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1 Introduction

Consider the absolute value equation (AVE) of the form:

Ax− |x| = b, (1)

where A ∈ Rn×n, |x| = (|x1|, |x2|, ..., |xn|)T , and b ∈ Rn. Another generalized form of Eq. (1) is

Ax+B|x| = b, (2)

where B ∈ Rn×n was first presented by Rohn in [1]. When B = −I, where I represents the identity matrix,

equation (2) is transformed into equation (1). Many engineering and scientific computing applications use

equation (1), including linear complementarity problems (LCPs), linear programming, and network price [2,

3]. Numerical algorithms for AVEs are primarily examined with mathematical theories, the framework of

solutions, and the accurate output of high-quality preconditioners and highly efficient numerical procedures

AVEs. Numerous numerical techniques have been investigated in recent years to solve AVE, such as Salkuyeh

[4] proposed the Picard-HSS iterative method for calculating AVE (1). A generalized Newton (GN) algorithm for

solving AVE (1) was developed by Mangasarian [5], who also demonstrated that this method converges linearly

when ||A−1|| < 1
4 . In their study, Cacceta et al. [6] investigated a smoothing Newton algorithm for equation

(1) and determined that this method is convergent when ||A−1|| < 1. Saheya et al. [7] examined smoothing
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type techniques to calculate equation (1) and presented convergence outcomes for the proposed algorithms.

Abdallah et al. [8] Presented equation (1) as an LCP and determined it Utilizing a smoothing approach. In

[9], Prokopyev analyzed unique features of AVE and their relationship to LCP. For instance, [10] presented a

preconditioned iterative AOR technique for solving equation (1) and explained the conditions for the technique

to converge. Wu with Li in [11] examined a novel iterative technique for determining the AVE using the shift

splitting (SS) technique. Haghani studied the generalized version of Traub’s approach in [12]. Hu and Huang

[13] gave several convexity and existence results for the solution of the AVE system and reconstructed the

AVE system as a standard LCP without any assumptions. Fakharzadeh and Shams in [14], investigated the

convergence properties of the mixed-type splitting approach to solve equation (1). Dong et al. in [15] developed

a new SOR-like approach for computing AVE. Feng with Liu [16] introduced an improved generalized Newton

technique. Iqbal et al. [17] presented the Levenberg-Marquardt iterative procedure to solve AVE (1). Gul et al.

[18] developed a two-step iterative approach for computing AVE (1). Noor et al. [19, 20] suggested minimization

algorithms to solve AVE.

In this paper, Simpson’s Three-Eighths approach, along with the generalized Newton approach, are discussed for

solving equation (1). This new algorithm is simple and very effective. The following is a summary of the points

discussed in this article. In Sec. 2, we introduce the proposed technique, different definitions and notations

utilized in this article. Sec.3 discusses the convergence for solving equation (1). We present the numerical

outcomes and our conclusions in Sections 4 and 5, respectively. We use the following notations.

Let sign(x) be a vector with elements −1, 0, 1 based on the related elements of x. The generalized Jacobian

∂|x| of |x| based on a subgradient [21, 22] of the elements of |x| is the diagonal matrix D is defined as

D(x) = ∂|x| = diag(sign(x)). (3)

svd(A) represents the n singular values of A. ψ is the maximum eigenvalue of ATA in absolute and ||A|| = (ψ)
1
2

representss the 2-norm of A. The norm ||x|| will represent the 2-norm
√

(xTx) of the vector x. Note that

|x| = D(x)x

2 Proposed Method

Suppose

Ψ(x) = Ax− |x| − b. (4)

The generalized Jacobian of Ψ(x) at x is:

∂Ψ(x) = A−D(x). (5)

Consider the predictor step as:

λk =

(
A−D

(
xk
))−1

b. (6)

