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Abstract. In this paper, the authors discuss the existence of at least one weak solution
and infinitely many weak solutions to a parametric nonlinear Dirichlet problem involving
a nonhomogeneous differential operator of p-Laplacian type. Their approach is based on
variational methods. Some recent results are extended and improved, and an example is
presented to demonstrate the application of the main results.

1. Introduction

Let Ω ⊂ R
N (N ≥ 2) be a bounded domain with a smooth boundary ∂Ω and consider the

problem
{

−divA(x,∇u) = λf(x, u), in Ω,
u = 0, on ∂Ω,

(P f
λ )

where A : Ω × R
N → R

N is a function admitting a potential and satisfying some natural
conditions such that the differential operator divA(x,∇u) includes the usual p-Laplacian
(p > 1). Here, λ is a positive parameter and f : Ω × R → R is a suitable Carathéodory
function.

Recently, many authors have applied variational methods to study the existence of multiple
solutions of nonlinear Dirichlet problems involving a nonhomogeneous differential operator of
p-Laplacian type and containing a parameter; we refer the reader to [5, 7, 8, 9, 10, 11, 18, 19]
and references cited therein as examples of such results. Based on a recent abstract critical
point theorem proved by Bonanno [3], Kristály et al. [18] established the existence of three
weak solutions to the problem

{

−div(a(x,∇u)) = λf(x, u), in Ω,
u = 0, on ∂Ω,

where N ≥ 2 and the nonlinearities a : Ω × R
N → R

N and f : Ω × R → R satisfy certain
structural conditions. Bonanno et al. [5] used variational methods to obtain some new

contributions on the problem (P f
λ ).

In the present paper, motivated by the papers of Bonanno, D’Agùı, and Livrea [5], Co-
lasuonno, Pucci, and Varga [9], and Kristály, Lisei, and Varga [18], we study the problem

(P f
λ ) in the case where A admits a potential A : Ω × R

N → R such that
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(A) A = A (x, ξ) is a continuous function on Ω× R
N with a continuous derivative with

respect to ξ, A = ∂ξA , and:
(i) A (x, 0) = 0 and A (x, ξ) = A (x,−ξ) for every x ∈ Ω and ξ ∈ R

N .
(ii) A (x, ·) is strictly convex in R

N for all x ∈ Ω.
(iii) There exist constants a1, a2, with 0 < a1 ≤ a2 such that

A(x, ξ)ξ ≥ a1|ξ|
p and |A(x, ξ)| ≤ a2|ξ|

p−1 (1.1)

for every (x, ξ) ∈ Ω × R
N .

Motivated by the above facts, in the present paper we use a smooth version of Theorem 2.1
of [6] (that is sometimes viewed as a more precise version of Ricceri’s Variational Principle
[21]) to investigate the existence of at least one weak solution and the existence of infinitely

many weak solutions to the problem (P f
λ ). In fact, we shall study the existence of at least

one non-trivial weak solution to (P f
λ ) under an assumption on the asymptotic behavior of the

nonlinear function f at zero (see Theorem 3.1 below). In addition, under suitable conditions
on the oscillatory behavior of f at infinity, we discuss the existence of infinitely many weak
solutions to (P f

λ ). We prove the existence of an interval on λ in which the problem (P f
λ )

admits a sequence of solutions that are unbounded in the space W 1,p(Ω) (see Theorem 4.1).
Additionally, some consequences of Theorem 4.1 are presented. By replacing the conditions
at infinity on the nonlinear term, by a similar one at zero, we obtain a sequence of pairwise
distinct solutions strongly converging at zero (see Theorem 4.6).

We have organized the remainder of the paper as follows. In Section 2, we recall some
basic definitions and the tools to be used in our proofs. In Sections 3 and 4, we state and
prove the main results of the paper.

2. Preliminaries

The key argument used in proving our results is the following version of Ricceri’s variational
principle [21, Theorem 2.1] as given by Bonanno and Molica Bisci in [6].

Theorem 2.1. Let X be a reflexive real Banach space, let Φ, Ψ : X −→ R be two Gâteaux
differentiable functionals such that Φ is sequentially weakly lower semicontinuous, strongly
continuous, and coercive, and Ψ is sequentially weakly upper semicontinuous. For every
r > infX Φ, let

ϕ(r) := inf
u∈Φ−1(−∞,r)

supu∈Φ−1(−∞,r) Ψ(u)− Ψ(u)

r − Φ(u)

θ := lim inf
r→+∞

ϕ(r), and δ := lim inf
r→(infX Φ)+

ϕ(r).

Then:

(a) for every r > infX Φ and every λ ∈

(

0,
1

ϕ(r)

)

, the restriction of the functional

Iλ = Φ − λΨ to Φ−1((−∞, r)) admits a global minimum, which is a critical point
(local minimum) of Iλ in X.

