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Abstract

This study investigates a discrete fractional order reduced Lorenz model that incorporates the

Caputo and Conformable fractional derivatives respectively. The stability of equilibrium points of the

model with Caputo fractional derivative are analyzed. The Conformable fractional derivative model is

likewise examined. We confirm algebraically the existence and direction of Neimark-Sacker bifurcation

for both models using the central manifold and bifurcation theories. The dynamic behavior of these

models have been extensively investigated based on changes made to the control parameters. In addi-

tion to supporting analytical findings, numerical simulations are used to reveal chaotic characteristics

such as bifurcations, phase portraits, periodic orbits, invariant closed cycles, and attractive chaotic

sets. We also quantitatively compute the maximal Lyapunov exponents and fractal dimensions to val-

idate the chaotic properties of the system. Using three different control strategies viz, OGY, hybrid

control method, and state feedback method, the system’s chaotic trajectory is finally stopped.

Keywords: Reduced Lorenz model; Caputo and Conformable fractional derivatives; Bifurcations;

Chaos Control
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1 Introduction

The numerous definitions of real number powers or complex number powers of the differentiation opera-

tor had been explored using the area of mathematical analysis known as fractional calculus. Fractional

calculus was first introduced in the 17th century. Nevertheless, it might be regarded as a novel study

topic. Fractional-order differential equations are an excellent tool for characterizing memory and hered-

itary properties of many systems[1] since the fractional derivative operator is non-local. Compared to
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equivalents in integer-order differential equations (IDEs), findings can be more precise[2–4]. Numerous

fields can be effectively explained using Fractional-order differential equations, as stated in [5–9]. When

transitioning from IDEs to Fractional-order differential equations, precision is necessary about the order

of derivatives; even a small variations in order αd might significantly impact the result[10]. Fractional

differential equations are useful in explaining situations that IDEs are not able to fully replicate [11].

Similar to a nonlinear differential system, a nonlinear fractional differential system displays the intricate

dynamics of chaos and bifurcation. Investigating the chaotic behavior of fractional-order differential sys-

tems is an intriguing and captivating field of study [12–15, 33, 48]. There are several approaches to deal

with arbitrary order using the concept of differentiation. The definitions that are most frequently used

are Riemann-Liouville, Caputo, and Grünwald-Letnikov [16]. By using these definitions, researchers make

sure to always use the best method when developing or adjusting their models, including specific numerical

techniques [17–19]. Fractional-order Lorenz systems have been studied by many scholars [54–57, 61, 62].

Furthermore, discrete fractional-order systems have also been examined [58, 59] and found to exhibit rich

dynamic properties based on the concept of fractional difference.

In a continuous dynamical system, Lorenz[25] presented his search for a three-dimensional set of

ordinary differential equations that could simulate some of the unexpected behavior that we typically

associate with the weather. The model is given by

x′(t) = a1(y − x),

y′(t) = c1x− y − xz,

z′(t) = xy − b1z.

(1)

In system (1) x, y, z ∈ R are the state variables denoting the rate of convective overtuning, horizontal

temperature difference, and vertical temperature difference, respectively. The parameters a, b1, c1 ∈ R+

in the system represent the Prandal number, the Rayleigh number, and some physical proportions of the

region under study. For more description of these parameters, we refer [44]. The chosen limiting form of

system (1) as a1 → ∞ while b1 and c1 remain fixed, and letting a = (c1 − 1), b1 = 1 and denoting the

dependent variables by x and y instead of y and z, the reduced Lorenz (1989) system[25] is given by

x′(t) = ax− xy,

y′(t) = −y + x2.
(2)

The numerical analysis of the system(2) was provided in [25, 26], which marks a turning point in

the investigation of the notion of computational chaos. It has been demonstrated that it (discrete case)

possesses a more extensive collection of dynamical patterns than those noticed in the continuous case.

However, while many academics have thoroughly examined systems bifurcation in continuous dynamical

systems, only a small number of studies have focused on systems bifurcation in discrete dynamical systems.

Many two-dimensional discrete systems, such as those involving stable orbits, chaotic attractors, Neimark-

Sacker, and period-doubling bifurcations, are of interest to researchers (see [20–24, 45, 46, 49, 52]). It is

possible to scientifically quantify these behaviors. Gao and Liu[27] also investigated the dynamical char-

acteristics of a discrete two-dimensional system. Hu et al.[28] investigated the stability and bifurcations of

a discrete predator-prey model with a nonmonotonic functional response. The behavior of a discrete-time
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model that describes the interaction between prey and predator, including the impact of harvesting on

the predator, is thoroughly examined in [53]. In [63], an in-depth investigation is conducted into the

local stability of the fixed points and the Neimark-Sacker bifurcation at the positive fixed point. The

study in [64], analyzes a discrete Leslie-Gower predator-prey model incorporating herd behavior, with a

particular focus on how the slowfast effect impacts predator dynamics. R. Ahmed et al. in [65] explores

a slowfast discrete predator-prey interaction model that includes prey refuge and herd behavior to un-

cover its complex dynamics. The strong resonance bifurcation of a discrete-time Bazykin-Berezovskaya

prey-predator model with a strong Allee effect is rigorously investigated in [51]. Agiza et al. [29] showed

that the discrete system exhibits considerably richer dynamics than the continuous one when examining

the chaotic dynamics of a discrete prey-predator model with Holling Type II response. The use of chaotic

dynamics in information security is a recent development in encryption research. It has been shown that

encryption-based chaotic maps perform better than other approaches, and that chaotic maps share many

significant properties with the underlying assumptions of traditional encryption algorithms [30]. For in-

stance, ergodicity, aperiodicity, sensitive dependency on initial conditions, and random-like behaviors. So,

encryption may take advantage of a discrete reduced Lorenz system. On the other hand, in 2014, Elabbasy

et al. [66] examined the bifurcations and chaos in a following discrete reduced Lorenz system:

xn+1 = (1 + ah)xn − hxnyn,

yn+1 = (1− h)xn + hx2
n.

(3)

Which is a discrete version of the continuous-time system, which is depicted in (2), be Euler-forward

formula where h is the integral step size. More precisely, Elabbasy et al. [66] studied the existence and local

stability at fixed points of the system (3). Furthermore, by the center manifold theorem and bifurcation

theory, authors derive the conditions for the existence of a flip bifurcation, pitchfork bifurcation and

Neimark-Sacker bifurcation. Finally, authors verified the theoretical results numerically. As compared to

the work of Elabbasy et al. [66], in the presented work, we first derived the discrete system by Caputo and

Conformable fractional derivatives, and then stability, bifurcation, and chaos control are given. Finally,

theoretical results are numerically confirmed.

In the current study, we employ the Caputo and Conformable fractional derivatives to the continuous

system(2) and provide a theoretical explanation of the bifurcation events. Currently, a small number of

authors[12, 14, 15, 33, 40–43, 47] use Caputo fractional derivative in discrete models. Fractional derivatives

are defined in many ways. One of the most popular definitions of fractional derivatives is the one given

forth by Caputo 1, and it is widely employed in real-world applications.

Definition 1. Consider

Dαdf(t) = J l−αdf (l)(t), αd > 0

where f l represents the derivative of f(t) of order l ,also

Jqh(t) =

∫ t

0
(t− τe)

q−1h(τe)dτe

Γ(q)
, q > 0

The fractional order form for the model (2) is as follows.