Let m be the solution to AVE (1). To construct the corrector step, we proceed as follows:∫ m

u

Ψ′(t)dt = Ψ(m)−Ψ(u) = −Ψ(u). (7)
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Now, we use the five-point Simpson’s Three-Eighths formula, we get∫ m

u

Ψ′
(
t

)
dt =

m− u
90

[
7Ψ′(u) + 32Ψ′

(
3u+m

4

)
+ 12Ψ′

(
u+m

2

)
+ 32Ψ′

(
u+ 3m

4

)
+ 7Ψ′

(
m

)]
. (8)

From Equations (7) and (8), we get

−Ψ

(
u

)
=
m− u

90

[
7Ψ′
(
u

)
+ 32Ψ′

(
3u+m

4

)
+ 12Ψ′

(
m+ u

2

)
+ 32Ψ′

(
u+ 3m

4

)
+ 7Ψ′

(
m

)]
(9)

Thus

m = u− 90

[
7Ψ′
(
u

)
+ 32Ψ′

(
3u+m

4

)
+ 12Ψ′

(
m+ u

2

)
+ 32Ψ′

(
u+ 3m

4

)
+ 7Ψ′

(
m

)]−1
Ψ(u). (10)

From equation (10) the algorithm for STE approach can be writte as:

Algorithm 2.1

1: Select x(0) ∈ Rn.

2: For k compute λk =

(
A−D

(
xk
))−1

b.

3: Using Step 2, compute

xk+1 = xk − 90

[
7Ψ′
(
xk
)

+ 32Ψ′
(

3xk+λk

4

)
+ 12Ψ′

(
λk+xk

2

)
+ 32Ψ′

(
xk+3λk

4

)
+ 7Ψ′

(
λk
)]−1

Ψ

(
xk
)
.

4: If xk+1 = xk, then end. Otherwise, apply k = k + 1 and continue from step 2.

3 Convergence

In this section, we prove the convergence of STE method. The predictor step is well defined (see Lemma 2 [5])

as

λk =

(
A−D

(
xk
))−1

b. (11)

Now, we want to prove that

7Ψ′
(
xk
)

+ 32Ψ′
(

3xk + λk

4

)
+ 12Ψ′

(
λk + xk

2

)
+ 32Ψ′

(
xk + 3λk

4

)
+ 7Ψ′

(
λk
)

(12)

is nonsingular, we first consider

αk =

(
3xk + λk

4

)
, βk =

(
λk + xk

2

)
, γk =

(
xk + 3λk

4

)
(13)
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Now

7Ψ′
(
xk
)

+ 32Ψ′
(

3xk + λk

4

)
+ 12Ψ′

(
λk + xk

2

)
+ 32Ψ′

(
xk + 3λk

4

)
+ 7Ψ′

(
λk
)

= 7A− 7D

(
xk
)

+ 32A− 32D

(
αk
)

+ 12A− 12D

(
βk
)

+ 32A− 32D

(
γk
)

+ 7A− 7D

(
λk
)

= 90A− 7D

(
xk
)
− 32D

(
αk
)
− 12D

(
βk
)
− 32D

(
γk
)
− 7D

(
λk
)
,

which is nonsingular.

Lemma 3.1. If svd(A) > 1, then

(
90A−7D

(
xk
)
−32D

(
αk
)
−12D

(
βk
)
−32D

(
γk
)
−7D

(
λk
))−1

exists

for any D defined in equation (3).