(b) If θ < +∞, then for each λ ∈

(

0,
1

θ

)

, either

(b1) Iλ possesses a global minimum,
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or
(b2) there is a sequence {un} of critical points (local minima) of Iλ such that

lim
n→+∞

Φ(un) = +∞.

(c) If δ < +∞, then for each λ ∈

(

0,
1

δ

)

, either

(c1) there is a global minimum of Φ which is a local minimum of Iλ,
or
(c2) there is a sequence of pairwise distinct critical points (local minima) of Iλ that

weakly converges to a global minimum of Φ.

We refer the interested reader to the papers [1, 2, 12, 14, 16] in which Theorem 2.1 has been
successfully employed to prove the existence of at least one non-trivial solution to boundary
value problems, and to the papers [4, 13, 15, 17] in which Theorem 2.1 was used to show the
existence of infinitely many solutions.

Next, we give some pertinent definitions and notations. Throughout the paper, Ω is a
bounded domain in R

N with 1 < p < N , W 1,p
0 (Ω) is the usual Sobolev space endowed with

the norm

‖u‖ = ‖∇u‖p,

and W−1,p′(Ω) is its dual space, where 1
p

+ 1
p′

= 1 . It is well known that if 1 < p < N and

p∗ =
Np

N − p
, then there is a constant T = T (N, p) such that

‖u‖p∗ ≤ T‖u‖ (2.1)

for every u ∈ W 1,p
0 (Ω). Such a constant has been sharply determined by Talenti in [22] as

given by the formula

T = π
−1
2 N

−1
p

(

p − 1

N − p

)1− 1
p

{

Γ(1 + N
2
)Γ(N)

Γ(N
p
)Γ(1 + N − N

p
)

} 1
N

, (2.2)

where Γ is the gamma function. Clearly, inequality (2.1), in conjunction with Hölder’s
inequality, implies that for every s ∈ [1, p∗],

‖u‖s ≤ T |Ω|
(p∗−s)
(p∗s) ‖u‖ (2.3)

for all u ∈ W 1,p
0 (Ω), where |Ω| is the Lebesgue measure of Ω. Notice that the embedding

W 1,p
0 (Ω) ↪→ Ls(Ω) is compact provided s ∈ [1, p∗).
Following [9], we will assume that A : Ω × R

N → R
N is a function admitting a smooth

potential A : Ω × R
N → R as given in condition (A) above.

In [9], it has been explicitly observed that (A)(i) and (A)(iii) imply that

a1|ξ|
p ≤ pA (x, ξ) ≤ a2|ξ|

p (2.4)

for every (x, ξ) ∈ Ω × R
N . Moreover, it is possible to obtain the following lemma.
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Lemma 2.2. ([9, Lemma 2.5]) Let A satisfy condition (A). Then the functional Φ : W 1,p
0 (Ω) →

R defined by

Φ(u) =

∫

Ω

A (x,∇u(x))dx (2.5)

is convex, weakly lower semicontinuous, and belongs to the class C1 in W 1,p
0 (Ω) with

Φ′(u)(v) =

∫

Ω

A(x,∇u(x))∇v(x)dx

for every u, v ∈ W 1,p
0 (Ω). Moreover, Φ′ : W 1,p

0 (Ω) → W−1,p′(Ω) satisfies the condition:

(S+) For every sequence {un} in W 1,p
0 (Ω) such that un ⇀ u weakly in W 1,p

0 (Ω) and

lim sup
n→∞

∫

Ω

A(x,∇un) · (∇un −∇u)dx ≤ 0,

then un → u strongly in W 1,p
0 (Ω).

Given a Carathéodory function f : Ω × R → R and a positive function a ∈ Lα(Ω) with
α > N/p and 1 < q ≤ p, we say that f is of type (Gf,a,q) if it satisfies the growth condition:

(Gf,a,q) there exist positive constants M1 and M2 such that

|f(x, t)| ≤ a(x)
(

M1 + M2|t|
q−1
)

(2.6)

for a.e. x ∈ Ω and all t ∈ R.

We will also need the following lemma to prove our main results.

Lemma 2.3. ([9, Lemma 3.2], [5, Lemma 2.2]) Assume that f is of type (Gf,a,q) and set

F (x, t) =
∫ t

0
f(x, s)ds. Then, the functional Ψ : W 1,p

0 (Ω) → R defined by

Ψ(u) =

∫

Ω

F (x, u(x))dx (2.7)

is in the class C1 with

Ψ′(u)(v) =

∫

Ω

f(x, u(x))v(x)dx.

Moreover, the operator Ψ′ : W 1,p
0 (Ω) → W−1,p′(Ω) is compact and sequentially weakly con-

tinuous in W 1,p
0 (Ω).

