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Abstract6

This paper is devoted to providing a new approach to solve time fractional7

convection-diffusion equation (TFCDE) by utilizing Clique polynomials of8

the Cocktail party graph and collocation points. The main advantage of9

this method is converting the TFCDE into a system of ordinary fractional10

differential and algebraic equations. At this stage, Residual power series11

method (RPSM) is used to determine the unknown functions of the obtained12

system. Convergence analysis is given to substantiate the importance of the13

suggested method. Two numerical examples are presented to illustrate the14

implementation and effectiveness of the proposed method.15

Keywords: Fractional convection-diffusion equation, Collocation points,16

Clique polynomials, Residual power series method.17

1. Introduction18

Last couple of decades, modelling scientific processes by fractional differ-19

ential equations gains influential attention in various areas of science such20

as nonlinear waves, nuclear physics, thermodynamics, image and signal pro-21

cessing, visco-elasticity, acoustics, optics, aerodynamics, etc. [1]. As a result,22

fractional calculus becomes an essential branches of mathematics, physics and23

engineering. The fractional calculus contains arbitrary non-integer order of24

differentiation and integration. It provides various numerous a substantial25

features to be used in the analysis of miscellanous real-world phenomena.26

For instance, their non-local property plays a leading role in the modelling27

of memory-dependent phenomena such as porous media and anomalous dif-28

fusion [2–5]. The mathematical models with fractional differential equations29
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reflect the hereditary and memory of the phenomena [6–9] which makes them2

more valuable compare to ordinary differential equations. A variety of frac-3

tional derivatives such as Grünwald-Letnikov, Riemann–Liouville, Caputo,4

Caputo-Fabrizio, Atangana-Baleanu Caputo type, Atangana-Baleanu Rie-5

mann–Liouville type, etc. [10, 11] have been defined and used in the mod-6

elling of scientific processes by fractional differential equations based on their7

properties.8

In large number of areas in science and engineering such as transport of mass9

and energy , weather prediction , dispersion of chemicals in reactors , the10

convection-diffusion equations [12–14] is an important tool to model scien-11

tific processes. Special polynomials such as Bernoulli polynomials, Legendre12

polynomials, Hermite polynomials, Chebyshev polynomials etc. [15–18] play13

a substantial role to establish the solutions of fractional differential equations.14

They also form a basis for a special function spaces in which the solutions15

of the differential equations are constructed in series form. Therefore, uti-16

lizations of these polynomials arise in numerous fields of science to develop17

new methods for solving any kind of fractional differential equations. Some18

polynomials having orthogonality property attracts the attention of many19

researchers since the computation is easier with them.20

Graphs are crucial tools to model various processes in real-world. Even21

though graphs provide single dimensional objects, it can be used in higher22

dimensional spaces in diverse fields. Graph theory is a combination of diverse23

branches of mathematics such as numerical analysis, matrix theory, topology,24

group theory, set theory, probability and combinatorics. In the development25

of numerical methods for attaining the solution of fractional differential equa-26

tions a good many graph polynomials such as Clique polynomial, Charac-27

teristic polynomial, matching polynomials, Tutte polynomials, etc. [19, 20]28

have been used.29

In the present work, we use the clique polynomial of the cocktail party graph30

instead of the clique polynomial of the complete graph to obtain the solution31

of following TFCDE [21] :32

Dα
t u(x, t) + b(x)ux(x, t) + c(x)uxx(x, t) = f(x, t), 0 ≤ x ≤ 1, 0 ≤ t ≤ T (1)

with the initial and the boundary conditions33

u(x, 0) = ϕ(x), 0 ≤ x ≤ 1, (2)
34

u(0, t) = µ1(t), u(1, t) = µ2(t), 0 ≤ t ≤ T, (3)
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where f(x, t) represent the source function and, Dα
t u(x, t) is Caputo’s deriva-1

tive of order m− 1 < α ≤ m,m ∈ N .2

2. Preliminaries3

In this section, fundamental definitions and notions are presented.4

Definition 1. The Riemann-Liouville integral for α is [22–25]:5

Jαf(x) =

{ 1
Γ(α)

