapunov constant is simplified as

V5 =
1

51030
(A1 −B1)(A1 +B1)

3[144 + 5(A1 +B1)
2].

We solve V5 = 0 to get A1 +B1 = 0 or A1 −B1 = 0. However, the latter is impossible. Otherwise,
we get A3 = 3, which is contradictory with case (I). Then, solving {V1 = V2 = V3 = V4 = V6 =
0, V7 6= 0} yields condition (4.2).
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Theorem 4.2. Suppose that the origin is a 7th order weak focus, then 7 small amplitude limit
cycles can bifurcate from the perturbed system of (3.2):

dx
dt = δ+x− y − 5xy + 1

2A1y
2 − 21

2 x
2y + 3

2A1xy
2 + 1

2(A2 + 2A3)y
3 − 12x3y

−(3−A2 − 2A3)xy
3 − 1

2(A1 − 2A4)y
4 − 8x4y + 1

2A1x
3y2

−1
2(15−A2 − 2A3)x

2y3 − 1
2(A1 − 2A4)xy

4 − 1
2(3 +A2)y

5

−3xy(x2 + y2)2 − 1
2y(x2 + y2)3,

dy
dt = x+ δ+y + 11

2 x
2 − 1

2(2 +A3)y
2 + 25

2 x
3 − 3

2A3xy
2 + 1

2(2A1 −A4)y
3 + 15x4

+3
2(5−A3)x

2y2 + (2A1 −A4)xy
3 + 1

2(3 + 2A2 +A3)y
4 + 10x5

+1
2(25−A3)x

3y2 + 1
2(2A1 −A4)x

2y3 + 1
2(9 + 2A2 +A3)xy

4

+1
2(7x2 + y2)(x2 + y2)2 + 1

2x(x2 + y2)3,

(y > 0),



dx
dt = δ−x− y − 5xy + 1

2B1y
2 − 21

2 x
2y + 3

2B1xy
2 + 1

2(B2 + 2B3)y
3 − 12x3y

−(3−B2 − 2B3)xy
3 − 1

2(B1 − 2B4)y
4 − 8x4y + 1

2B1x
3y2

−1
2(15−B2 − 2B3)x

2y3 − 1
2(B1 − 2B4)xy

4 − 1
2(3 +B2)y

5

−3xy(x2 + y2)2 − 1
2y(x2 + y2)3,

dy
dt = x+ δ−y + 11

2 x
2 − 1

2(2 +B3)y
2 + 25

2 x
3 − 3

2B3xy
2 + 1

2(2B1 −B4)y
3 + 15x4

+3
2(5−B3)x

2y2 + (2B1 −B4)xy
3 + 1

2(3 + 2B2 +B3)y
4 + 10x5

+1
2(25−B3)x

3y2 + 1
2(2B1 −B4)x

2y3 + 1
2(9 + 2B2 +B3)xy

4

+1
2(7x2 + y2)(x2 + y2)2 + 1

2x(x2 + y2)3,

(y < 0),

(4.3)
where 0 < δ± � 1.

Proof. When the origin of system (3.2) is a 7th order weak focus, i.e., condition (4.1) or (4.2)
holds, after computing the determinant of the Jacobian matrix, we arrive at

det
(

∂(V1,V2,V3,V4,V5,V6)
∂(B3,B4,B2,A2,A4,A3)

) ∣∣
(4.1)

=
(
∂V1
∂B3
· ∂V2∂B4

· ∂V3∂B2
· ∂V4∂A2

· ∂V5∂A4
· ∂V6∂A3

) ∣∣
(4.1)

= 1
1003290624000[108−36A3+5(A1+B1)2]2

(A3 − 3)2(A1 +B1)
3π3f 6= 0,

(4.4)

or
det
(

∂(V1,V2,V3,V4,V5,V6)
∂(B3,B4,B2,A2,B1,A4)

) ∣∣
(4.2)

=
(
∂V1
∂B3
· ∂V2∂B4

· ∂V3∂B2
· ∂V4∂A2

· ∂V5∂B1
· ∂V6∂A4

) ∣∣
(4.2)

