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Abstract

We establish the closed-form solutions of the Susceptible-Infectious-
Susceptible (SIS) epidemic model with diffusion using Lie point symme-
tries. The model admits a four-dimensional Lie algebra. We use different
combinations of Lie symmetries to construct the closed-form solutions. We
consider appropriate initial and boundary conditions to explore the biolog-
ical relevance of these closed-form solutions. We utilize the closed-form
solutions to study the transmission dynamics of an influenza outbreak
with Gaussian initial distributions. We plot graphs for the susceptible
and infected populations. We consider the lower diffusion coefficient and
higher diffusion coefficient cases to analyze the transmission dynamics of
the influenza outbreak.
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1 Introduction

Several mathematical models have been developed to study the transi-
tional dynamics of infectious disease. Nonlinear ordinary differential equa-
tions (ODEs) and partial differential equations (PDEs) are the powerful
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tools for providing a broad perspective of disease persistence or extinction.
The ODE epidemic models are based on the assumption that population
distribution is homogenous across space. However, the population in-
teraction and distribution are greatly influenced by spatial dispersal, we
refer the reader to excellent surveys [1, 2, 3] and reference therein. No-
ble [4] studied the geographic and temporal development of plagues. The
reaction-diffusion equations are utilized to predict the spread of rabies in
red fox hosts across Europe [5, 6, 7, 8, 9].

Allen et al [10] developed the SIS epidemic reaction-diffusion models
and utilized the Neumann boundary condition to study the effect of spa-
tial heterogeneity of the environment and individual movement on the
extinction and persistence of a disease. The rates of disease transmis-
sion and recovery were dependent on the location. It was shown that the
Disease-Free Equilibrium (DFE) is globally asymptotically stable when
the basic reproduction number R0 < 1 and unstable for R0 > 1. The
existence and uniqueness of Endemic Equilibrium (EE) was guaranteed
for R0 > 1. Moreover, the asymptotic profiles of the EE were determined
when the migration rate for susceptible individuals is sufficiently small.
Later on, Peng and Liu [11] established global stability of EE for the same
diffusion coefficients or by keeping the ratio of disease transmission and
recovery rates constant. Allen et al [10] only assessed low and high risk
locations, whereas Peng and Liu [11] also included moderate risk areas.
Huang et al [12] conducted a subsequent study of a diffusive SIS epidemic
model with logistic growth and Dirichlet boundary condition. Later on,
Ding et al [13] established the traveling wave solutions linking the DFE
and EE for the diffusive SIS epidemic model with constant rates of disease
transmission and recovery. We apply the Lie symmetry methods to es-
tablish several closed-form solutions of the diffusive SIS epidemic model.
Ding et al. [13] proposed the following SIS model:

St = δSxx − Ω(S, I)I,

It = δIxx + Ω(S, I)I,
(1)

where Ω(S, I) = βS−γ(S+I)
S+I

. Here S(t, x) denotes the density of suscepti-
ble individuals, I(t, x) denotes the density of infected individuals, β > 0
denotes the infection rate, γ > 0 is the recovery rate and δ is diffu-
sion coefficient. The total population N(t, x) = S(t, x) + I(t, x) satisfies
Nt = δNxx. Our focus is on addressing the following questions: Does
a closed-form solution exist for the diffusive SIS model governed by two
nonlinear PDEs? How do varying rates of diffusion both higher and lower
impact the spatiotemporal dynamics of influenza transmission? Moreover,
we examine how this insight can contribute to the development of effective
strategies to control and mitigate the spread of the disease.

The Lie group techniques are effective instruments for methodically
constructing closed-form solutions to the differential equations arising in
different fields of applied Mathematics. We refer the reader to excellent
books [14, 15, 16, 17] on the classical Lie symmetry method and elegant
softwares for computation of symmetries [18, 19, 20, 21, 22]. Hereman [23]
carried out a comprehensive review of symbolic software developed for Lie
symmetry analysis. The symmetry methods are successfully applied to

2



derive Lie symmetries, first integrals and exact solutions for the epidemic
models (see [24, 25]. In [26], the closed-form solutions were utilized to
analyze the transmission dynamics of COVID-19 and policies to contain
the virus were provided.

