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Abstract: This paper introduces a new life distribution, the generalized three-parameter Lindley
distribution, derived as a product of the inverse power law model and the generalized
two-parameter Lindley distribution in a progressive stress accelerated life testing scenario. The
study presents the graphical characteristics of the density function, failure rate function, mean
failure rate function, and mean residual life function. Point estimates for the three parameters are
provided through logarithmic transformation. The paper concludes with two practical examples
demonstrating the application of this method.
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1. Introduction

The Lindley distribution was first introduced by Lindley in 1958, as documented in reference
[24]. Since then, numerous scholars have conducted extensive research on both the Lindley
distribution and its generalized forms, achieving significant results. These results are not
exhaustively enumerated here, but are available in references [1]-[10], [13]-[24], [26]-[32],
[35]-[46]. The distribution plays an essential role in the reliability studies of the stress-strength
model.

Consider a non-negative continuous random variable that follows a Lindley distribution with

parameter &, denoted as Lindley(8). The density function f(X) and distribution function
F(x) of this distribution are defined as follows:
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f(x)= 1+ x)e ™, F(x):l—(1+ixje9*,x>0,¢9>0.
0+1

This article initially extends the single-parameter Lindley distribution to the generalized
three-parameter Lindley distribution. Through theoretical derivation, it is demonstrated that under
the inverse power law model, the life distribution in a progressive stress accelerated life testing
scenario for the generalized two-parameter Lindley distribution exactly corresponds to the
generalized three-parameter Lindley distribution. Furthermore, the study investigates the graphical
characteristics of the density function and failure rate function of the generalized three-parameter
Lindley distribution. Lastly, the paper presents a methodology for point estimation of parameters
in a full-sample context and illustrates its application with practical examples.
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2. Generalized two-parameter and three-parameter Lindley distributions
Consider a non-negative continuous random variable that follows a Lindley distribution with

parameter €, denoted as Lindley(&). Its density function f(X) can be expressed as:
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f(x)::
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A+x)e” = (1—ij e 11 gxe .
0+1 0+1

Let f,(x)=8e"", f,(x)=6°xe ™ .Itis evident that f,(X) is the density function of the

Exponential distribution Exp(&), and fZ(X) is the density function of the Gamma distribution

['(2,0).Thenwe have f(x)=@1-2)f(X)+Af,(X) where g= ﬁ

From the above, it can be seen that the single-parameter Lindley distribution can be regarded

as a mixture of the Exponential distribution EXp(@) and the Gamma distribution I'(2,0),

1
where ﬂ:ﬂ' If the parameter S is retained 0< <1 while assuming that £ is
+

independent of &, the generalized two-parameter Lindley distribution is obtained.
Definition 2.1. A non-negative continuous random variable X is said to follow the

generalized two-parameter Lindley distribution GL(6, £), with its distribution function F(x)
and density function f(X) respectively defined as:

—1_ ﬁ -x/0 =£ . ﬁ —x/0
F(x)=1 (1+0xje , F(X) 9(1 ,6‘+0xje , x>0,

where 0< <1 is referred to as the shape parameter, and & > 0 as the scale parameter.

X9 that is, the

Specifically, when £ =0, the distribution function is F(x)=1-e
generalized two-parameter Lindley distribution GL(#, 5) degenerates into the single-parameter

Exponential distribution Exp(l/6) . When f=1 , the distribution function is

X
F(x) =1—(1+5je"xm, which is the one-parameter Dpnanra distribution. When @' =6

1 ! :
and S = :i, the distribution function is F(X)=1—(l+ 90 1xje‘gx, which is
+

0+1 6+1 '



the single-parameter Lindley distribution.

Building upon Definition 2.1, the introduction of an additional shape parameter m leads to
the following generalized three-parameter Lindley distribution.

Definition 2.2. A non-negative continuous random variable X is said to follow the

generalized three-parameter Lindley distribution GL(&, £, m), with its distribution function

F(x) and density function f(X) respectively defined as:

F(x) :1{1%(? m}exp{—(gjm],xzo,ﬁ,m >0,0< <1,

-5 (5] oo e ]
mx" | (x )" x\"
= {ﬂ(g +1-p exp{—(;) ]

m
X
In particular, when S =0, the distribution function is F(X)=1—exp {—(Ej ] which

is the two-parameter Weibull distribution.
When m=1, the distribution function is F(x) =1—(1+§Xj e ™% which is the

generalized two-parameter Lindley distribution.

When m=1, 5 =0, the distribution function is F(x) =1—e "’ which is the Exponential

distribution Exp(1/6).

X
When m=1, £ =1, the distribution function is F(x) =1—(1+5je‘”9, which is the
Opmanra distribution.

When S =1, the distribution function is F(X):l—{1+(§j }e_(gj , which is the

generalized Exponential sum distribution.

1 0
When m=1, 0 =6" and f=———=——, the distribution function is
0'+1 6+1

!

0 " _ . . o
F(x)=1- (l+ m Xj e " which is the single-parameter Lindley distribution.
+

Theorem 2.1. (1) The generalized three-parameter Lindley distribution GL(&, £,m) can



be viewed as a mixture of the two-parameter Weibull distribution with the density function

m 0
mx"“l(x " [x}m
Z | exp|—| =] |
" \ o 0
k

(2) For k >0, the k-order moment of is E(X*) = 6" {,BF(Z+%)+(1—,B)F(1+EH.

mx"™ x\"
exp —(—j } and the distribution with the density function

Proof. (1) By denoting
mx™* x\" mx™ (x\" x\"
f.(x)= exp|—| =1 |, f,(X)=———| — | exp|—| — ,
00="25 p[ [9” 00="5 (HJ p{ (GH
we have

F(x) = (1-5) m; epogj ]+ﬂ m;< [gj epogj } = (- B)F,(0) + B,(x).

