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Abstract

This paper concerns the analysis of the initial boundary value problem for the
semi-linear Schrödinger equation. In the paper, we design a reliable scheme coupling
the nonstandard finite difference method in time with the Galerkin combined with
the compactness method in the space variables to analyze the problem. The analysis
begins by showing that, given initial solutions in specified space, the global solution of
the Schrödinger equation exists uniquely. We further show using the a priori estimates
obtained from the existence process, that the numerical solution from the designed
scheme is stable and converges optimally in specified norms. Furthermore, we show
that the scheme replicates or preserves the qualitative properties of the exact solution.
Numerical experiments are conducted using a carefully chosen example to justify our
theoretical proposition.
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1 Introduction

The semi-linear time-dependent evolution equation such as the Schrödinger equation because
of its importance in the scientific arena, has attracted a lot of interest to mathematical
scholars. This equation is one of the cornerstones of quantum physics which describes what a
system of quantum objects such as atoms and subatomic particles will do in the future, based
on its current state. The equation also models many physical phenomena such as optics,
seismology and bimolecular dynamics to mention a few. See, [11, 24, 27, 37, 40, 41, 42, 45]
and [50] for more details. Of recent, the growing interest has been focussed on the solution
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of the equation both theoretically and numerically. Since we intend in our work to study
the global solution by extending it from the local one, then we consider the simplest model
of the two dimensional equation stated as follows:

i
∂u

∂t
−∆u+ |u|2u = 0, on, Ω× (0, T ) (1)

u(x, t) = 0 on ∂Ω× (0, T ) (2)

u(x, 0) = u0(x) for x ∈ Ω t = 0, (3)

where Ω ⊂ R
2 is an open bounded set contained in R

2 and ∂Ω is a Dirichlet boundary.
There are so many methods in the literature used in the studying of the above problem

in R
2 and not in the domain Ω. However, we are aware of some of the results in Ω with

homogeneous boundary conditions presented by Y. Tsutsumi [48] and M. Tsutsumi [47] that
proved well-posedness for the homogeneous problem in an exterior domain with sufficiently
small and smooth initial data. Some other studies have been carried out with problems over
Ω in two dimensional space as in [46]. It should also be noted that studies over the domain Ω
could lead to results asserting the blowing up of the solution under certain conditions. Other
studies have been carried out in one-dimension with non homogeneous boundary conditions
and we have seen in Bu [13] that such result proved the well-posedness of smooth solutions
with arbitrary large data and a nonlinear term of positive-energy. We also understand the
fact that Carroll and Bu [15] for one-dimensional problems, proved similar results like Bu [13]
with nonlinear cubic term using inverse scattering techniques. For many more theoretical
methods of the problems see [6, 20, 30]. It is important to note at this point that, the
theoretical analysis of the time-dependent Schrödinger equation can be quite tedious and
can only be possible with limited methods like those listed above. For this reason, numerical
methods are the most commonly used in the analysis of the solution of such problems. The
most common of these methods are the centered finite difference methods for the spatial
derivative and other regularly used methods are the Crank-Nicolson methods which are of
second order in both space and time and are numerically stable. Other commonly used
methods for the temporal part include the fourth order Runge-Kutta method which as the
name implies has fourth order accuracy. There are still many more methods which do not
use finite difference methods in the spatial part such as the split operator Fourier method
see [16, 33]. These methods depend or rely mostly on their Fourier transforms and for that
reason, the spatial accuracy is determined by the algorithms used to perform the transforms.
In summary, a growing interest of the numerical techniques, are based on the centered based
finite difference techniques described above. Many more methods are the finite element
methods, the spectral or the more specialized coupling type of the Schrödinger equation, see
[10, 14, 22, 25, 26, 28, 31, 39, 49] for more details.

To the best of this author’s knowledge, none of the above mentioned studies and many
more, have utilized the a priori estimates obtained from the existence of global solution of
the problem, to obtain the optimal rate of convergence of the solution of the Schrödinger
equation. For this reason, we exploit this gap and design a reliable numerical scheme con-
sisting of the nonstandard finite difference method in the time variable and the Galerkin
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combined with the compactness method in the space variables. We then show using the
Galerkin combined with the compactness method that the global solution of the problem
exists uniquely. We further proceed with the a priori estimates obtained from the existence
of the global solution of the problem to show that the numerical solution obtained from this
scheme is stable. With the stable scheme, we proceed to show that the numerical solution
converges optimally in both the H1 and the L2-norms. Furthermore, we show that the nu-
merical solution replicates or preserves the qualitative properties of the exact solution of the
problem. Numerical experiments are further conducted with a chosen example, to show that
indeed the numerical solution from the scheme validate the theory proposed in the work.The
nonstandard finite difference method mentioned above was initiated by Mickens some decade
back, see [34] and for some major contributions to the foundation of the method, we refer to
[4, 5]. For an overview of the technique, see [35]. As regard the comparison of the standard
and nonstandard finite difference methods see [34].

The paper after this section is organized as follows: In section 2 we will briefly state
the notations and preliminaries to be used in the paper. This will be followed by section 3
which is devoted to show analytically that the global solution of the problem exists uniquely.
In section 4 we design the main numerical scheme NSFD-GM and show that the scheme
converges optimally with it’s numerical solution replicating the qualitative properties of
the exact solution. We proceed in section 5 to conduct a numerical experiments with a
chosen example to show that the numerical solution indeed validate the theory of optimal
convergence shown in section 4. We conclude our findings and future remarks in section 6.

2 Notations and preliminaries

This section will be concerned with presenting some notations, definitions and preliminary
results that will be used in this paper. Some of these results might be common to some of
results already used in some papers for examples [17, 18, 19, 20] to mention just a few. We
may therefore spare duplications by stating just the very useful ones needed in this paper
and for details of these, we refer to relevant references . We now present among others,
the function spaces where the analysis of the problem is done. We begin with the space
D(Ω) defined as the linear space of functions which are infinitely differentiable with compact
support on Ω i.e

D(Ω) := {v|Ω : v ∈ supp(v) ⊂ Ω} .

