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Abstract. This paper deals with a diffusive logistic model with birth and har-
vesting impulses, where birth pulses are for increase of population in short time
because of birth, and harvesting pulses are used to describe decrease of popu-
lation by regular harvesting or interventions. Firstly, the principal eigenvalue
depending the impulsive rates, which is regarded as a threshold value, is intro-
duced and characterized. Secondly, the asymptotic behavior of population is
fully investigated and the sufficient conditions for the solution to be extinct or
persist are given. Our results show that the increase brought about by birth, the
decrease caused by harvest, and the intervention timing all have an impact on
the persistence of species.
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1 Introduction

This paper characterizes the dynamics of the diffusive logistic model with impulses
ut = d∆u+ a(t, x)u− b(t, x)up, t ∈ (n+, (n+ τ)]

⋃
((n+ τ)+, (n+ 1)], x ∈ Ω,

u(t, x) = 0, t > 0, x ∈ ∂Ω,
u(0, x) = u0(x), x ∈ Ω,
u(n+, x) = (1 + α)u(n, x), x ∈ Ω,
u((n+ τ)+, x) = (1− β)u(n+ τ, x), x ∈ Ω, n = 0, 1, 2, · · · ,

(1.1)

where Ω is a bounded and connected domain of RN (N ≥ 1) with smooth boundary ∂Ω.
p, τ are constants satisfying p > 1 and 0 < τ < 1. t ∈ (n+, (n + τ)] is expressed that the
equation holds for t ∈ (n, (n+ τ)], and take its value u(n+, x) instead of u(n, x) at the initial
time of the time interval (n, (n+ τ)] for n = 0, 1, 2, · · · , so is t ∈ ((n+ τ)+, (n+ 1)]. u(t, x)
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is the density of species at time t and in space x and the positive constant d is the diffusion
rate. The function a(t, x)(∈ Cθ/2,θ([0, τ ] × Ω) for some 0 < θ ≤ 1) is a periodic function
of time with period 1, and denotes intrinsic growth rate of population. It can be negative,
which means that the resources on position x at time t are not conducive to survival. The
positive function b(t, x)(∈ Cθ/2,θ([0, τ ] × Ω)) is a periodic function of time with period 1,
and 0 < bm ≤ b(t, x) ≤ bM in [0, τ ] × Ω. Initial function u0(x) satisfies u0(x) ∈ C2(Ω),
u0(x) ≥, 6≡ 0 for x ∈ Ω and u0(x) = 0 for x ∈ ∂Ω.

The function (1 +α)u with α > 0 represents birth pulse, and an impulse occurs at every
time t = n (n = 0, 1, 2, · · · ), while (1 − β)u with 0 < β < 1 is the impulsive function
representing harvesting control, and the impulse occurs at every time t = n + τ (n =
0, 1, 2, · · · ). The species grow and diffuse within the successive stages (n, (n+ τ)] and ((n+
τ), (n+ 1)].

Besides growth, death, disperse [17], we are more interested in the distribution and
dynamics of species influenced by impulsive perturbation [2, 10, 13, 16, 20]. Especially,
problem (1.1) has been discussed in [10] numerically.

On condition that α = β = 0, which means there is no impulse, problem (1.1) has
attracted much attention, see [1, 3, 5, 14] and references therein.

This paper is organized as follows. Section 2 contains global existence and uniqueness of
the solution, and the principal eigenvalue for a periodic eigenvalue problem with impulse is
investigated in Sections 3. Section 4 is devoted to dynamics of the solution to the problem
(1.1).

2 Existence, uniqueness and estimates

The global existence and uniqueness of solution to problem (1.1) with impulses can be
obtained by the bootstrap method.

For n = 0, birth pulse takes place at time t = 0. Then the solution u(t, x) satisfies problem
(1.1) with a new initial value u(0+, x) over time interval (0+, τ ]. Recalling that u0(x) ∈
C2(Ω), we can deduce that the new initial value u(0+, x) = (1 +α)u0(x) ∈ C2(Ω). Hence, it
follows from the classical theory of partial differential equation [12], we have the existence
and uniqueness of solution u(t, x) to problem (1.1) for t ∈ (0+, τ ], u(t, x) ∈ C1,2((0, τ ] × Ω)
and

u(t, x) ≤ max{(1 + α)uM0 , (aM/bm)1/(p−1)} ≤M1 := (1 + α) max{uM0 , (aM/bm)1/(p−1)}

since that u(t, x) ≤ u(t) for (t, x) ∈ (0, τ ]× Ω and u(t) satisfies{
ut = aMu− bmup, t ∈ (0, τ ],
u(0) = (1 + α)uM0 ,

where for any continue function f(x) in Ω, we denote fm = minx∈Ω f and fM = maxx∈Ω f.

