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Abstract
A novel scheme for numerical simulation of the variable order fractional partial differential equa-
tion (VOFPDE) has been presented in this article, which has been applied to find the approximate
solution of the variable order time fractional coupled Fitzhugh Nagumo reaction-diffusion equa-
tion. The solution of the considered model exists, and is unique, and the aforementioned model
will remain stable under the Ulam-Hyers test. It has been found that Vieta-Fibonacci wavelets
are the appropriate basis function to solve the aforementioned problem numerically, and the op-
erational matrices of the Vieta-Fibonacci wavelets have been derived for both integer as well as
variable order fractional derivatives. Using these derived operational matrices and properties of
Vieta-Fibonacci wavelets combined with the collocation method, the main problem is reduced to
an algebraic system of equations, which has been solved easily. The salient feature of the article
is the convergence analysis of the proposed method, which is discussed. The error analysis be-
tween the approximate solution of the particular cases of the concerned model using the proposed
technique and their exact solutions has been presented through tables and figures.

Keywords: Vieta-Fibonacci polynomials, Collocation method, Vieta-Fibonacci wavelets,
Existence and uniqueness, Ulam-Hyers stability, Convergence analysis.

1. Introduction

A FPDE is a type of differential equation that involves fractional derivatives instead of integer
derivatives. These equations describe complex phenomena, where traditional integer-order differ-
ential equations fail. Several applications of FPDE have been discovered in the last few years,
including those in physics, chemistry, engineering, and finance. For instance, they are used to
model the diffusion of pollutants in groundwater, heat transfer in complex materials, and wave
propagation in heterogeneous media. The modeling of fractional order systems allows for a more
accurate representation of real-world phenomena and helps develop efficient algorithms for simu-
lation and prediction. In addition, fractional partial differential equations enable us to understand
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and analyze complex systems that are inaccessible through traditional approaches. The study of
FPDE is an exciting and rapidly growing field with numerous potential applications. We can better
model and predict complex systems in various domains as we understand these equations. Finding
numerical solutions to FDE has become increasingly important because of their wide range of ap-
plications. Several difficulties are encountered when solving fractional-order differential equations
analytically, making it necessary to use a numerical method. Numerous numerical methods can
be found in the literature viz., [1] have used operational matrix together with Tau method to in-
vestigate the approximate solution of FPDE, [2] have used Lucas polynomials with the collocation
method and approximate two dimensional and one-dimensional diffusion equation of fractional
order, [3] have obtained the numerical solution of linear and nonlinear FPDE using homotopy per-
turbation method, [4] have solved the disease model using Genocchi wavelets method, [5] have
studied Pine Wilt disease model of fractional order with the help of ADM and Laplace transform
method, [6] have developed a numerical approach and found the AS of fractional BVP, [7] gave an
analysis of dengue fever outbreaks using novel fractional operators. For the solution of FDE and
integro-differential equations, Jacobi and block pulse operational matrices of fractional integral
operators have been used in [8]. An iterative method was used by [9] to solve the epidemiological
model, [10] has solved a two-dimensional, time-fractional, nonlinear drift reaction-diffusion equa-
tion using the shifted airfoil collocation method, [11] has investigated the numerical solution of a
fractional model of host-parasitoid population dynamical system using Adam–Bashforth–Moulton
and new Toufik–Atangana method, [12] has investigated the dynamics and numerical approxi-
mations for the fractional-order coronavirus disease system, [13] has explored the dynamics and
chaotic behavior of a fractional predator-prey-pathogen model using the Atangana-Baleanu frac-
tional operator, [14] has solved the fractional generalized nonlinear Schrödinger equation using the
homotopy analysis transform method.

This article is primarily aimed at discovering the approximate solutions to the extended version
of the variable order fractional Coupled Fitzhugh Nagumo (VOFFN) reaction-diffusion model.
The mathematical form of VOFFN reaction-diffusion model is given as [15, 16]

∂ α(ζ ,ϖ)u(ζ ,ϖ)

∂ϖα(ζ ,ϖ)
= Du

∂ 2u(ζ ,ϖ)

∂ζ 2 +u(ζ ,ϖ)(u(ζ ,ϖ)−a)(1−u(ζ ,ϖ))− v(ζ ,ϖ)+ f1(ζ ,ϖ),

∂ β (ζ ,ϖ)v(ζ ,ϖ))

∂ϖβ (ζ ,ϖ)
= Dv

∂ 2v(ζ ,ϖ)

∂ζ 2 + ε(u(ζ ,ϖ)−bv(ζ ,ϖ))+ f2(ζ ,ϖ), (1)

with conditions

u(ζ ,0) = u0(ζ ), v(ζ ,0) = v0(ζ ),

u(0,ϖ) = u1(ϖ), u(1,ϖ) = u2(ϖ), (2)
v(0,ϖ) = v1(ϖ), v(1,ϖ) = v2(ϖ),

where ζ , ϖ represents space and time, Du ≥ 0, Dv ≥ 0, a ≥ 0, b ≥ 0 and ε ≥ 0. The coupled
Fitzhugh-Nagumo reaction-diffusion model is a mathematical structure that describes the dynam-
ics of interacting neuron populations in a spatial setting. This model comprises of two coupled
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partial differential equations, viz., the Fitzhugh-Nagumo equations, which describe the spiking ac-
tivity of individual neurons, and the reaction-diffusion equation, which describes the diffusion of
ions and electrical charges across the neuronal membrane.
In this article, the new approximation approach is derived with Vieta-Fibonacci (VF) wavelets to
find the numerical solution of the considered model (1). The wavelet method is a powerful and
efficient technique for numerical solutions in PDEs. This is based on decomposing a function into
a sum of wavelets, which are localized functions that capture the fine-scale features of the solu-
tion. This approach enables the wavelet method to capture both the local and global properties of
the solution efficiently, making them ideal for problems with complex geometries, discontinuities,
or singularities. In addition, the wavelet method can handle difficulties with adaptive resolutions
by adjusting the wavelet coefficients to match the required level of accuracy. Moreover, wavelet
methods have been widely used in different fields, including image and signal processing, data
analysis, and quantum mechanics. They have been shown to provide accurate and stable numerical
solutions of PDE, making them a popular choice for researchers and practitioners alike. Wavelet
methods represent an innovative and versatile approach for solving partial differential equations,
offering an efficient, accurate, and adaptable numerical solution. There are many wavelet meth-
ods available in literature such as in the article [17] an innovative numerical method is presented
that can be used to solve both linear and nonlinear distributed fractional differential equations,
[18] has developed a Haar wavelet placement technique for solving Volterra-Fredholm fractional
integral-differential equations, [19] has generated the operational matrix for Gagenbauer wavelets
and approximate Bagley-Torvik equation, [20] has used Taylor wavelet method for the approxi-
mation of delay differential equation. [21] numerical solution of fractional differential equations
of variable order using Bernoulli wavelet method for anomalous infiltrations and diffusions. The
CAS wavelet method was introduced by [22] to solve Fredholm integro-differential equations with
nonlinearities, [23] has used Chebyshev wavelet for delay problem, [24] has approximated a prob-
lem arising in fluid dynamics, [25] has derived the operational matrix for Legendre polynomials
to solve the singular ODE. In the literature the uses of wavelets can be found viz., Gegenbauer
wavelet [26], Chebyshev wavelet [27], second kind Chebyshev wavelets [28], Lucas OM [29],
variation iteration method [30, 31], Vieta-Lucas operational matrix [32] etc.

Here are the article outlines. Section 2 discusses some preliminary definitions and properties
of fractional order derivatives, Vieta–Fibonacci polynomials, and their properties have been dis-
cussed. Section 3 introduces Vieta-Fibonacci Wavelets. In section 4, the authors have derived the
VF wavelet operational matrix for integer order fractional derivative and VO fractional derivative
operators. Section 5 contains the existence of the solution of the Fitzhugh Nagumo reaction-
diffusion system, which is unique and shows stability. Section 6 provides a detailed description of
the proposed method to solve the VOFFN reaction-diffusion model. In section 7, the error bound
and convergence analysis of the proposed method have been studied. The developed scheme has
been applied to some numerical examples in section 8. In the last section, a summary of the
research is provided.
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2. Basic of fractional calculus

In this section, some of the most important definitions and properties of fractional calculus that
are relevant from the perspective of this article have been presented.