Dαdx(t) = ax(t)− x(t)y(t),

Dαdy(t) = −by(t) + x2(t).
(4)
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Apart from the definition of Caputo fractional derivative, Khalil et al. [60] proposed a new term named

“Conformable fractional derivative”. This definition states that the function’s left fractional derivative

begins at a, f : [a,∞) → ∞ of order 0 < αd < 1 has the following limit-based definition 2:

Definition 2. Let (
T a
αd
f
)
(t) = lim

ϵ̃→0

f
(
t+ ϵ̃(t− a)1−αd

)
− f(t)

ϵ̃
.

provided the limit exists. Following is the definition of the right fractional derivative of order 0 < αd < 1

terminating at b of f . (
b
αd
Tf
)
(t) = − lim

ϵ̃→0

f
(
t+ ϵ̃(b− t)1−αd

)
− f(t)

ϵ̃
.

Also, take note that the following equality exists if f is differentiable in the normal sense:(
T a
αd
f
)
(t) = (t− a)1−αdf ′(t),

(
b
αd
Tf
)
(t) = (t− b)1−αdf ′(t).

Following is provided for the model(2)’s Conformable fractional order version

Tαd
x(t) = ax(t)− x(t)y(t),

Tαd
y(t) = −by(t) + x2(t).

(5)

The aforementioned definition has been developed to remove challenges brought on by Caputo frac-

tional derivative in applications [31]. It shares certain characteristics with the ordinary derivative. The

conformable fractional derivative is a logical extension of the classical derivative, even if it might not be a

fractional derivative in the sense of Caputo and it has a fractional order. Applications of the conformable

derivative in biology and physics were studied in[32–35]. It is true that Conformable fractional derivatives

enable the inclusion of memory effects in the model. Like other types of fractional derivatives, conformable

fractional derivatives consider not only the current state of a system but also its past states, allowing the

model to incorporate memory effects. This makes them useful for accurately representing systems where

historical behavior influences current dynamics.

The key findings explained in this article can be summed up as follows:

(1)We introduce a new discrete-time Lorenz model based on conformable fractional derivatives and Caputo

derivatives. The distinct features of some meteorological occurrences can be captured by this model.

(2) The existence and stability of the equilibrium points were thoroughly examined in the first stage.

(3) We investigate the bifurcation behavior of both systems (specifically, the Neimark-Sacker bifurcation)

using the center manifold theorem and normal form theory.

(4) We examine a method known as the 0 − 1 chaos test for analyzing the chaotic characteristics of a

discrete dynamical system.

(5) The research concludes by examining how well state feedback, hybrid control techniques, and Ott-

Grebogi-Yorke (OGY) work to manage chaotic trajectory inside the system.

(6) Lastly, the accuracy and effectiveness of our theoretical and mathematical ideas are assessed using the

numerical simulation section.

This study aims to compare the acquired results and explore the dynamic behavior of the discretized

conformable fractional order model and the discretized caputo fractional order model. It follows the struc-

ture shown below. In Sections 2 and 3 treat the discretization process based on piecewise constant argu-

ments applied to the model’s conformable fractional-order form and caputo, yielding a two-dimensional
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discrete dynamical system. Furthermore, we examine the stability and bifurcation analysis of the discrete

model. Section 4 presents numerical results incorporating bifurcation diagrams, phase portraits, MLEs,

and FDs. We use OGY, state feedback and hybrid control strategy in Section 5 to eliminate the chaos of

the uncontrolled system. A brief discussion is presented in Section 6.

2 Reduced Lorenz System with Caputo Fractional Derivative

2.1 Discretization

To discretize system (4), we use the piecewise constant approximation (PCA)[35, 40, 41]. The steps are

as follows:

Assume that the initial conditions of system (4) are x(0) = x0, y(0) = y0. We write the system (4) as:

Dαdx(t) = ax([
t

ρd
]) + x([

t

ρd
]ρd)y([

t

ρd
]ρd),

Dαdy(t) = −by([
t

ρd
]ρd) + x2([

t

ρd
]ρd).

First, let t ∈ [0, ρd), so
t
ρd

∈ [0, 1). Thus, we obtain

Dαdx(t) = ax0 − x0y0,

Dαdy(t) = −by0 + x2
0.

(6)

The solution of (6) is reduced to

x1(t) = x0 + Jαd (ax0 − x0y0) = x0 +
tαd

αdΓ(αd)
(ax0 − x0y0) ,

y1(t) = y0 + Jαd
(
−by0 + x2

0

)
= y0 +

tαd

αdΓ(αd)

(
−by0 + x2

0

)
.

Next, let t ∈ [ρd, 2ρd), so
t
ρd

∈ [1, 2). Then

Dαdx(t) = ax1 − x1y1,

Dαdy(t) = −by1 + x2
1,

and the solution becomes

x2(t) = x1(ρd) + Jαd
ρd

(ax1 − x1y1) ,

= x1(ρd) +
(t− ρd)

αd

αdΓ(αd)
(ax1 − x1y1) ,

y2(t) = y1(ρd) + Jαd
ρd

(
−by1 + x2

1

)
,

= y1(ρd) +
(t− ρd)

αd

αdΓ(αd)

(
−by1 + x2

1

)
,

where Jαd
ρd

≡ 1
Γ(αd)

∫ t

ρd
(t− τe)

αd−1dτe, αd > 0. After n times repetition, we obtain

xn+1(t) = xn(nρd) +
(t− nρd)

αd

αdΓ(αd)
(axn(nρd)− xn(nρd)yn(nρd)) ,

yn+1(t) = yn(nρd) +
(t− nρd)

αd

αdΓ(αd)

(
−byn(nρd) + x2

n(nρd)
)
,

(7)

where t ∈ [nρd, (n+ 1)ρd). For t −→ (n+ 1)ρd, system (7) becomes
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xn+1 = xn +
ραd

d

Γ(αd + 1)
(axn − xnyn) ,

yn+1 = yn +
ραd

d

Γ(αd + 1)

(
−byn + x2

n

)
.

(8)

2.2 Stability Analysis

The system (8) has the three equilibrium points E(x, y) := (0, 0), (±
√
ab, a). We will discuss the dynamical

properties of system (8) at E+ = (
√
ab, a) only.

The Jacobian matrix of the system (8), evaluated at E(x∗, y∗), is given by:

J (x∗, y∗) =

 1 + (a− y∗)
ρ
αd
d

Γ(αd+1) −x∗ ρ
αd
d

Γ(αd+1)

2x∗ ρ
αd
d

Γ(αd+1) 1− b
ρ
αd
d

Γ(αd+1)

 .

At E+(
√
ab, a), the Jacobian matrix is

JE+
=

 1 −
√
ab

ρ
αd
d

Γ(αd+1)

2
√
ab

ρ
αd
d

Γ(αd+1) 1− b
ρ
αd
d

Γ(αd+1)

 .

The characteristic equation of the matrix JE+ is

F (λ) := λ2 − Tra(JE+
)λ+Detr(JE+

) = 0,

where Tra(JE+) and Detr(JE+) are

Tra(JE+) =2− b
ραd

d

Γ(αd + 1)
,

Detr(JE+
) =1 + b

ραd

d

Γ(αd + 1)

(
−1 + 2a

ραd

d

Γ(αd + 1)

)
.