Proof If 90A− 7D

(
xk
)
− 32D

(
αk
)
− 12D

(
βk
)
− 32D

(
γk
)
− 7D

(
λk
)

is singular, then(
90A − 7D

(
xk
)
− 32D

(
αk
)
− 12D

(
βk
)
− 32D

(
γk
)
− 7D

(
λk
)
x = 0 for some x 6= 0. As the svd(A) > 1,

thus

xTx < xTATAx =
1

8100
xT
(

7D

(
xk
)

+ 32D

(
αk
)

+ 12D

(
βk
)

+ 32D

(
γk
)

+ 7D

(
λk
))
×((

7D

(
xk
)

+ 32D

(
αk
)

+ 12D

(
βk
)

+ 32D

(
γk
)

+ 7D

(
λk
))

x

=
1

8100
xT
(

49D

(
xk
)
D

(
xk
)

+ 49D

(
λk
)
D

(
λk
)

+ 1024D

(
αk
)
D

(
αk
)

+ 144D

(
βk
)
D

(
βk
)

+1024D

(
γk
)(

γk
)

+ 448D

(
xk
)
D

(
αk
)

+ 168D

(
xk
)
D

(
βk
)

+ 448D

(
xk
)
D

(
γk
)

+768D

(
αk
)
D

(
βk
)

+ 2048D

(
γk
)
D

(
αk
)

+ 448D

(
αk
)
D

(
λk
)

+ 168D

(
zk
)
D

(
βk
)

+768D

(
βk
)
D

(
γk
)

+ 448D

(
λk
))

D

(
γk
))

x

≤ 1

8100
8100xTx

= xTx,

which is a contradiction, hence 90A−7D

(
xk
)
−32D

(
αk
)
−12D

(
βk
)
−32D

(
γk
)
−7D

(
λk
)

is non-singular.

Lemma 3.2. If svd(A) > 1, then the sequence of STE approach is bounded and well-defined. Therefore,

an accumulation point x̄ exists such that

x̃ = x̃− 90

(
7Ψ′
(
xk
)

+ 32Ψ′
(
αk
)

+ 12Ψ′
(
βk
)

+ 32Ψ′
(
γk
)

+ 7Ψ′
(
λk
))−1

Ψ

(
x̃

)
, (14)

or it is equivalent to(
7Ψ′
(
xk
)

+ 32Ψ′
(
αk
)

+ 12Ψ′
(
βk
)

+ 32Ψ′
(
γk
)
− 7Ψ′

(
λk
))

x̃

=

(
7Ψ′
(
xk
)

+ 32Ψ′
(
αk
)

+ 12Ψ′
(
βk
)

+ 32Ψ′
(
γk
)

+ 7Ψ′
(
λk
))

x̃− 90Ψ

(
x̃

)
. (15)
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Hence, there exists an accumulation point x̃ with(
A− D̃(x̃)

)
x̃ = b, (16)

for some diagonal matrix D̃ with diagonal elements 0 or ±1 depends on wether the corresponding component

of x̃ is positive, zero, or negative as defined in equation (3).

Proof The proof of this Lemma is analogous to proposition 3 of [5]. Thus it is omitted.

Theorem 3.1 If

∣∣∣∣∣∣∣∣(7Ψ′
(
xk
)

+ 32Ψ′
(
αk
)

+ 12Ψ′
(
βk
)

+ 32Ψ′
(
γk
)

+ 7Ψ′
(
λk
))−1∣∣∣∣∣∣∣∣ < 1

270 , then the STE

approach converges to a solution m of equation (1).

Proof Consider

xk+1 −m =xk − 90

(
7Ψ′
(
xk
)

+ 32Ψ′
(
αk
)

+ 12Ψ′
(
βk
)

+ 32Ψ′
(
γk
)

+ 7Ψ′
(
λk
))−1

Ψ

(
xk
)
−m. (17)

Fot simplicity, let

P =7Ψ′
(
xk
)

+ 32Ψ′
(
αk
)

+ 12Ψ′
(
βk
)

+ 32Ψ′
(
γk
)

+ 7Ψ′
(
λk
)
. (18)

Then, equations (17) converts into

xk+1 −m = xk −m− 90P−1Ψ

(
xk
)
,

P

(
xk+1 −m

)
= P

(
xk −m

)
− 90Ψ

(
xk
)
. (19)

We know that, m is the solution of equation (1), thus

Ψ(m) = Am− |m| − b = 0. (20)