This paper is organised as follows: For the diffusive SIS model, we ex-
plore the Lie symmetries, closed-form solutions, and reductions in Section
2. We manage to reduce the given system of two second-order PDEs to a
more manageable system of two second-order ODEs by starting with the
most general Lie symmetry generator. We construct closed-form solutions
for two distinct scenarios using a combination of three Lie symmetries. In
Section 3, a connection is established between the closed-form solution
derived in section 2 for one of scenarios and a real-world scenario to un-
derstand the transmission dynamics of influenza. The appropriate initial
conditions and boundary conditions are employed. The effect of varying
rates of diffusion both higher and lower on the spatiotemporal dynam-
ics of influenza transmission is addressed. Moreover, the development of
effective strategies to control and mitigate the spread of the disease are
provided. Finally, the concluding remarks are provided in Section 4.

2 Lie symmetries, reductions and Closed-

form solutions of SIS epidemic model

Our focus in this section is to addressing the following questions: Does
a closed-form solution exist for the diffusive SIS model governed by two
nonlinear PDEs? We utilize computer package SADE [22] to establish
Lie symmetries of the diffusive SIS model. Then, Lie symmetries are
employed to identify reductions and obtain closed-form solutions for the
diffusive SIS model. By applying Lie symmetry transformations, we can
simplify the system of PDEs governing the model into a more manageable
system of ODEs. We explore three scenarios: first, the most general Lie
symmetry generator; second, the combination of three symmetries; and
third, the combination of two symmetries. The most general Lie symmetry
generator results in the reduction of the system of two PDEs to a system of
two second-order ODEs, which cannot be solved for closed-form solutions.
However, the two more combinations of Lie symmetries are utilized to
reduce the system of PDEs (1) to a system of two first-order ODEs. It
was possible to find the closed-form solutions of the reduced system of
ODEs, thus providing us with the closed-form solution of the original
system of PDEs.

The Lie symmetries of system (1) are

X1 = ∂t,

X2 = ∂x,

X3 = S∂S + I∂I ,

X4 = 2δt∂x − xS∂S − xI∂I .

(2)

One can use any computer package [18, 19, 20, 21, 22] to find these
Lie symmetries.
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2.1 Reductions using Lie symmetries X1, X2, X3

and X4

The most general symmetry infinitesimal generator is

X = c1∂x + c2∂t + c3(S∂S + I∂I) + c4(2δt∂x − xS∂S − xI∂I). (3)

Now, from the invariance surface conditions, [14, 15, 16, 17], we have

(c1 + 2c4δt)Sx + c2St = (c3 − c4x)S, (4)

(c1 + 2c4δt)Ix + c2It = (c3 − c4x)I. (5)

Equations (4) and (5) for c1 6= 0, yield the group invariant solution of
system (1) as

S(t, x) = F1(ξ)e

t(4c24δt2−6c1c4x+3c2c4t+6c1c3)

6c21 ,

I(t, x) = F2(ξ)e

t(4c24δt2−6c1c4x+3c2c4t+6c1c3)

6c21 ,

ξ =
c1x − c2t − c4δt

2

c1
.

(6)

The system of PDEs (1) reduces to the following system of ODEs:

c1δ(F1 + F2)F
′′

1 + c2(F1 + F2)F
′

1 − (c3 − c4ξ)F
2
1 + c1γF

2
2

+(c1γ − c1β + c4ξ − c3)F1F2 = 0,

c1δ(F1 + F2)F
′′

2 + c2(F1 + F2)F
′

2 − (c1γ − c4ξ + c3)F
2
2

−(c1γ − c1β − c4ξ + c3)F1F2 = 0,

(7)

provided c1 6= 0. One can utilize any mathematical software to obtain
numerical solutions for system (7). However, it is important to note that
our current focus is not on constructing numerical solutions. Our primary
focus lies in the derivation of closed-form solutions. This involves con-
sidering different combinations of Lie symmetries to obtain closed-form
solutions for the system of PDEs (1).

