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1. Introduction 

The Lindley distribution was first introduced by Lindley in 1958, as documented in reference 
[24]. Since then, numerous scholars have conducted extensive research on both the Lindley 
distribution and its generalized forms, achieving significant results. These results are not 
exhaustively enumerated here, but are available in references [1]-[10], [13]-[24], [26]-[32], 
[35]-[46]. The distribution plays an essential role in the reliability studies of the stress-strength 
model. 

Consider a non-negative continuous random variable that follows a Lindley distribution with 

parameter θ , denoted as Lindley(𝜃𝜃). The density function ( )f x  and distribution function 

( )F x  of this distribution are defined as follows: 

2

( ) (1 )
1

xf x x e θθ
θ

−= +
+

, ( ) 1 1 , 0, 0
1

xF x x e xθθ θ
θ

− = − + > > + 
. 

This article initially extends the single-parameter Lindley distribution to the generalized 
three-parameter Lindley distribution. Through theoretical derivation, it is demonstrated that under 
the inverse power law model, the life distribution in a progressive stress accelerated life testing 
scenario for the generalized two-parameter Lindley distribution exactly corresponds to the 
generalized three-parameter Lindley distribution. Furthermore, the study investigates the graphical 
characteristics of the density function and failure rate function of the generalized three-parameter 
Lindley distribution. Lastly, the paper presents a methodology for point estimation of parameters 
in a full-sample context and illustrates its application with practical examples. 

                                                        
* The corresponding author. Email: gubeiqing@suibe.edu.cn (Beiqing Gu) 
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2. Generalized two-parameter and three-parameter Lindley distributions 

Consider a non-negative continuous random variable that follows a Lindley distribution with 

parameter θ , denoted as Lindley( )θ . Its density function ( )f x  can be expressed as: 

2
21 1( ) (1 ) 1

1 1 1
x x xf x x e e xeθ θ θθ θ θ

θ θ θ
− − − = + = − + + + + 

. 

Let 2
1 2( ) , ( )x xf x e f x xeθ θθ θ− −= = . It is evident that 1( )f x  is the density function of the 

Exponential distribution Exp( )θ , and 2 ( )f x  is the density function of the Gamma distribution 

(2, )θΓ . Then we have 1 2( ) (1 ) ( ) ( )f x f x f xβ β= − +  where
 

1
1

β
θ

=
+

. 

From the above, it can be seen that the single-parameter Lindley distribution can be regarded 

as a mixture of the Exponential distribution Exp( )θ  and the Gamma distribution (2, )θΓ , 

where 
1

1
β

θ
=

+
. If the parameter β  is retained 0 1β≤ ≤  while assuming that β  is 

independent of θ , the generalized two-parameter Lindley distribution is obtained. 
Definition 2.1. A non-negative continuous random variable X  is said to follow the 

generalized two-parameter Lindley distribution GL( , )θ β , with its distribution function ( )F x

and density function ( )f x  respectively defined as: 

/( ) 1 1 xF x x e θβ
θ

− = − + 
 

, /1( ) 1 ,  0xf x x e xθββ
θ θ

− = − + > 
 

, 

where 0 1β≤ ≤  is referred to as the shape parameter, and 0θ >  as the scale parameter. 

Specifically, when 0β = , the distribution function is /( ) 1 xF x e θ−= − , that is, the 

generalized two-parameter Lindley distribution GL( , )θ β  degenerates into the single-parameter 

Exponential distribution Exp(1/ )θ . When 1β =  , the distribution function is 

/( ) 1 1 xxF x e θ

θ
− = − + 

 
, which is the one-parameter Эрланга distribution. When 1θ θ −′ =  

and 
1

1 1
θβ

θ θ
= =

′ + +
, the distribution function is ( ) 1 1

1
xF x x e θθ

θ
′−′ = − + ′ + 

, which is 
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the single-parameter Lindley distribution. 
Building upon Definition 2.1, the introduction of an additional shape parameter m  leads to 

the following generalized three-parameter Lindley distribution. 
Definition 2.2. A non-negative continuous random variable X is said to follow the 

generalized three-parameter Lindley distribution GL( , , )mθ β , with its distribution function 

( )F x  and density function ( )f x  respectively defined as: 

( ) 1 1 exp , 0, , 0,0 1
m mx xF x x mβ θ β

θ θ
      = − + − ≥ > ≤ ≤      

         
, 

1 1

( ) exp 1 exp
m m mm m

m m

mx x x mx xf x β β
θ θ θ θ θ

− −          = − − + + −          
               

 

1

1 exp
m mm

m

mx x xβ β
θ θ θ

−       = + − −      
         

. 

In particular, when 0β = , the distribution function is ( ) 1 exp
mxF x

θ
  = − −  
   

, which 

is the two-parameter Weibull distribution. 

When 1m = , the distribution function is /( ) 1 1 xF x x e θβ
θ

− = − + 
 

, which is the 

generalized two-parameter Lindley distribution. 

When 1, 0m β= = , the distribution function is /( ) 1 xF x e θ−= − , which is the Exponential 

distribution Exp(1/ )θ . 

When 1, 1m β= = , the distribution function is /( ) 1 1 xxF x e θ

θ
− = − + 

 
, which is the 

Эрланга distribution. 

When 1β = , the distribution function is ( ) 1 1
mm xxF x e θ

θ

 − 
 

  = − +  
   

, which is the 

generalized Exponential sum distribution. 

When 1m = , 1θ θ −′ =  and 
1

1 1
θβ

θ θ
= =

′ + +
, the distribution function is 

( ) 1 1
1

xF x x e θθ
θ

′−′ = − + ′ + 
, which is the single-parameter Lindley distribution. 

Theorem 2.1.  (1) The generalized three-parameter Lindley distribution GL( , , )mθ β  can 
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be viewed as a mixture of the two-parameter Weibull distribution with the density function 

1

exp
mm

m

mx x
θ θ

−   −  
   

and the distribution with the density function 

1

exp
m mm

m

mx x x
θ θ θ

−     −    
     

.  

(2) For 0k > , the k-order moment of is ( ) 2 (1 ) 1k k k kE X
m m

θ β β    = Γ + + − Γ +        
. 

Proof. (1) By denoting  

1 1

1 2( ) exp , ( ) exp
m m mm m

m m

mx x mx x xf x f x
θ θ θ θ θ

− −        = − = −        
           

, 

we have 

1 1

1 2( ) (1 ) exp exp (1 ) ( ) ( )
m m mm m

m m

mx x mx x xf x f x f xβ β β β
θ θ θ θ θ

− −        = − − + − = − +        
           

. 

It is easy to see that the generalized three-parameter Lindley distribution GL( , , )mθ β  can 

be regarded as a special mixed distribution. 

(2) 
1

0
( ) 1 exp d

m mm
k k

m

mx x xE X x xβ β
θ θ θ

−+∞       = + − −      
         

∫  

      

/ / 1 /

0 0 0
( 1 ) d d (1 ) dk k m t k k m t k m tt t e t t e t t e tθ β β θ β β

+∞ +∞ +∞− + − − = + − = + −  ∫ ∫ ∫  

2 (1 ) 1k k k
m m

θ β β    = Γ + + − Γ +        
.                                □ 

In particular, its mathematical expectation and the second moment are 

1 1( ) 2 (1 ) 1E X
m m

θ β β    = Γ + + − Γ +        
, 

                   

2 2 2 2( ) 2 (1 ) 1E X
m m

θ β β    = Γ + + − Γ +        
.
 