Definition 1 The Riemann-Liouville (R-L) fractional integral for 0 < γ(ζ ,ϖ) ≤ 1 of u(ζ ,ϖ)is
defined by [33]

Iγ(ζ ,ϖ)
ζ

u(ζ ,ϖ) =
1

Γ(γ(ζ ,ϖ))

∫
ζ

0
(ζ − s)γ(ζ ,ϖ)−1u(s,ϖ)ds. (3)

Definition 2 The fractional derivative of variable-order k−1 < γ(ζ ,ϖ)≤ k of the function u(ζ ,ϖ)
w.r to the variable ζ is given as [34]

c
0Dγ(ζ ,ϖ)

ζ
u(ζ ,ϖ) =


1

Γ(k−γ(ζ ,ϖ))

∫ ζ

0 (ζ − s)k−γ(ζ ,ϖ)−1 ∂ ku(s,ϖ)
∂ sk ds, k−1 < γ(ζ ,ϖ)< k,

∂ ku(ζ ,ϖ)
∂ζ k , γ(ζ ,ϖ) = k.

(4)

The variable order Caputo fractional derivative satisfies the property of linearity, i.e.

c
0Dγ(ζ ,ϖ)

ζ
(Aζ1(ζ )+Bζ2(ζ )) = A(c

0Dγ(ζ ,ϖ)
ζ

ζ1(ζ ))+B(c
0Dγ(ζ ,ϖ)

ζ
ζ2(ζ )).

Definition 3 According to this definition, a Mittag-Leffler function (which contains two positive
parameters i and j) is defined as

Ei, j(ζ ) =
∞

∑
λ=0

ζ λ

(iλ + j)
, x ∈ R. (5)

The Caputo derivative and R-L integral of VO fractional order satisfy the following relations

c
0Dγ(ζ ,ϖ)

ζ
ζ

k =


Γ(k+1)

Γ(k+1−γ(ζ ,ϖ))
ζ k−γ(ζ ,ϖ), k ∈ N, and k ≥ ⌈γ(ζ ,ϖ)⌉ or

k /∈ N, and k > ⌈γ(ζ ,ϖ)⌉,
0, else .

Iγ(ζ ,ϖ)
ζ

ζ
k =

Γ(k+1)
Γ(k+1+ γ(ζ ,ϖ))

ζ
γ(ζ ,ϖ)+k,

c
0Dγ(ζ ,ϖ)

ζ

(
Iγ(ζ ,ϖ)
ζ

)
u(ζ ,ϖ) = u(ζ ,ϖ),

In−γ(ζ ,ϖ)
ζ

(dnu(ζ ,ϖ)

dζ n

)
= c

0Dγ(ζ ,ϖ)
ζ

u(ζ ,ϖ)−
n−1

∑
i=⌈γ(ζ ,ϖ)⌉

ui(0,ϖ)ζ i−γ(ζ ,ϖ)

Γ(i+1− γ(ζ ,ϖ))
.
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2.1. Vieta-Fibonacci and Shifted Vieta-Fibonacci Polynomials
In this section, some properties of Vieta-Fibonacci polynomials, as well as Shifted Vieta-

Fibonacci polynomials, have been discussed.

Vieta-Fibonacci polynomials can be generated using the recurrence relation given below [35, 36]

V Fn(ζ ) = ζV Fn−1(ζ )−V Fn−2(ζ ), n = 2,3, · · · (6)

with conditions
V F0(ζ ) = 0, and V F1(ζ ) = 1. (7)

V Fk(ζ ) can be represented by the following formula as a power series as

V Fk(ζ ) =
⌈ k−1

2 ⌉

∑
n=0

(−1)nΓ(k−n)
Γ(k−2n)Γ(n+1)

ζ
k−2n−1, k = 2,3, · · ·, (8)

where ⌈⌉ is the ceiling function.

In series form, the shifted Vieta-Fibonacci polynomial appears as follows

V F∗
k (ζ ) =

k

∑
n=0

(−1)k−n−122nΓ(k+n+1)
Γ(k−n)Γ(2n+2)

ζ
n. (9)

The V F∗
n (ζ ) also possesses the property of orthogonality, which corresponds to the weight function

w(ζ ) =
√

ζ −ζ 2 in the form

〈
V F∗

n (ζ ),V F∗
m(ζ )

〉
=
∫ 1

0
V F∗

n (ζ )V F∗
m(ζ )w(ζ )dζ =

{
π

8 , n = m ̸= 0,
0, n ̸= m.

(10)

Theorem 2.1. Let V F∗
n (ζ ) be the Vieta Fibonacci polynomials those are shifted into [0,1], then we

have
d

dζ
[V F∗

n (ζ )] =
n−1

∑
k=0

(k+n) odd

4k V F∗
k (ζ ). (11)

Proof. Proof is the same as given in [25].

3. Vieta-Fibonacci Wavelets

Vieta-Fibonacci wavelets are defined on the interval [0,1] as [37]

ψn,m(ζ ) =

2
k
2

√
8
π

V F∗
m(2

kζ −n), ζ ∈
[

n
2k ,

n+1
2k

]
,

0, otherwise
(12)
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where m = 1,2,3, · · · ,M, and n = 0,1,2, · · · ,2k −1.

In addition, these wavelets are orthogonal to the weight function ωn(ζ ) to the interval [0,1].

ωn(ζ ) = w(2k
ζ −n) =


√
(2kζ −n)− (2kζ −n)2, ζ ∈

[
n
2k ,

n+1
2k

]
,

0, otherwise.
(13)

Considering f (ζ ) over the interval [0,1], then linear combination of f (ζ ) in terms of Vieta Fi-
bonacci wavelets will be

f (ζ ) =
∞

∑
n=0

∞

∑
m=0

cnmψn,m(ζ ), (14)

where cnm =
∫ 1

0 f (ζ )ψn,m(ζ )ωn(ζ )dζ .

Now, This infinite series is truncated as follows:

f (ζ ) =
2k−1

∑
n=0

M

∑
m=1

cnmψn,m(ζ )∼=CT
Ψ(ζ ), (15)

where C and Ψ(ζ ) are column vector of order 2kM and given by

C = [c01,c02 · · ·c0M|c11,c12 · · ·c1M| · · · |c2k−1 1,c2k−1 2 · · ·c2k−1 M]T , (16)

and
Ψ(ζ ) = [ψ01,ψ02 · · ·ψ0M|ψ11,ψ12 · · ·ψ1M| · · · |ψ2k−1 1,ψ2k−1 2 · · ·ψ2k−1 M]T . (17)

4. Operational matrix of the derivative

In this section, the operational matrices of the derivative of VF wavelets are derived for both
constant and variable-order fractional derivatives.

Theorem 4.1. Let Ψ(ζ ) be the VF wavelets defined in (17), then the derivative of Ψ(ζ ) will be

dΨ(ζ )

dζ
= DΨ(ζ ), (18)

where D is the derivative matrix of order 2kM and is given by

D =


F 0 0 · · · 0
0 F 0 · · · 0
0 0 F · · · 0
...

...
... . . . ...

0 0 0 0 F

 , (19)
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where F is a square matrix of order M, whose elements are calculated as

Fr,s =

{
2k+2s, r = 2, · · · ,M, s = 1, · · · ,(r−1) and (r+ s) odd
0, otherwise.

(20)

Proof. With the help of VF polynomial shifted into [0,1], the r-th element of the vector Ψ(ζ ) is
given by

Ψr(ζ ) = ψn,m = 2
k
2

√
8
π

V F∗
m(2

k
ζ −n)χ[ n

2k ,
n+1
2k ], (21)

where r = nM+m, n = 0,1, · · · ,(2k −1), m = 1,2, · · · ,M, χ[ n
2k ,

n+1
2k ] is the characteristic function.

Differentiating equation (21) w.r.to ζ , we get

dΨr(ζ )

dζ
= 2

3k
2

√
8
π

V F∗′
m (2k

ζ −n)χ[ n
2k ,

n+1
2k ]. (22)

Since it is zero outside the interval
[

n
2k ,

n+1
2k

]
, therefore dΨr(ζ )

dζ
= 0 for r = 1,M+1,2M+1, · · · ,(2k−

1)M+1.
Now, substituting the value of V F∗′

m (2kζ −n) in equation (11) from Theorem 3.1, we obtain

dΨr(ζ )

dζ
= 2

3k
2

√
8
π

m−1

∑
j=1

(m+ j) odd

4 j V F∗
j (2

k
ζ −n)χ[ n

2k ,
n+1
2k ]. (23)

Expanding the above equation in VF wavelets, we have

dΨr(ζ )

dζ
= 2

3k
2

√
8
π

m−1

∑
j=1

(m+ j) odd

4 j V F∗
j (2

k
ζ −n)χ[ n

2k ,
n+1
2k ] = 2k

r−1

∑
s=1

(r+s) odd

4s ΨnM+s(ζ ). (24)

Let us choose Fr,s as

Fr,s =

{
2k+2s, r = 2, · · · ,M, s = 1, · · · ,(r−1) and (r+ s) odd,
0, otherwise.