Remark 2.4. As was pointed out in [5, Remark 2.1], Colasuonno, Pucci, and Varga [9,
Lemma 3.2], proved the compactness of Ψ′ for 1 < q < p. But the same argument can be
adopted in order to show that it is also true if q = p.

Next, we define what is meant by a weak solution of (P f
λ ).

Definition 2.5. A function u ∈ W 1,p
0 (Ω) is a (weak) solution of the BVP (P f

λ ) if
∫

Ω

A(x,∇u(x))∇v(x)dx− λ

∫

Ω

f(x, u(x))v(x)dx = 0

for every v ∈ W 1,p
0 (Ω).
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Hence, in view of Lemmas 2.2 and 2.3, we consider the functional Iλ : W 1,p
0 (Ω) → R

defined by Iλ = Φ(u) − λΨ(u) for λ > 0 and u ∈ W 1,p
0 (Ω).

Lemma 2.6. A function u ∈ W 1,p
0 (Ω) is a critical point of Iλ in W 1,p

0 (Ω) if and only if u

is a solution of (P f
λ ).

3. Existence of One Solution

Here is our main result on the existence of one solution to the problem (P f
λ ). In what

follows α′ is the conjugate of α, that is,
1

α
+

1

α′
= 1.

Theorem 3.1. Assume that f satisfies (Gf,a,q) and there are sets D ⊆ Ω and G ⊂ D such
that

lim sup
ξ→0+

ess infx∈G F (x, ξ)

|ξ|p
= +∞ (3.1)

and

lim inf
ξ→0+

ess infx∈D F (x, ξ)

|ξ|p
> −∞. (3.2)

Then, for each

λ ∈ Λ =









0, sup
θ>0

a1

‖a‖αpT p|Ω|
(p∗−α′p)

(p∗α′)

[

M1θ1−p +
M2

q
θq−p

]









,

the problem (P f
λ ) admits at least one non-trivial weak solution u ∈ W 1,p

0 (Ω).

Proof. Our aim is to apply Theorem 2.1(a) to the problem (P f
λ ). We introduce the functionals

Φ and Ψ as given in (2.5) and (2.7), respectively. Lemmas 2.2 and 2.3 establish that Φ and
Ψ are of class C1, while condition (2.4) assures that

a1

p
‖u‖p ≤ Φ(u) ≤

a2

p
‖u‖p (3.3)

for every u ∈ W 1,p
0 (Ω). By using the first inequality in (3.3), it follows that

lim
‖u‖→+∞

Φ(u) = +∞,

so Φ is coercive.
Choose λ such that

0 < λ < sup
θ>0

a1

‖a‖αpT p|Ω|
(p∗−α′p)

(p∗α′)

[

M1θ1−p +
M2

q
θq−p

] .

Then, there exists θ̄ > 0 such that

λ <
a1

‖a‖αpT p|Ω|
(p∗−α′p)
(p∗α′)

[

M1θ̄1−p +
M2

q
θ̄q−p

] .
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Set

r =
a1|Ω|

p
p∗

pT p
θ̄p.

Now since α > N/p implies that 1 < α′ < α′q ≤ α′p < p∗, condition (Gf,a,q), Hölder’s
inequality, and (2.3) imply

Ψ(u) ≤ M1

∫

Ω

a(x)|u(x)|dx +
M2

q

∫

Ω

a(x)|u(x)|qdx

≤ M1‖a‖α‖u‖α′ +
M2

q
‖a‖α‖u‖

q
α′q

≤ M1‖a‖αT |Ω|
(p∗−α′)

(p∗α′) ‖u‖+
M2

q
‖a‖αT q|Ω|

(p∗−α′q)

(p∗α′) ‖u‖q (3.4)

for every u ∈ W 1,p
0 (Ω). Hence, in view of (3.3),

Φ−1(−∞, r) =
{

u ∈ W 1,p
0 | Φ(u) < r

}

⊆

{

u ∈ W 1,p
0 | ‖u‖ ≤

(

pr

a1

)
1
p

}

,

so (3.4) implies that

sup
Φ(u)≤r

Ψ(u) ≤ M1‖a‖αT |Ω|
(p∗−α′)

(p∗α′)

(

pr

a1

)
1
p

+
M2

q
‖a‖αT q|Ω|

(p∗−α′q)

(p∗α′)

(

pr

a1

)
q
p

.