The eigenvalues are

λ1,2 =
1

2

(
2− b

ραd

d

Γ(1 + αd)
±
√

b(−8a+ b)
ραd

d

Γ(a+ αd)

)
.

Let ρd1,d2 :=

(
Γ(1 + αd)

b∓
√

b(−8a+b)

2ab

) 1
αd

and ρd3 :=
(

Γ(1+αd)
2a

) 1
αd .

For the convenience of the parameter space discussion, we first present a bifurcation diagram (see

Figure (1)(i)) of system (8) in R2
+ := {(ρd, a)|a > 0, ρd > 0} . The topological types of E+ are stated in

Theorem 1.

Consider the following sets

L1 := {(a, b, αd, ρd) ∈ (0,∞) | ρd = ρd1,−8a+ b ≥ 0} ,

L2 := {(a, b, αd, ρd) ∈ (0,∞) | ρd = ρd2,−8a+ b ≥ 0} ,

L3 := {(a, b, αd, ρd) ∈ (0,∞) | ρd = ρd3,−8a+ b < 0} .

Theorem 1. If (a, b, αd, ρd) ∈ L1 or L2, then E+ is non-hyperbolic saddle with Period-doubling. If

(a, b, αd, ρd) ∈ L3, then E+ is non-hyperbolic focus.
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Conditions E+ Cases

−8a+ b ≥ 0 0 < ρd < ρd1 Stable node D1

ρd1 < ρd < ρd2 Saddle point with Period-doubling D2

ρd > ρd2 Unstable node with Period-doubling D3

−8a+ b < 0 ρd > ρd3 Unstable focus D4

ρd < ρd3 Stable focus D5

2.3 Analysis of NS Bifurcation

Consider the system (8) at E(x∗, y∗). We choose the parameters (a, b, αd, ρd) arbitarily lie in L3.

So the eigenvalues of the system (8) are λ1,2(ρd3) ∈ C with |λ(ρd3)| = 1.

Also,

d|λi(ρd)|
dρd

|ρd=ρd3
= − b

2 ̸= 0,

−(Tr(JE+))|ρd=ρd3
̸= 0 ⇒ b−4a

2a ̸= 0, 1,
(9)

which obviously satisfy λk(ρd3) ̸= 1 for k = 1, 2, 3, 4. Using x̂e = x − x+, ŷe = y − y+ and put A(ρd3) =

J(x∗, y∗). We take E(x∗, y∗) to (0,0). So the system(8) can be written as

 x̂e

ŷe

→ A(ρd3)

 x̂e

ŷe

+

 F1(x̂e, ŷe, ρd3)

F2(x̂e, ŷe, ρd3)

 , (10)

where X̃ = (x̂e, ŷe)
T and

F1(x̂e, ŷe, ρd3) =
−x̂eŷe
2a

,

F2(x̂e, ŷe, ρd3) =
x̂e

2

2a
.

So system (10) can be written as

X̃n+1 = AX̃n +
1

2
B
(
X̃n, X̃n

)
+

1

6
C
(
X̃n, X̃n, X̃n

)
+O

(∥∥∥X̃n

∥∥∥4) ,

where the multi-linear vector functions of x, y, u ∈ R2 are defined as follows:

B1(x, y) =

2∑
j,k=1

δ2F1(ξ, ρd3)

δξjδξk

∣∣∣∣∣∣
ξ=0

xjyk = −x1y2 + x2y1
2a

,

B2(x, y) =

2∑
j,k=1

δ2F2(ξ, ρd3)

δξjδξk

∣∣∣∣∣∣
ξ=0

xjyk =
x1y1
a

,

and

C1(x, y, u) =

2∑
j,k,l=1

δ2F1(ξ, ρd3)

δξjδξkδξl

∣∣∣∣∣∣
ξ=0

xjykul = 0,

C2(x, y, u) =

2∑
j,k,l=1

δ2F1(ξ, ρd3)

δξjδξkδξl

∣∣∣∣∣∣
ξ=0

xjykul = 0.

7



Assume q1, q2 ∈ C2 be associated eigenvectors of A(ρd3) and AT (ρd3) for eigenvalues λ(ρd3) and λ̄(ρd3)

respectively such that

A (ρd3) q1 = λ (ρd3) q1, A (ρd3) q̄1 = λ̄ (ρd3) q̄1,

AT (ρd3) q2 = λ̄ (ρd3) q2, AT (ρd3) q̄2 = λ (ρd3) q̄2,

and ⟨q1, q2⟩ = 1.

Using calculations, we get

q1 =

 b+i
√

(8a−b)b

4
√
ab

1

 , q2 =

 − 2
√
ab(b−i

√
(8a−b)b1/2)

8ab+i
√

(8a−b)b3/2−b2

4ab

8ab+i
√

(8a−b)b3/2−b2

 .

We decompose X̃ ∈ R2 as X̃ = wq1 + w̄q̄1 by choosing ρd vary close to ρd3 with w ∈ C. Then w can

be written as w = ⟨q2, X⟩. So the system (8) transformed to the given system for |ρd| close to ρd3:

w 7−→ λ(ρd)w + ĝ(w, w̄, ρd),

where λ(ρd) = (1 + ϕ̂d(ρd))e
iθ(ρd) with ϕ̂d (ρd3) = 0 and ĝ(w, w̄, ρd) is a smooth complex-valued

function. Applying Taylor expansion to ĝ, we have

ĝ(w, w̄, ρd) =
∑

k+l≥2
1

k!l! ĝkl(ρd)w
k−l with ĝkl ∈ C, k, l = 0, 1, . . . .

where

ĝ20 (ρd3) = ⟨q2, B(q1, q1)⟩ =
3
(
−4ab+i

√
(8a−b)b3/2+b2

)
8ab−i

√
(8a−b)b3/2−b2

δ,

ĝ11 (ρd3) = ⟨q2, B(q1, q̄1)⟩ =
4ab+i

√
(8a−b)b1/2+b2

2a
(
8ab−i

√
(8a−b)b3/2−b2

)δ,
ĝ02 (ρd3) = ⟨q2, B(q̄1, q̄1)⟩ =

4ab−i
√

(8a−b)b7/2+b2

2ab2
(
8ab−i

√
(8a−b)b3/2−b2

)δ,
ĝ21 (ρd3) = ⟨q2, C(q1, q1, q̄1)⟩ = 0,

(11)

with
ρ
αd
d

Γ(αd+1) = δ = 1
2a .

The following coefficient denoted by Q̃(ρd3), not to be zero determines the direction for NS bifurcation

Q̃(ρd3) = Re
(

λ2ĝ21
2

)
− Re

(
(1−2λ1)λ2

2

2(1−λ1)
ĝ20ĝ11

)
− 1

2 |ĝ11|
2 − 1

4 |ĝ02|
2
. (12)

The following theorem is made regarding Neimark-Sacker bifurcation.

Theorem 2. If ρd varies its value in small region of L3 and Eq. (9) is true with Q̃(ρd3) ̸= 0 then the

model (8) passes through a NS bifurcation at E(x∗, y∗). Moreover, if Q̃(ρd3) < 0 (resp. Q̃(ρd3) > 0),

then a single attractive (respectively repelling) invariant closed curve exists that bifurcates from E(x∗, y∗).
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3 Reduced Lorenz System with Conformable Fractional Deriva-

tive

3.1 Discretization Process

We now discretize the model (5) using the PCA technique. Applying property (2) to system (5)’s first

component for t ∈ [nρd, (n+ 1)ρd], we obtain

(t− nρd)
1−αd

dx(t)

dt
= ax(t)− x(t)y(nρd).