Similarly, u(τ+, x) = (1−β)u(τ, x) becomes a new initial value for t ∈ (τ+, 1], which also
belongs to C2(Ω). Then, u(t, x) ∈ C1,2((τ, 1]× Ω) exists uniquely. Moreover,

u(t, x) ≤M∗
1 := max{(1− β)M1, (aM/bm)1/(p−1)} ≤M1, (t, x) ∈ (τ, 1]× Ω)
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since that u(t, x) ≤ w(t) for (t, x) ∈ (τ, 1]× Ω and w(t) satisfies{
wt = aMw − bmwp, t ∈ (τ, 1],
w(0) = (1− β)M1.

Taking n = 1, 2, · · · and by the same procedures, we can find that, for any n, problem (1.1)
admits a unique solution u(t, x) for t ∈ [0, n], and

u(t, x) ≤Mn := (1 + α)n max{uM0 , (aM/bm)1/(p−1)}, (t, x) ∈ [0, n]× Ω.

Therefore, we conclude the following global existence and uniqueness of solution.

Theorem 2.1 Problem (1.1) admits a unique solution u(t, x) for all t > 0. Moreover,

u(t, x) ∈ PC1,2((0,+∞)× Ω) :=
∞⋂
n=0

[C1,2((n, n+ τ ]× Ω)
⋂

C1,2((n+ τ, n+ 1]× Ω)]

and u(t, x) ≤M[t]+1 for (t, x) ∈ [0,∞)× Ω.

3 The principal eigenvalue

As in [3, 19], the long-time behavior of problem (1.1) is related to its corresponding periodic
problem 

Ut = d∆U + a(t, x)U − b(t, x)Up, t ∈ (0+, τ ]
⋃

(τ+, 1], x ∈ Ω,

U(t, x) = 0, 0 < t ≤ 1, x ∈ ∂Ω,

U(0, x) = U(1, x), x ∈ Ω,

U(0+, x) = (1 + α)U(0, x), x ∈ Ω,

U(τ+, x) = (1− β)U(τ, x), x ∈ Ω,

(3.1)

and the existence of the positive solution to (3.1) depends on the principal eigenvalue
µ1(d, a(t, x), α, β) of the following periodic eigenvalue problem

φt − d∆φ− a(t, x)φ = µ1φ, t ∈ (0+, τ ]
⋃

(τ+, 1], x ∈ Ω,

φ(t, x) = 0, t ∈ [0, 1], x ∈ ∂Ω,

φ(0, x) = φ(1, x), x ∈ Ω,

φ(0+, x) = (1 + α)φ(0, x), x ∈ Ω,

φ(τ+, x) = (1− β)φ(τ, x), x ∈ Ω.

(3.2)

The existence of µ1 can be guaranteed by using Krein-Rutman theorem [5, 6] on a Banach
space involving impulse ([21]). We give a sketch here.
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To overcome the difficulties induced by different impulses, we consider the following
equivalent eigenvalue problem

ξt − d∆ξ − a(t, x)ξ = µ1ξ, t ∈ (0, τ ], x ∈ Ω,

ηt − d∆η − a(t, x)ξ = µ1η, t ∈ (τ, 1], x ∈ Ω,

ξ(t, x) = 0, t ∈ [0, τ ], x ∈ ∂Ω,

η(t, x) = 0, t ∈ [τ, 1], x ∈ ∂Ω,

ξ(0, x) = (1 + α)η(1, x), ξ(t, x) = ξ(τ, x) t ∈ [τ, 1], x ∈ Ω,
η(τ, x) = (1− β)ξ(τ, x), η(t, x) = η(τ, x) t ∈ [0, τ ], x ∈ Ω.

(3.3)

In fact, we can take φ(t, x) = ξ(t, x) for t ∈ (0, τ ], φ(t, x) = η(t, x) for t ∈ (τ, 1], and
φ(0+, x) = ξ(0, x), φ(0, x) = η(1, x), φ(τ+, x) = η(τ, x) and φ(τ, x) = ξ(τ, x) for x ∈ Ω.