 

 
3. Failure mode of progressive stress accelerated test for the generalized 
two-parameter Lindley distribution under the inverse power law model  
3.1. Basic assumptions of step-stress testing and the inverse power law model 

Assumption 1. It is assumed that the product life X  follows the generalized two-parameter 

Lindley distribution GL( , )θ β  with the shape parameter β  and the scale parameter θ  at any 

stress level V . 
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Assumption 2. Under various stress levels, the failure mechanism of the product remains the 

same. That is, the shape parameter β  of the product's lifetime distribution is the same for each 

stress level, while the scale parameter depends on the stress level. 
Assumption 3. The scale parameter θ  and accelerated stress level V  satisfy the inverse 

power law model. 
The inverse power law model refers to the relationship between the scale parameter θ  (in 

hours) and voltage (in volts) when voltage is used as the accelerated stress. This is based on 
physical principles and empirical summaries from experiments, which have found that for some 
products (such as insulating materials, capacitors, micro motors, and certain electronic devices), 
there is the following inverse power law relationship between the scale parameter and voltage: 

1
cdV

θ = , where 0d >  and 0c >  are constants. For electronic components, physical 

experiments have shown that c  is only related to the type of component and is independent of its 
specifications. 

After taking the logarithm of both sides of the above equation, the parameter θ  satisfies a 

logarithmic linear relationship: ln𝜃𝜃 = 𝑎𝑎 + 𝑏𝑏𝑏𝑏(𝑉𝑉) , where ln ,  a d b c= − = −  and 

( ) lnV Vφ =  is a function of stress V . 

The statistical analysis of step-stress or progressive-stress accelerated life tests is primarily 
based on the well-known Nelson assumptions, commonly referred to as the Cumulative Exposure 
(CE) model. 

Assumption 4. The residual life of a product depends solely on the extent of failure that has 
already accumulated and the current stress level, rather than on the manner in which the failure 
has accumulated. 

The Nelson Assumption essentially represents a form of "time scaling." That is, if a product 
is continuously subjected to a constant stress, the non-failed products will fail according to the 
distribution function under that stress, but this failure process starts from the previously 
accumulated failures. 

Assume that under a constant stress , 1, 2iV i = , the lifetime iX  of a product follows a 

generalized two-parameter Lindley distribution GL( , )iθ β , with its distribution function given 

as: 

/( ) 1 1 , 0, 0, 0, 1,2i

i

x
V i

i

F x x e x iθβ β θ
θ

− 
= − + > > > = 

 
. 

Based on the Nelson assumption 
1 21 2( ) ( )V VF x F x= , that is, 

1 1 2 2/ /
1 2

1 2

1 1 1 1x xx e x eθ θβ β
θ θ

− −   
− + = − +   
   

. 
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From which we derive 1 2

1 2

x x
θ θ

= . This is equivalent to 1 2
1 2 2

2 1

c
Vx x x
V

θ
θ

 
= =  

 
. 

The above equation can be interpreted as: The duration 2x  for which a product operates 

under stress 2V  is equivalent to the time 2
1 2

1

c
V
V

xx
 

=  
 

 it operates under stress 1V . 

3.2. Failure modes under progressive stress ( ( )V x Kx= ) in accelerated life testing with the 

inverse power law model 
The statistical analysis of generalized two-parameter Lindley distribution progressive stress 

accelerated life tests (abbreviated as progressive stress tests) under the inverse power law model is 
also based on the aforementioned four fundamental assumptions. 

First, consider the general progressive stress 1 1( ) , 0V x Kx V V= + >  accelerated life 

testing. It is assumed that under a given stress 1V , the life distribution of a product follows a 

generalized two-parameter Lindley fatigue life distribution 1GL( , )θ β , and the scale parameter 

1θ  conforms to an inverse power law model 1
1

1
cdV

θ = . 

According to reference [34], the duration x  for which a product operates under a given 

stress level 1 1( ) , 0V x Kx V V= + >  is equivalent to the operational time under a constant stress 

level 1V , which can be expressed as: 

1 1
1 1 1 1

0 0
1 1 1

( ) 1d d
1

c c cc c cx x

c c c

Kt V V V VK Kt t t x
V V K V c K K

+ + +      = + = + −      +       
∫ ∫  

1 1
1 1

1

( )1
( 1)

c c

c

Kx V V
K c V

+ ++ −
=

+
. 

Therefore, the life distribution of the product under progressive stress 

1 1( ) , 0V x Kx V V= + >  is 

1 1 1 1
( ) 1 1 1 1( ) 1 1 ( ) exp ( )

( 1) ( 1)
c c c c

V x
d dF x Kx V V Kx V V

K c K c
β + + + +      = − + + − − + −      + +   

. 

Specifically, when 1 0V = , the life distribution of the product under progressive stress 

( )V x Kx=  is as follows: 
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1 1

( ) ( ) 1 1 exp
1 1

c c c c

V x
dK x dK xF x

c c
β

+ +   
= − + −   + +   

. 

By denoting 
1/( 1)1 , 1

c

c

c m c
dK

θ
++ = = + 

 
, it is observed that: 

( ) 1 1 exp
m mx xF x β

θ θ
      = − + −      

         
 , 

which is the generalized three-parameter Lindley distribution. 
Note: While the requirement here is 1m > , in fact, it can be extended to 0m > . 

 
4. The graphical characteristics of the generalized three-parameter Lindley 
distribution 

Theorem 4.1. Assume that a non-negative random variable X  follows the three-parameter 

generalized Lindley distribution GL( , , )mθ β . Then, its density function ( )f x  exhibits the 

following graphical characteristics: 

(1)When 
10
3

m< ≤ , ( )f x  is strictly monotonically decreasing. (2)When 
1 1
3 2

m< < , ( )f x  

is strictly monotonically decreasing.(3)When 
1 1
2

m≤ ≤
 
and 0 2

( 1) 2 (1 )
5 2 1

m m m m m
m m

β
+ + −

=
− +

,

①If 
3 1

m
m

β ≤
−

, ( )f x  is strictly monotonically decreasing. ②If 03 1
m

m
β β< ≤

−
, ( )f x  

is strictly monotonically decreasing. ③ If 0 1β β< < , ( )f x  first strictly monotonically 

decreases, then increases, and eventually decreases again.(4)When 1m > , ( )f x  exhibits an 

"inverted bathtub" shape. 

Proof. (0) , ( ) 0f f= +∞ +∞ =  for 0 1m< < , 

           
1(0) , ( ) 0f fβ
θ
−

= +∞ =  for 1m = , 

           (0) 0, ( ) 0f f= +∞ =  for 1m > , 

2 2

( ) exp ( 1) 1 1
m m mm m

m m m

m x x x xf x m m m
x
θ β β β β β

θ θ θ θ θ

−             ′ = − − + − + − + −           
                 

. 

By denoting 
mxt

θ
 =  
 

, we have 
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2 2
1( ) exp ( 1) ( 1 ) ( 1 )

mm

m m

m x xf x m t t m m tβ β β β β
θ θ θ

−
−

  ′  = − − + − + − + −       
 

      

2 2
1 2exp (3 ) ( 1)(1 )

mm

m m

m x xt m t m m t mβ β β β
θ θ θ

−
−

    = − − + − − + − −       
. 