Since 0 ∈ Φ−1(−∞, r) and Φ(0) = Ψ(0) = 0, we have

ϕ(r) = inf
u∈Φ−1(−∞,r)

(supu∈Φ−1(−∞,r) Ψ(u))− Ψ(u)

r − Φ(u)

≤
supu∈Φ−1(−∞,r) Ψ(u)

r

≤ M1‖a‖αT |Ω|
(p∗−α′)
(p∗α′)

(

p

a1

)
1
p

r
1−p

p +
M2

q
‖a‖αT q|Ω|

(p∗−α′q)
(p∗α′)

(

p

a1

)
q
p

r
q−p

p

= ‖a‖α
p

a1

T p|Ω|
(p∗−α′p)

(p∗α′)



M1

(

T ppr

a1|Ω|
p

p∗

)
1−p

p

+
M2

q

(

T ppr

a1|Ω|
p

p∗

)
q−p

p





= ‖a‖α
p

a1

T p|Ω|
(p∗−α′p)

(p∗α′)

[

M1θ̄
1−p +

M2

q
θ̄q−p

]

<
1

λ
.

Hence, by Theorem 2.1, for every λ ∈ Λ ⊂
(

0, 1
ϕ(r)

)

the functional Iλ admits at least one

critical point (local minima) uλ ∈ Φ−1(−∞, r).
To complete the proof we need to show that uλ is nontrivial. First, we show that

lim sup
‖u‖→0+

Ψ(u)

Φ(u)
= +∞. (3.5)
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By our assumptions at zero, namely, (3.1) and (3.2), we can choose a sequence {ξn} ⊂ R
+

converging to zero and two constants ζ and κ with ζ > 0 such that

lim
n→+∞

ess infx∈G F (x, ξn)

|ξn|p
= +∞

and

ess inf
x∈D

F (x, ξ) ≥ κ|ξ|p,

for ξ ∈ [0, ζ]. Now for the given G and D, take the function v ∈ W 1,p
0 (Ω) such that:

(j) v(x) ∈ [0, 1] for every x ∈ Ω,
(jj) v(x) = 1 for every x ∈ G,
(jjj) v(x) = 0 for every x ∈ Ω \ D.

Hence, fix Y > 0 and consider a positive real number η with

Y <
η meas (G) + κ

∫

D\G
|v(x)|pdx

a2

p
‖v‖p

.

Then, there is n0 ∈ N such that ξn < ζ and

ess inf
x∈G

F (x, ξn) ≥ η|ξn|
p

for all n > n0. Now, for every n > n0, using the properties of the function v (that is
0 ≤ ξnv(x) < ζ for large n), by (3.3),

Ψ(ξnv)

Φ(ξnv)
=

∫

G

F (x, ξn)dx +

∫

D\G

F (x, ξnv(x)dx

Φ(ξnv)

>

η meas (G) + κ

∫

D\G

|v(x)|pdx

a2

p
‖v‖p

> Y.

Since Y can be arbitrarily large,

lim
n→∞

Ψ(ξnv)

Φ(ξnv)
= +∞,

from which (3.5) clearly follows.
Hence, there exists a sequence {wn} ⊂ W 1,p

0 (Ω) strongly converging to zero with wn ∈
Φ−1(−∞, r) and

Iλ(wn) = Φ(wn) − λΨ(wn) < 0.

Since uλ is a global minimum of the restriction of Iλ to Φ−1(−∞, r), we conclude that

Iλ(uλ) < 0, (3.6)

so uλ is not trivial. This completes the proof of the theorem. �
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Remark 3.2. If in addition to the hypotheses of Theorem 3.1, we ask that

sup
θ>0

a1

‖a‖αpT p|Ω|
(p∗−α′p)

(p∗α′)

[

M1θ1−p +
M2

q
θq−p

] > 1, (3.7)

then the conclusion of the theorem holds with λ = 1, that is, for problem (P f
λ ) without a

parameter.

Next we present an example to illustrate Theorem 3.1.

Example 3.3. Consider the problem
{

−divA(x,∇u) = λf(u), in Ω,
u = 0, on ∂Ω,

(3.8)

where Ω ⊂ R
4 with meas (Ω) = 1 and f(ξ) = 2ξ + 1 for every ξ ∈ R. Condition (2.6) is

satisfied with a(t) ≡ 1, M1 = 1, M2 = 2, and q = 2. Note that p = 2 and F (ξ) = ξ2 + ξ for
ξ ∈ R. All the conditions of Theorem 3.1 are satisfied, so there exists ρ > 0 such that for
any λ ∈ (0, ρ), problem (3.8) has at least one non-trivial weak solution u ∈ W 1,2

0 (Ω).

We now give some remarks on our results.

Remark 3.4. In Theorem 3.1 we searched for the critical points of the functional Iλ nat-
urally associated with the problem (P f

λ ). We note that, in general, Iλ can be unbounded

from below in W 1,p
0 (Ω). For example, in the case where f(ξ) = 1 + |ξ|γ−pξ for ξ ∈ R with

γ > p, for any fixed u ∈ W 1,p
0 (Ω) \ {0} and ι ∈ R, we obtain

Iλ(ιu) =Φ(ιu) − λ

∫

Ω

F (ιu(x))dx ≤ ιp
a2

p
‖u‖p − λι‖u‖p − λ

ιγ

γ
‖u‖γ → −∞

as ι → +∞. Therefore, condition (I2) in [20, Theorem 2.2] is not satisfied. Hence, we can
not use direct minimization to find the critical points of the functional Iλ.