The above space is followed by the space of distributions denoted by D′(Ω) and often known
as the dual of D(Ω). The duality pairing between D′(Ω) and D(Ω) is often denoted by 〈·, ·〉
and it is remark that, if a function v is a locally integrable, then v can be identified with a
distributions by

〈v, ρ〉 :=
∫

Ω

v(x)ρ(x)dx, ∀ρ ∈ D(Ω). (4)
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For more on these spaces see [1, 23, 32]. Lp(Ω) spaces will also be needed in the paper for
1 < p < +∞ and this is briefly defined by

Lp(Ω) :=

{

v :

(
∫

Ω

|v(x)|pdx
)1/p

< ∞
}

(5)

and (5) is known as a Banach space with its norm defined by

‖v‖Lp(Ω) =

(
∫

Ω

|v(x)|pdx
)1/p

. (6)

The next very important function space is the Sobolev space denoted and defined for m ∈ N

and p ∈ R with 1 < p ≤ ∞ by

Wm,p(Ω) := {v ∈ Lp(Ω) : Dαv ∈ Lp(Ω), for all multi index |α| ≤ m} . (7)

and this is also a Banach space with the norm

‖v‖m,p,Ω =





∑

|α|≤m

‖Dαv‖Lp(Ω)





1/p

, p < ∞ (8)

or

‖v‖m,∞,Ω = sup
|α|≤m

(

sup
x∈Ω

ess|Dαv(x)|
)

, p = ∞. (9)

In the case when p = 2, the above Sobolev space Wm,2(Ω) is often denoted by Hm(Ω) which
is a Hilbert space. If there is no ambiguity, we will be allowed to drop the superscript p = 2
when referring to its norm and semi-norm. We would like to continue but this time, with
a more general Sobolev space denoted by Hm[(0, T );X ] where X is a Hilbert space. This
space in view of Lions and Magenes [32] is defined as the space of square integrable functions
taking values from [0, T ] to X . The norm of the above space is given by

‖v‖Hm[(0,T );X] :=





∑

|α|≤m

∫ T

0

‖Dαv(x)‖2Xdt





1/2

. (10)

In view of (10), X will either be Lp or Wm,p space and in our paper in particular, X =
L2, L4, H1

0 and Hm
0 . Since we shall be dealing with differential equation involving complex

functions, then it better to state the composition of such function and for more on the prop-
erties of such functions we refer to text relevant to such materials. We high-light that a
complex function v(x) with x ∈ R is one of the form v(x) = Re(v) + iIm(v) where Re(v)
and Im(v) are real and i =

√
−1 is a complex number. We shall be using some important

inequalities like the Hölder, Gronwall’s, Young’s, Poincaré and Gagliador-Nirenburg inequal-
ities to mention a few, will be referred to some standard text books such as [1, 21, 23, 32]
and[43] when required.
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We will finally conclude this section by introducing the space where the discrete problem
will be defined. This will be a space of finite dimensional space Vh defined by

Vh :=
{

vh ∈ C0(Ω̄) : vh|∂Ω = 0, vh|J ∈ P1, ∀J ∈ Jh

}

(11)

where P1 is the space of polynomial of degree less than or equal to 1, Jh a regular family
of discretization of Ω consisting of compatible triangles J of sizes hJ < h see [21] for more
details. In view of (11), we observe that for each mesh size Jh, we associate the finite element
space V of continuous piece-wise linear function that is 1 and zero at every other nodes of
V, That is, if {Pj}nj=1 are the interior nodes of Jh, then any function in Vh is uniquely
determined by its values at the point Pj and it should also be noted that Vh ⊂ H1

0 (Ω).

3 The semi-linear Schrödinger equation

This section will be devoted to show using the Galerkin method and the compactness method
that the solution of the semi-linear Schrödinger equation (1)-(3) exists uniquely in the space

L∞
[

(0, T );L2(Ω)
]

∩ L2
[

(0, T );H1
0 ∩H2(Ω)

]

∩ L4
[

(0, T );L4(Ω)
]

for given initial data given in (3). The first known result of the above type on a bounded
domain was due to Brezis and Gallouet [12]. The weak solution of the problem can be proceed
by multiplying (1)-(3) by a test function v and integrating it over Ω and incorporating the
Dirichlet boundary condition (2) with the use of Green’s theorem to arrive at a the following
weak problem: find u ∈ L∞ [(0, T );L2(Ω)] ∩ L2 [(0, T );H1

0 ∩H2(Ω)] ∩ L4 [(0, T );L4(Ω)] such
that for all u0 ∈ H1

0 ∩H2(Ω) we have

i

〈

∂u

∂t
, v

〉

+ 〈∇u,∇v〉+
〈

|u|2u, v
〉

= 0 (12)

〈u(x, 0), v〉 = 〈u0, v〉 . (13)

for all v ∈ H1
0 (Ω).

The above variational or weak problem (12)-(13) leads to the introduction of the Galerkin
frame-work which will be used to solve the problem as follows: We introduce the L2 or-
thonormal basis given by {e1, e2, e2, · · · , em} ⊂ H1

0 ∩ H2(Ω) where m ∈ N. We use the
basis functions together with the test function v spanned by v ∈ span{e1, e2, e2, · · · , em} to
approximate the solution u defined by

um =
m
∑

i=1

γi(t)ei. (14)

Although an explicit basis can not be computed, we know a priori that one exists be-
cause H1

0 (Ω) is a separable Hilbert space. Substituting equation (14) into the semi-linear
Schrödinger equation, (1)-(3) satisfies the following ordinary differential equation

i
∂um

∂t
−∆um + Pm

(

|um|2um

)

= 0, on Ω× (0, T ) (15)
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um(x, t) = 0 on ∂Ω× (0, T ) (16)

u(x, 0) = Pmu0 on Ω (17)

It should be observed at this point that the ordinary differential equation (15)-(17) is also
satisfied with the discrete solution {um} taking values in the finite dimensional subspace
Vm ∈ H1

0 (Ω) defined by the equation (11). We should also observe that the operator Pm

stated in (15) denotes the orthogonal projection,

Pm : H−1(Ω) −→ Vm ⊂ H−1(Ω). (18)

meaning that the operator is extended from L2(Ω) onto H−1(Ω) and defined on the H−1(Ω)
by

Pm

(

∑

k∈m

γk
m(t)uk

)

=

m
∑

k=1

γk
m(t)uk. (19)

The above connection between the semi-linear Schrödinger equation (1)-(3) and the system of
ordinary differential equation (15)-(17), validate the fact that the solution of these equations
are equivalent as seen classically in Temam 1997 [44] and Evans 1998 [23]. To this end we
use the above frame-work to show that the global solution of the semi-linear Schrödinger
equation exists uniquely. The results will be stated in the following Theorem 1:

Theorem 1 Given the initial solution u0 ∈ H1
0 (Ω)∩H2(Ω) and u|∂Ω = 0. Then there exists

a unique global solution of the semi-linear Schrödinger equation (1)-(3)

u ∈ L∞
[

(0, T );L2(Ω)
]

∩ L2
[

(0, T );H1
0(Ω) ∩H2(Ω)

]

∩ L4
[

(0, T );L4(Ω)
]

and
∂u

∂t
∈ L2

[

(0, T );H−1(Ω)
]

such that the variational problem (12)-(13) with the estimate

‖u(·, t)‖2 +
∥

∥

∥

∥

∂u(·, t)
∂t

∥

∥

∥

∥

2

L2(Ω)

+ ‖∇u(·, t)‖2L2(Ω) + ‖u(·, t)‖4L4(Ω) ≤ C
(

‖u0‖2H2(Ω) + ‖u0‖6H2(Ω)

)

(20)

are satisfied.