Then, the required result is obtained.

4.1. Vieta-Fibonacci wavelet operational matrix of VOF derivative
The VOF derivative of order q− 1 < γ(ζ ,ϖ) ≤ q of the VF wavelet vector defined in (17) is

given by
c
0Dγ(ζ ,ϖ)

ζ
Ψ(ζ )≃ Qγ(ζ ,ϖ)

ζ
Ψ(ζ ), (25)
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where Qγ(ζ ,ϖ)
ζ

is an square matrix of order m̂(m̂ = 2kM) for the VF wavelet. The explicit form of
the matrix is derived by introducing another family of basis functions as

θnm(ζ ) =

{
ζ m−1, ζ ∈ [ n

2k ,
n+1
2k ]

0, otherwise.
(26)

A vector form representation of these m̂ set monomials is given by

Θ(ζ ) = [θ1(ζ ),θ2(ζ ), · · · ,θm̂(ζ )], (27)

where θ j(ζ ) = θnm(ζ ) and i = Mn+m.
VF wavelet and these monomials are related in the following way

Θ(ζ )≃ PΨ(ζ ). (28)

The elements of P are obtained by using (pi, j) =< ωi(ζ ),ψ j(ζ )>.
Lemma 4.2. Let θnm(ζ ) be defined in equation (26) and q−1 < γ(ζ ,ϖ)≤ q, then we have

c
0Dγ(ζ ,ϖ)

ζ
θnm(ζ ) =

{
(m−1)!

Γ( j−γ(ζ ,ϖ))
ζ m−1−γ(ζ ,ϖ), m = q+1,q+2, · · · ,M, ζ ∈ [ n

2k ,
n+1
2k ],

0, otherwise.
(29)

Proof. The proof is straightforward.

Theorem 4.3. Let Θ(ζ ) be a vector defined in (27), then the fractional derivative of variable order
q−1 < γ(ζ ,ϖ)≤ q is given by

c
0Dγ(ζ ,ϖ)

ζ
Θ(ζ ) =V γ(ζ ,ϖ))

ζ
Θ(ζ ), (30)

where V γ(ζ ,ϖ)
ζ

is a m̂× m̂ order matrix defined as

V γ(ζ ,ϖ)
ζ

=



Dγ(ζ ,ϖ)
ζ

0 0 · · · 0

0 Dγ(ζ ,ϖ))
ζ

0 · · · 0

0 0 Dγ(ζ ,ϖ)
ζ

· · · 0
...

...
... . . . ...

0 0 0 0 Dγ(ζ ,ϖ)
ζ


,

where Dγ(ζ ,ϖ)
ζ

is M×M diagonal matrix defined by

Dγ(ζ ,ϖ)
ζ

= ζ
−γ(ζ ,ϖ)diag

[
0, 0, · · · , (q−1)!

Γ(q− γ(ζ ,ϖ))
, · · · , (M−1)!

Γ(M− γ(ζ ,ϖ)−1)
,

M!
Γ(M− γ(ζ ,ϖ))

]
.
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Proof. For proof, see Lemma.

Theorem 4.4. Let Ψ(ζ ) be the VF wavelets defined in (17), then the VOF derivative of order
q−1 < γ(ζ ,ϖ)≤ q of Ψ(ζ ) is given by

c
0Dγ(ζ ,ϖ)

ζ
Ψ(ζ ) = Qγ(ζ ,ϖ)

ζ
Ψ(ζ ) = (P−1V γ(ζ ,ϖ)

ζ
P)Ψ(ζ ). (31)

Proof. Considering equation (31) and Theorem 5.3, we have

Ψ(ζ ) = P−1
Θ(ζ ),

and
c
0Dγ(ζ ,ϖ)

ζ
Ψ(ζ ) = P−1 c

0Dγ(ζ ,ϖ)
ζ

Θ(ζ ) = P−1V γ(ζ ,ϖ)
ζ

Θ(ζ ) = (P−1V γ(ζ ,ϖ)
ζ

P)Ψ(ζ ), (32)

which completes the proof.

5. Mathematical analysis of the proposed model

This section has two purposes: to provide the mathematical analysis of the present model. The
first one is to prove that a solution exists and is unique, and the second one is to demonstrate the
stability of the model.

5.1. Existence and uniqueness
Consider the variable order fractional coupled Fitzhugh-Nagumo model

∂ α(ζ ,ϖ)u(ζ ,ϖ)

∂ϖα(ζ ,ϖ)
= Du

∂ 2u
∂ζ 2 +u(u−a)(1−u)− v+ f1(ζ ,ϖ),

∂ β (ζ ,ϖ)v(ζ ,ϖ)

∂ϖβ (ζ ,ϖ)
= Dv

∂ 2v
∂ζ 2 + ε(u−bv)+ f2(ζ ,ϖ). (33)

Now, introducing the R-L integral operator of fractional order in equation (1), we have

u(ζ ,ϖ)−u(ζ ,0) = Iα(ζ ,ϖ)
ϖ

(
Duu(ζ ,ϖ)

+u(u−a)(1−u)− v+ f1(ζ ,ϖ)
)
,

=
1

Γ(α(ζ ,ϖ))

∫
ϖ

0
(ϖ − s)α(ζ ,ϖ)−1

(
Duuζ ζ +u(ζ ,s)×

(u(ζ ,s)−a)(1−u(ζ ,s))− v(ζ ,s)− f1(ζ ,s)
)

ds,

(34)

and

v(ζ ,ϖ)− v(ζ ,0) =
1

Γ(β (ζ ,ϖ))

∫
ϖ

0
(ϖ − s)β (ζ ,ϖ)−1

(
Dvvζ ζ + ε(u(ζ ,s)

−bv(ζ ,s))+ f2(ζ ,s))
)

ds.
(35)
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Let

K1(ϖ ,u(ζ ,ϖ)) = Duuζ ζ +u(u−a)(1−u)− v+ f1, (36)

and

K2(ϖ ,v(ζ ,ϖ)) = Dvvζ ζ + ε(u−bv)+ f2, (37)

and for continuous functions u(ζ ,ϖ), u1(ζ ,ϖ), v(ζ ,ϖ) and v1(ζ ,ϖ) ∈ L2
(
(0,1)× (0,1)

)
, there

exist some constants γ1 > 0 and γ ′1 > 0 such that

||uζ ζ − (u1)ζ ζ || ≤ γ1||u−u1||,
||vζ ζ − (v1)ζ ζ || ≤ γ

′
1||v− v1||. (38)

Also, here |Du| ≤ s1, |a| ≤ s2, |Dv| ≤ l1, |b| ≤ l2 and |ε| ≤ l3. Now, we will show that K1(ϖ ,u(ζ ,ϖ))
and K2(ϖ ,v(ζ ,ϖ)) satisfy the Lipschitz condition. For this purpose, we have

||K1(ϖ ,u)−K1(ϖ ,u1)||= ||Duuζ ζ +u(u−a)(1−u)− v+ f1(ζ ,ϖ)− (Du(u1)ζ ζ

+u1(u1 −a)(1−u1)− v+ f1(ζ ,ϖ))||,
≤ λ1||uζ ζ − (u1)ζ ζ ||+λ2||u−u1||+λ3||u−u1||
+λ4||u−u1||,

≤
(

s1γ1 +(λ 2
1 +λ

2
2 +λ1λ2)+(1+a)(λ1 +λ2)+ s2

)
||u−u1||,

Setting

M1 = s1γ1 +(λ 2
1 +λ

2
2 +λ1λ2)+(1+a)(λ1 +λ2)+ s2,

where u and u∗ are bounded function such that |u| ≤ λ1 and |u∗| ≤ λ2. Thus, we have

||K1(ϖ ,u)−K1(ϖ ,u1)|| ≤ M1||u−u1||. (39)

Similarly, for the function v(ζ ,ϖ), we have

||K2(ϖ ,v)−K2(ϖ ,v1)|| ≤ M2||v− v1||, (40)

where M2 = (l1γ ′1 + l2l3). Here, the Lipschitz condition is satisfied by the kernel. In addition, if
0 ≤ Mi < 1, i = 1,2, it is contraction.