Remark 3.5. We wish to point out that the energy functional Iλ associated with the
problem (P f

λ ) may not be coercive. For example, if F (ξ) = |ξ|s with s ∈ (p, +∞) for ξ ∈ R,

for any fixed u ∈ W 1,p
0 (Ω) \ {0} and ι ∈ R we have

Iλ(ιu) =Φ(ιu) − λ

∫

Ω

F (ιu(x))dx ≤ ιp
a2

p
‖u‖p − λιs‖u‖s → −∞

as ι → −∞.

Remark 3.6. From (3.6) we can easily see that the map

λ 7→ Iλ(uλ) for λ ∈ (0, λ∗) (3.9)

is negative. Furthermore, we have

lim
λ→0+

‖uλ‖ = 0.

To see this, by considering that Φ is coercive and that for λ ∈ (0, λ∗), the solution uλ ∈
Φ−1(−∞, r), we have that there exists a positive constant L such that ‖uλ‖ ≤ L for every



9

λ ∈ (0, λ∗). It is easy to see that, since f is bounded, an application of Hölder’s inequality
implies there exists a positive constant M such that

∣

∣

∣

∣

∫

Ω

f(x, uλ(x))uλ(x)dx

∣

∣

∣

∣

≤ M (3.10)

for λ ∈ (0, λ∗). Since uλ is a critical point of Iλ, we have I ′
λ(uλ)(v) = 0, for v ∈ W 1,p

0 (Ω)
and λ ∈ (0, λ∗). In particular I ′

λ(uλ)(uλ) = 0, that is,

Φ′(uλ)(uλ) = λ

∫

Ω

f(x, uλ(x))uλ(x)dx (3.11)

for λ ∈ (0, λ∗). Then, since
0 ≤ a1‖uλ‖

p ≤ Φ′(uλ)(uλ),

from (3.11),

0 ≤ a1‖uλ‖
p ≤ Φ′(uλ)(uλ) ≤ λ

∫

Ω

f(x, uλ(x))uλ(x)dx

for λ ∈ (0, λ∗). Letting λ → 0+, by (3.10), we have limλ→0+ ‖uλ‖ = 0.
Finally, we show that the map

λ 7→ Iλ(uλ)

is strictly decreasing in (0, λ∗). To see this, observe that for any u ∈ W 1,p
0 (Ω),

Iλ(u) = λ

(

Φ(u)

λ
−Ψ(u)

)

. (3.12)

Now, fix 0 < λ1 < λ2 < λ∗ and let uλ1 and uλ2 be global minimums of the functional Iλi

restricted to Φ(−∞, r) for i = 1, 2. Also, let

mλi =

(

Φ(uλi)

λi
− Ψ(uλi)

)

= inf
v∈Φ−1(−∞,r)

(

Φ(v)

λi
− Ψ(v)

)

,

for i = 1, 2.
Since λ > 0, it is clear that (3.9) together with (3.12) imply

mλi < 0, for i = 1, 2. (3.13)

Moreover,
mλ2 ≤ mλ1 (3.14)

since 0 < λ1 < λ2. Then, (3.12)–(3.14) and the fact that 0 < λ1 < λ2, implies

Iλ2(ūλ2) = λ2mλ2 ≤ λ2mλ1 < λ1mλ1 = Iλ1(ūλ1),

so that the map λ 7→ Iλ(uλ) is strictly decreasing in λ ∈ (0, λ∗).

Remark 3.7. Observe that Theorem 3.1 above is a bifurcation result in the sense that the
pair (0, 0) belongs to the closure of the set

{

(uλ, λ) ∈ W 1,p
0 (Ω) × (0, +∞) : uλ is a non-trivial weak solution of (P f

λ )
}

in W 1,p
0 (Ω) × R. Indeed, by Remark 3.6, we have that

‖uλ‖ → 0 as λ → 0.
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Hence, there exist two sequences {ui} in W 1,p
0 (Ω) and {λi} in R

+ (here ui = uλi) such that

λi → 0+ and ‖ui‖ → 0

as i → +∞. Moreover, we want to emphasis that due to the fact that the map

λ 7→ Iλ(uλ), λ ∈ (0, λ∗)

is strictly decreasing, for every λ1, λ2 ∈ (0, λ∗), with λ1 6= λ2, the solutions ūλ1 and ūλ2

guaranteed by Remark 3.6 are different.