Define the function as 2( ) (3 ) ( 1)(1 ), 0g t m t m m t m tβ β β β= − + − − + − − ≥ . 

(0) ( 1)(1 ), ( )g m gβ= − − +∞ = −∞ , 

2 2 2 2 2 2 2(3 ) 4 ( 1)(1 ) 5 2 2 2m m m m m m m m mβ β β β β β β β β∆ = − − + − − = − − + + − . 

(1)When 
1
3

m ≤ , 3 0m mβ β− − ≤ , ( ) 0, ( ) 0g t f x′< < , implying ( )f x  is strictly 

monotonically decreasing. 

(2) When 
1 1
3 2

m< < , at this point 1
3 1

m
m

>
−

, 3 1 , (3 1) ,3 0m m m m m mβ β β− < − < − − < ,

( ) 0g t < , ( ) 0f x′ < , indicating ( )f x  is strictly monotonically decreasing. 

(3) When 
1 1
2

m≤ ≤ , if 
3 1

m
m

β ≤
−

, at this point 1
3 1

m
m

≤
−

, then 3 0,m mβ β− − ≤

( ) 0g t < , ( ) 0f x′ < , which means ( )f x  is strictly monotonically decreasing. 

When 
1 1
2

m≤ ≤ , and 
3 1

m
m

β >
−

, it is evident that 
1 1
2 3 1

m
m

≤ ≤
−

, at this point,

3 0m mβ β− − > . 

Define the function as 2 2 2 2 2 2( , ) 5 2 2 2h m m m m m mβ β β β β β= − − − + + . 

2 2 2 2( , ) 10 4 2 2 2 2(5 2 )h m m m m m m m m mβ β β β β β β
β

∂
= − − − + = − − − +

∂
. 

Define the function as 2 2
1( , ) 5 2h m m m m mβ β β β= − − − + . 

21( , ) 5 2 1 0h m m mβ
β

∂
= − + >

∂
, 

2
2 2

1
2 ( 1), , 5 2 0

3 1 3 1 3 1 3 1 3 1 3 1
m m m m m m mh m m m m m

m m m m m m
β − > = − − − + = > − − − − − − 

. 
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Then 1 1( , ) , 0
3 1

mh m h m
m

β  > > − 
, indicating that ( , )h m β  is strictly monotonically 

increasing for β . 

2

2

4 (2 1)( 1), 0
3 1 (3 1)

m m m mh m
m m

− −  = < − − 
, 2( ,1) (2 1) 0h m m= − ≥ . 

Moreover  2 2 2( , ) (5 2 1) 2 ( 1)h m m m m m mβ β β= − + − + + . 

Solving for the root 0β  of β  from the equation ( , ) 0h m β = . 

2 2 2 2 34 ( 1) 4 (5 2 1) 16 (1 ) 0m m m m m m m∆ = + − − + = − ≥ . 

If we choose 0 2

( 1) 2 (1 )
5 2 1

m m m m m
m m

β
+ − −

=
− +

, since it is required that 0 3 1
m

m
β >

−
, then 

2

( 1) 2 (1 )
5 2 1 3 1

m m m m m m
m m m

+ − −
>

− + −
, 

which means 

2

( 1) 2 (1 ) 1
5 2 1 3 1

m m m
m m m

+ − −
>

− + −
, 2( 1)(3 1) 2(3 1) (1 ) 5 2 1m m m m m m m+ − − − − > − + , 

2 2 23 2 1 2(3 1) (1 ) 5 2 1, 2(3 1) (1 ) 2( 1)m m m m m m m m m m m+ − − − − > − + − − − > − , 

which is a contradiction. 

Therefore, 0β  should be taken as 0 2

( 1) 2 (1 )
5 2 1

m m m m m
m m

β
+ + −

=
− +

, and 0 1
3 1

m
m

β< <
−

. 

Hence, when 
1 1
2

m≤ ≤ , and 03 1
m

m
β β< <

−
, ( , ) 0h m β < , then ( ) 0g t < , ( ) 0f x′ < , 

indicating that ( )f x  is strictly monotonically decreasing. 

When 
1 1
2

m≤ ≤ , and 0 1β β< < , ( , ) 0h m β > , then due to the symmetry axis of the 

equation ( ) 0g t =  is 
3 0

2
m m

m
β β

β
− −

> , it follows that equation ( ) 0g t =  has two positive 

real roots 1 2 1 2, ,t t t t< , i.e., when 1t t< , ( ) 0g t < , ( ) 0f x′ < , ( )f x  is strictly monotonically 

decreasing, when 1 2t t t< < , ( ) 0g t > , ( ) 0f x′ > , ( )f x  is strictly monotonically increasing, 
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when 2t t> , ( ) 0g t < , ( ) 0f x′ < , ( )f x  is strictly monotonically decreasing. 

(4) When 1m > , (0) 0g > ，there exists 0t , when 0t t< , ( ) 0g t > , ( ) 0f x′ > , ( )f x  is strictly 

monotonically increasing , when 0t t> , ( ) 0g t < , ( ) 0f x′ < , ( )f x  is strictly monotonically 

decreasing. Thus, ( )f x  exhibits an "inverted bathtub" shape.                            □ 

Note: The graph of 0β  as a function of m  is shown in Figure 1 below, where 

0 2

( 1) 2 (1 ) 1, 1
5 2 1 2

m m m m m
m

m m
β

+ + −
= ≤ ≤

− +
. 

 

Figure 1. Graph of 0β  variation with respect to  (0.5 1)m m≤ ≤  

    Set the scale parameter as 1θ = , and for different combinations of the parameters ,m β , 

the graphical representations of the density function ( )f x  are illustrated in Figures 2 to 7. 

 

Figure 2. Graph of the density function with 0.1, 0.5, 1m β θ= = =  
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Figure 3. Graph of the density function with 0.4, 0.5, 1m β θ= = =  

 

Figure 4. Graph of the density function with 0.8, 0.5, 1m β θ= = = （ 0
40.8,

3 1 7
m

m
β = =

−
） 

 

Figure 5. Graph of the density function with 0.8, 0.6, 1m β θ= = = （ 0
40.8,

3 1 7
m

m
β = =

−
） 

 

Figure 6. Graph of the density function with 0.8, 0.85, 1m β θ= = = （ 0
40.8,

3 1 7
m

m
β = =

−
） 
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Figure 7. Graph of the density function with 1.5, 0.5, 1m β θ= = =  

Theorem 4.2. Assume a non-negative random variable X  follows a three-parameter 

generalized Lindley distribution GL( , , )mθ β . The failure rate function ( )xλ  then exhibits the 

following graphical characteristics: 

(1) When 
1
2

m ≤ , ( )xλ  is strictly monotonically decreasing.  

(2) When 
1 1
2

m< < , ①If 2 2 0m β− + ≤ , ( )xλ  is strictly monotonically decreasing. ②If 

2 2 0, 1m β β− + > = , ( )xλ  exhibits an "inverted bathtub" shape. ③ If 

2 2 0, 2(1 ) 1, 4 (1 )m m m mβ β β− + > − < < ≤ − , ( )xλ  is strictly monotonically decreasing.

④If 2 2 0,4 (1 ) 1m m mβ β− + > − < < , ( )xλ  initially decreases strictly monotonically, then 

increases, and finally decreases again. 