It is easy to see that the generalized three-parameter Lindley distribution GL(&, £, m) can

be regarded as a special mixed distribution.

k_+ookmxm_l im ~ _im
(2) E(X )_IO X D {ﬂ(ej +1 ﬂ}exp{ (0} ]dx

k[T kima—tase _ ok O kiml ,— O kim -
=0 jo (Bt+1- p)ti'metdt = 0 [ﬂjo t etdt+(l—ﬂ)jo t e‘dt}

=6 [ﬂr(2+£j+(l—,b’)l“(1+£ﬂ. O
m m

In particular, its mathematical expectation and the second moment are

E(X)= 6’{,81“(2+EJ+(1—,8)F(1+£H :
m m

E(X?) =6 {ﬂr(2+3j+(1—ﬁ)r(1+3ﬂ.
m m

3. Failure mode of progressive stress accelerated test for the generalized
two-parameter Lindley distribution under the inverse power law model
3.1. Basic assumptions of step-stress testing and the inverse power law model

Assumption 1. It is assumed that the product life X follows the generalized two-parameter

Lindley distribution GL(6, ) with the shape parameter £ and the scale parameter € at any

stress level V .



Assumption 2. Under various stress levels, the failure mechanism of the product remains the
same. That is, the shape parameter [ of the product's lifetime distribution is the same for each

stress level, while the scale parameter depends on the stress level.

Assumption 3. The scale parameter & and accelerated stress level V satisfy the inverse
power law model.

The inverse power law model refers to the relationship between the scale parameter € (in
hours) and voltage (in volts) when voltage is used as the accelerated stress. This is based on
physical principles and empirical summaries from experiments, which have found that for some
products (such as insulating materials, capacitors, micro motors, and certain electronic devices),
there is the following inverse power law relationship between the scale parameter and voltage:

1 . .
0= W , where d>0 and c>0 are constants. For electronic components, physical
experiments have shown that ¢ is only related to the type of component and is independent of its
specifications.

After taking the logarithm of both sides of the above equation, the parameter € satisfies a

logarithmic  linear relationship: Inf@ =a+ bp(V) , where a=-Ind, b=-Cc and

#(V)=InV isafunction of stress V .

The statistical analysis of step-stress or progressive-stress accelerated life tests is primarily
based on the well-known Nelson assumptions, commonly referred to as the Cumulative Exposure
(CE) model.

Assumption 4. The residual life of a product depends solely on the extent of failure that has
already accumulated and the current stress level, rather than on the manner in which the failure
has accumulated.

The Nelson Assumption essentially represents a form of “time scaling." That is, if a product
is continuously subjected to a constant stress, the non-failed products will fail according to the
distribution function under that stress, but this failure process starts from the previously
accumulated failures.

Assume that under a constant stress Vi,i =12, the lifetime Xi of a product follows a

generalized two-parameter Lindley distribution GL(6,, ), with its distribution function given

as:

R, (x)=1—[1+§x]eX’Hi,x>0,,8>0,9i >0,i=12.

Based on the Nelson assumption F, (x,) = F, (x,), thatis,

1—[1+§x1]e‘xl’91 :1—[1+§x2je*2’92 .

1 2



From which we derive

C

X 0 \Y

A% s is equivalentto X, ==X X, = —= | X,.
1 2 92 Vl

The above equation can be interpreted as: The duration X, for which a product operates

c
\Y
under stress V, is equivalent to the time X1:(_2j X, it operates under stress V.
V,

1

3.2. Failure modes under progressive stress (V (X) = KX) in accelerated life testing with the

inverse power law model

The statistical analysis of generalized two-parameter Lindley distribution progressive stress
accelerated life tests (abbreviated as progressive stress tests) under the inverse power law model is
also based on the aforementioned four fundamental assumptions.

First, consider the general progressive stress V(X)=Kx+V,,V, >0 accelerated life
testing. It is assumed that under a given stress V,, the life distribution of a product follows a

generalized two-parameter Lindley fatigue life distribution GL(6,, ), and the scale parameter

, 1
6, conforms to an inverse power law model 6, = ——.

1

According to reference [34], the duration x for which a product operates under a given

stress level V (Xx) = Kx+V,,V, >0 is equivalent to the operational time under a constant stress

level V,, which can be expressed as:

c c oy c c c+l c+l
X (KHV) dtzK—Cj (t+ﬁj =L (x+ﬁj —(ﬁj
Ve bl TK Ve er1|U K K

1 (KX)o
K(c+1) A '

Therefore, the life distribution of the product wunder progressive  stress

V(x)=Kx+V,V,>0 is

I:(Kx+vl)c+1 _Vlc+1:|} '

R (X)) =1- {1+ﬂ (e )I:(KX +V)o - V“”]}exp {_ﬁ

Specifically, when V, =0, the life distribution of the product under progressive stress

V (X) = KX is as follows:



cyC+l cyC+l
FV(X)(x)zl—[1+,BdK X Jexp(—dK X j

c+1 c+1

c+1
dK*®

ooy ]

which is the generalized three-parameter Lindley distribution.
Note: While the requirement here is m > 1, in fact, it can be extendedto m > 0.

1/(c+1)
By denoting 6 = ( ) ,m=c+1, itis observed that:

4. The graphical characteristics of the generalized three-parameter Lindley
distribution
Theorem 4.1. Assume that a non-negative random variable X follows the three-parameter

generalized Lindley distribution GL(&, £,m). Then, its density function f(X) exhibits the

following graphical characteristics:

1 o . . 1 1
(1)When 0<m< 3 f(X) is strictly monotonically decreasing. (2)When 3 <m< > f(x)

1 m(m+1)+2mm(l—m
is strictly monotonically decreasing.(3)When E <m<1 and S, = ( c ) T Z(L )
m°—2m+

m m
, T(X) is strictly monotonically decreasing. @If

If <
wir g 3m-1 3m-1

<B<py T(X)

is strictly monotonically decreasing. ®If S, < <1, f(X) first strictly monotonically

decreases, then increases, and eventually decreases again.(4)When m>1, f(X) exhibits an
"inverted bathtub™ shape.