Remark 3.8. If f is non-negative, then the weak solution obtained by Theorem 3.1 is non-
negative. To see this, let u0 be a non-trivial weak solution of the problem (P f

λ ). For the
sake of a contradiction, assume that the set D = {x ∈ Ω : u0(x) < 0} is non-empty and of
positive measure. Set v̄(x) = min{0, u0(x)} for all x ∈ Ω. Clearly, v̄ ∈ W 1,p

0 (Ω) and
∫

Ω

A(x,∇u0(x))∇v̄(x)dx − λ

∫

Ω

f(x, u0(x))v̄(x)dx = 0.

Thus, from our sign assumptions on f , we have

0 ≤ a1‖u0‖
p
D
≤

∫

D

A(x,∇u0(x))∇u0(x)dx = λ

∫

D

f(x, u0(x))u0(x)dx ≤ 0.

Hence, u0 = 0 in D , which is a contradiction.

4. Existence of Infinitely Many Solutions

In this section, we formulate our main result on the existence of infinitely many weak
solutions to the problem (P f

λ ). First we introduce some additional notation. Let R : Ω →
[0, +∞) be the distance function defined by R(x) = d(x, ∂Ω) for each x ∈ Ω. Thus, for
every fixed x0 ∈ Ω, B(x0, R(x0)) = {x ∈ Ω : |x−x0| < R(x0)} ⊆ Ω, and for a ∈ Lα(Ω) with
α > N/p, we let

B∞ = lim sup
ξ→∞

(

R(x0)

2

)N

|B(0, 1)|essinfB(x0,R(x0)/2)F (x, ξ)

a2

p

(

R(x0)

2

)N−p

(2N − 1)|B(0, 1)|ξp

.

Theorem 4.1. Assume that f satisfies (Gf,a,q) and there exist x0 ∈ Ω and two real sequences
{dn} and {bn} with

lim
n→∞

bn = ∞

such that:

(A1) f(x, t) ≥ 0 for (x, t) ∈ B(x0, R(x0)) × R;

(A2)
a2

p

(

R(x0)

2

)N−p

(2N − 1)|B(0, 1)|dp
n <

a1|Ω|
p

p∗

pT p
bp
n for n ∈ N;
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(A3) A
∞ = lim

n→∞

Kbn −

(

R(x0)

2

)N

|B(0, 1)|essinfB(x0,R(x0)/2)F (x, dn)

a1|Ω|
p

p∗

pT p
bp
n −

(

a2

p

(

R(x0)

2

)N−p

(2N − 1)|B(0, 1)|dp
n

) < B∞, where

Kbn = M1‖a‖αT |Ω|
(p∗−α′)

(p∗α′)

(

|Ω|
p

p∗

T p
bp
n

) 1
p

+
M2

q
‖a‖αT q|Ω|

(p∗−α′q)

(p∗α′)

(

|Ω|
p

p∗

T p
bp
n

)
q
p

.

Then, for each λ ∈

(

1

B∞
,

1

A ∞

)

, the problem (P f
λ ) admits an unbounded sequence of solu-

tions.

Proof. Our wish here is to again apply Theorem 2.1. Consider the functionals Φ and Ψ as
given in (2.5) and (2.7). The regularity assumptions on Φ and Ψ required in Theorem 2.1
are satisfied. Take

rn =
a1|Ω|

p
p∗

pT p
bp
n

for all n ∈ N. We see that rn > 0 for all n ∈ N and rn → ∞ as n → ∞. From the definition
of Φ and in view of (3.3), for every rn > 0,

Φ−1(−∞, rn) =
{

u ∈ W 1,p
0 : Φ(u) < rn

}

⊆

{

u ∈ W 1,p
0 : ‖u‖ ≤

(

prn

a1

)
1
p

}

,

and inequality (3.4) assures that

sup
Φ(u)≤rn

Ψ(u) ≤ M1‖a‖αT |Ω|
(p∗−α′)

(p∗α′)

(

prn

a1

) 1
p

+
M2

q
‖a‖αT q|Ω|

(p∗−α′q)

(p∗α′)

(

prn

a1

)
q
p

.

For each n ∈ N, define

wn(x) =















0, x ∈ Ω\B̄(x0, R(x0)),
2dn

R(x0)
(R(x0) − |x− x0|), x ∈ B(x0, R(x0))\B̄(x0, R(x0)/2),

dn, x ∈ B(x0, R(x0)/2).

(4.1)

Clearly, wn ∈ W 1,p
0 (Ω). A direct computation based on (3.3) shows that

Φ(wn) ≥
a1

p

2p

[R(x0)]p
|B(x0, R(x0)) \ B̄(x0, R(x0)/2)|d

p
n

=
a1

p

2p

[R(x0)]p
|B(0, 1)|

(

[R(x0)]
N − [R(x0)/2]

N
)

dp
n

=
a1

p

(

R(x0)

2

)N−p

(2N − 1)|B(0, 1)|dp
n.
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Similarly,

Φ(wn) ≤
a2

p

(

R(x0)

2

)N−p

(2N − 1)|B(0, 1)|dp
n. (4.2)

In view of condition (A1),

Ψ(wn) =

∫

Ω

F (x, wn(x))dx

≥

∫

B(x0,R(x0)/2)

F (x, dn)dx

≥ |B(x0, R(x0)/2)|essinfB(x0,R(x0)/2)F (x, dn)

=

(

R(x0)

2

)N

|B(0, 1)|essinfB(x0,R(x0)/2)F (x, dn).