It is important to mention here that we can obtain several reductions
of diffusive SIS model (1) by setting one, two, or three of the constants
c2, c3, c4 to zero while keeping c1 6= 0 in the system of reduced second-
order ODEs (7). Each combination of Lie symmetries corresponds to a
distinct reduction. For example, when we set c2 = 0 in the system of the
reduced second-order ODEs (7), this corresponds to the reduction via X1,
X3, and X4. By making such adjustments to the constants, we can explore
various reduction possibilities for the original system of two second-order
PDEs (1) representing the diffusive SIS model.

Next, we explore the possibility of closed-form solutions using different
combinations of Lie symmetries X2, X3 and X4.
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2.2 The closed-from solution using Lie symme-

tries X2, X3 and X4

We set c1 = 0 in the most general symmetry infinitesimal generator
(3), which is equivalent to considering the combination of Lie symme-
tries X2, X3, and X4. Then the group invariant solution of system (1) is
given by

S(t, x) = F1(t)e
−

(c3−c4x)2−c23
2c4(2c4δt+c2) ,

I(t, x) = F2(t)e
−

(c3−c4x)2−c23
2c4(2c4δt+c2) .

(8)

The system of PDEs (1) reduces to the following system of ODEs

4

„

c4δt +
1

2
c2

«2

(F1 + F2)F
′

1 +
`

2c
2
4δ

2
t + c2c4δ − c

2
3δ

´

F
2
1

−4γ

„

c4δt +
1

2
c2

«2

F
2
2 − 4

»„

γt − βt − 1

2

«

c
2
4δ

2
t

+

„

γt − βt − 1

4

«

c2c4δ +
1

4
c
2
3δ +

1

4
c
2
2 (γ − β)

–

F1F2 = 0,

„

c4δt +
1

2
c2

«2

(F1 + F2)F
′

2 +

»„

γt +
1

2

«

c
2
4δ

2
t

+

„

γt +
1

4

«

c2c4δ − 1

4
c
2
3δ +

1

4
γc

2
2

–

F
2
2 +

»„

γt − βt +
1

2

«

c
2
4δ

2
t

+

„

γt − βt +
1

4

«

c2c4δ − 1

4
c
2
3δ +

1

4
c
2
2 (γ − β)

–

F1F2 = 0.

(9)

The solution of reduced system of ODEs (9) is

F1(t) =

“

e−(β−γ)tA1β − A2γ
”

e
−

c23
2c4(2c4δt+c2)

√
2c4δt + c2 (e−(β−γ)tA1 − A2)A2

,

F2(t) =
e

−c23
2c4(2c4δt+c2) (γ − β)√

2c4δt + c2 (e−(β−γ)tA1 − A2)
,

(10)

provided c4 6= 0. Here A1 and A2 are arbitrary constants of integration.
Substituting the expressions for F1(t) and F2(t) from (10) into equation
(8), the form of the final group invariant solution of system (1), using a
combination of Lie symmetries X2 , X3 and X4 with c4 6= 0, is as follows:

S(t, x) =
e
−

(c3−c4x)2

2c4(2c4δt+c2)

“

e−(β−γ)tA1β − A2γ
”

√
2c4δt + c2 (e−(β−γ)tA1 − A2) A2

,

I(t, x) =
e
−

(c3−c4x)2

2c4(2c4δt+c2) (γ − β)√
2c4δt + c2 (e−(β−γ)tA1 − A2)

.