Now let W be a Banach space,

W = D0,1
0 ([0, 1]× Ω) := {(ξ, η) ∈ [C0,1([0, 1]× Ω)]2 : ξ = η = 0 ∀(t, x) ∈ [0, 1]× ∂Ω,

ξ(t, x) = ξ(τ, x), t ∈ [τ, 1], η(t, x) = η(τ, x), t ∈ [0, τ ], x ∈ Ω,
ξ(0, x) = (1 + α)η(1, x), η(τ, x) = (1− β)ξ(τ, x) ∀x ∈ Ω}

with the positive cone

W+ := closure{(ξ, η) ∈ W : ξ(t, x), η(t, x)� 0 ∀(t, x) ∈ [0, 1]× ∂Ω},

and its interior

Int(W+) = {(ξ, η) ∈ W : ξ(t, x), η(t, x)� 0 ∀(t, x) ∈ [0, 1]× ∂Ω}

being nonempty, where ν is outward unit normal vector of ∂Ω and ξ � 0 means that
ξ(t, x) > 0 for all (t, x) ∈ [0, 1]× Ω and ∂ξ

∂ν
(t, x) < 0 for all (t, x) ∈ [0, 1]× ∂Ω, we normally

call it strongly positive function.

Let M∗ = 1 + max[0,τ ]×Ω |a(t, x)| + ln(1/(1 − β)). For any given (ξ, η) ∈ W , the linear
problem 

wt − d∆w +M∗w − a(t, x)w = ξ, t ∈ (0, τ ], x ∈ Ω,

zt − d∆z +M∗z − a(t, x)z = η, t ∈ (τ, 1], x ∈ Ω,

w(t, x) = 0, t ∈ [0, τ ], x ∈ ∂Ω,

z(t, x) = 0, t ∈ [τ, 1], x ∈ ∂Ω,

w(0, x) = (1 + α)z(1, x), w(t, x) = w(τ, x) t ∈ [τ, 1], x ∈ Ω,
z(τ, x) = (1− β)w(τ, x), z(t, x) = z(τ, x) t ∈ [0, τ ], x ∈ Ω

(3.4)

admits a unique solution (w, z) satisfying w, z ∈ C(1+α)/2,1+α([0, 1] × Ω)
⋂
W with any 0 <

α < 1 by the classical theory of partial differential equation [12].

Now, define a operator A(ξ, η) = (w, z). Since that the imbedding C(1+α)/2,1+α ↪→ C0,1

is compact, A is a linear compact operator. Moreover, A is strongly positive with respect
to W by the strong maximum principle and Hopf’s boundary lemma. Therefore, it follows
from Krein-Rutman theorem that there exist a unique σ1 := r(A) > 0 and a function
(w, z) ∈ Int(W+) such that A(w, z) = σ1(w, z), then µ1 := 1/σ1 − M∗ is the principal
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eigenvalue of (3.3) and the corresponding eigenfunctions ξ(t, x) and η(t, x) are strongly
positive, that is, ξ(t, x), η(t, x) > 0 in [0, 1]×Ω and ∂ξ

∂ν
(t, x), ∂η

∂ν
(t, x) < 0 for (t, x) ∈ [0, 1]×∂Ω.

Coming back to problem (3.2) with impulse, we have the existence of the principal eigen-
value by equivalence.

Theorem 3.1 Assume that a(x, t) := a(t). Then the principal eigenvalue of problem (1.1)
can be precisely expressed as

µ1 = − ln[(1 + α)(1− β)] + dλ1 −
∫ 1

0

a(t)dt, (3.5)

where λ1(> 0) is the principal eigenvalue of −∆ in Ω with homogeneous Dirichlet boundary
condition.

Proof: Let
φ(t, x) = f(t)ψ(x),

where ψ(x) is the corresponding eigenfunction of λ1, which satisfies the eigenvalue problem{
−∆ψ = λ1ψ, x ∈ Ω,

ψ(x) = 0, x ∈ ∂Ω.
(3.6)

Substituting φ(t, x) = f(t)ψ(y) into the reaction diffusion equation in (3.2) yields

f ′(t)

f(t)
+ dλ1 = a(t) + µ1,

then integrating both sides from t ∈ (0+, τ ]
⋃

(τ+, 1], yield∫ τ

0+

f ′(t)

f(t)
dt+

∫ 1

τ+

f ′(t)

f(t)
dt+ dλ1 =

∫ 1

0

a(t)dt+ µ1.