Proof. f(0)=+o0, f(+0)=0 for 0<m<1,
f(O):%,f(m):o for m=1,
f(0)=0, f(+0)=0 for m>1,
LR SISPUR IS I PN RS ol a( XY 1
f(x)_6’m o expli (9) H(m 1) o l:ﬂ((gj +1 ,b’}rﬁm m{ﬁ(ej +1 ﬁ:|}

By denoting t = (%) , we have




£/(x) = gﬂ X exp{—(%} }[(m “DtH(Pt+1- )+ fm-m(ft+1- )]

m XZm—Z

AL

t exp{—(%)m}[—mﬁtz +(3pm— B —m)t+(m —1)(1—ﬁ)] .

Define the functionas g (t) = -mpt* +(3m— S -m)t +(m-1)(1- B),t >0.
9(0) =(m-1)(1- B), g(+e0) = -0,

A=@Bpm=B-m)?+4mp(M-D(1- L) =5p’m* -2p°’m-2m* + BZ +m*—-2,8m.

(1)When m S% ,3pm—L-m<0, g(t)<0,f'(x)<0 , implying f(X) is strictly

monotonically decreasing.

(2) When %<m<%,atthis point 3 dl l>1,3m—1< m,(Bm-1) L <m,3m--m<0,

g(t) <0, f'(x) <0, indicating f(X) is strictly monotonically decreasing.

m . .
, at this point

(3) When 1<m<1 if f<
2 ~3m-1 3m-1

<1, then 3fm-p3-m<0,

g(t) <0, f'(x) <0, which means f(X) is strictly monotonically decreasing.

1
, it is evident that —<

1
When —<m<1, and S>
2 3m-1 2 3m-1

<1, at this point,
3pm—-L-m>0.
Define the functionas h(m, £) =54°m* —2mp* —2m’f-2mpB + f°+m’.

ah(ar;ﬂ—) =10m*§— 43 —2m* - 2m+ 23 = 2(5m*ff —~2mf—m* —m+ ).

Define the functionas h, (m, £) =5m’4-2mB—-m*—m+ 3.

MMP) 52 _omi1s0,
op
)2
#> 5 ’hl(m’ > j:5m2 M _om M oma M _2MM=D
3m-1 3m-1 3m-1 3m-1 3m-1 3m-1



m
3m-1

Then h(m, B) > hl(m,

]>O, indicating that h(m, ) is strictly monotonically

increasing for 3.

h[m, m )=4m2(2m‘1)(2m‘1)<o, h(m,1) = (2m-1)% > 0.
3m-1 (3m-1)

Moreover h(m, ) = (5m* —2m+1) > —2m(m+1) B+ m>.
Solving for the root /3, of /3 from the equation h(m, 5)=0.

A =4m*(m+1)* —4m*(5m* —2m+1) =16m*(1-m) > 0.

m(m+1)—-2mym(l-m
If we choose ,80: (m+ )2 ( ),since it is required that ﬂ0> m , then
5m°-2m+1 3m-1
m(m+1) —2m/m(1-m) __m
5m®—2m+1 3m-1

which means

(m+1) -2 /m@-m) . 1

5m? —2m+1 3m-1’

3m? +2m-1-2(3m-1)/m(@1-m) >5m* —2m+1,-2(3m-1),/m(1—m) > 2(m-1)?,

which is a contradiction.

(m+1)(3m-1)-2(3m-1)/m(L-m) >5m* —2m+1,

m(m+1)+2mym(@-m m
Therefore, £, should be takenas f, = ( 5)2 > ](_ ),and m<ﬂo<1.
m°—2m+ -

m
m-1

1
Hence, when ESmSl, and

<p<pf,,h(mp)<0, then g(t)<0, f'(x)<0,
indicating that f (X) is strictly monotonically decreasing.

1 .
When ESmSl, and B, <pB<1, h(m,f)>0, then due to the symmetry axis of the

3pm—-L—-m

ti t)=0 i
equation g(t) is 2mp

>0, it follows that equation ¢(t)=0 has two positive

real roots t,t,,t, <t,, i.e, when t<t,g(t)<0, f'(x)<0, f(x) is strictly monotonically

decreasing, when t, <t<t,,g(t)>0, f'(x)>0, f(x) is strictly monotonically increasing,



whent >t,,g(t) <0, f'(x) <0, f(x) is strictly monotonically decreasing.

(4) When m>1,09(0)>0, there exists t,, when t<t,,g(t)>0, f'(x)>0, f(x) isstrictly
monotonically increasing , when t>t,, g(t) <0, f'(x) <0, f(X) is strictly monotonically
decreasing. Thus, f (X) exhibits an "inverted bathtub" shape. o

Note: The graph of [, as a function of m is shown in Figure 1 below, where

<1.

~ m(m+1)+2mym(1-m) 1<m
- 5m? —2m+1 2"

10

By
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06 Q7 08 09 10

Figure 1. Graph of [, variation with respectto m (0.5<m<1)
Set the scale parameter as @ =1, and for different combinations of the parameters m, ,B ,

the graphical representations of the density function f (X) are illustrated in Figures 2 to 7.