∫ x

0
(x− τ)α−1f(τ)dτ, α > 0,

f(x) , α = 0.
(4)

Definition 2. The αth order fractional derivative in Caputo sense is given by6

[22–25]7

8

Dαf(x) =

{
1

Γ(m−α)

∫ x

0
(x− τ)m−α−1f (m)(τ)dτ, m− 1 < α < m,m ∈ N,

d(m)

dx(m)f(x) , α = m.
(5)

Definition 3. A power series expansion of the form9

∞∑
m=0

cm(t− t0)
mα = c0 + c1(t− t0)

α + c2(t− t0)
2α + ..., (6)

0 ≤ m− 1 < α ≤ m, t ≥ t0

is called fractional power series about t = t0 [25].10

11

3. Clique Polynomial of Cocktail Party graph (CCPG)12

In a complete subgraph, the number of cliques plays a vital role. The13

maximal clique G is defined as the highest clique in a graph G. A clique of14

size m is defined as the maximal set containing nodes at a distance not more15

than n. A maximal clique have the greatest possible number of vertices.16

In other words a maximal clique can not be extended to a larger clique by17

adding new vertex.18

In a connected graph G, the clique polynomial is given in the following form:19

C(G;x) = a0(x) +

ρ(G)∑
θ=1

aθx
θ (7)
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where a(θ) represents total θ cliques in G, the constant a0(x) denotes the1

total zero cliques in G . Moreover, ρ(G) denotes the maximal clique. The2

Clique polynomial of the mth- order Cocktail party graph is obtained by3

substituting ρ(G) = m in (7)4

C(Km(2);x) = (1 + 2x)m (8)

where Km(2) is the notation of complete cocktail party graph with m-partite.5

Notice that placing the values of a(θ) in (7) leads to Eq. (8) [26]. A Cocktail6

graph have paired nodes on two rows and unpaired nodes are connected with7

straight lines. Therefore the distance among nodes are transitive and regular.8

Moreover they have antipodal feature. They are regarded as dual graph of9

the hypercube or complement of the ladder rung graph. Clique polynomials10

are not orthogonal but the clique polynomials of the cocktail party graph11

are orthogonal and the solution can be written in the series form in terms12

of clique polynomials of the cocktail party graph [27–29]. In other words,13

the exact solution can be constructed in terms of clique polynomials of the14

cocktail party graph unlike the clique polynomials.15

4. Convergence Analysis16

Theorem 1. Let Rn be the polynomial space of degree n+1 over the field17

R. The solution F (x, t) : [a, b]× [0, T ] → Rn of TFCDE is given as follows:18

F (x, t) =
∞∑

m=1

am(t)C(Km(2);x) (9)

Proof. Let Rn is the polynomial space of degree n + 1 over the field R, and19

F (x, t) : [a, b] → Rn is a solution of TFCDE of degree at most n. Then there20

is a basis B = C(K1(2);x), C(K2(2);x), . . . , C(Kn(2);x), C(Kn+1(2);x) , con-21

taining orthogonal polynomials of clique cocktail party graph (CCPG) poly-22

nomials, where C(K1(2);x), C(K2(2);x), . . . , C(Kn(2);x), C(Kn+1(2);x) are23

CCPG polynomials of degree 0, 1, 2, . . . , n respectively. Consider,24

F (x, t) =
n+1∑
m=1

am(t)C(Km(2);x) (10)

for fixed n is a linear combination of elements of B. By equating the coeffi-25

cients of the same degree x on both sides, we get the values of am(t). Hence26
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F (x, t) is approximated precisely as a linear combination of CCPG polyno-1

mials.2

Theorem 2. Let F (x, t) be the solution of TFCDE, which is a smooth real-3

valued bounded function on [a, b]× [0, T ]. L2[a, b] is the space generated by4

B, then the orthogonal CCPG polynomials expansion of F (x, t) converges to5

it.6

Proof. Let us assume7

F (x, t) =
∞∑

m=1

am(t)C(Km(2);x) (11)

truncating the above equation, we get,8

F (x, t) =
n+1∑
m=1

am(t)C(Km(2);x) (12)

where, am(t) =< F (x, t), C(Km(2);x) >, here < . > denote inner product9

operator. Then10

am(t) =

b∫
a

F (x, t)C(Km(2);x)dx. (13)