Recalling that 
f(0) = f(1),

f(0+) = (1 + α)f(0),

f(τ+) = (1− β)f(τ),

we obtain µ1 = − ln[(1 + α)(1− β)] + dλ1 −
∫ 1

0
a(t)dt. �

Theorem 3.2 Assume that a(x, t) := a(t). If period 1 is replaced by T , that is, φ(0, x) =
φ(T, x) hold for x ∈ Ω in Theorem 3.1, then

µ1 =
− ln[(1 + α)(1− β)]

T
+ dλ1 −

∫ T
0
a(t)dt

T
.
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Proof: If period 1 is replaced by T , then the corresponding periodic problem (3.2) is written
as 

φt − d∆φ− a(t)φ = µ1φ, t ∈ (0+, τ ]
⋃

(τ+, T ], x ∈ Ω,

φ(t, x) = 0, t ∈ [0, T ], x ∈ ∂Ω,

φ(0, x) = φ(T, x), x ∈ Ω,

φ(0+, x) = (1 + α)φ(0, x), x ∈ Ω,

φ(τ+, x) = (1− β)φ(τ, x), x ∈ Ω.

By the same method in Theorem 2.1, we obtain∫ τ

0+

f ′(t)

f(t)
dt+

∫ T

τ+

f ′(t)

f(t)
dt+ dλ1T =

∫ T

0

a(t)dt+ µ1T,

so µ1 = − ln[(1+α)(1−β)]
T

+ dλ1 −
∫ T
0 a(t)dt

T
. �

Before considering the properties of the principal eigenvalue µ1(d, a(t, x), α, β) in the
problem (3.2), we first introduce the auxiliary problem

− φ∗t − d∆φ∗ − a(t, x)φ∗ = λ1φ
∗, t ∈ (0+, τ ]

⋃
(τ+, 1], x ∈ Ω,

φ∗(t, x) = 0, t ∈ [0, 1], x ∈ ∂Ω,

φ∗(0+, x) =
1

1 + α
φ∗(0, x), x ∈ Ω,

φ∗(τ+, x) =
1

1− β
φ∗(τ, x), x ∈ Ω,

φ∗(0, x) = φ∗(1, x), x ∈ Ω.

(3.7)

Lemma 3.3 The principal eigenvalues λ1 in (3.7) and µ1 in (3.2) are the same, that is,
λ1 = µ1.

Proof: Multiplying the first equation in (3.7) by φ and the first equation in (3.2) by φ∗,
respectively, we obtain {

φtφ
∗ − d∆φφ∗ = a(t, x)φφ∗ + µ1φφ

∗,

−φ∗tφ− d∆φ∗φ = a(t, x)φφ∗ + λ1φφ
∗,

then abstracting these two equations gives

φtφ
∗ + φ∗tφ− d(∆φφ∗ −∆φ∗φ) = (µ1 − λ1)φφ∗. (3.8)

Since ∫
Ω

(∆φφ∗ −∆φ∗φ)dx = 0

and

(
∫ τ

0+
+
∫ 1

τ+
)(φtφ

∗ + φ∗tφ)dt

= φ(τ, x)φ∗(τ, x)− φ(0+, x)φ∗(0+, x) + φ(1, x)φ∗(1, x)− φ(τ+, x)φ∗(τ+, x)

= φ(τ, x)φ∗(τ, x)− (1 + α) 1
1+α

φ(0, x)φ∗(0, x) + φ(0, x)φ∗(0, x)− (1− β) 1
1−βφ(τ, x)φ∗(τ, x)

= 0,
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so integrating both sides of the equations in (3.8) over (t, x) ∈ ((0+, τ ]
⋃

(τ+, 1])× Ω, yields

(µ1 − λ1)(

∫ τ

0+
+

∫ 1

τ+
)

∫
Ω

φφ∗dxdt = 0,

which ends the proof since (
∫ τ

0+
+
∫ 1

τ+
)
∫

Ω
φφ∗dxdt > 0. �

Theorem 3.4 The following statements hold:

(i) µ1(d, a(t, x), α, β) is nonincreasing with respect to a(t, x) for any given d, α and β;

(ii) µ1(d, a(t, x), α, β) is strictly monotonic decreasing with respect to α for any given d,
a(t, x) and β;

(iii) µ1(d, a(t, x), α, β) is strictly monotonic increasing with respect to β for any given d,
a(t, x)and α;

(iv) µ1(d, a(t, x), α, β) is nondecreasing with respect to d for any given a(t, x), α and β.