From (A2), we have Φ(wn) < rn. Also, Φ(0) = Ψ(0) = 0. Therefore, for large n, from (A3)
and (4.2),

ϕ(rn) = inf
u∈Φ−1(−∞,rn)

(supu∈Φ−1(−∞,rn) Ψ(u)) − Ψ(u)

rn − Φ(u)

≤

supu∈Φ−1(−∞,rn) Ψ(u) −

(

R(x0)

2

)N

|B(0, 1)|essinfB(x0,R(x0)/2)F (x, dn)

rn − Φ(wn)

≤

Kbn −

(

R(x0)

2

)N

|B(0, 1)|essinfB(x0,R(x0)/2)F (x, dn)

a1|Ω|
p

p∗

pT p
bp
n −

(

a2

p

(

R(x0)

2

)N−p

(2N − 1)|B(0, 1)|dp
n

) .

Hence, from (A2), λ ≤ limn→∞ ϕ(rn) ≤ A ∞ < ∞ follows.
Next, we show that Iλ is unbounded from below. Let {cn} → ∞ be a sequence of positive

numbers to be determined. Let {yn} in W 1,p
0 (Ω) be given by

yn(x) =















0, x ∈ Ω\B̄(x0, R(x0)),
2cn

R(x0)
(R(x0) − |x − x0|), x ∈ B(x0, R(x0))\B̄(x0, R(x0)/2),

cn, x ∈ B(x0, R(x0)/2).

(4.3)

Then

Φ(yn) ≤
a2

p

(

R(x0)

2

)N−p

(2N − 1)|B(0, 1)|cp
n. (4.4)

Hence,

Iλ(yn) ≤
a2

p

(

R(x0)

2

)N−p

(2N − 1)|B(0, 1)|cp
n
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− λ

(

R(x0)

2

)N

|B(0, 1)|essinfB(x0,R(x0)/2)F (x, cn).

Now, we consider the two cases.

If B∞ < ∞, then since λ >
1

B∞
, we can fix ε > 0 such that ε < B∞ −

1

λ
. Hence, there

exists νε ∈ N and a positive sequence {hn} → ∞ such that
(

R(x0)

2

)N

|B(0, 1)|essinfB(x0,R(x0)/2)F (x, hn)

> (B∞ − ε)

(

a2

p

(

R(x0)

2

)N−p

(2N − 1)|B(0, 1)|hp
n

)

for all n > νε. Hence,

Iλ(yn) ≤
a2

p

(

R(x0)

2

)N−p

(2N − 1)|B(0, 1)|hp
n

− λ

(

R(x0)

2

)N

|B(0, 1)|essinfB(x0,R(x0)/2)F (x, hn)

<
a2

p

(

R(x0)

2

)N−p

(2N − 1)|B(0, 1)|hp
n(1 − λ(B∞ − ε)).

Since 1 − λ(B∞ − ε) < 0, letting {hn} be the sequence {cn} in (4.3) and taking (4.4) into
account, we have

lim
n→∞

Iλ(yn) = −∞.

Now consider the situation where B∞ = ∞ and fix D >
1

λ
. There exists νD and a positive

sequence {kn} → ∞ such that
(

R(x0)

2

)N

|B(0, 1)|essinfB(x0,R(x0)/2)F (x, kn)

> D

(

a2

p

(

R(x0)

2

)N−p

(2N − 1)|B(0, 1)|kp
n

)

for all n > νD, and moreover

Iλ(yn) <
a2

p

(

R(x0)

2

)N−p

(2N − 1)|B(0, 1)|kp
n(1 − λD).

Since 1 − λD < 0, letting {kn} be the sequence {cn} in (4.3), and arguing as before, we see
that

lim
n→∞

Iλ(yn) = −∞.

Hence, in both cases Iλ is unbounded from below. The conclusion of the theorem then
follows from Theorem 2.1(b). �
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Remark 4.2. If {dn} and {bn} are two real sequences with limn→∞ bn = ∞, such that the
condition (A2) in Theorem 4.1 is satisfied, then under the conditions A∞ = 0 and B∞ = ∞,

Theorem 4.1 assures that for every λ > 0 the problem (P f
λ ) admits infinitely many weak

solutions.