Theorem 5.1. Let us assume that u(ζ ,ϖ) and v(ζ ,ϖ) are bounded functions, then the operator
Φ(u(ζ ,ϖ)) and Φ(v(ζ ,ϖ)) are defined by [38]

Φ(u(ζ ,ϖ)) = u(ζ ,0)+
1

Γ(α(ζ ,ϖ))

∫
ϖ

0
(ϖ − s)α(ζ ,ϖ)−1K1(ζ ,u)ds, (41)

and

Φ(v(ζ ,ϖ)) = v(ζ ,0)+
1

Γ(β (ζ ,ϖ))

∫
ϖ

0
(ϖ − s)β (ζ ,ϖ)−1K2(ζ ,v)ds, (42)

which satisfy the Lipschitz condition.
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Proof. Assume that u(ζ ,ϖ) and w(ζ ,ϖ) are bounded functions such that u(ζ ,0) = w(ζ ,0), then

Φ(u(ζ ,ϖ))−Φ(w(ζ ,ϖ)) =
1

Γ(α(ζ ,ϖ))

∫
ϖ

0
(ϖ − s)α(ζ ,ϖ)−1

(
K1(ζ ,u)

−K1(ζ ,w)
)

ds,

||Φ(u(ζ ,ϖ))−Φ(w(ζ ,ϖ))|| ≤ 1
Γ(α(ζ ,ϖ))

∫
ϖ

0
(ϖ − s)α(ζ ,ϖ)−1||K1(ζ ,u)

−K1(ζ ,w)||ds,

≤
tα(ζ ,ϖ)
0 M1

Γ(α(ζ ,ϖ))α(ζ ,ϖ)
||u−w||.

Letting m1 =
tα(ζ ,ϖ)
0 M1

Γ(α(ζ ,ϖ))α(ζ ,ϖ)
, we get

||Φ(u(ζ ,ϖ))−Φ(w(ζ ,ϖ))|| ≤ m1||u−w||.
Similarly, by assuming v(ζ ,ϖ) and φ(ζ ,ϖ) as bounded functions we can proof

||Φ(v(ζ ,ϖ))−Φ(φ(ζ ,ϖ))|| ≤ m2||v−φ ||.
Hence, the proof is complete.

Theorem 5.2. Let us assume that u(ζ ,ϖ) and v(ζ ,ϖ) are bounded functions, then the operators
are defined as

Φ(u) = Duuζ ζ +u(u−a)(1−u)− v+ f1(ζ ,ϖ), (43)

and

Φ(v) = Dvvζ ζ + ε(u−bv)+ f2(ζ ,ϖ), (44)

which satisfy the conditions ∣∣∣〈Φ(u)−Φ(w),u−w
〉∣∣∣≤ M1||u−w||2, (45)

and ∣∣∣〈Φ(v)−Φ(φ),v−φ

〉∣∣∣≤ M2||v−φ ||2, (46)

respectively.

Proof. By considering the function u(ζ ,ϖ) as bounded function, we have∣∣∣〈Φ(u)−Φ(w),u−w
〉∣∣∣= ∣∣∣〈Du(uζ ζ −wζ ζ )− (u3 −w3)+(1+a)(u2 −w2)

−a(u−w),u−w
〉∣∣∣,

≤ |Du||< (u−w)ζ ζ ,u−w > |+ |< u3 −w3,u−w > |
+(1+a)|< u2 −w2,u−w > |+a|< u−w,u−w > |,
≤ |Du|||(u−w)ζ ζ ||||u−w||+ ||u3 −w3||||u−w||
+(1+a)||u2 −w2||||u−w||+a||u−w||2,
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∣∣∣〈Φ(u)−Φ(w),u−w
〉∣∣∣≤ (s1γ1 +(λ 2

1 +λ
2
2 +λ1λ2)+(1+a)(λ1 +λ2)+ s2

)
||u−w||2,

which implies that ∣∣∣〈Φ(u)−Φ(w),u−w
〉∣∣∣≤ M1||u−w||2.

Repeating this same process for the bounded function v(ζ ,ϖ)), we have∣∣∣〈Φ(v)−Φ(φ),v−φ

〉∣∣∣≤ M2||v−φ ||2.

Theorem 5.3. Suppose that u(ζ ,ϖ) and v(ζ ,ϖ) are bounded functions and 0 < ||z||< ∞, then

Φ(u) = Duuζ ζ +u(u−a)(1−u)− v+ f1(ζ ,ϖ), (47)

and

Φ(v) = Dvvζ ζ + ε(u−bv)+ f2(ζ ,ϖ), (48)

satisfy the conditions ∣∣∣〈Φ(u)−Φ(w),z
〉∣∣∣≤ M1||u−w|| ||z||, (49)

and ∣∣∣〈Φ(v)−Φ(φ),z
〉∣∣∣≤ M2||v−φ || ||z||, (50)

respectively.

Proof. Let u(ζ ,ϖ) is a bounded function and 0 < ||z||< ∞, then∣∣∣〈Φ(u)−Φ(w),z
〉∣∣∣= ∣∣∣〈Du(uζ ζ −wζ ζ )− (u3 −w3)+(1+a)(u2 −w2)−a(u−w),z

〉∣∣∣,
≤ |Du||< (u−w)ζ ζ ,z > |+ |< u3 −w3,z > |
+(1+a)|< u2 −w2,z > |+a|< u−w,z > |,
≤ |Du|||(u−w)ζ ζ || ||z||+ ||u3 −w3|| ||z||
+(1+a)||u2 −w2|| ||z||+a||z|| ||u−w||,∣∣∣〈Φ(u)−Φ(w),z

〉∣∣∣≤ (s1γ1 +(λ 2
1 +λ

2
2 +λ1λ2)+(1+a)(λ1 +λ2)+ s2

)
||u−w|| ||z||,

which implies that ∣∣∣〈Φ(u)−Φ(w),z
〉∣∣∣≤ M1||u−w|| ||z||.

Repeating this in the similar way for the bounded function v(ζ ,ϖ), we have∣∣∣〈Φ(v)−Φ(φ),z
〉∣∣∣≤ M2||v−φ || ||z||.

Hence, the proof is complete.
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Now, the iterated formulae for equations (34) and (35) are formulated as

un+1(ζ ,ϖ) =
1

Γ(α(ζ ,ϖ))

∫
ϖ

0
(ϖ − s)α(ζ ,ϖ)−1K1(ϖ ,un)ds, (51)

vn+1(ζ ,ϖ) =
1

Γ(β (ζ ,ϖ))

∫
ϖ

0
(ϖ − s)β (ζ ,ϖ)−1K2(ϖ ,vn)ds, (52)

u(ζ ,0) = u0 and v(ζ ,0) = v0.
The successive difference is presented in the following way

ξn(ζ ,ϖ) = un(ζ ,ϖ)−un−1(ζ ,ϖ) =
1

Γ(α(ζ ,ϖ))

∫
ϖ

0
(ϖ − s)α(ζ ,ϖ)−1(

K1(ϖ ,un−1)−K1(ϖ ,un−2)
)

ds,
(53)

and

χn(ζ ,ϖ) = vn(ζ ,ϖ)− vn−1(ζ ,ϖ) =
1

Γ(β (ζ ,ϖ))

∫
ϖ

0
(ϖ − s)β (ζ ,ϖ)−1(

K2(ϖ ,vn−1)−K2(ϖ ,vn−2))
)

ds.
(54)

Note that

un(ζ ,ϖ) =
n

∑
i=0

ξi(ζ ,ϖ), (55)

vn(ζ ,ϖ) =
n

∑
j=0

χ j(ζ ,ϖ). (56)

Applying norm on both sides of equation (53), we get

||ξn(ζ ,ϖ)||=
∣∣∣∣∣∣ 1

Γ(α(ζ ,ϖ))

∫
ϖ

0
(ϖ − s)α(ζ ,ϖ)−1

(
K1(ϖ ,un−1)−K1(ϖ ,un−2)

)
ds
∣∣∣∣∣∣, (57)

or

||ξn(ζ ,ϖ)|| ≤ 1
Γ(α(ζ ,ϖ))

∫
ϖ

0
(ϖ − s)α(ζ ,ϖ)−1

∣∣∣∣∣∣(K1(ϖ ,un−1)−K1(ϖ ,un−2)
)

ds
∣∣∣∣∣∣. (58)

As the Lipschitz condition is satisfied by the kernel, therefore

||ξn(ζ ,ϖ)|| ≤ M1

Γ(α(ζ ,ϖ))

∫
ϖ

0
(ϖ − s)α(ζ ,ϖ)−1||un−1 −un−2||ds. (59)