Proof: (i) It can be observed directly from the first equation in (3.2) that µ1(a(t, x), α, β, d)
is nonincreasing with respect to a(t, x).

We next prove (ii). φ and µ1 are smooth functions of α ∈ (0,+∞), β ∈ (0, 1) and
d ∈ (0,+∞) by standard result about perturbation [7]. So differentiating both sides of
equations in problem (3.2) with respect to α yields

φ′t − d∆φ′ − a(t, x)φ′ = µ′1φ+ µ1φ
′, t ∈ (0+, τ ]

⋃
(τ+, 1], x ∈ Ω,

φ′(t, x) = 0, t ∈ [0, 1], x ∈ ∂Ω,
φ′(0+, x) = φ(0, x) + (1 + α)φ′(0, x), x ∈ Ω,
φ′(τ+, x) = (1− β)φ′(τ, x), x ∈ Ω,
φ′(0, x) = φ′(1, x), x ∈ Ω.

(3.9)

Multiplying the first equation in (3.9) by φ∗ asserts

φ′tφ
∗ − d∆φ′φ∗ − a(t, x)φ′φ∗ = µ′1φφ

∗ + µ1φ
′φ∗. (3.10)

Recalling the periodicity and impulsive conditions of φ(t, x), φ∗(t, x) and φ′(t, x), one easily
checks that

(
∫ τ

0+
+
∫ 1

τ+
)φ′tφ

∗dt

= φ′(τ, x)φ∗(τ, x)− φ′(0+, x)φ∗(0+, x) + φ′(1, x)φ∗(1, x)− φ′(τ+, x)φ∗(τ+, x)

− (
∫ τ

0+
+
∫ 1

τ+
)φ′φ∗tdt

= φ′(τ, x)φ∗(τ, x)− [φ(0, x) + (1 + α)φ′(0, x)] 1
1+α

φ∗(0, x) + φ′(0, x)φ∗(0, x)

− (1− β) 1
1−βφ

′(τ, x)φ∗(τ, x)− (
∫ τ

0+
+
∫ 1

τ+
)φ′φ∗tdt

= −1
1+α

φ(0, x)φ∗(0, x)− (
∫ τ

0+
+
∫ 1

τ+
)φ′φ∗tdt.

So integrating both sides of equations in (3.10) over (t, x) ∈ (0+, τ ]
⋃

(τ+, 1]× Ω, we get

−1
1+α

∫
Ω
φ(0, x)φ∗(0, x)dx− (

∫ τ
0+

+
∫ 1

τ+
)
∫

Ω
(φ′φ∗t − dφ′∆φ∗)dxdt

= (
∫ τ

0+
+
∫ 1

τ+
)
∫

Ω
(a(t, x)φ′φ∗ + µ′1φφ

∗ + µ1φ
′φ∗)dxdt,
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which, together with −φ∗t − d∆φ∗ − a(t, x)φ∗ = µ1φ
∗ in (3.7), yields

−1

1 + α

∫
Ω

φ(0, x)φ∗(0, x)dx = µ′1(

∫ τ

0+
+

∫ 1

τ+
)

∫
Ω

φφ∗dxdt,

thus

µ′1 =
−1

1+α

∫
Ω
φ(0, x)φ∗(0, x)dx

(
∫ τ

0+
+
∫ 1

τ+
)
∫

Ω
φφ∗dxdt

< 0.

(iii) can be derived by the same procedure in (ii) and we give the sketches here. Differ-
entiating both sides of equations in problem (3.2) with respect to β yields

φ̇t − d∆φ̇− a(t, x)φ̇ = µ̇1φ+ µ1φ̇, t ∈ (0+, τ ]
⋃

(τ+, 1], x ∈ Ω,

φ̇(t, x) = 0, t ∈ [0, 1], x ∈ ∂Ω,

φ̇(0+, x) = (1 + α)φ̇(0, x), x ∈ Ω,

φ̇(τ+, x) = −φ(τ, x) + (1− β)φ̇(τ, x), x ∈ Ω.