This leads to the following equation:

dx(t)

dt
+

y(nρd)− a

(t− nρd)1−αd
x(t) = 0.

If this first-order linear differential equation is resolved with regard to t ∈ [nρd, t], it results in

x(t) =
x(nρd)

e
(y(nρd)−a)

(t−nρd)αd

αd

.

The difference equation is obtained for t ∈ (n+ 1)h,

x(n+ 1) =
x(n)

e
(y(n)−a)

ρ
αd
d
αd

.

Applying the same method to the second equation of system (5)

Tαd
y(t) = −by(t) + x2([

t

ρd
]ρd),

we get,

y(n+ 1) =
(byn − x2

n)e
(−b

ρ
αd
d
αd

)
+ x2

n

b
.

The conformable reduced Lorenz system can be written as

xn+1 =
xn

e
(yn−a)

ρ
αd
d
αd

,

yn+1 =
(byn − x2

n)e
(−b

ρ
αd
d
αd

)
+ x2

n

b
.

(13)

Remark1: The Caputo fractional order discrete Lorenz model benefits complex systems by incorpo-

rating memory effects, considering both current inputs and past states. This allows for more accurate

representations, especially for phenomena reliant on past events. Fractional derivatives offer greater ver-

satility than integer-order models, crucial for ecological systems with anomalous diffusion. However,

calculating these derivatives is resource-intensive and can obscure parameter significance. Research is

ongoing to improve methods for solving these equations and enhance simulation stability.

Remark2: Using conformable fractional derivatives in a discrete Lorenz model captures complex

dynamics and unpredictability. These derivatives better represent minor characteristics and memory

effects, enhancing understanding and prediction. They offer versatile modeling for real-world systems

with fractional-order dynamics, improving controllability and long-term prediction. The choice depends

9



(i) (ii)

Figure 1: Bifurcation diagram of system (8) and (13) at the equilibrium point E+ with b = 1, αd = 0.58.

on study goals, system properties, and interest in non-integer dynamics, providing deeper insights into

the Lorenz system and leveraging fractional calculus for complex systems.

Figure 1 shows both PD and NS bifurcations for system (8), while only NS bifurcation occurs for

system (13) at the equilibrium point E+. Fractional calculus extends derivatives and integrals to non-

integer orders using two main methods: conformable and Caputo derivatives. Conformable derivatives are

simpler and more intuitive but may not apply if the function doesn’t meet certain requirements. Caputo

derivatives offer useful integral representations for solving equations but are more complex and non-local,

considering the function’s entire history. The choice between them depends on the model and system

characteristics, with each having its own pros and cons.

3.2 Stability Analysis

The system (13) has also three equilibrium points (0, 0) and (±
√
ab, a) which are same as in system (8).

The Jacobian matrix of the system (13), evaluated at E(x∗, y∗), is given by:

J (x∗, y∗) =

 e
(a−y∗)

ρ
αd
d
αd −e

(a−y∗)
ρ
αd
d
αd x∗ ρ

αd
d

αd

(2−2e
−b

ρ
αd
d
αd )x∗

b e
−b

ρ
αd
d
αd

 .

Now we have the Jacobian matrix at E+(
√
ab, a)

JE+ =

 1
√
ab

ρ
αd
d

αd

2
√
a(1−e

−b
ρ
αd
d
αd )√

b
e
−b

ρ
αd
d
αd

 .

The characteristic equation of the matrix JE+
is

F (λ) := λ2 − Tra(JE+
)λ+Detr(JE+

) = 0,

where Tra(JE+) and Detr(JE+) is given by

10



Tra(JE+) =1 + e
−b

ρ
αd
d
αd ,

Detr(JE+) =e
−b

ρ
αd
d
αd (1 + 2a(−1 + e

b
ρ
αd
d
αd )

ραd

d

αd
).

The eigenvalues are

λ1,2 =

e
−b

ρ
αd
d
αd

(
√
b(1 + e

b
ρ
αd
d
αd )±

√
−b(−1 + e

b
ρ
αd
d
αd )(1 + e

b
ρ
αd
d
αd (−1 + 8a

ρ
αd
d

αd
))

)
2
√
b

.

Let ρd4 :=
(
αd

2a

) 1
αd . The choice of ρd4 is critical as it directly influences the system’s stability and dy-

namic behavior. By carefully selecting ρd4, researchers can control the balance between chaotic and stable

states, optimizing the model for specific applications. To make discussion easier, we first provide a bifur-

cation diagram(see Figure(1)(ii)) for system (13) in the parameter space R2
+ := {(ρd, a)|a > 0, ρd > 0} .

The topological properties of E+ are presented in Theorem 3.

Consider the following set

L4 := {(a, b, αd, ρd) ∈ (0,∞) | ρd = ρd4,LNS < 0} ,

where LNS = −b(−1 + e
b
ρ
αd
d
αd )(1 + e

b
ρ
αd
d
αd (−1 + 8a

ρ
αd
d

αd
)).

Theorem 3. If (a, b, αd, ρd) ∈ L4, then E+ is non-hyperbolic focus.

Conditions E+ Cases

LNS < 0 ρd > ρd4 Unstable focus D6

ρd < ρd4 Stable focus D7

3.3 NS Bifurcation Analysis

When the parameters (a, b, αd, ρd) ∈ L4, then the system (13) have the eigenvalues

λ, λ̄ =
Tr(JE+)± i

√
4Detr(JE+)− Tr(JE+)2

2
.

Moreover

d|λi(ρd)|
dρd

|ρd=ρd4
= −a− ae−

b
2a ,

−(Tr(JE+))|ρd=ρd4
̸= 0, 1 ⇒ −1− e−

b
2a ̸= 0, 1.

(14)

Using the transformation x̂e = x − x+, ŷe = y − y+ and set A(δ) = J(x∗, y∗). Take E(x∗, y∗) to the

origin. So the system (13) is

X̃ = A(ρd)X̃ + F,

where X̃ = (x̂e, ŷe)
T and F = (F1, F2)

T are given by

F1(x̂e, ŷe, ρd4) =
1

2

(
−2x̃ỹ

ραd

d

αd
+
√
abỹ2(

ραd

d

αd
)2
)
+

1

6

(
3x̃ỹ2(

ραd

d

αd
)2 −

√
abỹ3(

ραd

d

αd
)3
)
,

F2(x̂e, ŷe, ρd4) =
(2− 2e

−b
ρ
αd
d
αd )x̃2

2b
.

11



Now

B1(x, y) =
ραd

d

αd

(
−x2y1 − x1y2 +

√
abx2y2

ραd

d

αd

)
,

B2(x, y) =
(2− 2e

−b
ρ
αd
d
αd x1y1)

b
,

and

C1(x, y, v) = (
ραd

d

αd
)2(v1x2y2 + v2(x1y2 + x2(y1 −

√
aby2

ραd

d

αd
))),

C2(x, y, v) = 0.

Assume that q1, q2 ∈ C2 be associated eigenvectors of A(ρd4) and AT (ρd4) for eigenvalue λ(ρd4) and

λ̄(ρd4).