(3) When 1m ≥ , ( )xλ  is strictly monotonically increasing. 

Proof. The failure rate function is defined as 

1 1
( )

1

m
m

mm

xx
mx

x

β β
θ

λ
θ

β
θ

−
   + −  

   =
 +  
 

. 

When 0 1m< < ,                 (0) , ( ) 0λ λ= +∞ +∞ = . 

When 1m = ,                    
1 1(0) , ( )βλ λ
θ θ
−

= +∞ = . 

When 1m > ,                     (0) 0, ( )λ λ= +∞ = +∞ . 

2
2 2

( ) 1 ( 1) 1 1
m m mm m

m m m

m x x x xx m
x
θλ β β β β

θ θ θ θ θ

−
−           ′ = + − + − +          

               
 

1 2 3 4 5

0.1

0.2

0.3

0.4

0.5
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1 1
m mx xm mβ β β β β

θ θ

      + + − + −      
         

. 

By denoting 
mxt

θ
 =  
 

, we have 

2 2
2 2

2 2

1( ) ( 1) (2 2 ) (1 )( 1)
(1 )

m

m

mxx m t m t m
t t

λ β β β β
θ β

−

′  = − + − + + − − +
. 

Define the function as 2 2( ) ( 1) (2 2 ) (1 )( 1), 0g t m t m t m tβ β β β= − + − + + − − > . 

(0) (1 )( 1)g mβ= − − , 
, 1

( ) , 1
, 1

m
g m

m

+∞ >
+∞ = +∞ =
−∞ <

, 

2 2 2 2 3 2[2( 1) ] 4 (1 )( 1) 4( 1) 4( 1)m m m mβ β β β β β ∆ = − + − − − = − + − +  . 

(1) When 
1
2

m ≤ , ( ) 0g t < , ( )xλ  is strictly monotonically decreasing. 

(2) When 
1 1
2

m< < , if 2 2 0m β− + ≤ , that is 2(1 )mβ ≤ − , ( ) 0g t < , ( )xλ  is strictly 

monotonically decreasing. 

When 
1 1
2

m< < , if 2 2 0m β− + > , that is 2(1 ) 1m β− < ≤ . 

①If 1β = , at this point 

2 2 1( ) ( 1) (2 1) [( 1) (2 1)] (1 )
1
mg t m t m t t m t m t m t

m
− = − + − = − + − = − − + − 

. 

Let 0
2 1
1
mt

m
−

=
−

. When 0t t< , ( ) 0g t > , ( ) 0xλ′ > ; when 0t t> , ( ) 0g t < , ( ) 0xλ′ < , 

indicating ( )xλ  first strictly monotonically increases then decreases, forming an "inverted 

bathtub" shape. 

②If 2(1 ) 1m β− < < , 3 3[4 ( 1) ] [ 4 (1 )]m m m mβ β β β∆ = − + = − − . 

If 4 (1 )m mβ ≤ − , 0∆ ≤ , ( ) 0g t < , ( ) 0xλ′ < , ( )xλ  is strictly monotonically decreasing. 

If 4 (1 ) 1m m β− < < , 0∆ > ，there exists 1 2,t t , 1 20 t t< < , such that 1 2( ) ( ) 0g t g t= = . 
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When 1t t< , ( ) 0g t < , ( ) 0xλ′ < , when 1 2t t t< < , ( ) 0g t > , ( ) 0xλ′ > , when 2t t> , 

( ) 0g t < , ( ) 0xλ′ < , indicating ( )xλ  first strictly monotonically decreases, then increases, 

and finally decreases again. 

(3) When 1m ≥ , ( ) 0g t > , ( )xλ  is strictly monotonically increasing.                  □ 

Set the scale parameter as 1θ = , and for different combinations of the parameters ,m β , 

the graphical representations of the failure rate function ( )xλ  are illustrated in Figures 8 to 13. 

 

Figure 8. Graph of the failure rate function ( )xλ  with 0.1, 0.5, 1m β θ= = =  

 

Figure 9. Graph of the failure rate function ( )xλ  with 0.8, 0.2, 1m β θ= = =  

 

Figure 10. Graph of the failure rate function ( )xλ  with 0.8, 1, 1m β θ= = =  
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Figure 11. Graph of the failure rate function ( )xλ  with 0.8, 0.6, 1m β θ= = =  

 

Figure 12. Graph of the failure rate function ( )xλ  with 0.8, 0.8, 1m β θ= = =  

 

Figure 13. Graph of the failure rate function ( )xλ  with 1.5, 0.5, 1m β θ= = =  

Theorem 4.3. Assume that a non-negative random variable X  follows a three-parameter 

generalized Lindley distribution GL( , , )mθ β . Then, the mean failure rate function ( )xλ  

exhibits the following graphical characteristics: 

(1)When 
1
2

m ≤ , ( )xλ  is strictly monotonically decreasing. (2)When 
1 1
2

m< < , ① If 

2( 1) 0m β− + ≤ , ( )xλ  is strictly monotonically decreasing. ②If 2( 1) 0m β− + > , denote 

0β  as the root of the equation 1 ln 0
2(1 )

m m
m

ββ β− − + =
−

,（i）If 02(1 )m β β− < ≤ , 

( )xλ  is strictly monotonically decreasing.（ii）If 0 1β β< < , the graph of ( )xλ  can exhibit 
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two possible behaviors: <1>strictly monotonically decreasing, <2>initially strictly monotonically 

decreasing, then increasing, and finally decreasing again. ③If 1β = , ( )xλ  initially increases 

strictly monotonically and then decreases. (3)When 1m ≥ , ( )xλ  is strictly monotonically 

increasing. 

Proof. The mean failure rate is defined as 
1( ) ln 1

m mx xx
x

λ β
θ θ

      = − + −     
       

. 

By denoting 
mxt

θ
 =  
 

, we have 1/

ln(1 )( ) m

t tx
t
βλ

θ
+ −

= − , and (1 )/ 1/0

1(0) lim m m mt

m t
t t
β βλ

θ β−→

+ −
=

+
. 

When 1m < ,              (1 )/ 1/0

1(0) lim m m mt

m t
t t
β βλ

θ β−→

+ −
= = +∞

+
. 

When 1m = ,  
0 0

1 ln(1 ) 1 ln(1 ) 1(0) lim lim 1
t t

t t t
t t

β β βλ
θ θ θ→ →

− + + − = = − =  
. 

When 1m > ,                          (0) 0λ = . 

(1 )/ 1/

1( ) lim m m mt

m t
t t
β βλ

θ β−→+∞

+ −
+∞ =

+
. 

When 1m < ,                         ( ) 0λ +∞ = . 

When 1m = ,  
0 0

1 ln(1 ) 1 ln(1 ) 1( ) lim lim 1
t t

t t t
t t

β βλ
θ θ θ→ →

− + + +∞ = = − =  
. 

When 1m > ,                        ( )λ +∞ = +∞ . 

[ ]
1

1/ 1
1

1( ) ( 1)(1 ) (1 ) ln(1 )
1

m
m

m

xx t m t m t t t t
t

λ β β β β
θ β

−
− −

+
′ = − + − + + + +

+
. 

Define the function as ( ) ( 1)(1 ) (1 ) ln(1 ), 0g t m t m t t t t tβ β β β= − + − + + + + > , 

then we have        2 2( ) (1 ) ln(1 )g t m t mt m t t t t tβ β β β β= − + + − − + + + . 