The proof of the above theorem above will be executed in three main subsections which
will be 3.1, 3.2 and 3.3. Subsection 3.1 will address the uniform approximation estimates,
followed by 3.2 which address the compactness and passage to the limit. Finally subsection
3.3 will be focused on the uniqueness of the solution of the equation

3.1 Uniform approximate estimates of the solution of the equation

For us to show under this subsection the uniform approximation estimates of the semi-linear
Schrödinger equation, we will first consider here and after that all constants independent of
m will be denoted by C In view of equation (15)-(17), the variational equation is stated by

i

〈

∂um

∂t
, v

〉

+ 〈∇um,∇v〉+ Pm

〈

|um|2um, v
〉

= 0 (21)
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〈um(x, 0), v〉 = 〈u0, v〉 . (22)

Setting v = ¯um(t) in equation (21) we have

∫

Ω

[

i
∂um

∂t
ūm + |∇um|2 + |um|4

]

dx = 0

from where we obtain

i
1

2
‖um‖2L2 + ‖∇um‖2L2 +

∫

Ω

|um|4dx = 0. (23)

Integrating both sides of (23) over the time interval t and using the initial value inequality
‖um(·, t)‖2L2(Ω) ≤ ‖u0‖2L2(Ω) we have

‖um(·, t)‖2L2(Ω + 2‖um‖4L4(Ω) ≤ ‖u0‖2L2(Ω) (24)

after subtracting the complex conjugate of (23) from itself. Hence, using Gagliadoe-Nirenburg
and the Gronwall’s Lemma on inequalities (24) for any t ∈ [0, T ] yield

‖um(·, t)‖2L2(Ω +
1

2
‖um‖4L4(Ω) ≤ C1‖u0‖2L2(Ω) (25)

From the above inequality (25), the estimate of ‖um(·, t)‖2L2(Ω) can be obtained .

As for the estimate for the derivative ∂ūm

∂t
, we differentiate equation (21) and set v = ∂ūm

∂t

to have

i

〈

∂2um

∂t2
,
∂ūm

∂t

〉

+

〈

∂

∂t
(∇um),∇

∂ūm

∂t

〉

+

〈

∂

∂t
|um|2um,

∂ūm

∂t

〉

= 0

and integrating it as was the case in (23) yield

∫

Ω

[

i
∂2um

∂t2
∂ūm

∂t
+

∣

∣

∣

∣

∂

∂t
(∇um)

∣

∣

∣

∣

2

+
∂

∂t
(|um|2um)

∂ūm

∂t

]

dx = 0. (26)

Subtracting the complex conjugate of (26) from itself we have

∫ t

0

∫

Ω

i

[

∂

∂t

∣

∣

∣

∣

∂um

∂t

∣

∣

∣

∣

2
]

dxdt +

∫ t

0

∫

Ω

iIm

[

∂

∂t
(|um|2um)

∂ūm

∂t
+

∂

∂t
(|um|2um)

∂um

∂t

]

dxdt

= −Re

∫ t

0

∫

Ω

[

∂

∂t
(|um|2um)

∂ūm

∂t
− ∂

∂t
(|um|2um)

∂um

∂t

]

dxdt

. (27)

Since it can easily be calculated that

∂

∂t

(

|um|2um

) ∂ūm

∂t
= 2|um|2

∣

∣

∣

∣

∂um

∂t

∣

∣

∣

∣

2

+ (um)
2

(

∂um

∂t

)2
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then using this into equation (27) leads to the calculation of the following two identities:

∂

∂t

(

|um|2um

) ∂ūm

∂t
+

∂

∂t

(

|um|2ūm

) ∂um

∂t
= 2|um|2

∣

∣

∣

∣

∂um

∂t

∣

∣

∣

∣

2

+

(

∂

∂t
(|um|2)

)2

(28)

and

∂

∂t

(

|um|2um

) ∂ūm

∂t
− ∂

∂t

(

|um|2ūm

) ∂um

∂t
= (um)

2

(

∂ūm

∂t

)

− (ūm)
2

(

∂um

∂t

)2

. (29)

Using these identities (28) and (29) back into equation (27) yield
∥

∥

∥

∥

∂um

∂t

∥

∥

∥

∥

2

L2

+ 2Im

∫ t

0

∫

Ω

|um|2
∣

∣

∣

∣

∂um

∂t

∣

∣

∣

∣

2

dxdt+ Im

∫ t

0

∫

Ω

(

∂

∂t
|um|2

)2

dxdt

≤ 2|Re|
∫ t

0

∫

Ω

|um|2
∣

∣

∣

∣

∂um

∂t

∣

∣

∣

∣

2

dxdt+

∥

∥

∥

∥

∂um(·, 0)
∂t

∥

∥

∥

∥

2

L2(Ω)

. (30)

Using the fact that 2(Imz −Rez) ≥ 2|Rez| > 0 then the above inequality (30) becomes
∥

∥

∥

∥

∂um(·, t)
∂t

∥

∥

∥

∥

2

L2(Ω)

+

∫ t

0

∫

Ω

|um|2
∣

∣

∣

∣

∂um

∂t

∣

∣

∣

∣

2

dxdt ≤ C2

∥

∥

∥

∥

∂um(·, 0)
∂t

∥

∥

∥

∥

2

L2(Ω)

. (31)

We now estimate the term
∥

∥

∥

∂um(·,0)
∂t

∥

∥

∥

2

L2(Ω)
. on the right hand side of inequality (31) by

considering equation (21) as follows:

i

〈

∂um(·, t)
∂t

, v

〉

L2(Ω)

= 〈∆um, v〉L2(Ω) −
〈

|um|2um, v
〉

L2(Ω)
(32)

Setting v = ∂ūm(·,0)
∂t

for t = 0 in equation (32) we have

∫

Ω

i

∣

∣

∣

∣

∂um(·, 0)
∂t

∣

∣

∣

∣

2

dx =

∫

Ω

∆um(·, o)
∂ūm(·, 0)

∂t
dx−

∫

Ω

|um|2um
∂ūm(·, 0)

∂t
dx

and hence we have
∥

∥

∥

∥

∂um(·, t)
∂t

∥

∥

∥

∥

2

L2(Ω)