Theorem 4.3. Assume that f satisfies (Gf,a,q), condition (A1) holds, and

(A4) lim inf
ξ→∞

Kξ

a1|Ω|
p

p∗

pT p ξp

< lim sup
ξ→∞

(

R(x0)

2

)N

|B(0, 1)|essinfB(x0,R(x0)/2)F (x, ξ)

a2

p

(

R(x0)

2

)N−p

(2N − 1)|B(0, 1)|ξp

.

Then, for each

λ ∈











a2

p

(

R(x0)

2

)N−p

(2N − 1)|B(0, 1)|ξp

(

R(x0)

2

)N

|B(0, 1)|essinfB(x0,R(x0)/2)F (x, ξ)

,

a1|Ω|
p

p∗

pT p
ξp

Kξ











,

the problem (P f
λ ) has an unbounded sequence of weak solutions.

Proof. Let {dn} ≡ 0 and choose a sequence {bn} of positive numbers tending to ∞ such that

lim
n→∞

Kbn

a1|Ω|
p

p∗

pT p
bp
n

= lim inf
ξ→∞

Kξ

a1|Ω|
p

p∗

pT p
ξp

.

From Theorem 4.1 the conclusion follows. �

Next, we point out two simple consequences of our main results. First, from Theorem 4.1
we have the following corollary.

Corollary 4.4. Assume that f satisfies (Gf,a,q), there exist two real sequences {dn} and
{bn}, with limn→∞ bn = ∞, such that (A1) and (A2) hold, A∞ < 1, and B∞ > 1. Then, the
problem

{

−divA(x,∇u) = f(x, u), in Ω,

u = 0, on ∂Ω,
(P f )

has an unbounded sequence of weak solutions.

The following corollary is a consequence of Theorem 4.3.

Corollary 4.5. Assume that B∞ > 1 and

lim inf
ξ→∞

Kξ

a1|Ω|
p

p∗

pT p
ξp

< 1.

Then, the problem (P f ) has an unbounded sequence of weak solutions.
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Now put

B0 = lim sup
ξ→0

(

R(x0)

2

)N

|B(0, 1)|essinfB(x0,R(x0)/2)F (x, ξ)

a2

p

(

R(x0)

2

)N−p

(2N − 1)|B(0, 1)|ξp

.

Arguing as in the proof of Theorem 4.1, but using conclusion (c) of Theorem 2.1 instead of
(b), we can obtain the following result.

Theorem 4.6. Assume that f satisfies (Gf,a,q), (A1) holds, and there exist two real sequences
{sn} and {en} with limn→∞ en = 0 such that

(A5)
a2

p

(

R(x0)

2

)N−p

(2N − 1)|B(0, 1)|sp
n <

a1|Ω|
p

p∗

pT p
ep

n for n ∈ N,

(A6) A
0 = lim

n→∞

Ken −

(

R(x0)

2

)N

|B(0, 1)|essinfB(x0,R(x0)/2)F (x, sn)

a1|Ω|
p

p∗

pT p
ep

n −

(

a2

p

(

R(x0)

2

)N−p

(2N − 1)|B(0, 1)|sp
n

) < B0.

Then, for each λ ∈ (λ3, λ4) with λ3 :=
1

B0
and λ4 :=

1

A0
, the problem (P f

λ ) has a sequence

of pairwise distinct weak solutions that strongly converges to 0 in W 1,p
0 (Ω).

Our final existence result is contained in the following theorem.

Theorem 4.7. Assume that f satisfies (Gf,a,q) and assume that

(A7) lim inf
ξ→0+

Kξ

a1|Ω|
p

p∗

pT p
ξp

< lim sup
ξ→0

(

R(x0)

2

)N

|B(0, 1)|essinfB(x0,R(x0)/2)F (x, ξ)

a2

p

(

R(x0)

2

)N−p

(2N − 1)|B(0, 1)|ξp

.

Then, for each

λ ∈













1

lim supξ→0

“

R(x0)
2

”N
|B(0,1)|essinfB(x0,R(x0)/2)F (x,ξ)

a2
p

“

R(x0)

2

”N−p
(2N−1)|B(0,1)|ξp

,
1

lim infξ→0+
Kξ

a1|Ω|

p
p∗

pTp ξp













,

the problem (P f
λ ) has a sequence of pairwise distinct weak solutions that strongly converges

to 0 in W 1,p
0 (Ω).

Proof. Let {sn} ≡ 0 and choose a sequence {en} of positive numbers tending to 0 such that

lim
n→∞

Ken

a1|Ω|
p

p∗

pT p
ep

n

= lim inf
ξ→∞

Kξ

a1|Ω|
p

p∗

pT p
ξp

.

The conclusion follows from Theorem 4.6. �
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Remark 4.8. By applying Theorem 4.6 instead of Theorem 4.1, results similar to Remark
4.2 and Corollaries 4.4 and 4.5 can be obtained.
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