, 1
(0) 0, ( ) , 1

, 1

m
g g m

m

+∞ >
= +∞ = +∞ =
−∞ <

. 

In fact, when 1m > , 2
2

1 (1 ) ln(1 )( ) ( 1) ( 1) t tg t t m m m
t t

β ββ β + + = − + − − +  
. 
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2 2
2 2

(1 ) ln(1 ) (1 ) ln(1 ) ln(1 ) 1lim lim lim 0
2t y y

t t y y y
t y y

β β β β
→+∞ →+∞ →+∞

+ + + + + +
= = = . 

Thus, it follows that:           ( )g +∞ = +∞ . 

When 1m = ,   
(1 ) ln(1 )( ) (1 ) ln(1 ) 1t tg t t t t t

t
β ββ β β β

β
 + +

= − + + + = − 
 

. 

(1 ) ln(1 ) (1 ) ln(1 )lim lim lim [ln(1 ) 1]
t y y

t t y y y
t y

β β
β→+∞ →+∞ →+∞

+ + + +
= = + − = +∞ . 

We have                            ( )g +∞ = +∞ . 

When 1m < ,                       ( )g +∞ = −∞ . 

( ) ( 1)(1 ) ( 1) ln(1 )g t m m t m t tβ β β β β β′ = − + − + + − + + +  

2( 1) ( 1)(1 ) ln(1 )m t m tβ β β β= − + − − + + . 

Define the function as 1( ) 2( 1) ( 1)(1 ) ln(1 ), 0g t m t m t tβ β β β= − + − − + + > . 

1

0, 1
(0) ( 1)(1 ) 0, 1

0, 1

m
g m m

m
β

> >
= − − = = =
< <

, 1

, 1
( )

, 1
m

g
m

+∞ ≥
+∞ = −∞ <

, 

2

1( ) 2( 1)
1

g t m
t

ββ
β

′ = − +
+

. 

Define the function as 
2

2 ( ) 2( 1) , 0
1

g t m t
t

ββ
β

= − + >
+

. 

[ ]
3

2 2 2 2(0) 2( 1) , ( ) 2( 1) , ( ) 0
(1 )

g m g m g t
t

ββ β β
β

′= − + +∞ = − = − <
+

. 

(1)When 
1
2

m ≤ , 2(1 ) 1,2( 1) 0m m β− > − + < , 2 1( ) 0, ( ) 0g t g t′< < , 1( ) 0g t < , ( ) 0g t′ < , 

( ) 0g t < , ( )xλ  is strictly monotonically decreasing. 

(2)When 
1 1
2

m< < ,  

①If 2( 1) 0m β− + ≤ , that is 2(1 ) 1mβ ≤ − < , 2 2(0) 0, ( ) 0g g t≤ < , 1 1( ) 0, ( ) 0g t g t′ < < , 
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( ) 0, ( ) 0g t g t′ < < , ( )xλ  is strictly monotonically decreasing. 

② If 2( 1) 0m β− + > , that is 2(1 ) 1m β− < < , there exists 2t , 2 2( ) 0g t = , if 2t t< ,

2 1( ) 0, ( ) 0g t g t′> > ; if 2t t> , 2 1( ) 0, ( ) 0g t g t′< < . 

2
2( 1)2( 1)(1 ) 0, 2( 1) 2( 1) 0,
2(1 )
mm t m m t t

m
ββ β β β
β

− +
− + + = − + − + = =

−
, 

Then when 2t t= , 1 2( )g t  is the maximum value of 1( )g t : 

1 2
2( 1) 2( 1)( ) 2( 1) ( 1)(1 ) ln 1
2(1 ) 2(1 )
m mg t m m

m m
β ββ β β
β β

 − + − +
= − + − − + + − − 

 

1 ln
2(1 )

m m
m

ββ β= − − +
−

. 

Define the function as ( ) 1 ln ,2(1 ) 1
2(1 )

h m m m
m

ββ β β β= − − + − ≤ ≤
−

. 

( ) ln 1 0
2(1 )

h m
m

ββ′ = − + + >
−

, 

2(2(1 )) 1 2(1 ) 2 3 1 (2 1)( 1) 0h m m m m m m m m− = − − − = − + = − − < , 

(1) 1 ln[2(1 )] 1 ln 2 2 ln(1 )h m m m m m= − − − − = − − − − . 

Define the function as 1
1( ) 1 ln 2 2 ln(1 ), 1
2

h m m m m= − − − − < < . 

1 1 1
1 2 1( ) 2 0, (0.5) 0, ( ) 0, (1) 0

1 1
mh m h h m h

m m
−′ = − + = > = > >

− −
. 

Then, there exists 0β  such that 0( ) 0h β = , when 02(1 )m β β− < < , ( ) 0h β < , when 

0 1β β< ≤ , ( ) 0h β > . 

(i) When 02(1 )m β β− < ≤ , 1 2 1( ) 0, ( ) 0, ( ) 0h g t g tβ ≤ ≤ ≤ , ( ) 0, ( ) 0g t g t′ < < , ( )xλ  is 

strictly monotonically decreasing. (ii) When 0 1β β< < , 1 2( ) 0, ( ) 0h g tβ > > , there exists 

11 12 11 12, ,t t t t<  with 1 11 1 12( ) ( ) 0g t g t= = . 

When 11t t< , 1( ) 0, ( ) 0g t g t′< < , when 11 12t t t< < , 1( ) 0, ( ) 0g t g t′> > , when 12t t> ,
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1( ) 0, ( ) 0g t g t′< < . 

It is clear that, <1> if ( ) 0g t ≤ , then ( )xλ  is strictly monotonically decreasing,  <2> if there 

exists 01 02,t t , 01 02( ) ( ) 0g t g t= = , when 01t t< , ( ) 0g t < ; when 01 02t t t< < , ( ) 0g t > ; 

when 02t t> , ( ) 0g t < , then �̅�𝜆(𝑥𝑥) is "first strictly monotonically decreasing then increasing 

and again decreasing". 

③Especially when 1β = , and 
1 1
2

m< < , at this time 

2 2 2 2( ) (1 ) ln(1 ) (1 ) ln(1 )g t mt mt mt t t t t mt t t t t= − + + − − + + + = − − + + + , 

(0) 0, ( ) , ( ) 2 1 2 1 ln(1 ) 2 2 ln(1 )g g g t mt t t mt t t′= +∞ = −∞ = − − + + + = − + + . 

Define the function as 1( ) 2 2 ln(1 ), 0g t mt t t t= − + + > . 

1 1 1
1 1(0) 0, ( ) , ( ) 2 2 2( 1)

1 1
g g g t m m

t t
′= +∞ = −∞ = − + = − +

+ +
. 

Denote 2
2 1

2(1 )
mt

m
−

=
−

, then 1 2( ) 0g t′ = , when 2t t< , 1( ) 0g t′ > , when 2t t> , 1( ) 0g t′ < . 

There exists 1t , 1 1( ) 0g t = ,when 1t t< , 1( ) 0, ( ) 0g t g t′> > , when 1t t> , 1( ) 0, ( ) 0g t g t′< < . 

There exists 0t , 0( ) 0g t = , when 0t t< , ( ) 0g t > , when 0t t> , ( ) 0g t < , then ( )xλ  first 

strictly monotonically increases then decreases. 