φ̇(0, x) = φ̇(1, x), x ∈ Ω.

(3.11)

By careful calculations similarly as in (ii), we finally obtain

µ̇1 =

1
1−β

∫
Ω
φ(0, x)φ∗(0, x)dx

(
∫ τ

0+
+
∫ 1

τ+
)
∫

Ω
φφ∗dxdt

> 0

since 0 < β < 1.

We finally prove (iv). Differentiating both sides of equations in problem (3.2) with respect
to d yields

φ′t − d∆φ′ −∆φ− a(t, x)φ′ = µ′1φ+ µ1φ
′, t ∈ (0+, τ ]

⋃
(τ+, 1], x ∈ Ω,

φ′(t, x) = 0, t ∈ [0, 1], x ∈ ∂Ω,
φ′(0+, x) = (1 + α)φ′(0, x), x ∈ Ω,
φ′(τ+, x) = (1− β)φ′(τ, x), x ∈ Ω,
φ′(0, x) = φ′(1, x), x ∈ Ω.

(3.12)

Since

(

∫ τ

0+
+

∫ 1

τ+
)φ′tφ

∗dt = −(

∫ τ

0+
+

∫ 1

τ+
)φ′φ∗tdt

and ∫
Ω

∆φφ∗dx =

∫
Ω

∆φ∗φdx,

so multiplying the first equation in (3.12) by φ∗ and then integrating both sides of this
equation over (t, x) ∈ ((0+, τ ]

⋃
(τ+, 1])× Ω to conclude

(

∫ τ

0+
+

∫ 1

τ+
)

∫
Ω

(−φ′φ∗t−φ∆φ∗−dφ′∆φ∗−a(t, x)φ′φ∗)dxdt = (

∫ τ

0+
+

∫ 1

τ+
)

∫
Ω

(µ′1φφ
∗+µ1φ

′φ∗)dxdt.

Recalling (3.7), one easily checks

µ′1 =
−(
∫ τ

0+
+
∫ 1

τ+
)
∫

Ω
φ∆φ∗dtdx

(
∫ τ

0+
+
∫ 1

τ+
)
∫

Ω
φφ∗dxdt

=
(
∫ τ

0+
+
∫ 1

τ+
)
∫

Ω
∂φ∗

∂η
∂φ
∂η
dxdt

(
∫ τ

0+
+
∫ 1

τ+
)
∫

Ω
φφ∗dxdt

> 0,

where η is the outward unit vector of ∂Ω. Therefore, µ1(d, a(t, x), α, β) is nondecreasing with
respect to d for any given a(t, x), α and β.

�
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4 The dynamical behavior of the solution

Theorem 4.1 If µ1(d, a(t, x), α, β) > 0, then the solution u(t, x) to problem (1.1) satisfies
lim
t→∞

u(t, x) = 0 uniformly for x ∈ Ω.

Proof: Constructing
ũ(t, x) = Me−µ1tφ(t, x),

where φ(t, x) (≤ 1) is a positive eigenfunction of problem (3.2) corresponding to µ1, and M
to be chosen later.

For t ∈ (n+, (n+ τ)]
⋃

((n+ τ)+, (n+ 1)] and x ∈ Ω, careful calculations yield

ũt − d4ũ− a(t, x)ũ+ b(t, x)ũp

= Me−µ1t[−µ1φ+ φt − d4φ− a(t, x)φ+ b(t, x)(Me−µ1t)(p−1)φp]

= Mpb(t, x)(e−µ1t)pφp > 0.

Impulsive conditions hold, that is, for x ∈ Ω,

ũ(n+, x) = (1 + α)ũ(n, x)

and
ũ((n+ τ)+, x) = (1− β)ũ(n+ τ, x).

Also, a big enough M can be chosen such that ũ(0, x) = Mφ(0, x) ≥ u0(x) in x ∈ Ω. It
follows from the comparison principle [18] and [16, Lemma 3.1] that

u(t, x) ≤ ũ(t, x), x ∈ Ω, t > 0.