(11)

It is important to mention that the closed-form solution of the diffusive
SIS system (1), as provided in equation (11), serves as the benchmark
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for deducing closed-form solutions through various combinations of Lie
symmetries X2, X3, and X4. Specifically, it corresponds to the closed-
form solution obtained via the Lie symmetry X4 when both c2 and c3 are
set to zero. Furthermore, this closed-form solution represents the solution
resulting from the combination of the Lie symmetries X2 and X4 when c3

is set to zero. Additionally, when c2 is set to zero, it corresponds to the
closed-form solution involving the combination of Lie symmetries X3 and
X4.

2.3 The closed-form solution using symmetries

X2 and X3

We set c1 = 0 and c4 = 0 in the most general symmetry infinitesimal
generator (3) , which is equivalent to considering the combination of Lie
symmetries X2 and X3. Then the group invariant solution of system (1)
is given by

S(t, x) = F1(t)e
c3
c2

x
,

I(t, x) = F2(t)e
c3
c2

x
,

(12)

where c2 6= 0. The system of PDEs (1) reduces to the following system of
ODEs

c
2
2(F1 + F2)F

′

1 − c
2
3δF

2
1 − γc

2
2F

2
2 −

ˆ

c
2
3δ + c

2
2 (γ − β)

˜

F1F2 = 0,

c
2
2(F1 + F2)F

′

2 +
`

γc
2
2 − c

2
3δ

´

F
2
2 −

ˆ

c
2
3δ − c

2
2 (γ − β)

˜

F1F2 = 0.
(13)

The solution of reduced system of ODEs (13) is

F1(t) =
e

(c23δ−(β−γ)c22)t

c2
2 A3β − e

c23δt

c2
2 A4γ

(e−(β−γ)tA3 − A4)A4
,

F2(t) =
e

c23δt

c2
2 (γ − β)

e−(β−γ)tA3 − A4
,

(14)

where A3 and A4 are arbitrary constants of integration. We substitute
the expressions for F1(t) and F2(t) from (14) into equation (12). The final
form of the group invariant solution of system (1) via combination of Lie
symmetries X2 and X3 is as follows:

S(t, x) =
e

c3(c3δt+c2x)

c22 (e−(β−γ)tA3β − A4γ)

(e−(β−γ)tA3 − A4)A4
,

I(t, x) =
e

c3(c3δt+c2x)

c22 (γ − β)

e−(β−γ)tA3 − A4
,

(15)

provided c2 6= 0.
Note that the closed-form solution of the diffusive SIS system (1) pro-

vided by (15) corresponds to the closed-form solution via X2 when we set
c3 = 0.
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We have considered all possible combinations of Lie symmetries to
obtain reductions and closed-form solutions of the diffusive SIS model.
For the case when c1 6= 0, the system of two second-order PDEs (1),
representing the diffusive SIS model, reduces to a system of two second-
order ODEs. Closed-form solutions are possible when c1 = 0 in the most
general symmetry generator. We have established two possible closed-
form solutions for this case: one when c4 6= 0 and the other when c4 = 0.
We have explained in detail how the reductions and closed-form solutions
for all other possible combinations can be directly deduced from the results
presented in this section. This completes the search for the reductions
and closed-form solutions of the diffusive SIS epidemic model (1) via Lie
symmetry analysis.

3 The Transmission Dynamics of an In-

fluenza Outbreak

In this section, we establish a connection between the closed-form solu-
tions derived in section 2 and a real-world scenario to understand the
transmission dynamics of influenza. We consider both the initial condi-
tions and appropriate boundary conditions. Our focus is on addressing the
following question: How do varying coefficients of diffusion-both higher
and lower-impact the spatiotemporal dynamics of influenza transmission?
Moreover, we examine how this insight can contribute to the development
of effective strategies to control and mitigate the spread of the disease.

3.1 Initial and boundary conditions

We aim to find expressions for S(t, x) and I(t, x) that satisfy the initial
and boundary conditions for 0 ≤ x ≤ L and 0 ≤ t ≤ T . The initial
conditions are defined as follows

S(0, x) = S0G(x), 0 ≤ x ≤ L,

I(0, x) = I0G(x), 0 ≤ x ≤ L,
(16)

where I0 and S0 are scaling constants representing the initial densities of
susceptible and infected individuals, and G(x) is the initial distributions
of susceptible and infected individuals along the domain.