Proceeding for the bounded function v(ζ ,ϖ), we get

||χn(ζ ,ϖ)|| ≤ M2

Γ(β (ζ ,ϖ))

∫
ϖ

0
(ϖ − s)β (ζ ,ϖ)−1||vn−1 − vn−2||ds. (60)

Based on the above result, we prove the following theorem.
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Theorem 5.4. The Fitzhugh-Nagumo system defined in equation (1) has a solution if there exists
t0 such that

M1tα(ζ ,ϖ)
0

α(ζ ,ϖ)Γ(α(ζ ,ϖ))
< 1, (61)

M2tβ (ζ ,ϖ)
0

β (ζ ,ϖ)Γ(β (ζ ,ϖ))
< 1. (62)

Proof. Considering u(ζ ,ϖ) as a bounded function and performing the recursive scheme, we have

||ξn(ζ ,ϖ)|| ≤
[ M1ϖα(ζ ,ϖ)

α(ζ ,ϖ)Γ(α(ζ ,ϖ))

]n
u(ζ ,0), (63)

and thus, the function

un(ζ ,ϖ) =
n

∑
i=0

ξi(ζ ,ϖ),

exists and smooth. Now, to show that equation (59) is a solution of (1), let us assume that u(ζ ,ϖ)−
u(ζ ,0) = un(ζ ,ϖ)−Ln(ζ ,ϖ), then we have

||Ln(ζ ,ϖ)||=
∣∣∣∣∣∣ 1

Γ(α(ζ ,ϖ))

∫
ϖ

0
(ϖ − s)α(ζ ,ϖ)−1

(
K1(ϖ ,u)−K1(ϖ ,un−1)

)
ds
∣∣∣∣∣∣, (64)

≤
[ M1ϖα(ζ ,ϖ)

α(ζ ,ϖ)Γ(α(ζ ,ϖ))

]
||u−un−1||. (65)

Recursively, we get

||Ln(ζ ,ϖ)|| ≤
[

ϖα(ζ ,ϖ)

α(ζ ,ϖ)Γ(α(ζ ,ϖ))

]n+1
Mn+1

1 δ , (66)

at ϖ = t0, the above equation becomes

||Ln(ζ ,ϖ)|| ≤
[ tα(ζ ,ϖ)

0
α(ζ ,ϖ)Γ(α(ζ ,ϖ))

]n+1
Mn+1

1 δ1. (67)

Now, ||Ln(ζ ,ϖ)|| → 0 as n → ∞.

Similarly for the function v(ζ ,ϖ),

||dn(ζ ,ϖ)|| ≤
[ tβ (ζ ,ϖ)

0
β (ζ ,ϖ)Γ(β (ζ ,ϖ))

]n+1
Mn+1

2 δ2. (68)

which tends to zero as n → ∞

Hence, the proof is complete.
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Next, we examine whether there is any unique solution to the fractional Fitzhugh-Nagumo
system (1) of variable order. Let u(ζ ,ϖ) and r(ζ ,ϖ) are two solutions of the system (1). Thus we
have

u(ζ ,ϖ)− r(ζ ,ϖ) =
1

Γ(α(ζ ,ϖ))

∫
ϖ

0
(ϖ − s)α(ζ ,ϖ)−1

(
K1(ϖ ,u)−K1(ϖ ,r)

)
ds. (69)

If we take the norm on both sides of equation (69), we get

||u(ζ ,ϖ)− r(ζ ,ϖ)||=
∣∣∣∣∣∣ 1

Γ(α(ζ ,ϖ))

∫
ϖ

0
(ϖ − s)α(ζ ,ϖ)−1

(
K1(ϖ ,u)−K1(ϖ ,r)

)
ds
∣∣∣∣∣∣, (70)

or

||u(ζ ,ϖ)− r(ζ ,ϖ)|| ≤
( M1ϖα(ζ ,ϖ)

α(ζ ,ϖ)Γ(α(ζ ,ϖ))

)
||u(ζ ,ϖ)− r(ζ ,ϖ)||, (71)

which implies that

||u(ζ ,ϖ)− r(ζ ,ϖ)||
(

1− M1ϖα(ζ ,ϖ)

α(ζ ,ϖ)Γ(α(ζ ,ϖ))

)
≤ 0. (72)

Similarly, for the function v(ζ ,ϖ)

||v(ζ ,ϖ)− r∗(ζ ,ϖ)||
(

1− M2ϖβ (ζ ,ϖ)

β (ζ ,ϖ)Γ(β (ζ ,ϖ))

)
≤ 0. (73)

Theorem 5.5. A fractional Fitzhugh-Nagumo system has a unique solution if the following condi-
tions are met (

1− M1ϖα(ζ ,ϖ)

α(ζ ,ϖ)Γ(α(ζ ,ϖ))

)
> 0,(

1− M2ϖβ (ζ ,ϖ)

β (ζ ,ϖ)Γ(β (ζ ,ϖ))

)
> 0. (74)

Proof. We have the following result if the condition of the previous Theorem is satisfied

||u(ζ ,ϖ)− r(ζ ,ϖ)||
(

1− M1ϖα(ζ ,ϖ)

α(ζ ,ϖ)Γ(α(ζ ,ϖ))

)
≤ 0. (75)

Consequently, it implies that

||u(ζ ,ϖ)− r(ζ ,ϖ)||= 0,

as a result u(ζ ,ϖ) = r(ζ ,ϖ).
Similarly, for v(ζ ,ϖ), we have v(ζ ,ϖ) = r1(ζ ,ϖ).

Therefore, equation (1) has a unique solution.
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5.2. Ulam-Hyers stability
Our goal here is to demonstrate that the VOFFN system presented in equation (1) is Ulam-

Hyers stable.

Definition The equation (1) is Ulam-Hyers stable if the following relationship holds for δ1, δ2 > 0,
for u(ζ ,ϖ) and v(ζ ,ϖ) [39].

|c0Dα(ζ ,ϖ)
ϖ u−Duuζ ζ +(1−u)(u−a)u+ v(ζ ,ϖ)− f1(ζ ,ϖ)|< δ1, (76)

and

|c0Dβ (ζ ,ϖ)
ϖ v−Dvvζ ζ − ε(u−bv)− f2(ζ ,ϖ)|< δ2. (77)

there exist solutions u∗ and v∗, such that

|u−u∗|< a1δ1, a1 ∈ R, (78)

and

|v− v∗|< a2δ2, a2 ∈ R. (79)

When u and v satisfy the following equations (76) and (77), then there exist functions q1(ζ ,ϖ) and
q2(ζ ,ϖ) which are defined as follows:

c
0Dα(ζ ,ϖ)

ϖ u−Duuζ ζ − (1−u)(u−a)u+ v− f1 = q1(ζ ,ϖ), (80)

and

c
0Dβ (ζ ,ϖ)

ϖ v−Dvvζ ζ − ε(u−bv)− f2 = q2(ζ ,ϖ). (81)

Using R-L fractional integral to both sides of equation (80), we achieve

u(ζ ,ϖ)−u(ζ ,0)+ Iα(ζ ,ϖ)
ϖ

(
−Duuζ ζ −u(u−a)(1−u)+ v− f1

)
= Iα(ζ ,ϖ)

ϖ q1(ζ ,ϖ).
(82)

Now,

|u(ζ ,ϖ)−u(ζ ,0)+ Iα(ζ ,ϖ)
ϖ (−Duuζ ζ −u(u−a)(1−u)+ v− f1(ζ ,ϖ))|

= |Iα(ζ ,ϖ)
ζ

q1(ζ ,ϖ)| ≤ |q1|I
α(ζ ,ϖ)
ϖ (1)|= |q1|

T α(ζ ,ϖ)

Γ(α(ζ ,ϖ)+1)
,

|u(ζ ,ϖ)−u(ζ ,0)+ Iα(ζ ,ϖ)
ϖ (−Duuζ ζ −u(u−a)(1−u)+ v− f1(ζ ,ϖ)))|

≤ T α(ζ ,ϖ)

Γ(α(ζ ,ϖ)+1)
δ1.
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Similarly for v(ζ ,ϖ), we have

|v(ζ ,ϖ)− v(ζ ,0)+ Iβ (ζ ,ϖ)
ϖ (−Dvvζ ζ − ε(u−bv)− f2(ζ ,ϖ))| ≤ T β (ζ ,ϖ)

Γ(β (ζ ,ϖ)+1)
δ2.