≤ C3‖∆um(·, 0)‖2 + C4

∫

Ω

|um(·, 0)|6

≤ C3‖∆um(·, 0)‖2 + C4‖um(·, 0)‖6L6(Ω). (33)

Since

‖um(·, t)‖6L6(Ω) ≤ β6
(

‖∇um(·, t)‖4L2‖um(·, t)‖2L2(Ω)

)

for any t ∈ [0, T ] (34)

then thanks to [29] we have

‖um(·, t)‖6L6(Ω) ≤ C5

(

‖∇um(·, t)‖4L2‖um(·, t)‖2L2(Ω)

)

≤ C6‖um(·, 0)‖6H1
0
(Ω)

≤ C6‖u0‖6H2(Ω)(Ω). (35)
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Using the inequality (33), it is well-known that

‖∆um(·, 0)‖ ≤ C7‖u0‖2H2(Ω). (36)

Thus, using (35) and (36) back into inequality (32) yield

∥

∥

∥

∥

∂um(·, 0)
∂t

∥

∥

∥

∥

2

L2(Ω)

≤ C8‖u0‖2H2(Ω) + C9‖u0‖6H2 . (37)

Using the inequality (37) back into (31) yield

∥

∥

∥

∥

∂um(·, t)
∂t

∥

∥

∥

∥

2

L2(Ω)

+

∫ t

0

∫

Ω

|um|2
∣

∣

∣

∣

∂um

∂t

∣

∣

∣

∣

2

dxdt ≤ C10

(

‖u0‖2H2(Ω) + ‖u0‖6H2(Ω)

)

. (38)

From the above inequality (38) we can obtain the estimate
∥

∥

∥

∂um(·,t)
∂t

∥

∥

∥

2

L2(Ω)
.

The only estimate that remains to be evaluated now is ∇um. We obtain this estimate by
multiplying equation (21) ∂ūm

∂t
to have

∫ t

0

∫

Ω

[(

i
∂um

∂t

)

∂ūm

∂t

]

dxdt+

∫ t

0

∫

Ω

∂

∂t
|∇um|2dxdt+

∫ t

0

∫

Ω

∂

∂t
|um|4dxdt = 0

after integrating over the time interval and using the Green theorem with consideration only
taken on the real part. This further leads to the following equation

∫ t

0

∂

∂t

[

‖∇um‖2L2(Ω) +
1

4
‖um‖4L4(Ω)

]

dt = 0. (39)

By the use of Sobolev embedding theorem H1(Ω) →֒ Lp(Ω), p ≤ 6 we obtain for all t ∈ [0, T ]

‖∇um‖2LL2(Ω)
+

1

4
‖um‖4L4(Ω) ≤ C ′‖∇um(·, 0)‖2L2(Ω). (40)

Combining all these inequalities (25), (38) and (40) above conclude the fact that the sequence
of solutions {um}, m ∈ N is uniformly bounded in the space.

L∞
[

(0, T );L2(Ω)
]

∩ L2
[

(0, T );H1
0 ∩H2(Ω)

]

∩ L4
[

(0, T );L4(Ω)
]

and
∂u

∂t
∈ L2

[

(0, T );H−1(Ω)
]

3.2 Compactness and passage to the limit of the solution of the

problem

In view of the above estimates for uniform boundedness of the solution obtained in section
3.1, we reserve this subsection to show that the sequences of solutions {um} of the semi-linear
Schrödinger equation converges strongly to the solution u. We proceed to show this by first

9



of all recall that, we have obtained the following approximate solution um defined on the
interval [0, T ]:

um is uniformly bounded in L∞
[

(0, T );L2(Ω)
]

um is uniformly bounded in L2
[

(0, T );H1
0 ∩H2(Ω)

]

um is uniformly bounded in L4
[

(0, T );L4(Ω)
]

∂um

∂t
is uniformly bounded in L2

[

(0, T );L2.(Ω)
]

In view of the following embedding

H1
0 (Ω) →֒ L2(Ω).

by Banach-Alaoglu’s Theorem found in [36], there exists a subsequence of um still denoted
by um such that

um −→ u weakly star in L∞
[

(0, T );L2(Ω)
]

umcu weakly in L2
[

(0, T );H1
0 ∩H2(Ω)

]

um −→ u weakly in L4
[

(0, T ); L4(Ω)
]

∂um

∂t
−→ ∂u

∂t
weakly in L2

[

(0, T );L2.(Ω)
]

and in view of the following Theorem 2 found in [36] um −→ u strongly in L2 [(0, T );L2(Ω)] .

Theorem 2 Suppose that X →֒ Y →֒ Z are Banach spaces where X,Z are reflexive and
X is compactly embedding in Y . Let 1 < p < ∞. If the functions wN : (0, T ) −→ X are
such that {wN} is uniformly bounded in L2 [(0, T );X ] and

{

∂u
∂t

}

is uniformly bounded in
Lp [(0, T );Z], then there is a subsequence that converges strongly in L2 [(0, T ); Y ].

With the above strong convergence of um in L2 [(0, T );L2(Ω)] shown, we only need to
show below that this solution satisfies equation (22). To this end, we introduce another
test function say θ which is continuously differentiable on [0, T ] with values θ(0) = 1 and
θ(T ) = 0. With these claims in place, we proceed in view of the variational formulation (21)
with the test function θ to have

i

〈

∂um

∂t
, v

〉

θ(t) + 〈∇um,∇v〉 θ(t) +
〈

|um|2um, v
〉

θ(t) = 0. (41)

Integrating equation (41) by part over the interval [0, T ] yield

−
∫ T

0

i

〈

∂um

∂t
, θ(t)

〉

vdt+

∫ T

0

〈∇um,∇vθ(t)〉 dt+
∫ T

0

〈

|um|2um, vθ(t)
〉

dt = 〈u(0), v〉 θ(t).(42)

In view of the Theorem 2, um(t) is uniformly bounded, which by passing to the limit, we
have in view of (42) yield

−
∫ T

0

i

〈

∂u

∂t
, θ(t)

〉

vdt+

∫ T

0

〈∇u,∇vθ(t)〉 dt+
∫ T

0

〈

|u|2u, vθ(t)
〉

dt = 〈u(0), v〉 θ(0). (43)

which in particular holds for θ(t)D′(0, T ), meaning therefore that u from equation (43) is
satisfied in the distributional sense. Comparing equations (41) and (43) yield

〈u(0)− u0, v〉 = 0, ∀v ∈ H1
0 (Ω)

which is the equation (22) as required.
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3.3 Uniqueness of the solution of the equation