From equations (19) and (20), we obtain

P

(
xk+1 −m

)
= P

(
xk −m

)
− 90Ψ

(
xk
)

+ 90Ψ

(
m

)

= P

(
xk −m

)
− 90

(
Ψ

(
xk
)
−Ψ

(
m

))
= P

(
xk −m

)
− 90

(
Axk − |xk| −Am+ |m|

)
=

(
P − 90A

)(
xk −m

)
− 90

(
|m| − |xk|

)
= −

(
E

)(
xk −m

)
+ 90

(
|xk| − |m|

)
where

E = 7D

(
xk
)

+ 32D

(
αk
)

+ 12D

(
βk
)

+ 32D

(
γk
)

+ 7D

(
λk
)
.

Now

xk+1 −m =

(
P

)−1[
90

(
|xk| − |m|

)
−
(
E

)(
xk −m

)]
, (21)
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xk+1 −m =

(
P

)−1[
90

(
|xk| − |m|

)
− E

(
xk −m

)]
, (22)∣∣∣∣∣∣∣∣xk+1 −m

∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣(P)−1∣∣∣∣∣∣∣∣[ 180

∣∣∣∣∣∣∣∣xk −m∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣(E)∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣xk −m∣∣∣∣∣∣∣∣]. (23)

In equation (23), we utilized Lipschitz continuity of the absolute value (see [5]); that is,∣∣∣∣∣∣∣∣|xk| − |m|∣∣∣∣∣∣∣∣ ≤ 2

∣∣∣∣∣∣∣∣xk −m∣∣∣∣∣∣∣∣.
Since D

(
xk
)

, D

(
λk
)

, D

(
αk
)

, D

(
βk
)

and D

(
γk
)

are diagonal matrices whose diagonal elements are 0 or

±1 , thus ∣∣∣∣∣∣∣∣E∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣7D(xk)+ 32D

(
αk
)

+ 12D

(
βk
)

+ 32D

(
γk
)

+ 7D

(
λk
)∣∣∣∣∣∣∣∣

≤
∣∣∣∣∣∣∣∣7D(xk)∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣32D

(
αk
)∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣12D

(
βk
)∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣32D

(
γk
)∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣7D(λk)∣∣∣∣∣∣∣∣ ≤ 90. (24)

From equations (23) and (24), we obtain∣∣∣∣∣∣∣∣xk+1 −m
∣∣∣∣∣∣∣∣ ≤ 270

∣∣∣∣∣∣∣∣(P)−1∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣xk −m∣∣∣∣∣∣∣∣ < ∣∣∣∣∣∣∣∣xk −m∣∣∣∣∣∣∣∣. (25)

In equation (25), we have utalized the condition that

∣∣∣∣∣∣∣∣(7Ψ′
(
xk
)

+ 32Ψ′
(
αk
)

+ 12Ψ′
(
βk
)

+ 32Ψ′
(
γk
)

+

7Ψ′
(
λk
))−1∣∣∣∣∣∣∣∣ < 1

270 . Thus, xk linearly converges to the solution of AVE (1).

Lemma 3.3. Let

∣∣∣∣∣∣∣∣A−1∣∣∣∣∣∣∣∣ < 1
271 and D

(
xk
)
, D

(
αk
)
, D

(
βk
)
, D

(
γk
)

and D

(
λk
)

be nonzero. Then STE

method is well defined and converges to the unique solution of AVE (1) for any initial vector x0.