Then,11

b∫
a

inf
t
F (x, t)C(Km(2);x)dx ⩽ am(t) ⩽

b∫
a

sup
t
F (x, t)C(Km(2);x)dx. (14)

By generalized mean value theorem, the following inequalities are obtained12

inf
t
F (x0, t)

b∫
a

C(Km(2);x)dx ⩽ am(t) ⩽ sup
t
F (x1, t)

b∫
a

C(Km(2);x)dx, (15)

for some x0, x1. Choose,
b∫
a

C(Km(2);x)dx = µ and F is bounded by some13

real constant K, then we get, |am(t)| ⩽ |µK|. Therefore
∑
ai(t) converges14

absolutely. Hence a linear combination of F (x, t), through the basis element15

of B, converges to it.16
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5. Implementation of the presented method1

In order to construct the approximate solution u(x, t) for the problem2

(1)-(4) by the sets of special polynomials as3

∞∑
i=0

ai(t)C(Ki(2);x) (16)

we follow the steps below:4

Step 1. Plugging the mth degree approximation of Eq.(16) into the Eq.(1)5

leads to the following equation:6

m∑
i=0

Dα
t ai(t)C(Ki(2);x) + b(x)

m∑
i=0

ai(t)C
′(Ki(2);x) (17)

+c(x)L
m∑
i=0

ai(t)C
′′(Ki(2);x) = f(x, t), n− 1 < α ⩽ n.

Step 2. Collocating Eq.(17) at the nodes xk =
1
2
+ 1

2
cos(kπ

m
), k = 0, 1, ...m−1,7

we have a system of fractional ordinary differential equations:8

m∑
i=0

Dα
t ai(t)C(Ki(2);xk) + b(xk)

m∑
i=0

ai(t)C
′(Ki(2);xk) (18)

+c(xk)L
m∑
i=0

ai(t)C
′′(Ki(2);xk) = f(xk, t), n− 1 < α ⩽ n.

Step 3. Plugging the mth degree approximation of Eq.(16) into in the ini-9

tial and boundary conditions Eq.(2)-(3) leads to the following a system of10

algebraic equations, we can obtain ([α] + 1) equations as follows :11

m∑
i=0

ai(0)C(Ki(2);x) = ϕ(xk), (19)

m∑
i=0

ai(t)C(Ki(2); 0) = µ1(t), (20)

m∑
i=0

ai(t)C(Ki(2); 1) = µ2(t). (21)
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Step 4. As a result, we have a system including fractional ordinary differen-1

tial and algebraic equations. Solving this system by RPSM yields unknown2

functions ai(t), i = 0, 1, 2...m which are taken into account to form the ap-3

proximate solution um(x, t).4

5

6. Special Elucidative Examples6

The primary aim of this section is to illustrate the implementation of the7

method by presented examples and check their accuracy.8

Example 1. Consider the following time fractional convection-diffusion equa-9

tion:10

Dα
t u(x, t) + xux − uxx(x, t) = f(x, t), 0 < α ⩽ 1, x ∈ (0, 1)× (0, 1] (22)

with initial and boundary conditions11

u(x, 0) = x− x3, (23)
12

u(0, t) = u(1, t) = 0, (24)

where f(x, t) = Γ(1+2α)
Γ(1+α

tα(x− x3) + (1 + tα)(7x− 3x3) .13

The exact solution of Example 1 is u(x, t) = (1 + t2α)(x− x3). The absolute14

errors obtained by proposed method are given in Table 1 for α = 0.7, 0.9, 0.95,15

respectively at T = 0.1. In Figure 1, the graph of exact and numerical so-16

lution are presented for various values of α at T = 0.1 with m = 3. It is17

clear from Figure 1 that numerical results are in good agreement with exact18

solution.19

Example 2. Consider the following time fractional convection-diffusion equa-20

tion in the following form:21

Dα
t u(x, t) + xux(x, t) + uxx(x, t) = f(x, t), 0 < α ≤ 1, x ∈ (0, 1)× (0, 1] (25)

with initial and boundary conditions22

u(x, 0) = x2, (26)
23

u(0, t) = 2
Γ(1 + α)