Suppose that u∗(ζ ,ϖ) and v∗(ζ ,ϖ) be the solutions of the system (1) with u(ζ ,0) = u∗(ζ ,0) = ζ0
and v(ζ ,0) = v∗(ζ ,0) = ζ1, then

u∗(ζ ,ϖ) = u(ζ ,0)+ Iα(ζ ,ϖ)
ϖ

(
Duuζ ζ +(1−u)(u−a)u− v+ f1(ζ ,ϖ)

)
.

Now,

||u−u∗||= ||u−u(ζ ,0)− Iα(ζ ,ϖ)
ϖ (Duu∗

ζ ζ
+−v+ f1(ζ ,ϖ))||,

= ||u−u(ζ ,0)− Iα(ζ ,ϖ)
ϖ (Duuζ ζ +(1−u)(u−a)u− v+ f1(ζ ,ϖ))

− Iα(ζ ,ϖ)
ϖ (Duu∗

ζ ζ
+(1−u∗)(u∗−a)u∗− v∗+

f1(ζ ,ϖ))+ Iα(ζ ,ϖ)
ϖ (Duuζ ζ +(1−u)(u−a)u− v+ f1(ζ ,ϖ))||,

||u−u∗|| ≤ T α(ζ ,ϖ)

Γ(α(ζ ,ϖ)+1)
δ1 +

(
s1γ1 +(λ 2

1 +λ
2
2 +λ1λ2)+(1+a)(λ1 +λ2)+ s2

)
×

(Iα(ζ ,ϖ)
ϖ (||u−u∗||)). (83)

Similarly for the function v(ζ ,ϖ), we have

||v− v∗||= ||v(ζ ,ϖ)− v(ζ ,0)− Iβ (ζ ,ϖ)
ϖ

(
Dvv∗

ζ ζ
+ ε(u−bv∗)+ f2

)
||

= ||v(ζ ,ϖ)− v(ζ ,0)− Iβ (ζ ,ϖ)
ϖ

(
Dvvζ ζ + ε(u−bv)+ f2

)
− Iβ (ζ ,ϖ)

ϖ

(
Dvv∗

ζ ζ
+ ε(u−bv∗)+ f2

)
+ Iβ (ζ ,ϖ)

ϖ

(
Dvvζ ζ + ε(u−bv)+ f2

)
||,

||v− v∗|| ≤ T β (ζ ,ϖ)

Γ(β (ζ ,ϖ)+1)
δ2 +(l1γ

′
1 + l2l3)(I

β (ζ ,ϖ)
ϖ ||v− v∗||). (84)

Lemma 5.6. Let γ(ζ ,ϖ) > 0 and z1(ζ ,ϖ) be locally integrable, nonnegative and nondecreasing
functions on interval (a,b). Also, let u(ζ ,ϖ) be nonnegative and locally integrable on interval
[a,b) and z2(ζ ,ϖ) is bounded by some constant, then the inequality

u ≤ z1 + z2

(
Iγ(ζ ,ϖ)
ϖ u

)
, (85)

implies

u ≤ z1Eγ(ζ ,ϖ)

(
z2(ϖ −a)γ(ζ ,ϖ)

)
, (86)

where Eγ(ζ ,ϖ)(ϖ) = ∑
∞
i=0

ϖ i

Γ(γ(ζ ,ϖ)i+1) .
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We obtain the following result by applying the Gronwall relation to equation (87) with z1(ζ ,ϖ)=
T α(ζ ,ϖ)

Γ(α(ζ ,ϖ)+1)δ1 and z2(ζ ,ϖ) =
(

s1γ1 +(λ 2
1 +λ 2

2 +λ1λ2)+(1+a)(λ1 +λ2)+ s2

)
||u−u∗|| ≤ T α(ζ ,ϖ)

Γ(α(ζ ,ϖ)+1)
δ1Eα(ζ ,ϖ)

((
s1γ1 +(λ 2

1 +λ
2
2 +λ1λ2)+(1+a)(λ1 +λ2)+ s2

)
ϖ

α(ζ ,ϖ)
)
,

≤ T α(ζ ,ϖ)

Γ(α(ζ ,ϖ)+1)
δ1Eα(ζ ,ϖ)

((
s1γ1 +(λ 2

1 +λ
2
2 +λ1λ2)+(1+a)(λ1 +λ2)+ s2

)
T α(ζ ,ϖ)

)
.

(87)

Applying the Gronwall relation to equation (84), we get

||v− v∗|| ≤ T β (ζ ,ϖ)

Γ(β (ζ ,ϖ)+1)
δ2Eβ (ζ ,ϖ)

(
(l1γ

′
1 + l2l3)ϖβ (ζ ,ϖ)

)
,

≤ T β (ζ ,ϖ)

Γ(β (ζ ,ϖ)+1)
δ2Eβ (ζ ,ϖ)

(
(l1γ

′
1 + l2l3)T β (ζ ,ϖ)

)
. (88)

Equation (87) and (88), implies ||u−u∗|| ≤ a1δ1 and ||v− v∗|| ≤ a2δ2, with

a1 =
T α(ζ ,ϖ)

Γ(α(ζ ,ϖ)+1)
δ1Eα(ζ ,ϖ)

((
s1γ1 +(λ 2

1 +λ
2
2 +λ1λ2)+(1+a)(λ1 +λ2)+ s2

)
T α(ζ ,ϖ)

)
,

and

a2 =
T β (ζ ,ϖ)

Γ(β (ζ ,ϖ)+1)
δ2Eβ (ζ ,ϖ)

(
(l1γ

′
1 + l2l3)T β (ζ ,ϖ)

)
,

which completes the stability result.

6. Description of the proposed method

To investigate the numerical solutions of the system (1), the solution can be written in terms of
VF wavelet as

u(ζ ,ϖ)≃
m̂

∑
i=1

m̂

∑
j=1

ui jψi(ζ )ψ j(ϖ),

≜ Ψ
T (ζ )UΨ(ϖ), (89)

v(ζ ,ϖ)≃
m̂

∑
i=1

m̂

∑
j=1

vi jψi(ζ )ψ j(ϖ),

≜ Ψ
T (ζ )V Ψ(ϖ),
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where U and V are unknown matrices of order m̂× m̂ to be determined and Ψ(ζ ) is vector defined
in equation (17). Theorem 5.1 yields

∂ 2u(ζ ,ϖ)

∂ζ 2 ≃ Ψ
T (ζ )(D(2))TUΨ(ϖ),

∂ 2v(ζ ,ϖ)

∂ζ 2 ≃ Ψ
T (ζ )(D(2))TV Ψ(ϖ). (90)

Also, from Theorem 5.4, we get

∂ α(ζ ,ϖ)u(ζ ,ϖ)

∂ϖα(ζ ,ϖ)
≃ Ψ

T (ζ )U(P−1V α(ζ ,ϖ)
ϖ P)Ψ(ϖ),

∂ β (ζ ,ϖ)v(ζ ,ϖ)

∂ϖβ (ζ ,ϖ)
≃ Ψ

T (ζ )V (P−1V β (ζ ,ϖ)
ϖ P)Ψ(ϖ). (91)

The residual function can be obtained by inserting equation (89)-(91) into equation (1)

R1(ζ ,ϖ)≜−Ψ
T (ζ )U

(
P−1V α(ζ ,ϖ)

ϖ P
)

Ψ(ϖ)+DuΨ
T (ζ )(D(2))TUΨ(ϖ)+Ψ

T (ζ )UΨ(ϖ) (92)

×
(

Ψ
T (ζ )UΨ(ϖ)−a

)(
1−Ψ

T (ζ )UΨ(ϖ)
)
−Ψ

T (ζ )V Ψ(ϖ)+ f1(ζ ,ϖ),

R2(ζ ,ϖ)≜−Ψ
T (ζ )V

(
P−1V β (ζ ,ϖ)

ϖ P
)

Ψ(ϖ)+DvΨ
T (ζ )V Ψ(ϖ)

+ ε

(
Ψ

T (ζ )UΨ(ϖ)−bΨ
T (ζ )V Ψ(ϖ)

)
+ f2(ζ ,ϖ). (93)

Now, associated initial and boundary conditions can be approximated via VF wavelets as follows

Ψ(ζ )TUΨ(0)−u0(ζ )≜U0(ζ )≃ 0, Ψ(ζ )TV Ψ(0)− v0(ζ )≜V0(ζ )≃ 0, (94)

and

Ψ(0)TUΨ(ϖ)−u1(ϖ)≜U1(ϖ)≃ 0, Ψ(1)TUΨ(ϖ)−u2(ϖ)≜U2(ϖ)≃ 0,

Ψ(0)TV Ψ(ϖ)− v1(ϖ)≜V1(ϖ)≃ 0, Ψ(1)TV Ψ(ϖ)− v2(ϖ)≜V2(ϖ)≃ 0. (95)

At this stage collocating equation (92)-(95) at the certain collocation points i.e.
Rr(ζi,ϖ j) = 0, r = 1,2, 2 ≤ i ≤ m̂−1, 2 ≤ j ≤ m̂,

U0(ζi) = 0, V0(ζi) = 0, 1 ≤ i ≤ m̂,

U1(ϖ j) = 0, U2(ϖ j) = 0, 2 ≤ j ≤ m̂,

V1(ϖ j) = 0, V2(ϖ j) = 0, 2 ≤ j ≤ m̂.