Proof. Since

∣∣∣∣∣∣∣∣A−1∣∣∣∣∣∣∣∣ < 1
271 , therefore, AVE (1) is uniquely solvable for any b see ([2], Proposition 4). Since

A−1 exists, therefore, by Lemma 2.3.2 [29], we have∣∣∣∣∣∣∣∣(7Ψ′
(
xk
)

+ 32Ψ′
(
αk
)

+ 12Ψ′
(
βk
)

+ 32Ψ′
(
γk
)

+ 7Ψ′
(
λk
))−1∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣(90A− 7D

(
xk
)
− 32D

(
αk
)
− 12D

(
βk
)
− 32D

(
γk
)
− 7D

(
λk
))−1∣∣∣∣∣∣∣∣

≤

∣∣∣∣∣∣∣∣(90A

)−1∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣− 7D

(
xk
)
− 32D

(
αk
)
− 12D

(
βk
)
− 32D

(
γk
)
− 7D

(
λk
)∣∣∣∣∣∣∣∣

1−
∣∣∣∣∣∣∣∣(90A

)−1∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣(− 7D

(
xk
)
− 32D

(
αk
)
− 12D

(
βk
)
− 32D

(
γk
)
− 7D

(
λk
)∣∣∣∣∣∣∣∣

≤

1
90

∣∣∣∣∣∣∣∣(A)−1∣∣∣∣∣∣∣∣90

1− 1
90

∣∣∣∣∣∣∣∣(A)−1∣∣∣∣∣∣∣∣90

<
1

271

1− 1
271

=
1

270
.

Based on Theorem 3.1, we conclude that the STE approach converges linearly to the unique solution of equation

(1).
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4 Numerical Outcomes

Here, we conduct numerical tests to demonstrate the efficiency of Simpson’s Three-Eighths method. Moreover,

the iteration, residual, and CPU time, are represented, by Iters, RES, and CPU, respectively. We utilized

Intel (R) Core (TM) i5-8145U, 2.30 GHz CPU, and 8 GB of RAM for all numerical experiments. All numerical

experiments are initiated with the null vector, and the analysis is terminated when the current iteration is

concluded.

RES := ‖Axk−|xk|−b‖2
‖b‖2 ≤ 10−6.

Example 4.1 Let A be a matrix in the form of

A = (aij)


1000 + i, for j = i,

1, for

{
j = i+ 1, i = 1, 2, ..., n− 1,

j = i− 1, i = 2, ..., n,

0 Otherwise.

Calculate Au? − |u?| = b ∈ Rn, with u? = (x1, x2, x3, ...xn)T ∈ Rn such that xi = (−1)i

In Example 4.1, the starting vector and the stopping criterion are taken from [23]. Furthermore, we compare

the suggested technique to the new iteration procedure (NA) in [23], and the SORLoapt method given in [24]

and with Picard method in [30]. Table 1 summarizes the outcomes of the investigation. According to Table 1,

the developed method determines the AVE solution more rapidly than existing algorithms in terms of Iters and

CPU.

Table 1: Numerical results for Example 4.1 with NA, SORLaopt, Technique I, and STE method

Techniques n 1000 2000 3000 4000 5000

Iters 17 18 18 18 18

NA CPU 1.9831 10.5160 28.6587 63.6419 117.3205

RES 7.38e-09 2.60e-09 3.19e-09 3.68e-09 4.11e-09

Iters 15 15 15 15 15

SORLaopt CPU 1.4542 9.1963 25.5616 56.0278 102.4061

RES 1.99e-09 3.62e-09 7.58e-09 3.68e-09 9.88e-09

Iters 5 5 5 5 5

Picard CPU 0.6201 1.3475 4.4926 13.3852 44.5911

RES 1.34e-11 1.68e-11 2.38e-11 3.73e-11 3.13e-11

Iters 2 2 2 2 2

STE CPU 0.2638 0.6417 1.4300 2.8050 4.7831

RES 2.04e-07 2.04e-07 2.04e-07 2.04e-07 2.04e-07

Example 4.2 [31] Let
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A =Tridiag(−1, 4,−1) =



4 −1 0 · · · 0 0
−1 4 −1 · · · 0 0
0 −1 4 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 4 −1
0 0 0 · · · −1 4


∈ Rn×n, u? =



−1
1
−1

1
...

−1
1


∈ Rn,

where Au? − |u?| = b ∈ Rn.