We set this subsection aside to show the uniqueness of the solution of the semi-linear
Schrödinger equation (1)-(3). This is shown by letting u = u1 − u2. Since the solution
u satisfies equation (1) and (2) where u|∂Ω = 0, then u(0) = u1(0) − u2(0) = 0. In view of
this, we proceed using equation (1) to obtain

i
∂u

∂t
−∆u+ |u1|2u1 − |u2|2u2 = 0. (44)

In view of equation (44) and the factorization of |u1|2 − |u2|2 = (|u1| − |u2|)(|u1| + |u2|) we
have

i

〈

∂u

∂t
, ū

〉

+ ‖∇u‖2L2(Ω) ≤ |2|2L4(Ω)

[

|u1|2 + |u1||u2|+ |u2|2
]

(45)

after multiplying through out by ū. Using the Gagliardor-Nirenberg and the Young’s in-
equalities on inequality (45) in view of (24) yield

‖u(t)‖2L2(Ω) ≤ ‖u(0)‖2L2(Ω) = 0, ∀ t ≥ 0, (46)

after applying the Gronwall inequality. Hence, from (46) the uniqueness of the solution of
the problem is achieved.

4 The Schrödinger NSFD-GM numerical Scheme

We set aside this section for the the numerical analysis of the semi-linear Schrödinger equa-
tion. This analysis is done on the design reliable scheme NSFD-GM mentioned earlier. The
scheme will consist of coupling the nonstandard finite difference method on the time and
the Galerkin combined with compactness method on the space variables. With the scheme,
we intend to show that the numerical solution obtained from it is stable and converges opti-
mally in the L2 as well as the H1-norms. Furthermore, we show that the scheme replicates
the decaying properties of the exact solution. The above stated objectives will be achieved
by first stating the discrete version of the variational form of the semi-linear Schrödinger
equation (47)-(48) which states, find uh : [0, T ] −→ Vh, the discrete solution such that

i

〈

∂uh

∂t
, vh

〉

+ 〈∇uh,∇vh〉+
〈

|uh|2uh, vh
〉

= 0 (47)

〈uh(x, 0), vh〉 = 〈Phu0, vh〉 . (48)

where Ph is the orthogonal projection onto Vh.
The above discrete version leads to the following frame-work that is geared toward as-

serting the analysis of the numerical solution of equation (47)-(48) and also by using the fact
that, the subspace Vh ⊂ H1

0 (Ω) as seen in [21]. Besides, the above assumption, we will also

11



assume that the projector Ph with respect to the Dirichlet inner product ∇u,∇v satisfies
the inequality

‖Phv − v‖ ≤ Ch2‖v‖H2, for v ∈ H1
0 ∩H2 (49)

where ‖·‖ is the usual norm in L2 and H2 is a standard Sobolev space with some constant C.
It is also well-known in view of [51] that if u is sufficiently smooth on a closed time interval
[0, T ] and the discrete initial data are suitably chosen, then

|u(t)− uh(t)| ≤ C1(u, C2, C3)H
2, ∀t ∈ [0, T ] (50)

where C2 is the bound on U and ∇u with C3 the constant in (49).
We now continue to address the afore-mentioned objective after putting in place the

desired frame-work. To this end, we set the time step size tn = n∆t for n = 0, 1, 2, · · · ,N
over the time interval [0, T ]. With this time step, we find the NSFD-GM approximate
solution {Un

h } such that Un
h ≈ un

h at each discrete time tn in the finite dimensional space
Vh for sufficiently smooth functions. The above approximation, permits us to define the
NSFD-GM scheme as that which consists of finding a fully discrete solution of the following
semi-linear Schrödinger equation Un

h ∈ Vh for vh ∈ Vh such that for all Vh ⊂ H1
0 (Ω) we have

〈δnUn
h (t), vh〉+ 〈∇Un

h ,∇vh〉+
〈

|Un
h |2Un

h , vh
〉

= 0, (51)

〈Un
h , vh〉 = 〈Phu0, vh〉 , (52)

are satisfied, where

δnU
n
h =

Un
h − Un−1

h

φ(∆t)
and φ(∆t) =

eλ∆t − 1

λ
. (53)

The above new frame-work needs the following comments:

(a) that the special and complicated function φ(∆t) is in such a way that

0 < φ(∆t) < 1 for n = 1, 2, 3, · · · , N (54)

(b) That if the nonlinear function |Un
h |2Uh is made very small that its effect is negligible, or

even zero then the scheme (51) will coincide to the exact scheme.

〈

Un+1
h − Un

h

φ(∆t)

〉

+ 〈∇Un
h ,∇vh〉 = 0 (55)

which according to Michens [34], replicates the decaying to zero property.
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4.1 The stability of the NSFD-GM scheme for the equation

This subsection is reserved to show that the numerical scheme of the Schrodinger equation
(51)-(52) is stable. In other words, we want to show that the numerical solution Un

h (t) of
the Schrödinger scheme NSFD-GM (51)-(52) is uniformly bounded as stated in the following
Theorem 3

Theorem 3 Assume that the solution of the semi-linear Schrödinger equation u in equation
(47)-(48) is regular. Then given U0

h ∈ Vh, the solution Un
h (t) of the NSFD-GM Schrödinger

scheme (51)-(52) remain bounded in the following sense:

|U0
h |2 ≤ |U0

h |2, (56)

N
∑

n=1

|Un − Un−1
h |2 ≤ |U0

h |2. (57)

Proof 4 We proceed with the proof of the above theorem by setting vh = ¯Un
h (t) in equation

(51) to obtain

i
〈

Un
h (t)− Un−1

n (t), Un
h (t)

〉

+ φ(∆t)‖∇Un
h (t)‖2L2 + φ(∆t) |Un

h |2 Un
h = 0

In view of (23), we have from the above equation

i
〈

Un
h (t)− Un−1

n (t), Un
h (t)

〉

+ φ(∆t)‖∇Un
h (t)‖2L2 + φ(∆t) ‖Un

h ‖4L4(Ω) ≤ 0. (58)

It is well-known in view of the first term of the left hand side of the inequality (58) that

〈

Un
h (t)− Un−1

h (t), Un
h (t)

〉

=
1

2
|Un

h |2 −
1

2
|Un−1

h |2 + 1

2
|Un

h − Un−1
h |2

re-introducing this identity back into the inequality ((58) and considering only the real part
of the problem yield

|Un
h |2 − |Un−1

h |2 + |Un
h − Un−1

h |2 + 2φ(∆t) ‖∇Un
h ‖2L2 + 2φ(∆t) ‖Un

h ‖4L4 ≤ 0 (59)

Summing the above inequality (59) for n = 1, 2, · · · ,N we have

|Un
h |2 +

N
∑

n=1

|Un
h − Un−1

h |2 + 2φ(∆t)
N
∑

n=1

‖∇Un
h ‖2L2 + 2φ(∆t)

N
∑

n=1

‖Un
h ‖4L4 ≤ |U0

h |2 (60)

Hence, in view of (25) and (40), we can immediately read the results (56) and (57) from
inequality (60) as required.
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4.2 Optimal convergence of NSFD-GM scheme

We show under this subsection that the numerical solution obtained from the NSFD-GM
Schrödinger scheme converges optimally in both the L2 and H1-norms. Furthermore, we
show that these numerical solutions replicates the decaying properties of the exact solution.
The two objectives under this subsection will be achieved by first statin without proof the
following results from Shen [38].