Since lim
t→∞

ũ(t, x) = 0 by µ1 > 0, it is clear that lim
t→∞

u(t, x) = 0 uniformly for x ∈ Ω. �

Theorem 4.2 Assume that µ1(d, a(t, x), α, β) < 0, for each u0 ∈ C(Ω) such that u0 ≥ 0
and u0 6= 0, the following assertions hold:
(i) Periodic problem (3.1) admits a unique solution U(t, x);
(ii) the solution u(t, x) to (1.1) satisfies limm→∞ u(t + m,x) = U(t, x) for any t ≥ 0 and
uniformly for x ∈ Ω, where U(t, x) is the unique solution defined in (i).

Proof: (i) The main method is to find an upper and lower solution Ũ and Û to periodic
problem (3.1), respectively.

By Theorem 3.1, there exists a positive constant K := | ln(1+α)(1−β)|+dλ1 +aM such
that

φt − d∆φ = aMφ−Kφ+ µ41 φ

with µ41 := µ41 (d, aM −K,α, β) > 0. Next, define

Ωε := {x ∈ Ω : dist (x, ∂Ω) > ε}, χΩε(x) = 1 forx ∈ Ωε andχΩε(x) = 0 forx ∈ Ω/Ωε},
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and (ϕ, µ41,ε) be the eigenfunction pair with max(t,x)∈[0,1]×Ω ϕ(t, x) = 1, satisfying

ϕt − d∆ϕ = (aM −KχΩε)ϕ+ µ41,εϕ.

Since µ41 > 0, we can choose ε sufficiently small such that µ41,ε := µ41,ε(d, a
M−KχΩε , α, β) > 0.

Now, we define
Ũ = Mϕ,

where M is sufficiently big and chosen to be later. We otain

Ũt − d∆Ũ − a(t, x)Ũ + b(t, x)Ũp

=Mϕt − dM∆ϕ−Ma(t, x)ϕ+ b(t, x)(Mϕ)p

>Ũ [µ41,ε −KχΩε + bm(Mϕ)(p−1)]

>Ũ [−KχΩε + bm(Mϕ)(p−1)]

≥0

provided that M ≥ K/(bm min[0,1]×Ωε
[ϕ(p−1)(t, x)])1−p.

Moreover, we have

Ũ(0+, x)− (1 + α)Ũ(0, x) = 0, Ũ(τ+, x)− (1− β)Ũ(τ, x) = 0,

so Ũ is the upper solution, which satisfies

Ũt ≥ d∆Ũ + a(t, x)Ũ − b(t, x)Ũp, t ∈ (0+, τ ]
⋃

(τ+, 1], x ∈ Ω,

Ũ(t, x) = 0, t > 0, x ∈ ∂Ω,

Ũ(0, x) = Ũ(1, x), x ∈ Ω,

Ũ(0+, x)− (1 + α)Ũ(0, x) = 0, x ∈ Ω,

Ũ(τ+, x)− (1− β)Ũ(τ, x) = 0, x ∈ Ω.

In what follows, let us consider a lower solution. Define

Û(t, x) =



εφ(0, x), t = 0, x ∈ Ω,

ε
ρ1

1− β
φ(0+, x), t = 0+, x ∈ Ω,

ε
ρ1

1 + α
φ(τ+, x), t = τ+, x ∈ Ω,

ε
ρ1

1− β
e

−µ1
2
tφ(t, x), t ∈ (0+, τ ]

⋃
(τ+, 1], x ∈ Ω,

where φ is positive eigenfunction related to the principal eigenvalue µ1 of problem (3.2) with
max(t,x)∈[0,1]×Ω φ(t, x) = 1, where ε is sufficiently small positive constant. To make sure that

Û(0, x) = Û(1, x), we have ρ1 = (1− β)e
µ1
2 , and 0 < ρ1 < 1− β.

It can be derived that

Ût − d∆Û − a(t, x)Û + b(t, x)Ûp

≤Û [
µ1

2
+ bM(ε

ρ1

1− β
e

−µ1
2
tφ)(p−1)]

≤0.
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Moreover, impulsive conditions satisfy

Û(0+, x)− (1 + α)Û(0, x)

= ε ρ1
1−βφ(0+, x)− (1 + α)εφ(0, x)

= ε ρ1
1−β (1 + α)φ(0, x)− (1 + α)εφ(0, x)

< ε(1 + α)φ(0, x)− (1 + α)εφ(0, x)

= 0

and
Û(τ+, x)− (1− β)Û(τ, x)

= ε ρ1
1+α

φ(τ+, x)− (1− β)ε ρ1
1−βe

−µ1
2
τφ(τ, x)

= ερ1(1− β)φ(τ, x)[ 1
1+α
− 1

1−βe
−µ1
2
τ ]

≤ 0

since 1
1−βe

−µ1
2
τ > 1

1−β >
1

1+α
. Therefore, Û(t, x) is a lower solution to periodic problem (3.1).