Γ(1 + 2α
t2α, (27)
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Table 1: The absolute error at T = 0.1 and α = 0.7, 0.9, 0.95, respectively for Ex.1.

α = 0.7 α = 0.9 α = 0.95
x m = 6 [21] Present method m = 6 [21] Present method m = 6 [21] Present method
0.1 3.0250e-03 6.9389e-17 2.4473e-03 2.7756e-17 2.3521e-03 4.1633e-17
0.2 5.8222e-03 2.7756e-17 4.7146e-03 2.7756e-17 4.5138e-03 5.5511e-17
0.3 8.1614e-03 2.7756e-16 6.6114e-03 2.2204e-16 6.3227e-03 1.6653e-16
0.4 9.8394e-03 0 7.9728e-03 5.5511e-17 7.6213e-03 1.1102e-16
0.5 1.0675e-02 1.1102e-16 8.6566e-03 2.2204e-16 8.2740e-03 0
0.6 1.0492e-02 1.6653e-16 8.5537e-03 5.5511e-17 8.1765e-03 1.1102e-16
0.7 9.3727e-03 2.7756e-16 7.5997e-03 3.8858e-16 7.2674e-03 1.1102e-16
0.8 7.1396e-03 0 5.7900e-03 1.1102e-16 5.5422e-03 3.8858e-16
0.9 3.9436e-03 1.1102e-16 3.1971e-03 1.6653e-16 3.0699e-03 4.1633e-16

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.05
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0.1

0.15
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0.25
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Figure 1: The graph of exact and numerical solution for various α values, (m = 3 and
T = 0.1) for Example 1.
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Table 2: The absolute error at T = 0.5 and α = 0.5 for Ex.2.

α = 0.5
x m = 5 [21] Present method
0.1 7.964e-06 0
0.2 3.912e-06 0
0.3 6.162e-06 0
0.4 5.953e-06 0
0.5 2.103e-06 0
0.6 7.639e-06 0
0.7 1.967e-06 0
0.8 8.103e-06 0
0.9 6.019e-06 0

1

u(1, t) = 1 + 2
Γ(1 + α)

Γ(1 + 2α
t2α, (28)

where f(x, t) = 2tα + 2x2 + 2 .2

The exact solution of Example 2 is u(x, t) = x2 + 2 Γ(1+α)
Γ(1+2α

t2α. The absolute3

errors obtained by proposed method are given in Table 1 for α = 0.5, respec-4

tively and T = 0.5. In Figure 2, the graph of exact and numerical solution5

are presented for various values of α at T = 0.5 with m = 2. It is clear from6

Figure 2 that numerical results are in great agreement with exact solution.7

8
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Figure 2: The graph of numerical and exact solution for α = 0.5 at T = 0.5 for Example
2.

7. Conclusions1

In this research, a new approach is developed by means of Clique poly-2

nomials and collocation points to establish the solution of TFCDE. First,3

TFCDE is reduced into a system of ordinary fractional differential and al-4

gebraic equations which allows us to acquire the solution without any diffi-5

culty. Later, utilization of RPSM let us to obtain the solution of the system.6

Convergence analysis is also presented to demonstrate significance of the7

proposed approach. Implementation of this approach is demonstrated by8

presenting two numerical examples which shows the effectiveness and accu-9

racy of the suggested method.10

In the future work, cocktail party graph with various polynomials will be used11

together to solve diverse nonlinear fractional problems. Moreover, RPSM will12

be changed by another numerical or approximate method to construct the13

solution of the problem.14
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