Figure 2. Graph of the density function with m=0.1, #=0.5,0 =1
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Figure 3. Graph of the density function with m=0.4, #=0.5,0 =1
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Figure 4. Graph of the density function with m=0.8,3=0.5,0=1( 5, =08, ——=-)
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Figure 5. Graph of the density function with m=0.8,4=0.6,0=1 (S, =0.8, ==)
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Figure 6. Graph of the density function withm =0.8, #=0.85,0=1 ( 5, =0.8, ==)

3m-1 7
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Figure 7. Graph of the density function with m=1.5, #=0.5,0 =1

Theorem 4.2. Assume a non-negative random variable X follows a three-parameter

generalized Lindley distribution GL (&, £, m) . The failure rate function A(X) then exhibits the

following graphical characteristics:

1
(1) When m< > A(X) is strictly monotonically decreasing.

1
(2) When E< m<1l, OIf 2m-2+ <0, A(X) is strictly monotonically decreasing. @If

2m-2+p4>0,=1 , A(X) exhibits an “inverted bathtub” shape. @ If
2m-2+£>0,20-m)< <1, f<4m(@—-m), A(X) is strictly monotonically decreasing.

@If 2m-2+£>0,4m(l-m)< f <1, A(x) initially decreases strictly monotonically, then
increases, and finally decreases again.

(3)When m=>1, A(X) is strictly monotonically increasing.

Lo

Proof. The failure rate function is defined as A(X) = vl

When 0<m<1, A(0) = +00, A(+0) =0.
1- 1
Wh =1, A(0) =—= A(+0) ==.
en m (0) 0 (+00) 0
When m>1, A(0) =0, A(+0) = +o0.

g7 o5 oo g ool
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+ﬂm{1+ ﬂ(EH ﬂm{ﬂ(gj’“ﬂ_ 4}

By denoting t = (%) , we have

, mX2m72 1
A'(x) = 2m 2
o t(d+ pt)

[ B2 (-1t + p2m -2+ B)t+(1- B)(m-1) ].

Define the functionas g(t) = AZ(m-Dt* + S(2m -2+ )t + (1— f)(m-1),t > 0.

+o0, mM>1

9(0)=@1-B)m-1), g(+x)=q+x, m=1,
-0, m<1

A= B [2m-1)+ BT 447 (1- B)m-1) = B°[ 4m-1)° +4m-D)+ A].
(1) When m < % g(t) <0, A(x) is strictly monotonically decreasing.
(2) When %< m<1,if 2m-2+ <0, thatis f<2(1-m), g(t)<0, A(X) is strictly

monotonically decreasing.

When %<m<1,if 2m—-2+ >0, thatis 2(1-m)< g <1.

@OIf f =1, at this point

g(t) = (M—Dt? + (2m -t =t[(m L)t + (2m -] = t(L - m)(—t . im —1j |

Let toz%. When t<t,, g(t)>0, A'(X)>0; when t>t,, g(t)<0, A'(x)<0,

indicating A(x) first strictly monotonically increases then decreases, forming an “inverted
bathtub" shape.
@If 20-m)< B<1, A=pB[Am(m-1)+ B]= B [B-4m(@1-m)].

If f<4m(l-m), A<0, g(t)<0, A'(x)<0, A(X) is strictly monotonically decreasing.

If 4m(1-m)< <1, A>0, there exists t,t,, O<t <t,, such that g(t)=9(t,)=0.

13



When t<t, g(t)<0, A(x)<0, when t <t<t,, g(t)>0, A'(x)>0, when t>t,,

g(t) <0, A'(x)<0, indicating A(x) first strictly monotonically decreases, then increases,
and finally decreases again.

(3)When m=>1, g(t)>0, A(x) is strictly monotonically increasing. O
Set the scale parameter as @ =1, and for different combinations of the parameters m, 5,

the graphical representations of the failure rate function A(X) are illustrated in Figures 8 to 13.
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Figure 8. Graph of the failure rate function A(x) with m=0.1,5=0.560=1
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Figure 9. Graph of the failure rate function A(x) with m=0.8,4=0.2,6 =1
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Figure 10. Graph of the failure rate function A(x) with m=0.8,=160=1
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Figure 11. Graph of the failure rate function A(x) with m=0.8,=0.6,0=1
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Figure 12. Graph of the failure rate function A(x) with m=0.8,5=0.8,6=1
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Figure 13. Graph of the failure rate function A(x) with m=15=0560=1

Theorem 4.3. Assume that a non-negative random variable X follows a three-parameter
generalized Lindley distribution GL(6, 4, m). Then, the mean failure rate function A (X)

exhibits the following graphical characteristics:

1 - : : : . 1
()When m< > A(X) is strictly monotonically decreasing. (2)When 2 <m<1l, OIf
2(m—=1)+ <0, A(X) is strictly monotonically decreasing. @If 2(m—1)+ >0, denote
p, as the root of the equation 1—m—ﬂm+ﬂ|n%:0, (D If 20-m)< BB,
—-m

A(X) is strictly monotonically decreasing. (i) If B, < B <1, the graph of A(X) can exhibit

15



two possible behaviors: <1>strictly monotonically decreasing, <2>initially strictly monotonically

decreasing, then increasing, and finally decreasing again. ®If £ =1, /T(x) initially increases

strictly monotonically and then decreases. (3)When m>1, A (x) is strictly monotonically

increasing.
. o - 1 AHNES
Proof. The mean failure rate is defined as A(x) =——<In{1+ /3 IR RvIRg
X
_ x\" - In(L+ Bt) -t . t+1
By denoting t:(gj , we have i(x):—% d/l(O)—— OW.

When m<1,

,1(0)—% Pl-f__

t—0 t(l m)/m +ﬂt1/m

When m=1, A(0)= M=£Iim[l— '”‘“ﬁt)}:l‘ﬂ.

Q taO t g t—0 t 2
When m>1, 2(0)=0.

m, o ftel-p
ﬂ'(—i_oo) _gt—)JrOOt(l m)/m +ﬂt1/m )

When m<1, A(+0)=0.

When m=1, Z(+0)=-li "”(“ﬂt):inm{l—m}:%.