Direct calculation yields the following result.

q1 =

 ζ̃1 + iζ̃2

1

 , q2 =

 ξ̃1 + iξ̃2

1

 ,

where

ζ̃1 =

√
b

4
√
a
, ζ̃2 =

−
√
b

√
(1 + e

b
ρ
αd
d
αd (−1 + 8a

ρ
αd
d

αd
))

4
√
a

√
−1 + e

b
ρ
αd
d
αd

,

ξ̃1 = −1− e
−b

ρ
αd
d
αd

2
√
ab

ρ
αd
d

αd

, ξ̃2 = −e
−b

ρ
αd
d
αd

√
(−1+e

b
ρ
αd
d
αd )(1+e

b
ρ
αd
d
αd (−1+8a

ρ
αd
d
αd

))

2
√
ab

ρ
αd
d

αd

.

We take q2 = γN2q2 where, γN2 = 1
1+(ξ1+iξ2)(ζ1−iζ2)

As a result, the eigenvectors are calculated as follows:

q1 =

 ζ1 + iζ2

1

 , q2 =

 ξ1+iξ2
1+(ξ1+iξ2)(ζ1−iζ2)

1
1+(ξ1+iξ2)(ζ1−iζ2)

 .

Also

ĝ20 (ρd4) =
−3−9e

b
2a +i

√
−1−2e

b
2a +3e

b
a

4a+12ae
b
2a

,

ĝ11 (ρd4) =
1+3e

b
2a +i

√
−1−2e

b
2a +3e

b
a

4a+12ae
b
2a

,

ĝ02 (ρd4) =
−1+6e

b
a −i

√
−1−2e

b
2a +3e

b
a +e

b
2a (−1−2i

√
−1−2e

b
2a +3e

b
a )

4a(e
b
2a +3e

b
a )

,

ĝ21 (ρd4) =
i
√
a3b−i

√
a3be

b
2a +(a6b2(1+2e

b
2a −3e

b
a )2)

1
4

8

√
a7b(−1−2e

b
2a +3e

b
a )

.

(15)

The following coefficient denoted by Q̃(ρd4), not to be zero determines the direction of NS bifurcation.

Q̃(ρe4) = Re
(

λ2ĝ21
2

)
− Re

(
(1−2λ1)λ2

2

2(1−λ1)
ĝ20ĝ11

)
− 1

2 |ĝ11|
2 − 1

4 |ĝ02|
2
. (16)

The following theorem is made regarding Neimark-Sacker bifurcation of system (13).
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Theorem 4. If ρd varies its value in small region of L4 and Eq. (14) is true with Q̃(ρd4) ̸= 0 then then

the model (13) passes through a NS bifurcation at E(x∗, y∗). Moreover, if Q̃(ρd4) < 0 (resp. Q̃(ρd4) >

0), then a single attractive (respectively repelling) invariant closed curve exists that bifurcates from at

E(x∗, y∗).

4 Numerical Study

In this part, we demonstrate some new intriguing complex dynamical behaviors present in the system

(8) including the bifurcation diagrams, phase portraits, and Lyapunov exponents to support the earlier

analytic conclusions. One well-known method for measuring the exponential divergence of initially near-

state-space trajectories is the use of maximum Lyapunov exponents, which are frequently employed to

identify chaotic behavior.

4.1 Numerical Example on system (8)

We take a = 0.5, b = 1.0, αd = 0.58 and ρd fluctuates in the range 0.7 ≤ ρd ≤ 2.2. The equilibrium point

is obtained as E(x∗, y∗) = (0.707107, 0.5) and the bifurcation point is ρd3 = 0.820228 for system (8).

Then A(ρd3) has eigenvalues λ1,2 = 0.5± 0.866025i.

Also, we have
d|λi(ρd)|

dρd
|ρd=ρd3

= − b
2 = −0.5 ̸= 0,

−(Tr(JE+))|ρd=ρd3
̸= 0 ⇒ b−4a

2a = −1 ̸= 0, 1.

So, q1 ∼ (0.288675+0.5i, 0.816497)T and q2 ∼ (0.816497,−0.288675+0.5i)T .And, γN1 = −4.16334−17+

1.22474i.

Next, by (11), the Taylor coefficients are given by ĝ20 = −1.22474 + 0.707107i, ĝ11 = 0.408248 +

0.707107i, ĝ02 = 0.816497− 1.66533× 10−16i, ĝ21 = 1.16667− 2.02073i.

From (12), we have Q̃(ρd3) = −1.5 < 0. Therefore, the requirements of Theorem 2 are established.

13



(i) (ii)

(iii) (iv)

Figure 2: (i) Neimark-Sacker bifurcation in x, (ii) Neimark-Sacker bifurcation in y, (iii) maximum Lya-

punov exponents, (iv) FD of system (8) with a = 0.5, b = 1.0, αd = 0.58, ρd varies in 0.7 ≤ ρd ≤ 2.2 and

initial conditions (x∗, y∗) = (0.707107, 0.5).

The NS bifurcation diagrams are presented in Fig.2(i,ii), which demonstrates that the equilibrium

point E is stable as long as ρd < ρd3, loses stability as ρd = ρd3, and displays a lovely closed invariant

curve as ρd > ρd3. Unstable dynamics are compatible with the MLEs and FD (Fig.2(iii,iv)). As ρd rises,

the closed curve abruptly disappears, and orbits with periods of −6,−8,−13, and −26 appear for various

values of ρd (see Fig.3). Specifically when ρd = 1.453 an orbit appears with −26 period and at ρd = 2.2

a complete chaos in the system (8) happens. To emphasize the impact of using fractional derivatives, we

have included bifurcation diagrams (see Fig.4 (i-iii)) for different values of αd, specifically for αd = 1.0.

These diagrams visually demonstrate how the system’s dynamics change when fractional derivatives (with

memory effects) are used instead of integer-order derivatives (without memory effects). The bifurcation

diagrams demonstrate the impact of memory effects on the system’s dynamics, highlighting the differences

from the integer-order case. By comparing the diagrams, one can clearly see how memory effects alter

the system’s behavior, potentially leading to different bifurcation patterns and more complex dynamics.

Figure 4(iv) displays the influence of a with fixed ρd = 0.76351. Figure (5) presents a bifurcation diagram

with NS behavior, including Maximum Lyapunov Exponents (MLEs) and fractional derivatives, for sys-

tem (8) for a = 0.5, b = 1.0, ρd = 0.820228 and αd fluctuates in the range 0.01 ≤ αd ≤ 0.58.
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Figure 3: Phase portraits for various values of ρd (ρd = 0.75, 0.85, 1.24, 1.453, 1.465, 1.6, 1.69, 2.2) cor-

responding to Figure 2.
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(i) (ii)

(iii) (iii)

Figure 4: Neimark-Sacker bifurcation of system (8) in (i-iii) x− ρd plane. For αd < 1, the system incor-

porates fractional derivatives, introducing memory effects. When αd = 1, the system follows traditional

integer-order derivatives. (iv) Neimark-Sacker bifurcation of system (8) in x− a plane.
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(i) (ii)

(iii) (iv)

Figure 5: (i) Neimark-Sacker bifurcation in x, (ii) Neimark-Sacker bifurcation in y, (iii) maximum

Lyapunov exponents, (iv) FD of system (8) with a = 0.5, b = 1.0, ρd = 0.820228, αd varies in 0.01 ≤ αd ≤

0.58 and initial conditions (x∗, y∗) = (0.707107, 0.5).