In this example, we compare the presented approach with the SOR-like approach [24] (written as SORLaopt)

and the SS iterative approach proposed in [26] (represented by SSA) and with GGS approach [31].

In Table 2, we present the results of the study. Table 2 indicates that all experimented techniques quickly

analyze equation (1). The proposed method offers superior Iters and CPU values in comparison to existing

techniques.

Table 2: Numerical results for Example 4.2 with SORLaopt and SSA techniques, Technique I, and STE technique

Techniques n 1000 2000 3000 4000

Iters 21 22 22 22

GGS CPU 2.9658 7.7891 17.6613 31.6259

RES 7.89e–07 4.90e–07 6.01e–07 6.94e–07

Iters 18 18 18 18

SORLaopt CPU 2.5147 6.1249 15.9104 27.1345

RES 6.12e-07 6.13e-07 6.13e-07 6.14e-07

Iters 14 14 14 14

SSA CPU 1.7828 5.0954 13.3028 21.1644

RES 8.91e-07 8.92e-07 8.93e-07 8.93e-07

Iters 7 7 7 7

STE CPU 0.6072 1.9383 3.7563 9.5864

RES 5.47e-07 5.48e-07 5.48e-07 5.48e-07

Example 4.3 [25] We consider AVE (1) with

A =Tridiag(−In, Zn,−In) =



Z −I 0 · · · 0 0
−I Z −I · · · 0 0
0 −I Z · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · Z −I
0 0 0 · · · −I Z


∈ Rn×n, u? =



−1
1
−1

1
...
−1

1


∈ Rn,
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Zn =Tridiag(−1, 8,−1) =



8 −1 0 · · · 0 0
−1 8 −1 · · · 0 0
0 −1 8 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 8 −1
0 0 0 · · · −1 8


∈ Rn×n,

where m = n2 and b = Au? − |u?| ∈ Rn.

In Example 4.3, we compare our proposed algorithm with the SOR-like method [25], MSOR approach [27], and

NSOR method [15].

Table 3 shows the numerical outcomes of the four methods. According to the data presented in Table 3, ev-

ery tested technique produced an accurate outcome in solving for equation (1). Compared with the existing

methods, the Iters and CPU values in the suggested method are superior. Therefore, we can conclude that the

proposed approach is both very effective and practicable in terms of Iters and CPU.

Table 3: Numerical results for Examlpe 4.3 with SOR-like, MSOR, NSOR and STE technique

Techniques n 1600 2500 3600 4900

Iters 16 16 16 16

SOR-like CPU 0.0433 0.0910 0.1945 0.3554

RES 4.48e–08 5.68e–08 6.97e–08 8.19e–08

Iters 12 12 12 12

MSOR CPU 0.0351 0.0774 0.1585 0.2779

RES 4.71e–07 5.99e–07 7.28e–07 8.56e–07

Iters 9 9 10 10

NSOR CPU 0.0252 0.0538 0.1276 0.2299

RES 7.10e–07 9.16e–07 1.54e–07 1.82e–07

Iters 6 6 6 6

STE CPU 0.0131 1.0336 0.0955 0.1971

RES 2.69e–07 2.76e–07 2.81e–07 2.84e–07

Example 4.4 [15]. Let
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A = Tridiag(−1, 8,−1) =



8 −1 0 · · · 0 0
−1 8 −1 · · · 0 0
0 −1 8 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 8 −1
0 0 0 · · · −1 8


∈ Rn×n, u? =



−1
1
−1

1
...

−1
1


∈ Rn,

and vector b = Au? − |u?| ∈ Rn.

Table 4 shows the numerical results of four techniques. Example 4.4 compares the proposed approach with

SOR-like approach, MSOR method, and NSOR approach. As shown in Table 4, the four techniques have the

potential to solve the problem efficiently and effectively. In Table 4, we report the Iters, the CPU, and the RES.