0 Ho t 6 -0 t
When m>1, A (+0) = +o0.
EL _i -1/m-1 1 _ _
A'(X) gml vy [-mpt+ (M -1+ pt)t+ 1+ Bt) In(L+ pt)].

Define the function as g(t) = -mpgt+(m-1) 1+ gt)t + 1+ pt) In(L+ pt),t >0,

then we have g(t) =—mpt+mt+mp°t—t— pt*> + (L+ Bt) In(L+ St) .

+00, mMm>1

g(0) =0, g(+) =4+, m=1.
-0, mx<l

In fact, when m>1, g(t)=t’ {,B(m )+(m-mB— 1)1 (1+ﬂt):n(1+ﬂt)}

16



lim (1+,Bt)|£\(l+,8t) _ A lim @+ y)Ir;(1+ y) ~ A lim In(1+ y)+1=0.

t—>+o t y—>+00 y y—>+0

Thus, it follows that: g(+o0) =400,

When m=1, g(t):—ﬁt+(1+ﬁt)|n(1+ﬁt):ﬂ{(“ﬂt)'”(“ﬂt)_1]

Bt

lim & AOINA+AY _ i %;(“y) = lim In(L+y) ~1] = +o0.

v Bt Yo
We have g (+00) = +o0.
When m<1, g (+0) = 0.
g9'(t) =—pm+(m-1)(1+ pt) +(m-1) St + S+ fIn(1+ St)
=2(m-1)Bt+(m-1)1- )+ AIn(L+ AY).

Define the functionas g, (t) =2(m-1)pt+(Mm-)A-£)+ FIn(L+ pt),t > 0.

>0, m>1
oo, m>1
9,(0)=(m-1)QA-p)=.=0, m=1, gl(+oo)_{—oo, m<1’
<0, m<1
i _ _ ﬂz
g;(t) = 2(m 1)ﬁ+1+ﬂt-
) . B 3 B
Define the functionas g,(t) =2(m-1)4+ T+t ,t>0.
ot o g B
9,(0) = B[2(m=1) + B], 9, (+o0) = 2(m~1) 5, 9, (t) (1+/3t)2<0'

(1)When m S%, 21-m)>1,2(m-1)+ <0, g,(t)<0,0,(t)<0, g,(t)<0,9'(t)<0,
g(t)<0, A(x) is strictly monotonically decreasing.

1
(2)When 2 <m<1,

@If 2(m-1)+ B <0, thatis f<2(l-m)<1, g,(0)<0,g,(t)<0, g.(t)<0,g,(t)<0,
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g'(t)<0,g(t) <0, A(x) is strictly monotonically decreasing.
@1f 2(m-1)+4>0, that is 2(1-m)< S <1, there exists t,, g,(t,)=0, if t<t,,
g,(t)>0,0,(t)>0;if t>t,, g,(t)<0,9,(t)<0.

2(m-1)+p

2(m-)1+pt)+=0,2(m-D)+2(m-1)pt+ =0, = 20-m)p3

Thenwhen t=t,, g,(t,) isthe maximum value of g,(t):

ot g 2m=D+B 2(m-)+p
9,(t,) =2(m 1)ﬁ—2(1—m)ﬂ +(m-1(1 ﬁ)+ﬁ|n{1+ 2(1—m)ﬁ}

e p
=1-m ﬂm+ﬂ|n2(1_m).

Define the functionas h(f#)=1-m-m+ £ln p ,2(1-m)< <1,
2(1—m)

’ _ ﬂ
h'(f)=—-m+In 2(1—m)+1>0’

h(21-m))=1-m-2(1-m)m=2m*-3m+1=(2m-1)(m-1) <0,

h()=1-m-m-In[2Q-m)]=1-In2-2m—In(l—m).
Define the function as h(m)=1-In2—-2m-In(1- m)é <m<l.

1 2m-1
'(m)=-2+—=
i (m) 1-m 1-m

>0,h,(0.5) = 0,h,(m) > 0,h(L) > 0.

Then, there exists f3, such that h(f5,)=0, when 2(1-m)<g<pg,, h(#)<0, when
By <P<1, h(B)>0.

(i) When 2(1-m)< B<p,, h(8)<0,g,(t,)<0,g,(t)<0, g'(t)<0,g(t)<0, A(x) is
strictly monotonically decreasing. (i) When S, < #<1, h(8)>0,g,(t,)>0, there exists

ty b, <t, with g,(t,)=09,(t,)=0.

When t<t,, g,(t)<0,9'(t)<0, when t, <t<t,, g,(t)>0,9'(t)>0, when t>t,,

18



0,(t)<0,9'(t) <0.
It is clear that, <1> if g(t)<O0,then A(X) is strictly monotonically decreasing, <2> if there
exists ty,,t,, O(t,)=0(,)=0, when t<t,, g(t)<0; when t, <t<t,, g(t)>0;

when t>t,, g(t) <0, then A(x) is "first strictly monotonically decreasing then increasing

and again decreasing".

1
(®Especially when £ =1, and E <m <1, at this time

g(t) =—mt+mt+mt® —t—t>+ (1+t) In(L+t) = mt® =t —t*> + (L+t) In(L+1),
9(0) =0, g(+w) = —o0, g'(t) = 2mt =1 -2t + 1+ In(L+1) = 2mt — 2t + In(L+1)..

Define the functionas g, (t) =2mt—2t+In(1+t),t >0.

1 1
0)=0,0,(+©)=-o0,0/(t) =2m -2+ —=2(m-1) + —.
gl( ) gl( o) 0 gl() 1+t ( ) 1+t

Denote t2=%,then 0;(t,)=0,when t<t,, g;(t)>0,when t>t,, g;(t)<0.