Allen et al [10] utilized the Neumann boundary condition to study the
effect of spatial heterogeneity of the environment and individual movement
on the extinction and persistence of a disease for SIS epidemic reaction-
diffusion models. Huang et al [12] studied a diffusive SIS epidemic model
with logistic growth and Dirichlet boundary condition. We consider a ho-
mogeneous Neumann boundary condition at x = 0 and a time-dependent
non-homogeneous Dirichlet boundary condition at x = L
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∂S

∂x
(t, 0) = 0, 0 ≤ t ≤ T,

∂I

∂x
(t, 0) = 0, 0 ≤ t ≤ T,

S(t, L) = H1(t), 0 ≤ t ≤ T,

I(t, L) = H2(t), 0 ≤ t ≤ T.

(17)

The condition ∂S
∂x

(t, 0) = 0 ensures that there are no additional in-
coming susceptible individuals from the outside at the boundary x = 0.
Similarly, ∂I

∂x
(t, 0) = 0 indicates no additional incoming infected individ-

uals at the boundary x = 0, which aligns with the concept that infected
individuals are not entering from outside the modeled region. The con-
ditions S(t, L) = H1(t) and I(t, L) = H2(t) allow to specify the behav-
ior of susceptible and infected individuals at the boundary x = L over
time. This is important because it allows to model scenarios where in-
terventions, population behaviors, or other factors at the boundary have
a time-varying impact on the spread of the disease. For instance, H1(t)
and H2(t) could represent vaccination campaigns, quarantine measures,
or other time-dependent interventions that affect the dynamics of the dis-
ease.

We consider the case discussed in subsection 2.2, note that the closed-
form solution (11) is defined at the initial time t = 0 provided c2 > 0.
After straightforward calculations and using the initial conditions (16)
and homogeneous Neumann boundary condition at x = 0 from (17), we
obtain the symmetry constant c3 = 0,

F1(0) = S0, F2(0) = I0, (18)

and the following expression for the initial distribution G(x) of susceptible
and infected individuals:

G(x) = e
−

c4
2c2

x2

. (19)

It is straightforward to establish the solution of reduced system of
ODEs (9) subject to initial conditions (18) and thus the final form of
closed-form solution (8) is

S(t, x) =
(I0 + S0)

√
c2√

2c4δt + c2

× e
−c4x2

2(2c4δt+c2)

× ((γ − β)S0 + γI0) e−(β−γ)t − γI0

((γ − β)S0 + γI0) e−(β−γ)t − βI0
,

I(t, x) =
(I0 + S0)

√
c2√

2c4δt + c2

× e
−c4x2

2(2c4δt+c2)

× (γ − β)I0

((γ − β)S0 + γI0) e−(β−γ)t − βI0
.

(20)

The closed-form solution (20) is not defined when γ = β. It is worth
mentioning that when we take x = L in equation (20), we obtain following
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expressions for H1(t) and H2(t)

H1(t) =
(I0 + S0)

√
c2√

2c4δt + c2

× e
−c4L2

2(2c4δt+c2)

× ((γ − β)S0 + γI0) e−(β−γ)t − γI0

((γ − β)S0 + γI0) e−(β−γ)t − βI0
,

H2(t) =
(I0 + S0)

√
c2√

2c4δt + c2

× e
−c4L2

2(2c4δt+c2)

× (γ − β)I0

((γ − β)S0 + γI0) e−(β−γ)t − βI0
.

(21)

and this ensures that the time-dependent non-homogeneous Dirichlet bound-
ary condition at x = L is satisfied.

This completes the closed-form solution of the diffusive SIS model
subject to the initial conditions (16) and boundary conditions (17).