Lemma 5 Let ∆t, γ and ak, bk, dk, γk for the integer k ≥ 0 be non-negative numbers such
that

aJ +
J
∑

k=0

bk∆t ≤
J
∑

k=0

dkaJ∆t+
J
∑

k=0

γk∆t + γ, ∀ J ≥ 0. (61)

Suppose that

dk∆t < 1 and set σk = (1− dk∆t)−1, ∀ k ≥ 0. (62)

Then we have

aJ +

J
∑

k=0

bk∆t ≤ exp

(

J
∑

k=0

dk∆t

)(

J
∑

k=0

γk∆t + γ

)

∀ J ≥ 0. (63)

With the NSFD-GM Schrödinger scheme frame-work in place, and the availability of the
above Lemma 5 thanks to Shen [38], we can state and prove the error estimate in the next
Theorem 6.

Theorem 6 Assume that Φk be a non-negative number and the solution of the continuous
and discrete semi-linear Schrödinger equation (47)-(48) and (51)-(52) respectively exists
uniquely satisfying

Φkφ(∆t) < 1 and σk = (1− Φkφ(∆t))−1
, ∀ k ≥ 0.

Then we have

‖u(tJ)− Uh(tJ)‖+ φ(∆t)

J
∑

k=0

|∇(u(tJ)− Uh(tJ))|2 ≤ C(tJ)(φ(∆t))2, ∀J ≥ 0. (64)

Proof 7 We use the implicit nonstandard finite difference method in the time to the above
theorem stated as

i
Un+1 − Un

φ(∆t)
= ∆Un+1 − |Un+1|2Un+1. (65)

Followed by the nonstandard Taylor’s integral Theorem stated by

i
u(tn+1 − u(tn))

φ(∆t
=

∂u(tn+1)

∂t
− 1

2

∫ tn+1

tn

∂2u(t)

∂t2
(tn+1 − t)dt

= ∆u(tn+1) + |u(tn+1)|2u(tn+1)

− 1

2

∫ tn+1

tn

∂2u(t)

∂t2
(tn+1 − t)dt. (66)

14



Subtracting equation (66) from (65) and noting that Θn = u(tn − Un) yield

1

φ(∆t)
i
[

Θn+1 −Θn, Θ̄n+1

]

=
〈(

|un+1|2un+1 − |Un+1|2 Un+1

)

, Θ̄n+1

〉

− ‖∇Θn+1‖2L2(Ω)

+
1

2

∫ tn+1

tn

〈

∂2u(t)

∂t2
, Θ̄n+1

〉

(tn+1 − t)dt (67)

after setting un+1 = u(tn+1) and multiplying equation (65) by the complex conjugate Θ̄n+1.
Estimating the first term of the right hand side of (67) yield

∫

Ω

∣

∣

〈(

|un+1|2un+1 − |Un+1|2 Un+1, Θ̄n+1

)〉∣

∣ dx ≤
∫

Ω

|Θn+1|2L4(Ω)

[

|un+1|2 + |un+1| |Un+1|+ |Un+1|2
]

dx

(68)

since |un+1|2 − |Un+1|2 = (|un+1| − |Un+1|) (|un+1|+ |Un+1|) . Using Gagliardo-Nirenberg and
Young’s inequalities with the fact that H1 ⊂ L∞ on the right hand side of inequality (68)
yield

∫

Ω

|θn+1|2L4(Ω)

[

|un+1|2 + |un+1| |Un+1|+ |Un+1|2
]

dx

≤
∫

Ω

|∇Θn+1| |Θn+1|
(

|un+1|2 + |un+1| |Un+1|+ |Un+1|2
)

≤ ǫ

2
‖∇Θn+1‖2L2 +

1

2ǫ
‖Θn+1‖2L2(Ω)

(

|un+1|2 + |un+1| |Un+1|+ |Un+1|2
)

. (69)

Re-introducing (69) into inequality (67) yield

1

φ(∆t)
i
[

Θn+1 −Θn, Θ̄n+1

]

≤ (
ǫ

2
− 1) ‖∇Θn+1‖2L2 +

1

2ǫ
‖Θn+1‖2L2(Ω)

(

|un+1|2 + |un+1| |Un+1|+ |Un+1|2
)2

.

(70)

Going back to inequality (67), we estimate the third term of the right hand side to yield

∣

∣

∣

∣

1

2φ(∆t

∫ tn+1

tn

〈

∂2u(t)

∂t2
,Θn+1

〉

(t− tn+1)dt

∣

∣

∣

∣

≤ C

2φ(∆t)
|∇Θn+1|

∫ tn+1

tn

∣

∣

∣

∣

∂2u

∂t2

∣

∣

∣

∣

|t− tn+1|dt (71)

since by Poincare inequality, |Θn+1|H1
0
≤ C|∇Θn+1|L2. Applying Holder’s inequality on the

right hand side of (71) yields

∣

∣

∣

∣

1

2φ(∆t)

∫ tn+1

tn

(

∂2u(t)

∂t2
,Θn+1

)

(t− tn+1)dt

∣

∣

∣

∣

≤ C

2φ(∆t)
|∇Θn+1|

(
∫ tn+1

tn

∣

∣

∣

∣

∂2u

∂t2

∣

∣

∣

∣

H−1

)1/2(∫ tn+1

tn

|t− tn+1|2dt
)1/2

. (72)

But, we have in view of tn < t < tn+1 that there exists a function φ(tn) < φ(t) < φ(tn+1)
such that

|φ(t)− φ(tn)| = φ(∆t) = |t− tn|∆t.
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Thus

(
∫ tn+1

tn

|t− tn+1|
)1/2

≤ φ(∆t)(t− tn+1)
1/2 ≤ (φ(∆t))1/2

and substituting this into inequality (72) we have

∣

∣

∣

∣

1

2φ(∆t)

∫ tn+1

tn

(

∂2u(t)

∂t2
,Θn+1

)

(t− tn+1)dt

∣

∣

∣

∣

≤ C(φ(∆t))1/2

(

∫ tn+1

tn

∣

∣

∣

∣

∂2u(t)

∂t2

∣

∣

∣

∣

2

L2(Ω)

dt

)1/2

|∇Θn+1|L2(Ω) .