(96)

This system (96) generates 2(m̂× m̂) equations. To derive a numerical solution to the original
system, we will have to solve these algebraic equations to compute the unknown matrices.
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7. Convergence analysis and error bound

Theorem 7.1. Let f (x) be a square-integrable function defined in [0,1] with | f ′′(x)| ≤ B, can be
written as the infinite sum of the VF wavelets, and the series converges uniformly to the function
f (x), that is

f (x) =
∞

∑
n=0

∞

∑
m=1

cnmΨnm(x),

where

|cnm|<
3
2

√
π

8
B

(1+n)2(m−1)2(m−2)2 , m > 2, n ≥ 0.

Proof.

cnm =
∫ 1

0
f (x)Ψnm(x)ωn(x)dx =

∫ n+1
2k

n
2k

f (x)2k

√
8
π

V F∗
m(2

kx−n)w(2kx−n)dx.

Now, let 2kx−n = t, then dx = 1
2k dt. Then

cnm =

√
8
π

∫ 1

0
f
(t +n

2k

)
V F∗(t)w(t)dt.

Substituting t = 2+2cos(θ)
4 in the above equation, we have

cnm =

√
1

2π

∫
π

0
f
(2n+ cosθ +1

2k+1

)
sinmθ sinθ dθ ,

=
1
8

√
8
π

∫
π

0
f
(2n+ cosθ +1

2k+1

)(
cos(m−1)θ − cos(m+1)θ

)
dθ ,

=
1
8

√
8
π

1
2k+1

∫
π

0
f ′
(2n+ cosθ +1

2k+1

)(sin(m−1)θ sinθ

(m−1)
− sin(m+1)θ sinθ

(m+1)

)
dθ ,

=
1
8

√
8
π

1
2k+1

(
1

(m−1)

∫
π

0
f ′
(2n+ cosθ +1

2k+1

)
sin(m−1)θ sinθ dθ

− 1
(m+1)

∫
π

0
f ′
(2n+ cosθ +1

2k+1

)
sin(m+1)θ sinθ dθ

)
,

=
1
8

√
8
π

1
2k+1

(
I1 − I2

)
,

where I1 =
1

(m−1)
∫

π

0 f ′
(

2n+cosθ+1
2k+1

)
sinθ sin(m−1)θ dθ and I2 =

1
(m+1)

∫
π

0 f ′
(

2n+cosθ+1
2k+1

)
sinθ sin(m+

1)θ dθ .
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Now, the task is to estimate the values of I1 and I2.

I1 =
1

(m−1)

∫
π

0
f ′
(2n+ cosθ +1

2k+1

)
sin(m−1)θ sinθ dθ ,

=
1

2(m−1)

∫
π

0
f ′
(2n+ cosθ +1

2k+1

)(
cos(m−2)θ − cosmθ

)
dθ ,

=
2−k−1

2(m−1)

(
1

(m−2)

∫
π

0
f ′′
(2n+ cosθ +1

2k+1

)
sin(m−2)θ sinθ dθ − 1

m

∫
π

0
f ′′
(2n+ cosθ +1

2k+1

)
× sinmθ sinθ dθ

)
,

=
2−k−1

2(m−1)

∫
π

0
f ′′
(2n+ cosθ +1

2k+1

)(sinθ sin(m−2)θ
(m−2)

− sinmθ sinθ

m

)
dθ .

In a similar way one can get

I2 =
2−k−1

2(m+1)

∫
π

0
f ′′
(2n+ cosθ +1

2k+1

)(sinθ sinmθ

m
− sinθ sin(m+2)θ

(m+2)

)
dθ .

Thus, we have

cnm =
2−2k−2
√

8π

∫
π

0
f ′′
(2n+ cosθ +1

2k+1

)
Ω(θ) dθ ,

where

Ω(θ) =

[
1

2(−1+m)

(
sinθ sin(m−2)θ

(m−2)
− sinmθ sinθ

m

)
− 1

2(1+m)

(
sinmθ sinθ

m
− sinθ sin(m+2)θ

(m+2)

)]
,

or

|cnm|=

∣∣∣∣∣2−2k−2
√

8π

∫
π

0
f ′′
(2n+ cosθ +1

2k+1

)
Ω(θ) dθ

∣∣∣∣∣,
|cnm| ≤

2−2k−2B√
8π

∫
π

0
|Ω(θ)|dθ .

After some mathematical calculations, we get

|cnm|<
3
2

√
π

8
B

(1+n)2(m−1)2(m−2)2 , m > 2,

which completes the proof.
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Theorem 7.2. Let f (x) be a continuous function defined in [0,1] such that its second derivative is
bounded by some constant B. Then, the error bound will be

σk,M <
3B
2

√
π

8

(
∞

∑
n=0

∞

∑
m=M+1

(
1

(1+n)2(m−1)2(m−2)2

)2

+
∞

∑
n=2k

∞

∑
m=1

(
1

(1+n)2(m−1)2(m−2)2

)2) 1
2

,

where

σ
2
k,M =

∫ 1

0

[
f (x)−

2k−1

∑
n=0

M

∑
m=1

cnmψn,m(x)
]2

ωn(x)dx.

Proof.

σ
2
k,M =

∫ 1

0

[
f (x)−

2k−1

∑
n=0

M

∑
m=1

cnmψn,m(x)
]2

ωn(x)dx,

=
∫ 1

0

[ ∞

∑
n=0

∞

∑
M=1

ccmψn,m(x)−
2k−1

∑
n=0

M

∑
m=1

cnmψn,m(x)
]2

ωn(x)dx,

=
∫ 1

0

(
∞

∑
n=0

∞

∑
m=M+1

cnmψn,m(x)+
∞

∑
n=2k

∞

∑
m=1

cnmψn,m(x)

)2

ωn(x)dx,

=
∞

∑
n=0

∞

∑
m=M+1

c2
nm +

∞

∑
n=2k

∞

∑
m=1

c2
nm,

<
(9πB2

32

)( ∞

∑
n=0

∞

∑
m=M+1

(
1

(1+n)2(m−1)2(m−2)2

)2

+
∞

∑
n=2k

∞

∑
m=1

(
1

(1+n)2(m−1)2(m−2)2

)2)
.

Therefore, we have

σ
2
k,M <

(9πB2

32

)( ∞

∑
n=0

∞

∑
m=M+1

(
1

(1+n)2(m−1)2(m−2)2

)2

+
∞

∑
n=2k

∞

∑
m=1

(
1

(1+n)2(m−1)2(m−2)2

)2)
.

By taking the square root of both sides, the proof can be obtained.

8. Numerical Applications

The purpose of this section is to illustrate some numerical experiments and apply the method
that have been proposed to solve those. The results of these numerical experiments demonstrate
the validity and applicability of our proposed method. During the numerical computations, Mathe-
matica 11.3 software was used on Windows 10, 64 bit to operate all the numerical calculations. To
illustrate the absolute error at (ζi,ϖ j), the following notation is adopted in order to demonstrate it:

eu(ζi,ϖ j) = |u(ζ j,ϖ j)−um̂(ζi,ϖ j)|, (97)
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where u(ζi,ϖ j) and um̂(ζi,ϖ j) are exact and approximate solutions, respectively at (ζi,ϖ j).

Example 1. Consider model (1) by assuming Du = Dv = 0.5, a = 0.25, b = 0.5 and ε = 0.001
with

f1(ζ ,ϖ) =
2ϖ2−α(ζ ,ϖ) cos(ζ )

Γ(3−α(ζ ,ϖ))
+Duϖ

2 cos(ζ )− cos(ζ )ϖ2(ϖ2 cos(ζ )−a)(1−ϖ
2 cos(ζ ))+ sin(ζ )ϖ2,

f2(ζ ,ϖ) =
2ϖ2−β (ζ ,ϖ) sin(ζ )

Γ(3−β (ζ ,ϖ))
+Dvϖ

2 sin(ζ )− ε(cos(ζ )−bsin(ζ ))ϖ2.