There exists t;,g,(t,)=0,when t<t,g,(t)>0,9'(t)>0,when t>t, g,(t)<0,g'(t)<0.

There exists t,, g(t,)=0, when t<t,, g(t)>0, when t>t,, g(t)<0, then A(x) first
strictly monotonically increases then decreases.

(3)When m=>1, g/(t)>0,g,(t)>0,g'(t)>0,g9(t)>0, A(x) is strictly monotonically
increasing. o

Set the scale parameter as € =1, and for different combinations of the parameters m, 3,

the graphical representations of the mean failure rate function A (x) are illustrated in Figures 14

to 23.
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Figure 14. Graph of the Mean Failure Rate Function /T(X) with m=0.1, 4=0.560=1
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Figure 15. Graph of the Mean Failure Rate Function /T(X) with m=0.8,=0.2,0=1
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Figure 16. Graph of the Mean Failure Rate Function /T(X) with m=0.8,=05,0=1

( B, =0.656402)
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Figure 17. Graph of the Mean Failure Rate Function /T(X) with m=0.8, 4=0.66,0 =1

( B, =0.656402)
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Figure 18. Graph of the Mean Failure Rate Function /T(X) with m=0.8,4=0.67,0 =1

( B, =0.656402)
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Figure 19. Graph of the Mean Failure Rate Function /T(X) with m=0.8,4=0.68,0 =1

( B, =0.656402)
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Figure 20. Graph of the Mean Failure Rate Function /T(X) with m=0.8, 5=0.685,6=1

( B, =0.656402)
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Figure 21. Graph of the Mean Failure Rate Function /T(X) with m=0.8,4=0.69,0 =1

( B, =0.656402)
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Figure 22. Graph of the Mean Failure Rate Function /T(X) with m=0.8,=0.7,0 =1

( B, =0.656402)
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Figure 23. Graph of the Mean Failure Rate Function /T(X) with m=154=0560=1

Theorem 4.4. Assume a non-negative random variable X follows a three-parameter

generalized Lindley distribution GL(&, #,m). Then, the mean residual life M (X) exhibits the

following graphical characteristics:

1
(1)When m<1, OIf 2(m-1)+ <0, <1> If msE, M (X) is strictly monotonically
increasing. <2> If §<m<1 , M(x) is strictly monotonically increasing. @ If

1 1
2(m-1)+p>0, <1> If m<§’ this condition does not exist. <2> If E£m<1' ()If

L<4L-m)m, M(X) is strictly monotonically increasing. (ii)If 4(l-m)m< <1,
M (X) may strictly monotonically increase, or it may initially increase, then decrease, and
increase again. (iii)if S =1, M(X) initially decreases strictly monotonically, then increases.

(2)When m=>1, M(X) is strictly monotonically decreasing.

Proof. The mean residual life is defined as:

o (1+B2)0 _; yma
o q J'imie z'"dz
. [Tn-Fondy 2 m

)

o (xY ) ft+m(1+ﬁz)e’zz”m*1dz B
By denoting t = (5) , we have M (X) = L p0e , M(0)=E(X),
1+ﬂ(xjm
M (40) = lim 2= 9 iy 0 AT
X—>+00 f(X) m x—o+o ) X m m x—+o @Mt m(ﬂt+1_ﬂ)
X" {ﬂ(ej +1—ﬂ}
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L 0, m>1
O A g m-t
m s T (Bt 41— )

+00, m<1

’ ~ i m-1 ﬂt‘i'l—ﬂ oo U _(1+ﬂt)2tl/m_le_t
M (X)_(QJ L e {L 1+ pz)7"™ e *dz ey }

(1+ﬁt)2t1/mfleft
pt+1-p

Define the function as g (t) = j:oo (1+ Bz)z"™ e *dz - 1>0.

g0 =L e [(-D(L+ A7 + L ) - ]

(1 + ﬂt)z tl/mfleft

g(+) =0, g(0) =~ (1+B2)2" e *dz - lim

pt+1-p

—0, m>1

_Ie RS S TN S SR i _
= jo 1+ Bz)e dz 7 1+ 5 " 1,
J'Om (1+ pz)z"" e *dz, m>1

Define the functionas g, (t) = (m-1)(1+ Bt)> + B+ Bt) - fm,t > 0.

>0, m>1 +o0, m>1
0,(0)=m-1+p-pm=(M-1)(1-p)=9=0, m=1, g,(+0) =3+, m=1,
<0, m<l1 -0, m<1

0;(t) =2B(m -1+ pt) + B°.

(1) When m<1,let g,(t)=0,thatis
2(m-1)+2p(m-Dt+L=0,2p1-mt=2(m-1)+ 3, 9;(0)=B[2(m-1)+A].

O If 2(m-1)+ B <0,thatis f<2(1-m).
<1>For m< % thatis 2(1-m)>1, then2(m—-1)+ S <0, furthermore g, (t) <0,g,(t) <0,
g'(t)<0,g(t) >0, M(x) isstrictly monotonically increasing.

<2> If %<m<1, £<2(1-m), g,(t)<0,0,(t)<0,9'(t)<0,g(t)>0, then M(x) is
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strictly monotonically increasing.

@ If 2(m-1)+ 3 >0,thatis f>2(1-m).
1 L o
<1>If m<§, £ >2(1—m)>1, which is in contradiction with 0< g <1.

2(m-1)+ 3
2(1—m)

<2> If %Sm<l, F=22(1-m), ie.2(1-m)< S<1, denote t, = at this

point. When t<t,, g,;(t)>0;when t>t,, g,(t)<0,ie g,(t,) isthe maximum value of

g,(t) .

L 2m-)+ 87 2m-9+p8] . _ B o
g,(t,)=(m 1){1+—2(1—m) } +'[{1+—2(1—m) } Am —4(1—m) [B-4(1-m)m].
@ 1f g<40-m)m, g,(t)<0,9'(t)<0,g(t)>0, M(X) is strictly monotonically
increasing.