3.2 Influenza outbreak

In the context of studying the spread of influenza within a localized com-
munity, the diffusive SIS model offers valuable insights into the dynamics
of infection transmission. To gain a comprehensive understanding, we
explore the closed-form solutions and visualize the initial distribution of
susceptible and infected individuals graphically. It is vital to understand
the initial spatial distribution of susceptible and infected individuals for
control and prevention strategies for influenza outbreak.

0 1 2 3 4 5 6 7 8 9 10

x

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

G
(x

)

 = 0.125
 = 0.083333
 = 0.05

Figure 1: The graphs of initial distribution of susceptible and infected individ-
uals across the domain for different values of λ = c4

2c2
when 0 ≤ x ≤ 10.

We can re-write the initial distribution of susceptible and infected
individuals G(x) across the domain:
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G(x) = e
−λx2

, λ =
c4

2c2
. (22)

The graphical representation of the initial distribution of susceptible
and infected individuals is presented in Figure 1. This graph illustrates
the distribution across the domain for different values of the parameter
λ = c4

2c2
when 0 ≤ x ≤ 10. The parameter λ = c4

2c2
controls the spread and

extent of the initial distribution of susceptible and infected individuals
along the domain. As λ decreases, the graph expands and spreads out
to the right. Thus the smaller values of λ indicate a more spread-out
initial distribution. This means that the individuals are more uniformly
distributed along the spatial axis.

Now, we examine the closed-form solution for susceptible individuals
(S) and infected individuals (I) provided in equation (20), utilizing spe-
cific parameter values sourced from existing literature [11, 26, 27]. The
following parameter values have been selected: c2 = 10, c4 = 1, β = 0.4,
γ = 0.2, S0 = 105 − 200, and I0 = 200. We consider the spatial range
0 ≤ x ≤ 10 and the time interval 0 ≤ t ≤ 200 to visualize the closed-form
solution (20) graphically.

We consider the lower diffusion coefficient, δ = 0.02, and the higher
diffusion coefficient, δ = 0.1, to analyze the effect of diffusion coefficient on
the transmission dynamics of influenza outbreak. Figure 2 illustrates the
relationship between susceptible individuals S(x) and infected individuals
I(x) for fixed values of t = 20, 30, 50, 70, 200 for the lower diffusion coeffi-
cient δ = 0.02 and higher diffusion coefficient δ = 0.1. Similarly, Figure 3
illustrates the behavior of S(t) and I(t) for fixed value of x = 0, 2, 4, 6, 10.
The surface plots illustrating the behavior of S(t, x) and I(t, x) are pro-
vided in Figure 4. The path of susceptible and infected individuals follow
a lower trajectory for higher values of distance, x. This indicates that
the density of susceptible and infected individuals decreases with distance
from the source of infection. The number of susceptible individuals, S,
decreases with time and then stabilizes. The number of infected individu-
als increases with time, reaches a peak, and then decreases. This pattern
reflects an initial rapid spread of infection followed by recovery and sus-
ceptibility. Similar dynamics are observed across different locations for
both lower and higher diffusion coefficients.

Upon closer examination of figures 2-4, we gain significant observa-
tions regarding the behavior of both the infected and susceptible popu-
lations which allow us to analyze the effect of the diffusion coefficient on
the transmission dynamics of an influenza outbreak. A unique pattern
emerges at the boundaries: the source of the disease at x = 0 and a dis-
tant location at x = 10. For the higher diffusion coefficient, δ = 0.1,
the reduction in the number of susceptible individuals is more evident at
x = 0 as time t progresses. In contrast, with a lower diffusion coefficient
δ = 0.02, the decline in susceptible individuals at x = 0 is less signifi-
cant over the same time period. Meanwhile, at the boundary x = 10, a
different trend emerges. As time t progresses, the number of susceptible
individuals increases more rapidly when the diffusion coefficient is higher
δ = 0.1 compared to when it is lower δ = 0.02. In the rest of spatial
domain 0 < x < 10, as time t approaches t = 50, there is a distinct and
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sudden decline in the susceptible population, corresponding to the period
of rapid infection spread. This decline coincides with the rise in the num-
ber of infected individuals, indicating a swift expansion of the influenza
outbreak. Beyond t = 50, as the number of infected individuals starts
to decrease, the susceptible population stabilizes. These trends highlight
the accelerated spread of influenza through the population with an ele-
vated diffusion coefficient. Such dynamics in the susceptible population’s
response emphasize the substantial influence of the diffusion coefficient δ