4.2 Numerical Example on system (13)

We choose a = 0.5, b = 1.0, αd = 0.58 and ρd fluctuates in 0.3 ≤ ρd ≤ 4.5. We identify a equilibrium point

E(x∗, y∗) = (0.707107, 0.5) and the bifurcation point is ρd4 = 0.390946 for system (13).

We get λ1,2 = 0.68394± 0.729539i with |λi| = 1. Also

d |λi(ρd)|
dρd

|ρd=ρd4
= −a− ae−

b
2a = 0.31606 ̸= 0,

−(Tr(JE+))|ρd=ρd4
̸= 0, 1 ⇒ −1− e−

b
2a = −1.36788 ̸= 0, 1.

Let q1, q2 ∈ C2 be two complex eigenvectors corresponding to λ1,2 respectively. Therefore, q1 ∼ (0.264185+

0.609799i, 0.747229)T and q2 ∼ (0.747229,−0.264185 − 0.609799i)T . We also have, γN2 = −1.00261 ×

10−16 + 1.09731i. Then we get m1 ∼ (1.21429 − 0.48969i, 1)T and m2 ∼ (−1.02105i, 0.5 + 1.23985i)T .

The Taylor coefficients are ĝ20 = −1.12084 + 0.161862i, ĝ11 = 0.373614 + 0.16182i, ĝ02 = 0.609783−

0.38327i, ĝ21 = 0.463621− 1.2259i.

From (16), we obtain the Lyapunov coefficient Q̃(ρd4) = −0.632121 < 0. Therefore, the requirements

of Theorem 4 are established. Figure 6 (a,b) shows the NS bifurcation diagrams, which show that the

equilibrium point is stable while ρd = ρd4, loses stability when ρd < ρd4, and exhibits an attracting closed

invariant curve when ρd > ρd4. The presence of MLEs justifies system dynamics lack of stability ( see
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Figure6 (c)). An invariant closed curve arises when ρd > ρd4, and as ρd increases higher, NS bifurcation

opens a path to chaos. Figure 7 explicitly illustrates the mechanism by which an invariant smooth closed

curve bifurcates from a stable equilibrium point when ρd changes near its critical value also by plotting

the phase portraits of the system (13) that correspond to the bifurcation diagram shown in Figure6

(a,b). When ρd = 0.37 an attractor before NS bifurcation arises and at ρd = 0.42 a NS bifurcation

curve occurs in the system (13). The figures support the findings that fractional derivatives, such as

conformable fractional derivatives, enable the inclusion of memory effects in the model. This results in

a more accurate representation of systems where historical behavior influences current dynamics. The

bifurcation diagrams provide a visual comparison, highlighting the significant differences and advantages

of using fractional derivatives over traditional integer-order derivatives.

(i) (ii)

(iii) (iv)

Figure 6: (i) Neimark-Sacker bifurcation in x, (ii) Neimark-Sacker bifurcation in y, (iii) maximum Lya-

punov exponents, (iv) FD of system (13) with a = 0.5, b = 1.0, αd = 0.58, ρd varies in 0.3 ≤ ρd ≤ 4.5 and

initial conditions (x∗, y∗) = (0.707107, 0.5) .
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Figure 7: Phase portraits for various values of ρd (ρd = 0.37, 0.39095, 0.42, 1.14, 2, 4.5) corresponding to

Figure (6).

4.3 Fractal Dimension

To determine the chaotic attractors of a system, the fractal dimensions (FD) measurement is used and is

defined by [36].

D̂LL = k +

∑k
j=1 t

∗∗
j∣∣t∗∗k+1

∣∣ , (17)

where the largest integer k is such that
∑k

j=1 t
∗∗
j ≥ 0 and

∑k+1
j=1 t

∗∗
j < 0 and t∗∗j ’s are Lyapunov

exponenets.

Now, the fractal dimensions for the system (8) look like this:
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D̂LL = 2 +
t∗∗1
|t∗∗2 |

. (18)

As ρd increases the fractional Order reduced Lorenz system produces unstable system dynamics because

the chaotic dynamics of the system (8) (see Figure 3) are quantified with the sign of FD (see Figure2(d)).

4.4 Algorithm for 0-1 Chaos Test

One technique for examining a discrete dynamical system’s chaotic behavior is the 0-1 Chaos Test. Chaos

in dynamical systems refers to a very sensitive dependence on initial conditions, where modest initial

condition changes can eventually produce significantly different results. It is crucial to remember that

chaos tests are a subset of chaos theory, a larger field of study that focuses on how dynamical systems

behave when their beginning circumstances are extremely sensitive. Applications of chaos theory can be

found in computer science, physics, biology, and economics, among other disciplines. Discrete dynamical

systems can be analyzed and chaos detected using a variety of methods, one of which is the 0-1 Chaos

Test. The algorithm that we followed for analyzing 0-1 chaos test is discussed in [50].

Example : Choose the values of the parameter as a = 0.5, b = 1.0, αd = 0.58, ρd = 2.2 with

K = 0.95999, the Brownian-like (unbounded) trajectories in (q̂, ŵ)−plane depicted in Figure 8 (a) are in

harmony with a chaotic dynamic system. The correlation coefficient value is shown by the curve K̂ verses

ρd in Figure 8 (b). From a biological perspective, this indicates that the system is chaotic for parameter

k values close to 1.

(a) (b)

Figure 8: 0− 1 choas test for model (8). (a) ρ versus s (b)Plot in new coordinates (ρ,K) plane .

5 Biological implications and Discussion

Bifurcations in the Lorenz system can have important biological consequences when applied to the setting

of physiological systems or population dynamics. The discrete simplified Lorenz model is a form of the

Lorenz system that may be studied using discrete time intervals.

The Neimark-Sacker bifurcation in a discrete simplified Lorenz system might have several possible

biological implications, depending on the particular setting and use of the model. The Neimark-Sacker bi-

furcation is linked to the change from stable periodic orbits to a torus in phase space. This may indicate the
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development of more intricate and semi-regular oscillating patterns in a biological setting. The Neimark-

Sacker bifurcation can suggest a transition towards less regular and more complex activity patterns in

systems containing biological oscillators, including cardiac or cerebral rhythms. This may be important

in comprehending certain abnormalities in physiological systems. The presence of Neimark-Sacker bifur-

cations adds dynamic complexity to the system. In neuroscience, the Neimark-Sacker bifurcation may

indicate a shift towards more intricate patterns of neuronal firing or synchronization, potentially impact-

ing how information is processed in the brain. Systems close to a Neimark-Sacker bifurcation point can

respond to parameter variations. This sensitivity could potentially affect the strength or flexibility of

biological systems. Under certain circumstances, the Neimark-Sacker bifurcation can be followed by a

path to chaos. This shift towards chaos could have implications for the foreseeability and steadiness of

biological systems.

It is worth mentioning that the biological consequences of Neimark-Sacker bifurcations will vary based

on the precise parameters of the discrete reduced Lorenz system and the applicability of the model to

the biological phenomenon of interest. In-depth examination and understanding are required to make

significant inferences about the effect on living organisms.