(73)

Using Young’s inequality for arbitrary ǫ > 0 in inequality (73) we have

∣

∣

∣

∣

1

2φ(∆t)

∫ tn+1

tn

(

∂2u(t)

∂t2
,Θn+1

)

(t− tn+1)dt

∣

∣

∣

∣

≤ ǫ

2
‖∇Θn+1‖2L2(Ω) +

C

2ǫ
φ(∆t)

∫ tn+1

tn

∣

∣

∣

∣

∂2u(t)

∂t2

∣

∣

∣

∣

2

dt

(74)

Re-introducing inequality (74) back into inequality (70) we have

1

φ(∆t)
i
[

Θn+1 −Θn, Θ̄n+1

]

≤ (
ǫ

2
− 1) ‖∇Θn+1‖2L2

+
1

2ǫ
‖Θn+1‖2L2(Ω)

(

|un+1|2 + |un+1| |Un+1|+ |Un+1|2
)2

.

+
C

2ǫ
φ(∆t)

∫ tn+1

tn

∣

∣

∣

∣

∂2u(t)

∂t2

∣

∣

∣

∣

2

dt (75)

Choosing ǫ > 0 such that ǫ− 1 = 1 then have in view of (75)

1

φ(∆t)
i
[

Θn+1 −Θn, Θ̄n+1

]

+ ‖∇Θn+1‖2L2 ≤ 1

4
‖Θn+1‖2L2(Ω)

(

|un+1|2 + |un+1| |Un+1|+ |Un+1|2
)2

.

+
C

4
φ(∆t)

∫ tn+1

tn

∣

∣

∣

∣

∂2u(t)

∂t2

∣

∣

∣

∣

2

dt

and hence

i
[

Θn+1 −Θn, Θ̄n+1

]

+ φ(∆t) ‖∇Θn+1‖2L2 ≤
φ(∆t)

4
‖Θn+1‖2L2(Ω) Ψn+1 + C

φ(∆t)

4
Φn+1 (76)

where

Ψn+1 = |un+1|2 + |un+1| |Un+1|+ |Un+1|2

and

Φn+1 =

∫ tn+1

tn

∣

∣

∣

∣

∂2u

∂t2

∣

∣

∣

∣

2

H−1

dt.

16



It is well-known that the identity 〈Θn+1 −Θn,Θn+1〉 in the first term of the left hand side of
inequality (76) is given by

(Θn+1 −Θn,Θn+1) =
1

2

[

|Θn+1|2L2 − |Θn|2L2 + |Θn+1 +Θn|2L2

]

and introducing this back into inequality 76) yield

|Θn+1|2L2 − |Θn|2L2 + |Θn+1 −Θn|2L2 + φ(∆t)‖∇Θn+1‖2L2 ≤ C
1

2
φ(∆t)‖Θn+1‖2L2Ψn+1 + C

1

2
φ(∆t)2Φn+1.

(77)

Re-arranging the terms in inequality (77) and setting ak = ‖Θn+1‖2L2(Ω) and bk = ‖∇Θn+1‖2L2(Ω)

and summing partially from k = 0, 1, 2, · · · , n − 1 and also using the fact that a0 = Θ0 =
u0 − U0 = 0 we have

an +

n
∑

k=0

bkφ(∆t) ≤
n
∑

k=0

akφ(∆t)Ψn+1 +

n
∑

k=0

φ(∆t)2Φn+1. (78)

Applying Lemma 5 in inequality (78) yield

an +
n
∑

k=0

bkφ(∆t) ≤ exp

(

n
∑

k=0

σkφ(∆t)Ψn+1

)(

n
∑

k=0

Φn+1(φ(∆t))2

)

. (79)

provided Ψn+1φ(∆t) < 1 and σk = (1−Ψn+1φ(∆t))−1 ∀k ≥ 0. Since an, bk,Ψn+1 and Φn+1

are all positive series, then in view of Lemma 5

an +

n
∑

k=0

bkφ(∆t) ≤ C(φ(∆t))2 (80)

and the proof of the theorem is completed.

The error estimate shown above leads to the following optimal rate of convergence in
specified norms:

Theorem 8 In view of the assumptions of Theorem 6, the numerical solution of the semi-
linear Schrödinger equations (51)-(52) using the NSFD-GM method converges optimally with
the following estimates

‖u(t)− Uh(t)‖L2 ≤ C(t)
(

h2 + φ(∆t)
)

(81)

where the constant C(t) depends on t. Furthermore, the discrete solution Uh(t) preserves all
the qualitative properties of the exact solution of the equation under study.

Proof 9 To prove the above theorem, we use the following error decomposition equation

‖u(t)− Uh(t)‖L2 = ‖u(t)− Phu(t) + Phu(t)− Uh(t)‖L2

≤ ‖ξn‖L2 + ‖ηn‖L2 (82)
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where ‖ξn‖L2 = ‖u(t)−Phu(t)‖L2 represents the error inherent in the Galerkin approximation
of the linearized semi-linear Schrödinger equation and ‖ηn‖L2 = ‖Phu(t)−Uh(t)‖L2 the error
caused by the nonlinearity in the problem. Hence, in view of the inequality (50) and Theorem
6 we have from inequality (82) that

‖u(tn)− Uh(tn)‖L2 ≤ C(tn+1)h
2 + sup

t∈[tn,tn+1]

‖Phu(tn+1)− Uh(tn+1)‖L2

≤ C(tn+1)h
2 + C(tn+1)(φ(∆t))2, ∀t ∈ [tn, tn+1]. (83)

In view of the inequality (83) we can conclude without any difficulties the validity of inequality
(81).

As for the replication of the decaying properties of the exact solution, we proceed by first
high-lighting the fact that in view of Mickens 1994 [34], the above scheme was designed for

φ(∆t) =
eλ∆t − 1

λ
≈ ∆t +O((∆t)2). (84)

Based on the above approximation of φ(∆t) jn (84), we observe that as ∆ −→ 0, the function
φ(∆t) ≈ ∆t. n view of this, we deduced that the numerical scheme (51)-(52) converges point-
wise in Vh ⊂ H1

0 (Ω) to the solution u as ∆t −→ 0 by the compactness Theorem. We justify
this as follows: If we choose the source term of our scheme (51) to be U0

h ∈ H1
0 (Ω) and

F ∈ L2 [(0, T );L2(Ω)], then we have

〈δnUn
h (t), vh〉+ 〈∇Un

h ,∇vh〉+
〈

|Un
h |2Un

h , vh
〉

= F. (85)

when only the real part is considered. If we, in addition let the support of F be very small that
the test function vh = 0 far inside the support say Ω1 ⊂ Ω and F is regular, then integrating
equation (85) over Ω will culminate to

∫

Ω

Fvvdx = F(a) measure over the supp(vh), a ∈ Ω1 ⊂ Ω.