Table 4 shows that the iterations and CPU of the suggested technique are better than the SOR-like, MNSOR,

and NSOR methods.

Table 4: Numerical results for Examlpe 4.4 with SOR-like, MSOR, NSOR and STE technique

Techniques n 1000 2000 3000 4000 5000 6000

Iters 12 13 13 13 13 13

SOR-like CPU 0.0188 0.0501 0.0785 0.1030 0.1358 0.1581

RES 9.45e–08 2.69e–08 3.29e–08 3.80e–08 4.25e–08 4.66e–08

Iters 10 10 10 10 10 11

MSOR CPU 0.0120 0.0464 0.0954 0.1711 0.2583 0.4067

RES 4.14e–07 5.86e–07 7.18e–07 8.29e–07 9.27e–07 1.03e–07

Iters 8 9 9 9 9 9

NSOR CPU 0.0128 0.0347 0.0571 0.0761 0.0960 0.1153

RES 8.69e–07 6.88e–08 8.43e–08 9.73e–08 1.08e–07 1.19e–07

Iters 5 5 5 5 5 5

STE CPU 0.0119 0.02942 0.0484 0.0731 0.1163 0.1920

RES 1.97e–07 1.97e–07 1.97e–07 1.97e–07 1.97e–07 1.96e–07

Exmple 4.5 Let

A = I ⊗Q+H ⊗ I ∈ Rq×q,

where I ∈ Rq×q is the identity matrix, and ⊗ represents the Kronecker product. Similarly, Q and H are g × g
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tridiagonal matrices given by: 
Q = Tridiag

[
− (

2 + p̄

8
), 8,−(

2− p̄
8

)

]
,

H = Tridiag

[
− (

1 + p̄

4
), 4,−(

1− p̄
4

)

]
,

p̄ =
1

n
; q = n2

The right-hand side vector b = Au? − |u?| ∈ Rq, where u? = ones(q, 1) ∈ Rq. The assumption and the ultimate

limiting factor of this example is the starting point from [28]. In the section on the assumption, we evaluate the

offered Techniques in light of those demonstrated in [24] (revealed by SPM), the special shift-splitting iteration

technique [11], and the Technique described in [30] (revealed by Picard).

Table 5 contains the results of this investigation. Table 5 shows that for each value of q, the presented techniques

analyze the solution x̄. Based on the numerical resultss proposed in Table 5, we can determine that the strategies

we have provided are more successful than the SPM, SSM, and Picard techniques under specific situations when

seen from the perspective of the ‘Iters’ and ‘CPU.’

In conclusion, our unique strategies are relevant to AVEs and are within their capabilities. Table 5 shows all

the results of the proposed techniques.

Table 5: Numerical results for Example 4.5 with SPM, SSM, Picard, and STE techniques

Techniques n 256 1296 2401 4096
Iters 12 12 12 12

SPM CPU 1.6492 2.0258 4.1522 7.3811

RES 3.77e-07 3.74e-07 3.73e-07 3.72e-07

Iters 8 8 8 8

SSM CPU 0.9853 1.1725 2.0863 4.3729

RES 1.54e-07 1.55e-07 1.56e-07 1.56e-07

Iters 6 6 6 6

Picard CPU 0.7305 0.9477 1.3571 3.2084

RES 2.13e-07 2.10e-07 2.09e-07 2.08e-07

Iters 4 4 4 4

STE CPU 0.0514 0.6840 1.6036 1.9221

RES 2.95e-07 2.92e–07 2.91e–07 2.90e–07
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5 Conclusion

In this article, we have used a five-point technique to solve AVE. The well-known generalized Newton approach

is used as the predictor step in this innovative new technique, while the STE method for AVEs is utilized as

the corrector step. The proposed technique converges in the third phase of the analysis. The new technique

is extremely useful for finding solutions to complex systems. This concept can be developed further to answer

generalized equations involving absolute value.
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