(3)When 1m ≥ , 1 1( ) 0, ( ) 0, ( ) 0, ( ) 0g t g t g t g t′ ′> > > > , ( )xλ  is strictly monotonically 

increasing.                                                                     □ 

Set the scale parameter as 1θ = , and for different combinations of the parameters ,m β , 

the graphical representations of the mean failure rate function ( )xλ  are illustrated in Figures 14 

to 23. 
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Figure 14. Graph of the Mean Failure Rate Function ( )xλ  with 0.1, 0.5, 1m β θ= = =  

 

Figure 15. Graph of the Mean Failure Rate Function ( )xλ  with 0.8, 0.2, 1m β θ= = =  

 

Figure 16. Graph of the Mean Failure Rate Function ( )xλ  with 0.8, 0.5, 1m β θ= = =

（ 0 0.656402β = ） 

 

Figure 17. Graph of the Mean Failure Rate Function ( )xλ  with 0.8, 0.66, 1m β θ= = =

（ 0 0.656402β = ） 

 

Figure 18. Graph of the Mean Failure Rate Function ( )xλ  with 0.8, 0.67, 1m β θ= = =

（ 0 0.656402β = ） 
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Figure 19. Graph of the Mean Failure Rate Function ( )xλ  with 0.8, 0.68, 1m β θ= = =

（ 0 0.656402β = ） 

 

Figure 20. Graph of the Mean Failure Rate Function ( )xλ with 0.8, 0.685, 1m β θ= = =

（ 0 0.656402β = ） 

 

Figure 21. Graph of the Mean Failure Rate Function ( )xλ  with 0.8, 0.69, 1m β θ= = =

（ 0 0.656402β = ） 

 

Figure 22. Graph of the Mean Failure Rate Function ( )xλ  with 0.8, 0.7, 1m β θ= = =

（ 0 0.656402β = ） 
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Figure 23. Graph of the Mean Failure Rate Function ( )xλ  with 1.5, 0.5, 1m β θ= = =  

Theorem 4.4.  Assume a non-negative random variable X  follows a three-parameter 

generalized Lindley distribution GL( , , )mθ β . Then, the mean residual life ( )M x  exhibits the 

following graphical characteristics: 

(1)When 1m < , ①If 2( 1) 0m β− + ≤ , <1> If 
1
2

m ≤ , ( )M x  is strictly monotonically 

increasing. <2> If 
1 1
2

m< < , ( )M x  is strictly monotonically increasing. ② If 

2( 1) 0m β− + > , <1> If 
1
2

m < ，this condition does not exist. <2> If 
1 1
2

m≤ < , (i)If 

4(1 )m mβ ≤ − , ( )M x  is strictly monotonically increasing. (ii)If 4(1 ) 1m m β− < < ，

( )M x  may strictly monotonically increase, or it may initially increase, then decrease, and 

increase again. (iii)If 1β = , ( )M x  initially decreases strictly monotonically, then increases. 

(2) When 1m ≥ , ( )M x  is strictly monotonically decreasing. 

Proof. The mean residual life is defined as: 

      

1/ 1(1 ) d[1 ( )]d
( )

1 ( )
1 exp

m
z m

x
x

m m

z e z zF y y m
M x

F x x x
θ

β θ

β
θ θ

+∞ − −+∞
 
 
 

+
−

= =
−       + −      

         

∫∫ . 

By denoting 
xt

β

θ
 =  
 

, we have 
1/ 1(1 ) d

( )
(1 )

z m

t
t

z e z z
M x

m t e

βθ
β

+∞ − −

−

+
=

+
∫ , (0) ( )M E X= , 

1 1 1/
1

1
1 ( ) 1( ) lim lim lim

( ) ( 1 )
1

m

m m

m mmx x x
m

x
F x tM

f x m m t txx

β
θ θ βθ

θ β β
β β

θ

− −→+∞ →+∞ →+∞
−

 +  − + +∞ = = =
+ −   + −  

   

 

1 2 3 4 5

0.5

1.0

1.5
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1 1/

0, 1
1lim , 1
( 1 )

, 1
mx

m
t m

m t t
m

θ β θ
β β−→+∞

>
+ = = =+ − +∞ <

. 

1 2 1/ 1
1/ 1

2

1 (1 )( ) (1 ) d
(1 ) 1

m m t
m z

t t

x t t t eM x z z e z
t e t

β β ββ
θ β β β

− − −+∞ − −
−

 + − + ′ = + −   + + −   
∫ . 

Define the function as
2 1/ 1

1/ 1 (1 )( ) (1 ) d , 0
1

m t
m z

t

t t eg t z z e z t
t
ββ
β β

− −+∞ − − +
= + − >

+ −∫ . 

1/ 2 21( ) ( 1)(1 ) (1 )m ttg t t e m t t m
m
β β β β β− −+′  = − + + + −  . 

( ) 0g +∞ = , 
2 1/ 1

1/ 1

0 0

(1 )(0) (1 ) d lim
1

m t
m z

t

t t eg z z e z
t
ββ
β β

− −+∞ − −

→

+
= + −

+ −∫  

2

0

1/ 1

0

, 1
1 1(1 ) d 1 , 1

1 1 1

(1 ) d , 1

z

m z

m

z e z m

z z e z m

ββ β
β β β

β

+∞ −

+∞ − −


−∞ >

= + − = + − = − = − − −
 + >

∫

∫

. 

Define the function as 2
1( ) ( 1)(1 ) (1 ) , 0g t m t t m tβ β β β= − + + + − > . 

1

0, 1
(0) 1 ( 1)(1 ) 0, 1

0, 1

m
g m m m m

m
β β β

> >
= − + − = − − = = =
< <

, 1

, 1
( ) , 1

, 1

m
g m

m

+∞ >
+∞ = +∞ =
−∞ <

,  

2
1( ) 2 ( 1)(1 )g t m tβ β β′ = − + + . 

(1) When 1m < , let 1( ) 0g t′ = , that is 

2( 1) 2 ( 1) 0,2 (1 ) 2( 1)m m t m t mβ β β β− + − + = − = − + , [ ]1(0) 2( 1)g mβ β′ = − + . 

① If 2( 1) 0m β− + ≤ , that is 2(1 )mβ ≤ − . 

<1> For 
1
2

m ≤ , that is 2(1 ) 1m− ≥ , then 2( 1) 0m β− + ≤ , furthermore 1 1( ) 0, ( ) 0g t g t′ < < ,

( ) 0, ( ) 0g t g t′ < > , ( )M x  is strictly monotonically increasing. 

<2> If 
1 1
2

m< < , 2(1 )mβ ≤ − , 1 1( ) 0, ( ) 0, ( ) 0, ( ) 0g t g t g t g t′ ′< < < > , then ( )M x is 
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strictly monotonically increasing. 

② If 2( 1) 0m β− + > , that is 2(1 )mβ > − . 

<1> If 
1
2

m < , 2(1 ) 1mβ > − > , which is in contradiction with 0 1β≤ ≤ . 

<2> If 
1 1
2

m≤ < , 2(1 )mβ ≥ − , i.e. 2(1 ) 1m β− ≤ ≤ , denote 2
2( 1)
2 (1 )
mt

m
β

β
− +

=
−

 at this 

point. When 2t t< , 1( ) 0g t′ > ; when 2t t> , 1( ) 0g t′ < , i.e. 1 2( )g t  is the maximum value of 

1( )g t . 