= 1
13060694016A

7
1(5A

2
1 − 12)(36 + 5A2

1)(9A1 + 5A3
1 + 27A4)π

3 6= 0,

(4.5)

where

f = 483729408 + 890196480A2
1 + 30326400A4

1 − 141000A6
1 − 4375A8

1 − 967458816A3

−974177280A2
1A3 − 85795200A4

1A3 − 1749000A6
1A3 + 4375A8

1A3 + 644972544A2
3

+522547200A2
1A

2
3 + 39139200A4

1A
2
3 + 756000A6

1A
2
3 − 179159040A3

3 − 138101760A2
1A

3
3

−5443200A4
1A

3
3 + 17915904A4

3 + 13063680A2
1A

4
3 − 100776960A1B1 + 208396800A3

1B1

+8982000A5
1B1 + 122500A7

1B1 − 1321297920A1A3B1 − 343180800A3
1A3B1

−15786000A5
1A3B1 − 122500A7

1A3B1 + 1045094400A1A
2
3B1 + 156556800A3

1A
2
3B1

+4536000A5
1A

2
3B1 − 276203520A1A

3
3B1 − 21772800A3

1A
3
3B1 + 26127360A1A

4
3B1

+890196480B2
1 + 356140800A2

1B
2
1 + 37197000A4

1B
2
1 + 822500A6

1B
2
1 − 974177280A3B

2
1

−514771200A2
1A3B

2
1 − 47403000A4

1A3B
2
1 − 822500A6

1A3B
2
1 + 522547200A2

3B
2
1
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+234835200A2
1A

2
3B

2
1 + 11340000A4

1A
2
3B

2
1 − 138101760A3

3B
2
1 − 32659200A2

1A
3
3B

2
1

+13063680A4
3B

2
1 + 208396800A1B

3
1 + 56148000A3

1B
3
1 + 2117500A5

1B
3
1 − 343180800A1A3B

3
1

−66732000A3
1A3B

3
1 − 2117500A5

1A3B
3
1 + 156556800A1A

2
3B

3
1 + 15120000A3

1A
2
3B

3
1

−21772800A1A
3
3B

3
1 + 30326400B4

1 + 37197000A2
1B

4
1 + 2843750A4

1B
4
1 − 85795200A3B

4
1

−47403000A2
1A3B

4
1 − 2843750A4

1A3B
4
1 + 39139200A2

3B
4
1 + 11340000A2

1A
2
3B

4
1 − 5443200A3

3B
4
1

+8982000A1B
5
1 + 2117500A3

1B
5
1 − 15786000A1A3B

5
1 − 2117500A3

1A3B
5
1 + 4536000A1A

2
3B

5
1

−141000B6
1 + 822500A2

1B
6
1 − 1749000A3B

6
1 − 822500A2

1A3B
6
1 + 756000A2

3B
6
1

+122500A1B
7
1 − 122500A1A3B

7
1 − 4375B8

1 + 4375A3B
8
1 ,

due to

Resultant[f, f6, B1]
= 2020106459808291802264671279503410498791014400000000000000000000000000(12 + 35A2

1)
2

×(27 + 5A2
1 − 9A3)

4(A3 − 3)6(1 +A3)
10(3A3 − 13)4 6= 0,

which means f and f6 do not have common solutions. Therefore, for 0 < δ± � 1, 7 small amplitude
limit cycles can bifurcate from the origin of the perturbed system (4.3).

By employing the aforementioned theorem, we are able to establish the following result.

Theorem 4.3. For system (1.2), 15 limit cycles can appear near (±1, 0) and the infinity under
small perturbation. The distribution is that, 7 small amplitude limit cycles around (−1, 0), one
large amplitude limit cycle around the infinity, and 7 small amplitude limit cycles around (1, 0).

Proof. The first Lyapunov constant at the infinity of system (1.2) can be computed as

V∞1 = −1

8
[(A1 +B1) + 3(A4 +B4)].

It follows from Theorem 4.2 that 7 small amplitude limit cycles can bifurcate from each of (±1, 0)
of system (1.2) because of its equivariance. At the same time, we have

V∞1
∣∣
(4.1) =

1

8
(A3 − 3)(A1 +B1)π 6= 0,

or

V∞1
∣∣
(4.2) =

5

36
A3

1π 6= 0,

which shows that when (±1, 0) are 7th order weak foci, the infinity is a first order weak focus.
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