6 Chaos Control

Nonlinear dynamical systems that exhibit noise-like behavior are collectively called “chaos.” There are

many periodic points and orbits that make up chaos, which is indesomposable and highly reliant on the

initial condition. Many academics have recently shown a keen interest in controlling chaos in discrete

systems. Chaos control techniques in the discrete fractional-order reduced Lorenz model play a vital

role in regulating the system’s chaotic dynamics, which can otherwise lead to instability. The reduced

Lorenz model, a simplified version of the full Lorenz system, still exhibits chaotic characteristics, and

incorporating fractional-order dynamics increases the system’s complexity. The Lorenz system is widely

known for its chaotic behavior, and adding fractional-order terms introduces memory and hereditary

effects, making chaotic oscillations even more unpredictable. Chaos control techniques stabilize these

chaotic behaviors, preventing the system from displaying extreme, erratic patterns. By implementing

chaos control, researchers and engineers can harness the complex dynamics of discrete fractional-order

reduced Lorenz models while avoiding the negative effects of chaos, resulting in more reliable and practical

applications.

In discrete-time systems, chaos control can be achieved in a number of ways. We introduce OGY[37],

hybrid control[38], and state feedback[39] strategies for chaos control in fractional order Caputo and con-

formable reduced Lorenz models. When evaluating state feedback, hybrid control techniques, and the

Ott-Grebogi-Yorke (OGY) chaos control method for discrete fractional-order reduced Lorenz systems, the

optimal choice is largely determined by the applications specific requirements. State feedback is best

suited to applications where simplicity and immediate control are essential, as it allows for direct con-

trol by adjusting corrective actions based on the systems current state, making it effective for quickly

stabilizing chaotic systems. Hybrid control techniques, on the other hand, provide enhanced flexibil-

ity and adaptability, making them particularly valuable in complex and highly nonlinear systems such
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as the fractional-order Lorenz model. This approach combines multiple control strategies, allowing for

method-switching based on the systems behavior and achieving robust performance even under significant

disturbances or changing conditions. The OGY chaos control method is ideal in situations where minimal

intervention is preferred. By applying small, carefully-timed adjustments near unstable periodic orbits,

OGY control effectively stabilizes chaos while maintaining the systems natural dynamics. To summarize,

state feedback is favored for its simplicity and user-friendliness, hybrid control is chosen for its adaptabil-

ity and resilience in complex environments, and OGY control is suitable for precise, minimal intervention

in discrete chaotic systems. Ultimately, the choice of technique depends on the specific needs of the ap-

plication, system complexity, and desired control level. We cannot use ρd as a parameter in the OGY

technique for controlling chaos. To implement the OGY approach, a serves as a control parameter.

We write the system (8) as

xn+1 = xn +
ραd

d

Γ(αd + 1)
(axn − xnyn) = f̃1e(x, y, a),

yn+1 = yn +
ραd

d

Γ(αd + 1)

(
−byn + x2

n

)
= f̃2e(x, y, a),

(19)

where a is the parameter for chaos control. Additionally, it is conceivable that the chaotic regions of

|a − a0| < ν̃e, where ν̃e > 0 and a0 represent the nominal parameter, are defined by the expression

|a − a0| < ν̃e. A stabilizing feedback control technique moves the trajectory toward the desired orbit.

The system (19) can be approximated by the following linear map in the region surrounding the unstable

equilibrium point at (x+, y+).

 xn+1 − x+

yn+1 − y+

 ≈ ˜Aee1

 xn − x+

yn − y+

+ ˜Bee1 [a− a0] , (20)

where

˜Aee1 =

 ∂ ˜f1e(x,y,a)
∂x

∂ ˜f1e(x,y,a)
∂y

∂ ˜f2e(x,y,a)
∂x

∂ ˜f2e(x,y,a)
∂y

 =

 1 −
√
a
√
b

ρ
αd
d

Γ(αd+1)

2
√
ab

ρ
αd
d

Γ(αd+1) 1− b
ρ
αd
d

Γ(αd+1)

 ,

and

˜Bee1 =

 ∂ ˜f1e(x,y,a)
∂a

∂ ˜f2e(x,y,a)
∂a

 =

 √
ab

ρ
αd
d

Γ(αd+1)

0

 .

˜Cee1 =
[

˜Bee1 : ˜Aee1
˜Bee1

]
=

 √
ab

ρ
αd
d

Γ(αd+1)

√
ab

ρ
αd
d

Γ(αd+1)

0 2ab
(

ρ
αd
d

Γ(αd+1)

)2
 .

The rank of ˜Cee1 is thus readily discernible as 2. Assume that [a− a0] = − ˜Kee1

 xn − x+

yn − y+

 where

˜Kee1 = [ ˜σee1 ˜σee2], then system (19) becomes

 xn+1 − x+

yn+1 − y+

 ≈ [ ˜Aee1 − ˜Bee1
˜Kee1]

 xn − x+

yn − y+

 .

Moreover, system(8) offers the appropriate controlled system.

xn+1 = xn +
ραd

d

Γ(αd + 1)

(
(a0 − ˜σee1(xn − x+)− ˜σee2(yn − y+))xn − xnyn

)
,

yn+1 = yn +
ραd

d

Γ(αd + 1)

(
−byn + x2

n

)
.

(21)
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Furthermore, the equilibrium point is locally asymptotically stable if and only if the eigenvalues of the

above matrices are situated inside an open unit disk.

Also,

˜Aee1 − ˜Bee1
˜Kee1 =

 1−
√
ab

ρ
αd
d

Γ(αd+1) ˜σee1 −
√
ab

ρ
αd
d

Γ(αd+1) −
√
ab

ρ
αd
d

Γ(αd+1) ˜σee2

2
√
ab

ρ
αd
d

Γ(αd+1) 1− b
ρ
αd
d

Γ(αd+1)

 .

The Jacobian matrix ( ˜Aee1 − ˜Bee1
˜Kee1) has the following characteristic equation:

λe
2 −

(
2−

(
b+

√
ab ˜σee1

) ραd

d

Γ(αd + 1)

)
λe + 1− b

ραd

d

Γ(αd + 1)
+ 2ab(1 + ˜σee2)

(
ραd

d

Γ(αd + 1)

)2

+
√
ab

ραd

d

Γ(αd + 1)

(
−1 + b

ραd

d

Γ(αd + 1)

)
˜σee1 = 0.

(22)

If we take into account the eigenvalues (λe1 and λe2) of the characteristic equation (22), we obtain

λe1 + λe2 =

(
2−

(
b+

√
ab ˜σee1

) ραd

d

Γ(αd + 1)

)
,

λe1λe2 =1− b
ραd

d

Γ(αd + 1)
+

2ab(1 + ˜σee2)

(
ραd

d

Γ(αd + 1)

)2

+
√
ab

ραd

d

Γ(αd + 1)

(
−1 + b

ραd

d

Γ(αd + 1)

)
˜σee1.

(23)

The lines of marginal stability can then be obtained by solving the equations λe1 = ±1 and λe1λe2 = 1.

These constraints also guarantee that λe1 and λe2 are inside the open unit disk. Assume λe1λe2 = 1 and

from (23), we get

Ke1 =
√
ab

ραd

d

Γ(αd + 1)

(
−1 + b

ραd

d

Γ(αd + 1)

)
˜σee1 + b

ραd

d

Γ(αd + 1)

(
−1 + 2a(1 + ˜σee2)

ραd

d

Γ(αd + 1)

)
.