[ ]
2

1 2
2( 1) 2( 1)( ) ( 1) 1 1 4(1 )

2(1 ) 2(1 ) 4(1 )
m mg t m m m m

m m m
β β ββ β β

   − + − +
= − + + + − = − −   − − −   

. 

(i) If 4(1 )m mβ ≤ − , 1( ) 0, ( ) 0, ( ) 0g t g t g t′≤ < > , ( )M x  is strictly monotonically 

increasing. 

(ii) If 4(1 ) 1m m β− < < , there exists 11 12 11 12, ,t t t t< , 1 11 1 12( ) ( ) 0g t g t= = , when 11t t< ,

1( ) 0g t < , ( ) 0g t′ < ; when 11 12t t t< < , 1( ) 0g t > , ( ) 0g t′ > ; when 12t t> , 1( ) 0g t < , 

( ) 0g t′ < , then ( )M x  may strictly monotonically increase or first increase, then decrease, 

and increase again.  

(iii)If 1β = , since 1(0) 0g = , there exists 1t , 1 1( ) 0g t = , when 1t t< , 1( ) 0, ( ) 0g t g t′> > ; 

when 1t t> , 1( ) 0, ( ) 0g t g t′< < , then ( )M x  first strictly monotonically decreases, then 

increases. 

(2) When 1m ≥ , 1 1( ) 0, ( ) 0, ( ) 0, ( ) 0g t g t g t g t′ ′> > > < , ( )M x  is strictly monotonically 

decreasing.                                                                    □ 

    Set the scale parameter as 1θ = , and for different combinations of the parameters ,m β , 

the graphical representations of the mean residual life ( )M x  are illustrated in Figures 24 to 30. 
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Figure 24. Graph of the mean residual function ( )M x  with 0.1, 0.5, 1m β θ= = =  

 

Figure 25. Graph of the mean residual function ( )M x  with 0.8, 0.3, 1m β θ= = =  

 

Figure 26. Graph of the mean residual function ( )M x  with 0.8, 0.5, 1m β θ= = =  

 

Figure 27. Graph of the mean residual function ( )M x  with 0.8, 0.65, 1m β θ= = =  
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Figure 28. Graph of the mean residual function ( )M x  with 0.8, 0.7, 1m β θ= = =  

 

Figure 29. Graph of the mean residual function ( )M x  with 0.8, 1, 1m β θ= = =  

 

Figure 30. Graph of the mean residual function ( )M x  with 1.5, 0.5, 1m β θ= = =  

 
5. Estimation of parameters for the generalized three-parameter Lindley 
distribution in a full sample context 

Let 1 2, , , nX X X  be a simple random sample of size n  from a population following a 

three-parameter generalized Lindley distribution GL(~ , , )mX θ β , with sample observations 

denoted as 1 2, , , nx x x  and ordered observations as (1) (2) ( ), , , nx x x .  

Due to the complexity of the distribution function, density function, and higher-order 

moments of the generalized three-parameter Lindley distribution GL( , , )mθ β , the conventional 

methods of maximum likelihood estimation and moment estimation involve solving very complex 
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transcendental equations. It is theoretically difficult to study their existence and uniqueness, hence 
the necessity of finding new methods for parameter estimation. 

Let lnY X= , ln , ln , 1, 2, ,3i i i iY X y x i= = =  , and denote 
1ln ,
m

m θ σ= = . 

For y−∞ < < +∞ , the distribution function of Y  is 

( )( ) (ln ) y
YF y P X y P X e= ≤ = ≤  

1 1 exp 1 1 exp exp exp
m my ye e y ym mβ β

θ θ σ σ

        −   −    = − + − = − + −                             
. 

Let 
ln XZ m

σ
−

=  for z−∞ < < +∞ , and then the distribution function of Z  is 

( ) ( )( ) 1 1 , ( ) 1
z zz e z z e

Z ZF z e e f z e e eβ β β− −= − + = + − . 

Lemma 5.1. Suppose the distribution function ( )ZF z  and density function ( )Zf z  of a 

random variable Z  are respectively: 

( )( ) 1 1
zz e

ZF z e eβ −= − + , ( ) (1 )
zz z e

Zf z e e eβ β − = − +  . 

Then 1( )E Z a β= + , 2
2 2( )E Z a c β= + , 3

3 3( )E Z a c β= + , 4
4 4( )E Z a c β= + ,

2
2( )D Z bβ= − + , [ ]3 3

3( ) 2E Z E Z bβ− = + , [ ]4 4 2
2 4( ) 3 6E Z E Z b bβ β− = − − + , 

where 1 0.577216a = − , 2 1.97811a = , 3 5.44487a = − , 4 23.5615a = , 

      1 1c = ,  2 1.15443c = − , 3 5.93434c = , 4 21.7795c = − , 

2
2 2 1 1.64493b a a= − = , 3

3 3 1 2 13 2 2.40411b a a a a= − + = − , 

      2 4
4 4 3 1 2 1 14 6 3 14.6114b a a a a a a= − + − = . 

    Proof. It is evident that the k -th moment of Z  is  

0
( ) (1 ) d [(1 ) ](ln ) d

zk k z z e k tE Z z e e e z t t e tβ β β β
+∞ +∞− −

−∞
 = − + = − + ∫ ∫  

0 0
(1 ) (ln ) d (ln ) dk t k tt e t t t e tβ β

+∞ +∞− −= − +∫ ∫  

0 0 0
(ln ) d (ln ) d (ln ) dk t k t k tt e t t t e t t e tβ

+∞ +∞ +∞− − − = + −  ∫ ∫ ∫ . 

Let 
0

(ln ) dk t
ka t e t

+∞ −= ∫ , 
0 0

(ln ) d (ln ) dk t k t
kc t t e t t e t

+∞ +∞− −= −∫ ∫ . 

Considering:
0 0

lim(ln ) lim( 1)(ln ) 0, lim (ln ) lim ( 1)(ln ) 0k t k t k t k t

t t t t
t e t t e t e t t e− − − −

→ → →+∞ →+∞
= + = = + = , 
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1 1

00 0 0

1 1(ln ) d (ln ) (ln ) d (ln ) dk t k t k t k t
ka t e t t e k t e t k t e t

t t
+∞ +∞ +∞+∞− − − − − −= = − + =∫ ∫ ∫ , 

1

00 0

1(ln ) d ( 1)(ln ) (ln ) dk t k t k t
k k k

tc t t e t a t t e k t e t a
t

+∞ +∞+∞− − − −+
= − = − + + −∫ ∫  

1 1 1

0 0 0

1 1(ln ) d (ln ) d (ln ) dk t k t k tk t e t k t e t k t e t
t t

+∞ +∞ +∞− − − − − −= + −∫ ∫ ∫  

1
10

(ln ) dk t
kk t e t ka

+∞ − −
−= =∫ . 

By calculation, we have 1 0.577216a = − , 2 1.97811a = , 3 5.44487a = − , 4 23.5615a = , 

1 1c = , 2 1.15443c = − , 3 5.93434c = , 4 21.7795c = − . 

Let 2
2 2 1 1.64493b a a= − = , 3

3 3 1 2 13 2 2.40411b a a a a= − + = − , 

2 4
4 4 3 1 2 1 14 6 3 14.6114b a a a a a a= − + − = . 