on the course of influenza transmission.
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Figure 2: Graphs of S(x) and I(x) for lower (δ = 0.02) and higher (δ = 0.1)
diffusion coefficients with c2 = 10, c4 = 1, β = 0.4, γ = 0.2, S0 = 105 − 200,
I0 = 200, over spatial range 0 ≤ x ≤ 10.
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Figure 3: Graphs of S(t) and I(t) for lower (δ = 0.02) and higher (δ = 0.1)
diffusion coefficients with c2 = 10, c4 = 1, β = 0.4, γ = 0.2, S0 = 105 − 200,
I0 = 200, over time interval 0 ≤ t ≤ 200.

Shifting focus to the infected population, a careful analysis of figures
2-4 reveals that the number of infected individuals increases as time t

approaches t = 50, subsequently declining as time progresses and same
trend is observed across different values of x. Notably, at the boundary
x = 0, the number of infected individuals is significantly higher for δ =
0.02 than for δ = 0.1. This finding aligns well with our expectations, as a
higher diffusion coefficient δ signifies increased mobility, leading to fewer
individuals clustering near the boundary x = 0. For higher values of both
x and t, a noticeable increase in the number of infected individuals is
observed when δ = 0.1 than for δ = 0.02. This pattern corresponds to the
intuitive understanding that a greater diffusion coefficient expedites the
movement of infected individuals, thereby accelerating the propagation of
the influenza outbreak.

These insights have important implications for developing efficient
public health strategies. The speed at which the influenza spreads is sig-
nificantly related to diffusion coefficients, as shown by our investigation of
how influenza spreads over time and across spatial domain. This indicates
that we can specifically target places where the infection is expected to
spread more quickly when planning interventions, especially within neigh-
borhood boundaries. We can more effectively distribute resources, such
as vaccination programmes, quarantine measures, and medical facilities
by identifying these high-risk areas. This will help to limit the outbreak’s
adverse effects. By considering the specific factors that influence disease
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transmission at boundaries, this particular strategy holds great poten-
tial as an effective means of managing and containing infectious disease
epidemics.

Figure 4: Surface plots of S and I for lower (δ = 0.02) and higher (δ = 0.1)
diffusion coefficients with parameters: c2 = 10, c4 = 1, β = 0.4, γ = 0.2,
S0 = 105 − 200, I0 = 200 over time interval 0 ≤ t ≤ 200 and spatial range
0 ≤ x ≤ 10.

Conclusions

We established the closed-form solutions of the diffusive SIS epidemic
model using Lie point symmetries. The model admitted a four-dimensional
Lie algebra. We utilized different combinations of Lie symmetries to ob-
tain reductions and closed-form solutions for the diffusive SIS model. The
most general Lie symmetry generator led to the reduction of the given sys-
tem of two second-order PDEs to a system of two second-order ODEs (7).
The combination of Lie symmetries X2, X3, and X4 yielded the closed-
form solution (11). Another closed-form solution, provided in equation
(15), was established by utilizing the combination of Lie symmetries X2

and X3. We explained in detail that reductions and closed-form solutions
for all other combinations of Lie symmetries can be directly deduced from
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these results.
We considered appropriate initial and boundary conditions to explore

the biological relevance of these closed-form solutions. We utilized the
closed-form solutions to study the transmission dynamics of an influenza
outbreak with Gaussian initial distributions. We plotted graphs for the
susceptible and infected populations. We considered the lower diffusion
coefficient and higher diffusion coefficient to analyze the transmission dy-
namics of the influenza outbreak.
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