Next consider λe1 = 1, we obtain

Ke2 =
√
ab

3
2

(
ραd

d

Γ(αd + 1)

)2

˜σee1 + 2ab

(
ραd

d

Γ(αd + 1)

)2

(1 + ˜σee2).

Last but not least, if λe1 = −1 , then

Ke3 =
√
ab

ραd

d

Γ(αd + 1)

(
2− b

ραd

d

Γ(αd + 1)

)
˜σee1−

2

(
2 + b

ραd

d

Γ(αd + 1)

(
−1 + a

ραd

d

Γ(αd + 1)

)
+ ab

(
ραd

d

Γ(αd + 1)

)2

˜σee2

)
.

The ˜σee1 ˜σee2 plane encircled by Ke1,Ke2,Ke3 contains the stable eigenvalues are located in the

bounded region for a specific set of parameter values.

Next, a hybrid control technique is used in the system (8) to control chaos. Our uncontrolled system (8)

is rewritten as

Xn+1 = G(Xn, δ), (24)

where Xn ∈ R2, the bifurcation parameter is δ ∈ R, and G(.) is a nonlinear vector function. By imposing

a hybrid control technique, the Eq. (24) becomes
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Xn+1 = ωeG(Xn, δ) + (1− ωe)Xn, (25)

where 0 < ωe < 1. At this moment, by imposing the control technique discussed previously to system (8),

we provide the system below

xn+1 = ωe

(
xn +

ραd

d

Γ(αd + 1)
(axn − xnyn)

)
+ (1− ωe)xn,

yn+1 = ωe

(
yn +

ραd

d

Γ(αd + 1)

(
−byn + x2

n

))
+ (1− ωe)yn.

(26)

At the point where the system’s (8) unstable trajectories are at their most advanced, chaos is stabilized

using a technique known as state feedback control. By introducing a feedback control law as the control

force uee and using the following formula, system (8) may be made to take on a controlled form.

xn+1 = xn +
ραd

d

Γ(αd + 1)
(axn − xnyn) + uee,

yn+1 = yn +
ραd

d

Γ(αd + 1)

(
−byn + x2

n

)
,

uee = −k1(xn − x+)− k2(yn − y+),

(27)

where the positive equilibrium point of the system (8) is represented by (x+, y+) and k1 and k2 denote

the feedback gains.

Example 3: We use (a0, b, αd, ρd) = (0.15, 1.8, 0.58, 0.53145) for OGY method.The system (8) has a

equilibrium point (x+, y+) = (1.95, 0.473373). Then,

xn+1 = xn + 0.777474
(
(0.15− ˜σee1(xn − 1.95)− ˜σee2(yn − 0.473373))− xn + x2

nyn
)
,

yn+1 = yn + 0.777474
(
1.8− x2

nyn
)
.

(28)

where K̃ = [ ˜σee1 ˜σee2] serve as the gain matrix. We also get,

˜Aee1 =

 1.65786 2.95634

−1.43534 −1.95634

 ,

˜Bee1 =

 0.777474

0

 ,

˜Cee1 =

 0.777474 1.28895

0 −1.11594

 ,

and

˜Aee1 − ˜Bee1
˜Kee1 =

 1.65786− 0.777474 ˜σee1 2.95634− 0.777474 ˜σee2

−1.43534 −1.95634

 .

For marginal stability, the lines Ke1,Ke2 and Ke3 are provided by:

Ke1 = −0.000000986495 + 1.52101 ˜σee1 − 1.11594 ˜σee2 = 0,

Ke2 = 1.70152 + 0.743533 ˜σee1 − 1.11594 ˜σee2 = 0,

Ke3 = −2.29848− 2.29848 ˜σee1 + 1.11594 ˜σee2 = 0.
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The system (28) stable region is displayed in Figure(9). To eliminate chaotic behavior, we use a hybrid

control strategy, and all the parameters are the same as in Example (3) except ρd = 0.5812 > ρd3. For

consequence, the equilibrium point E(1.95, 0.473373) of system (8) is unstable, however the controlled

system (27) is stable at this equilibrium point iff 0 < ωe < 0.9494221636969571. When ωe = 0.85, the

controlled system(27) becomes a sink. The stable region and stable trajectories are shown in Figure(9).

We also show the NS bifurcation diagrams (see Figure(10)) of the system (28) for various values of ωe,

demonstrating that the system is under control when ωe = 0.58.

We have run numerical simulations (in Figure(9)) to examine the operation of the feedback control

method to control of chaos in an unstable condition. The parameter values will be the same as we chose

for the OGY method. The feedback gains are chosen as k1 = −0.42 and k2 = −0.35. In Figure(10),

we also demonstrate how the state feedback approach is used to control a conformable reduced Lorenz

system.
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(i) (ii)

(iii) (iv)

(v) (vi)

Figure 9: Stable region and trajectory of controlled Caputo reduced Lorenz system, (i-ii) OGY approach

(system (21)), (iii-iv) hybrid method (system (26)), (v-vi) state feedback method (system (27))
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(i) (ii)

(iii) (iv)

Figure 10: Neimark-Sacker bifurcation of the control system (26) in x for (i) ωe = 0.85, (ii) ωe = 0.75,

(iii) ωe = 0.65, (iv) ωe = 0.58.

(i) (ii)

Figure 11: Stable region and trajectory of controlled conformable reduced Lorenz system.
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7 Conclusion

This study compares the dynamical behaviors of the discrete Caputo and conformable fractional order

models. According to theoretical and numerical findings, both models have the same equilibrium points

and display similar dynamical features, such as a stable steady state, periodic and quasi-periodic condi-

tions, and NS bifurcation. We find that the increased value of αd influences the delay of NS bifurcation

of the system. The solution in fractional-order systems continuously depends on all the prior states.

Therefore, utilizing fractional order αd can aid in reducing errors caused by ignored parameters. We also

determine whether chaos exists by calculating MLEs and FDs. The NS bifurcation causes the system

to swiftly change from steady to chaotic dynamical behavior by forging paths from periodic and quasi-

periodic states. Alternately, chaotic dynamics could develop or disappear simultaneously as bifurcations.

The presence of different bifurcations from different perspectives reveals the changing behaviour of the

given system as its complexity varies. For instance, the NS bifurcation sets off a path toward chaos

by creating a lively shift from a stable state to interesting cycles, forming intricate dynamics such as

chaotic attractors and periodic windows. Environmental changes can lead populations with unpredictable

fluctuations to abruptly shift to populations with predictable fluctuations. Important information about

nonlinear systems can be obtained from the invariant curve in the supercritical Neimark-Sacker bifurca-

tion. Understanding the transition from a regular state to complicated behaviour is crucial as it reveals

the system’s response to parameter variations. Additionally, we apply OGY, hybrid, and state feedback

control strategies to mitigate unstable system trajectories.

Our main conclusion is that the memory parameter αd greatly affects the system’s behavior. A value

of αd near 0 indicates weak memory and causes chaos, while a value near 1 indicates strong memory and

stabilizes the system. This highlights the vital role of memory in the model’s behavior.

In the future, various fractional operators such as Caputo-Fabrizio, Atangana-Caputo, and others can

be applied to further explore the intricate dynamic behaviors of the model. Also, investigating resonance

bifurcation in the model will be a great job.
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