Then we have 1( )E Z a β= + , 2
2 2( )E Z a c β= + , 3

3 3( )E Z a c β= + , 4
4 4( )E Z a c β= + , 

2 2 2 2
2 2 1 2 1 2 1( ) [ ( )] ( ) ( 2 )D Z E Z E Z a c a c a a aβ β β β= − = + − + = − + − + −  

2 2
2 1.64493bβ β= − + = − + , 

[ ]3 3 2 3( ) ( ) 3 ( ) ( ) 2[ ( )]E Z E Z E Z E Z E Z E Z− = − +  

3
3 3 2 2 1 13( )( ) 2( )a c a c a aβ β β β= + − + + + + 3 3

32 2 2.40411bβ β= + = − , 

[ ]4 4 3 3 2 4( ) ( ) 4 ( ) ( ) 6 ( )[ ( )] 3[ ( )]E Z E Z E Z E Z E Z E Z E Z E Z− = − + −  

2 2 2 2 2
4 4 3 3 1 2 2 1 1 1 14( )( ) 6( )( 2 ) 3( 2 )a c a c a a c a a a aβ β β β β β β β= + − + + + + + + − + +  

4 2 2 4 2 4 2
2 1 4 2 43 6( ) 3 6 3 9.86958 14.6114a a b b bβ β β β β β= − − − + = − − + = − − + .   □ 

Furthermore, given that Y Zm σ= + , it can be deduced from the aforementioned lemma 

that:  

1( ) ( ) ( )E Y E Z am σ m σ β= + = + + , 2( ) ( )D Y D Zσ= . 

Let 2 2

1 1

1 1, ( )
n n

i Y i
i i

Y Y S Y Y
n n= =

= = −∑ ∑ , and thus a system of moment equations can be 

established as follows: 
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1
2 2 2

2

( )
( )Y

Y a
S b

m σ β
σ β

 = + +


= −
. 

    If the shape parameter β  is known, then the point estimates of the parameters ,mσ  are: 

2 2
2

2 2
2

ˆ ˆ,  Y

Y

S bm
b S

βσ
β

−
= =

−
. 

And the point estimates for the parameters ,m θ  are:  

1
1

ˆˆ ˆ ( ),  exp
ˆ

aY a Y
m
βm σ β θ + = − + = − 

 
. 

Since ˆˆ ,m θ  depend on the shape parameter β , it can be denoted as ˆˆ ( ), ( )m β θ β .  

Let 

ˆ ˆ( ) ( )
( ) ( )

( )( ) 1 1 exp , 1,2, ,ˆ ˆ( ) ( )

m m
j j

j

x x
F x j n

β β

β
θ β θ β

      
   = − + − =   
         

  be a function 

of the shape parameter β . 

Define ( )
1

( ) ( )
n

j
j

jQ F x
n

β
=

= −∑ , and considering the range [0,1] of the shape parameter

β , set a step size 0.00001 , denote 0.00001j jβ = , 50,1, 2, ,10j =  and calculate the 

values of 5( ), 0,1, 2, ,10jQ jβ =  , taking its minimum value. The corresponding jβ  can then 

be considered as the point estimate of the parameter β , denoted as β̂ .  

Note: The step size mentioned above can be determined according to the required 
computational precision and is not necessarily 0.00001 . 

Consequently, the point estimates of the parameters ,m θ  can be obtained as:  

2
2

2

ˆ
ˆ ,

Y

bm
S
β−

= 1
ˆˆ exp

ˆ
aY

m
βθ

 + = − 
  

. 

 
6. Case Study Analysis 

Case 6.1. Reference [18] provides data on the waiting time (in minutes) of 100 customers 
waiting for service at a bank: 
0.8,  0.8,  1.3,  1.5,  1.8,  1.9,  1.9,  2.1,  2.6,  2.7,  2.9,  3.1,  3.2,  3.3,  3.5,  3.6, 
4.0,  4.1,  4.2,  4.2,  4.3,  4.3,  4.4,  4.4,  4.6,  4.7,  4.7,  4.8,  4.9,  4.9,  5.0,  5.3, 
5.5,  5.7,  5.7,  6.1,  6.2,  6.2,  6.2,  6.3,  6.7,  6.9,  7.1,  7.1,  7.1,  7.1,  7.4,  7.6, 
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7.7,  8.0,  8.2,  8.6,  8.6,  8.6,  8.8,  8.8,  8.9,  8.9,  9.5,  9.6,  9.7,  9.8,  10.7, 10.9, 
11.0, 11.0, 11.1, 11.2, 11.2, 11.5, 11.9, 12.4, 12.5, 12.9, 13.0, 13.1, 13.3, 13.6, 13.7, 13.9, 14.1, 
15.4, 15.4, 17.3, 17.3, 18.1, 18.2, 18.4, 18.9, 19.0, 19.9, 20.6, 21.3, 21.4, 21.9, 23.0, 27.0, 31.6, 
33.1, 38.5. 

Reference [11], through the K-S test, considers the data to originate from a single-parameter 
Lindley distribution. In the full sample context, the point estimate of parameter θ  is calculated 

as 1866.0ˆ =θ , and its distribution function is shown in Figure 31. 

Utilizing the method proposed in this paper, the data is fitted with the generalized 
three-parameter Lindley distribution, resulting in point estimates for the three parameters as 

ˆ 0.99999β = , ˆ 1.02945m = , and ˆ 5.005θ = . The distribution function is illustrated in Figure 

31. 

 
Figure 31. Empirical distribution function and corresponding theoretical distribution 

function for case study 6.1 
   Observing Figure 31, it is evident that both the single-parameter Lindley distribution and the 
generalized three-parameter Lindley distribution fit the batch of data well. 

Case 6.2.  In reference [25], through 47 observations during the maintenance process of a 
certain model of tank, the on-site observed values for the primary level preventive maintenance 
and secondary level upkeep time were obtained as follows (unit: hours): 

0.80， 1.00， 1.00， 1.41， 1.50， 1.50， 1.50， 2.00， 2.00， 2.00 
2.00， 2.50， 2.50， 2.75， 3.20， 3.30， 3.70， 3.80， 3.80， 4.00 
4.00， 4.00， 4.00， 4.00， 4.00， 4.10， 5.00， 5.00， 5.50， 5.50 
5.50， 6.00， 6.50， 7.00， 7.16， 7.75， 8.00， 8.00， 9.50， 9.73 

10.00，11.40，12.00，12.00，14.00，15.21，15.50 
Reference [12], through fitting tests, arrived at the following two conclusions: (1) It is 

considered that the primary level preventive maintenance and secondary level upkeep time for this 

model of tank follows an Erlang distribution with parameter ˆ 2.7299θ = . (2) It is believed that 

the primary level preventive maintenance and secondary level upkeep time for this model of tank 

follows a Lindley distribution with parameter ˆ 0.3217θ = . The corresponding distribution 

functions are shown in Figure 32. 
Using the method presented in this paper, the data is fitted with the generalized 

three-parameter Lindley distribution, resulting in point estimates for the three parameters as 
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ˆ 0.99999β = ，ˆ 1.06297m = ，ˆ 2.823θ = ， The distribution function is illustrated in Figure 32.  

 

Figure 32. Empirical distribution function and corresponding theoretical distribution 
function for case study 6.2 

Observing Figure 32, it is evident that both the single-parameter Lindley distribution and the 
generalized three-parameter Lindley distribution fit the batch of data well. 
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