(i) If 4l-m)m< <1, there exists t,,t,,t, <t,, 0,(t,)=0,(t,)=0, when t<t,,
g,(t)<0, g'(t)<0; when t, <t<t,, g,(t)>0, g'(t)>0; when t>t,, g,(t)<0,

g'(t) <0, then M (X) may strictly monotonically increase or first increase, then decrease,
and increase again.

(iii)if B =1,since g,(0) =0, there exists t,, g,(t)=0,when t<t, g,(t)>0,9'(t)>0;

when t>t, g,(t)<0,9'(t)<0, then M(x) first strictly monotonically decreases, then
increases.
(2) When m=>1, g;(t)>0,9,(t)>0,9'(t)>0,9(t) <0, M(x) is strictly monotonically
decreasing. o

Set the scale parameter as @ =1, and for different combinations of the parameters m, 5,

the graphical representations of the mean residual life M (X) are illustrated in Figures 24 to 30.
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Figure 24. Graph of the mean residual function M (x) with m=0.1, =0.5,0 =1
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Figure 25. Graph of the mean residual function M (x) with m=0.8,4=0.3,0=1
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Figure 26. Graph of the mean residual function M (x) with m=0.8,4=0.5,6=1
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Figure 27. Graph of the mean residual function M (x) with m=0.8, #=0.65,0 =1
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Figure 28. Graph of the mean residual function M (x) with m=0.8,4=0.7,0 =1
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Figure 29. Graph of the mean residual function M (x) with m=0.8,4=16=1
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Figure 30. Graph of the mean residual function M (x) with m=1.5,4=0.50=1

5. Estimation of parameters for the generalized three-parameter Lindley
distribution in a full sample context

Let X,, X,,---, X, be a simple random sample of size n from a population following a
three-parameter generalized Lindley distribution X ~ GL(8, #,m), with sample observations

denoted as X, X,,--+, X, and ordered observationsas Xy, X),** X -

Due to the complexity of the distribution function, density function, and higher-order
moments of the generalized three-parameter Lindley distribution GL(6, ,m), the conventional

methods of maximum likelihood estimation and moment estimation involve solving very complex
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transcendental equations. It is theoretically difficult to study their existence and uniqueness, hence
the necessity of finding new methods for parameter estimation.

Let Y=InX, Y, =InX,,y,=Inx,i=12,---,3, and denote ﬂ:ln9,0=l.
m
For —oo <y <400, the distribution function of Y is

F(y)=P(nX <y)=P(X <e’)

oS 3 porelrze ol 2]

In X —
Let Z = ad for —oo < z < +o0, and then the distribution function of Z is
o

F,(2)=1-(1+ e’ )e™, f,(z) =(1+ Be’ - B)e’e™ .

Lemma 5.1. Suppose the distribution function F,(z) and density function f,(z) of a

random variable Z are respectively:
F,(2) =1-(1+ fe*)e ™, f,(2)=[(L-B)+ pe’ |e’e
Then E(Z)=a+p , E(Z?)=a,+c,f , E(Z°)=a,+c,B8 , E(Z%)=a,+cp ,
D(Z)=-p*+b,, E[Z-E@Z)] =28 +b,, E[Z-E(Z)]' =-38*-6b,4% +b,,
where a, =—-0.577216, a, =1.97811, a, =-5.44487, a, = 23.5615,
¢, =1, c¢,=-1.15443, c,=5.93434, ¢, =—21.7795,
b, =a,—a/ =1.64493, b, =a, -3a,a, +2a’ =-2.40411,

b, =a, —4a,a +6a,a’ —3a, =14.6114.
Proof. It is evident that the K -th momentof Z is

E@Z)=] 2[@-p)+pe Jeedz= [ "[1-p)+ ptlint) et
=(1-p) jo*w (Int)“e"'dt + B I0+wt(ln t)<edt
— [ (ntyetde+ ﬂ[ [“tntyed- [ (Int)ketdt]
Let a, = jo*“’ (Int)e'dt, c, = J‘Oﬂot(lnt)ke’tdt— jo*“’ (Int)*e'dt.

Considering: I|m(Int)k ‘t—llm(t+1)(lnt)k =0, I|m(Int)k = I|m(t+1)(lnt)k =
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[ K a—tos k Ao—t|™™® o] K1 a-ts wl k-1 .-t
ak_jo (Int)*edt =—(Int)“e”"| +ij -(InH“e dt—kJ.O -t edt,

ot+1

¢ =] tdnt)e'dt—a, =—(t+D(Int)e| " +k[ T(lnt)k‘le‘tdt—ak

T k-1 ot o] k-1 5t wo ] k-1 ot
_kjo (Int)‘e o|t+|<jO ~(In)“e olt—kj0 -(In)“ed

=k[ " (nt) e 'dt = ka, ;.
By calculation, we have a, =—-0.577216, a, =1.97811, a,=-5.44487, a, = 23.5615,
c =1, ¢, =-1.15443, c,=5.93434, ¢, =—-21.7795.
Let b, =a,-a’=1.64493, b, =a,—3aa, +2a’ =-2.40411,
b, =a, —4a,a, +6a,a’ —3a, =14.6114.
Thenwe have E(Z)=a +f3, E(Z°)=a,+c,B, E(Z®)=a,+c,8, E(Z*)=a,+C,f3,
D(Z) =E[Z-E)F =@, +c,~ (8 + )’ =—f° +(c,~2a,) f +8, - &
=—p%+b, =—p? +1.64493,
E[Z-E(2)] = E(Z°)-3E(Z*)E(Z) + 2[E(Z)[
=a,+C,B3-3(a, +C,B)(a,+B)+2(a, + B)° =24 +b, =23 - 2.40411,
E[z-E(2)]' =E(Z*)-4E(Z*)E(Z) +6E(Z)[E(Z) -3E2)]*
=2, +C,f~4(a; +¢,f)(a + f) +6(a, +¢,8)(af +2a,5+ ) -3(a) +2a,4 + 5°)*
= -3p*—6(a, —a?)f% +b, = —38" —6b, 8% +b, = —35* —9.86958 4% +14.6114.