Thus, the uniform convergence of the solution over Ω is equivalent to the point-wise conver-
gence of the scheme (85). For more on such analysis see [1]. Hence, Un

h (a) is the NSFD-GM
solution converges to u and thereby replicating all the qualities of the solution u in (55). This
completes the second part of the proof and hence complete the proof of the Theorem.

5 Numerical experiments

We set aside this section to present the numerical experiments to validate the theoretical
proposition of the optimal convergence of the numerical solution of the Schrödinger equation
obtained above in section 4. In view of this, we consider the equation (1)-(3) over a three-
dimensional domain Ωt = [0, 1]×[0, 1]×(0, T ) where Ωt consists of a two-dimensional domain
Ω which will be discretized into regular mesh Jh with a mesh size of h and (0, T ) the time
domain discretized with a mesh size of ∆t. The experiments will be conducted using the
software Matlab 7-100(R2014a). The right hand side of the Schrödinger equation (1)-(3) will
be denoted and calculated by f(x, t) using the carefully chosen example

u(x1, x2, t) = 5eit(1 + 2t2)(1− x1)(1− x2) sin(x1) sin(x2) (86)
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respectively. In other words, equation (1) will be

i
∂u

∂t
−∆u+ |u|2u = f(x, t) (87)

where f(x, t) is obtained by introducing the chosen exact solution (86) on the left hand side
of equation (1). Using this on the NSFD-GM scheme designed in equation (51) we compute
the approximate or numerical solution of the scheme (51). This computation process is done
with the following initial solution

u(x1, x2, 0) = 5(1− x1)(1− x2) sin(x1) sin(x2). (88)

The above numerical experiments is runned with the following specifications: a uniform
triangular partition with M +1 nodes in each direction, where h = 1

M
, a time discretization

of ∆t = 0.01 and T = 1.0 and the value of λ = 4 on a complicated denominator φ(∆t). With
all these specifications in place, we proceed using the Newton’s iterative method to compute
and display the following figures:
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Figure 1: The Exact Computed Solution
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Figure 2: Approximate solution for NSFD-GM Scheme
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Figure 3: Approximate solution for SFD-GM Scheme

With the display figures in place, we present numerical results in Table 1 and 2 using the
following number of nodes: M = 40, 80, 120, 160, 200, 240 and 280.
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Table 1: NSFD-GM Error in both L2 and H1-norms

M L2-error Rate L2 H1-error Rate H1

40 4.2248e-03 1.0743e-01
80 2.0124e-03 1.07 7.0877e-02 0.61
120 1.2676e-03 1.14 5.4578e-02 0.64
160 8.7965e-04 1.27 4.3688e-02 0.78
200 6.2802e-04 1.51 3.6627e-02 0.79
240 4.5232e-04 1.80 3.1426e-02 0.84
280 3.3386e-04 1.97 2.7439e-02 0.88

Table 2: SFD-GM Error in both L2 and H1-norms

M L2-error Rate L2 H1-error Rate H1

40 3.9874e-03 1.0425e-01
80 1.6194e-03 1.39 6.9258e-02 0.59
120 9.0697e-04 1.43 5.3645e-02 0.63
160 5.8237e-04 1.54 4.3860e-02 0.70
200 4.0570e-04 1.62 3.7350e-02 0.72
240 2.9867e-04 1.68 3.2458e-02 0.77
280 2.2838e-04 1.74 2.8692e-02 0.80

Observations 10 The interpretation of the above results are based on the rate of conver-
gence of both the NSFD-GM and SFD-GM schemes. Our expectations to this regard were
that the rate of convergence of the L2-norm will be 2 and that of the H1-norm will be 1
using both the NSFD-GM and SFD-GM schemes respectively. It therefore appears from our
numerical computational data that the rates of convergence in the L2-norm in both cases for
NSFD-GM and SFD-GM schemes were approximately 2 with that of the NSFD-GM scheme
tilting more closer to 2 than that of the SFD-GM scheme.

The same trend was viewed for the rate of convergence of the H1-norm in both NSFD-
GM and SFD-GM schemes. Both rates were approximately 1 with that of the NSFD-GM
scheme getting more closer to 1 than the SFD-GM scheme. In addition to the above trend
from the tables, we observes diagrammatically by using Fig 1, 2 and 3 that the results from
the two schemes NSFD-GM and SFD-GM are closer to each other. These results can best be
explained by viewing their computed errors in both Tables 1 and 2. The errors in both tables
manifest themselves a lot clearer as their closeness indicate how similar Fig 2 and 3 are more
close to Fig 1 which illustrates the exact solution of the problem under investigation.

These differences in the performance of these schemes did not surprise us. This is because,
where the schemes have been designed previously, the NSFD-GM scheme has always shown
some age over the SFD-GM scheme. This may be due to some qualities of efficiency, accuracy
and viability that comes from it’s preserving of the qualitative properties of the exact solution.
Based on these extra differences, we could favor as a fair alternative the NSFD-GM scheme
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over the more traditional SFD-GM scheme. All these computational analysis are what makes
the study very interesting.

6 Conclusion and future remarks

In this article, we designed and analyzed the scheme consisting of the nonstandard finite
difference method in the time and and Galerkin combined with the compactness method in
the space variables of the semi-linear Schrödinger equation. We showed firstly that, when
given initial solutions in a specified space, the global solution of the above mentioned equation
exists uniquely. We proceeded to show secondly that, using the a priori estimates obtained
from the existence process, the numerical solution from the designed scheme is stable and
converges optimally in both the L2 as well as the H1-norms. We thirdly showed that the
numerical solutions from the scheme replicates or preserves the qualitative properties of
the exact solution of the problem. Furthermore, numerical experiments were conducted to
validate the above proposed theory after using a carefully chosen examples. The results
speak for themselves.

We will like to consider in future, real life problems or dispersive partial differential
equations with meaning in real life such as the KdV, the Fisher’s equation with coefficients
of diffusion term much more smaller than that of the reaction term and also the Kawahara
equation to mention a few. We will try to design numerical schemes from these problems
using the same techniques and try to compare them with those that emanate from fractional
differential equation. These types of studies could be very interesting computationally and
successful type of such studies for nonstandard finite difference scheme have been done in
one dimension. For more on these studies, see [2, 3, 7, 8]. Similar techniques involving semi
or quasi-linear problems over non-smooth geometry could also be considered.
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