The IC and BCs are obtained using the exact solutions u(ζ ,ϖ)=ϖ2 cos(ζ ) and v(ζ ,ϖ)=ϖ2sin(ζ ).

Table 1: Tabular presentation of absolute error of Example 1 for two different values of m̂.

m̂ = 4 m̂ = 8

ζ eu(ζ ,ϖ) ev(ζ ,ϖ) eu(ζ ,ϖ) ev(ζ ,ϖ)

0.1 3.5993×10−4 1.0668×10−4 2.5985×10−8 8.6582×10−9

0.3 1.1373×10−3 3.3706×10−4 8.3329×10−8 2.7798×10−8

0.5 1.8997×10−3 5.8260×10−4 1.5829×10−7 5.2981×10−8

0.7 2.2062×10−3 7.2479×10−4 2.5998×10−7 8.7720×10−8

0.9 1.2675×10−3 4.5465×10−4 2.6505×10−7 9.1621×10−8

The main observations are as follows:

• The numerical results of Example 1 for the fractional order α(ζ ,ϖ) = (2 + sin(ζ ϖ))/4
and β (ζ ,ϖ) = 0.55+ 0.35sin(ζ ϖ) at ϖ = 0.5 and for particular values of ζ are shown in
Table 1. From Table 1, it is clear that increasing the number of approximations significantly
reduces the absolute error, indicating the efficiency of the method in capturing the solution’s
details by increasing the number of approximation.

• Behaviour of exact and numerical results can be seen in Fig 1, in which approximate results
are obtained at m̂ = 4. It is clear from the figures that the exact solution and approximate
solution graph are very similar for small values of approximation. The close alignment
between the graphs of the exact solution and the approximate solution, particularly for small
approximation values, demonstrates the robustness of the numerical method in replicating
the true dynamics of the problem.

• A comparison of maximum absolute error for various values of m̂ is indicated in Fig 2, which
clearly shows that on increasing the number of approximations, the error decreases rapidly
for both u(ζ ,ϖ) and v(ζ ,ϖ), signifying that the method not only converges but does so
efficiently across different components of the solution. The results confirm the reliability of
the proposed computational approach in accurately solving fractional-order problems, with
the decreasing error providing strong evidence of its effectiveness.
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(a) Exact solution (b) Numerical solution

(c) Exact solution (d) Numerical solution

Figure 1: Behaviour of exact solution and their corresponding numerical solutions for Example 1 at m̂ = 4 .
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(a) Error in u(ζ ,ϖ)
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(b) Error in v(ζ ,ϖ)

Figure 2: Comparison of maximum absolute error for Example 1 for different value of m̂ at ϖ = 0.5..
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Example 2. By assuming Du = Dv = 1, a = 0.35, b = 0.45 and ε = 0.00125 in the model (1), the
problem is reduced to

∂ α(ζ ,ϖ)u(ζ ,ϖ)

∂ϖα(ζ ,ϖ)
=

∂ 2u
∂ζ 2 +u(u−0.35)(1−u)− v+ f1(ζ ,ϖ),

∂ β (ζ ,ϖ)v(ζ ,ϖ)

∂ϖβ (ζ ,ϖ)
=

∂ 2v
∂ζ 2 +0.00125(u−0.45v)+ f2(ζ ,ϖ).

whose exact solutions are given by u(ζ ,ϖ) = sin(ϖ)cosh(ζ ), v(ζ ,ϖ) = cos(ϖ)sinh(ζ ), consid-
ering

f1(ζ ,ϖ) = ϖ
1−α(ζ ,ϖ)E2,2−α(ζ ,ϖ)(−ϖ

2)cosh(ζ )− cosh(ζ )sin(ϖ)

− sin(ϖ)cosh(ζ )(sin(ϖ)cosh(ζ )−0.35)(1− sin(ϖ)cosh(ζ ))+ cos(ϖ)sinh(ζ ),

f2(ζ ,ϖ) =−ϖ
2−β (ζ ,ϖ)E2,3−α(ζ ,ϖ)(−ϖ

2)sinh(ζ )− sinh(ζ )cos(ϖ)−0.00125(cosh(ζ )sin(ϖ)

−0.45cos(ϖ)sinh(ζ )).

Table 2: Tabular presentation of absolute error of Example 2 for two different values of α(ζ ,ϖ) and β (ζ ,ϖ)

α(ζ ,ϖ)) = 0.45+0.25sin(ζ +ϖ),β (ζ ,ϖ) = 1 α(ζ ,ϖ) = 1,β (ζ ,ϖ) = 0.95−0.20cos(3ζ ϖ)

ζ eu(ζ ,ϖ) ev(ζ ,ϖ) eu(ζ ,ϖ) ev(ζ ,ϖ)

0.1 1.7767×10−10 1.8072×10−10 1.5870×10−10 1.6476×10−10

0.3 5.5243×10−10 5.4063×10−10 5.0208×10−10 4.9739×10−10

0.5 9.8704×10−10 8.9514×10−10 9.2273×10−10 8.3810×10−10

0.7 1.5216×10−09 1.2361×10−09 1.4667×10−09 1.1857×10−09

0.9 1.7289×10−09 1.2531×10−09 1.7064×10−09 1.2318×10−09

The main observations are as follows:

• Table 2 is designed to show the absolute errors for Example 2 for α(ζ ,ϖ)= 0.45+0.25sin(ϖ+
ζ ), β (ζ ,ϖ) = 1 and α(ζ ,ϖ) = 1, β (ζ ,ϖ) = 0.95−0.20cos(3ζ ϖ) at ϖ = 0.5 for differ-
ent values of ζ with m̂ = 10. From the Table, it can be observed that errors computed by
the presented approach are very close to zero, and thus, the proposed method provides good
numerical results.

• Graph of exact and approximate results for fractional order α(ζ ,ϖ) = 0.45+0.25sin(ϖ +
ζ ), and β (ζ ,ϖ) = 1 can be seen in Fig.3. The visual comparison between these results
highlights the substantial agreement between the exact solution and the numerical approxi-
mation, demonstrating the method’s capability to replicate the behavior of the system under
study accurately. The close agreement of the graphs for exact and approximate solutions
further confirms the effectiveness of the method.
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(a) Exact solution (b) Numerical solution

(c) Exact solution (d) Numerical solution

Figure 3: Behaviour of exact solution and their corresponding numerical solutions for Example 2 at m̂ = 10 .
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Figure 4: Comparison of maximum absolute error for Example 2 for different value of m̂ at ϖ = 0.5.
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• A comparison of maximum absolute error for various values of m̂ for α(ζ ,ϖ) = 1 and
β (ζ ,ϖ) = 0.95−0.20cos(3ζ ϖ) is indicated in Fig 4, which clearly shows that on increas-
ing the value of m̂, error is decreasing. This trend confirms the method’s convergence and
highlights its efficiency in reducing the error by increasing the number of approximations.
The results in Fig. 4 show that the proposed method is highly effective in solving fractional-
order differential equations.

9. Conclusion

This article has developed and thoroughly investigated a new computational scheme to find the
approximate solution of variable-order partial differential equations (VOPDE) where the deriva-
tives are considered in the Caputo sense. The study delves into the uniqueness and existence of
the solution for the Fitzhugh-Nagumo model, along with a detailed discussion on the Ulam-Hyers
stability of the model. Vieta-Fibonacci wavelets are employed to find the numerical solution of
the PDEs, and the operational matrices corresponding to both integer and variable-order (VO)
differential operators are meticulously derived. These operational matrices play a crucial role in
transforming the original problem into a system of algebraic equations. The error analysis asso-
ciated with this method is rigorously examined, providing valuable insights into the accuracy and
reliability of the proposed approach. The effectiveness and precision of the method are further val-
idated by applying it to several numerical examples. These examples demonstrate the robustness
of the proposed scheme in handling complex differential equations and underline its potential as a
powerful tool in the numerical analysis of VOPDEs.

References

[1] Y. Chen, Y. Sun, L. Liu, Numerical solution of fractional partial differential equations with
variable coefficients using generalized fractional-order Legendre functions, Applied Mathe-
matics and Computation 244 (2014) 847–858.

[2] E. Craciun, M. Singh, Operational matrix method to solve nonlinear reaction-advection-
diffusion equation in fractional order system, Analele ştiinţifice ale Universităţii” Ovidius”
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