Furthermore, given that Y = u+0Z, it can be deduced from the aforementioned lemma

that:

E(Y)=u+0E(Z)=u+o(a+p). D(Y)=0°D(Z).

_ 1 1 _
Let Y =—Z:Yi,SY2 :_Z(Yi ~Y)?, and thus a system of moment equations can be
ns< n4s

established as follows:

28



Y =u+o(a+p)
S\? :Uz(bz_ﬂz) '

If the shape parameter £ is known, then the point estimates of the parameters o, m are:

2 2
N B
2 ﬂ Y

And the point estimates for the parameters 4,6 are:

L=Y-6(a+p) 0= exp{?—al—fﬂ} .
m
Since M, depend on the shape parameter /3, it can be denoted as M(f3), é(ﬂ) :

m(B) M(A)

_1- U _| Ja 12 -

Let F(x;)=1-|1+p| = exp R ,1=1,2,---,n be a function
o(f) o(B)

of the shape parameter /3.

. :
Define Q(p) = Z F(x(j))—i , and considering the range [0,1] of the shape parameter
i1 n

f, set a step size 0.00001, denote ﬂj =0.00001j, j=0,1,2,---,10° and calculate the
values of Q(ﬂj), j=0,1,2,---,10°, taking its minimum value. The corresponding ﬂj can then

be considered as the point estimate of the parameter /3, denoted as ,é :

Note: The step size mentioned above can be determined according to the required
computational precision and is not necessarily 0.00001.

Consequently, the point estimates of the parameters m, & can be obtained as:
~ A
. — A - +
m= bZ—Zﬂ, gzexp Y _ai_Aﬂ .
Sy m

6. Case Study Analysis

Case 6.1. Reference [18] provides data on the waiting time (in minutes) of 100 customers
waiting for service at a bank:
08, 08, 1.3, 15, 18, 19, 1.9, 21, 26, 2.7, 29, 31, 32, 33, 35 36,
40, 4.1, 42, 42, 43, 43, 44, 44, 46, 47, 47, 48, 49, 49, 50, 53,
55 57, 57, 6.1, 62, 62, 6.2, 63, 67, 69, 7.1, 71, 71, 71, 74, 7.8,

29



7.7, 80, 82, 86, 86, 86, 88, 88, 89 89 95 96, 97, 98, 107, 10.9,
11.0, 11.0, 11.1, 11.2, 11.2, 11.5, 11.9, 12.4, 12.5, 12.9, 13.0, 13.1, 13.3, 13.6, 13.7, 13.9, 14.1,
15.4, 15.4, 17.3, 17.3, 18.1, 18.2, 18.4, 18.9, 19.0, 19.9, 20.6, 21.3, 21.4, 21.9, 23.0, 27.0, 31.6,
33.1, 38.5.

Reference [11], through the K-S test, considers the data to originate from a single-parameter
Lindley distribution. In the full sample context, the point estimate of parameter € is calculated

as 6 =0.1866, and its distribution function is shown in Figure 31.

Utilizing the method proposed in this paper, the data is fitted with the generalized
three-parameter Lindley distribution, resulting in point estimates for the three parameters as

/3‘ =0.99999, M=1.02945,and & =5.005. The distribution function is illustrated in Figure

31.

0.8 Empirical distribution function
Three—parameter Lindley distribution

One-parameter Lindley distribution

10 =0 7
] 20 30

Figure 31. Empirical distribution function and corresponding theoretical distribution
function for case study 6.1
Observing Figure 31, it is evident that both the single-parameter Lindley distribution and the
generalized three-parameter Lindley distribution fit the batch of data well.

Case 6.2. In reference [25], through 47 observations during the maintenance process of a
certain model of tank, the on-site observed values for the primary level preventive maintenance
and secondary level upkeep time were obtained as follows (unit: hours):

0.80, 1.00, 1.00, 1.41, 150, 150, 150, 200, 2.00, 200
2.00, 250, 250, 275, 3.20, 3.30, 3.70, 3.80, 3.80, 4.00
4.00, 4.00, 4.00, 4.00, 4.00, 4.10, 5.00, 5.00, 5.0, 550
550, 6.00, 6.50, 7.00, 7.16, 7.75, 8.00, 8.00, 9.50, 9.73
10.00, 11.40, 12.00, 12.00, 14.00, 15.21, 15.50

Reference [12], through fitting tests, arrived at the following two conclusions: (1) It is
considered that the primary level preventive maintenance and secondary level upkeep time for this

model of tank follows an Erlang distribution with parameter 6 =2.7299. (2) It is believed that

the primary level preventive maintenance and secondary level upkeep time for this model of tank

follows a Lindley distribution with parameter 6=0.3217. The corresponding distribution

functions are shown in Figure 32.
Using the method presented in this paper, the data is fitted with the generalized
three-parameter Lindley distribution, resulting in point estimates for the three parameters as
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/3‘ =0.99999, M =1.06297, & =2.823, The distribution function is illustrated in Figure 32.

i ———— Empirical distribution function
Three—parameter Lindley distribution
One-parameter Lindley distribution

d:- ----- JpnaHra distribution

1
Q

Figure 32. Empirical distribution function and corresponding theoretical distribution
function for case study 6.2
Observing Figure 32, it is evident that both the single-parameter Lindley distribution and the
generalized three-parameter Lindley distribution fit the batch of data well.
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