By defining Ū (0) = Ũ and U (0) := Û , we have

U (0)(t, x) ≤ U(t, x) ≤ Ū (0)(t, x), t ≥ 0, x ∈ Ω.

We now construct two iteration sequences for {Ū (n)} and {U (n)} satisfying

Ū
(n)
t − d∆Ū (n) +KŪ (n) = KŪ (n−1) + a(t, x)Ū (n−1)

−b(t, x)(Ū (n−1))p, t ∈ (0+, τ ]
⋃

(τ+, 1], x ∈ Ω,

U
(n)
t − d∆U (n) +KU (n) = KU (n−1) + a(t, x)U (n−1)

−b(t, x)(U (n−1))p, t ∈ (0+, τ ]
⋃

(τ+, 1], x ∈ Ω,

Ū (n)(t, x) = U (n)(t, x) = 0, t ∈ [0, 1], x ∈ ∂Ω

(4.1)

with periodic conditions

Ū (n)(0, x) = Ū (n−1)(1, x), U (n)(0, x) = U (n−1)(1, x), x ∈ Ω, (4.2)

and impulsive conditions

Ū (n)(0+, x) = (1 + α)Ū (n−1)(1, x), U (n)(0+, x) = (1 + α)U (n−1)(1, x), x ∈ Ω (4.3)

and

Ū (n)(τ+, x) = (1− β)Ū (n−1)(τ + 1, x), U (n)(τ+, x) = (1− β)U (n−1)(τ + 1, x), x ∈ Ω,

where K = max[0,1]×Ω[−a(t, x) + pb(t, x)Ũp−1] ensuring the monotonicity of the function
Kz + a(t, x)z − b(t, x)zp with z.

Since
Û ≤ U (k) ≤ U (k+1) ≤ Ū (k+1) ≤ Ū (k) ≤ Ũ ,

we obtain
lim
k→∞

Ū (k) = Ū∗ and lim
k→∞

U (k) = U∗,
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by limiting in (4.1), we can see that Ū∗ and U∗ are two periodic solutions to periodic problem
(3.1), satisfying

Û ≤ U (k) ≤ U (k+1) ≤ U∗ ≤ Ū∗ ≤ Ū (k+1) ≤ Ū (k) ≤ Ũ .

For the uniqueness of the periodic solution, suppose that U1 and U2 are two solutions of
problem (3.1) and define

S = {s ∈ [0, 1], sU1 ≤ U2, t ∈ [0, 1], x ∈ Ω}.

By using the fact that f(u)/u is strictly decreasing with respect to v in [0, max
[0,1]×Ω

U2], where

f(v) = a(t, x)u − b(t, x)up, we can prove that 1 ∈ S by contradiction similarly as in [16,
Theorem 3.4], therefore U1 ≤ U2. On the hand, we have U2 ≤ U1 and we arrive the
uniqueness.

(ii) It follows from the initial iteration in (i) that

U (0)(t, x) ≤ u(t, x) ≤ Ū (0)(t, x), t ≥ 0, x ∈ Ω.

Also,
U (1)(0, x) = U (0)(1, x) ≤ u(1, x) ≤ Ū (0)(1, x) = Ū (1)(0, x)

for x ∈ Ω.

It is clear by the iteration process that

U (1)(0+, x) = (1+α)U (0)(1, x) ≤ (1 + α)u(1, x) = u(1+, x) ≤ (1 + α)Ū (0)(1, x) = Ū (1)(0+, x),

and
U (1)(τ+, x) = (1− β)U (0)(τ + 1, x) ≤ (1− β)u(τ + 1, x)

= u(τ+ + 1, x) ≤ (1− β)Ū (0)(τ + 1, x)

= Ū (1)(τ+, x)

for x ∈ Ω. Thus, U (1)(t, x) ≤ u(t+ 1, x) ≤ Ū (1)(t, x) holds for t ∈ (0+, τ ]
⋃

(τ+, 1] and x ∈ Ω
by comparison argument, and induction asserts that U (1)(t, x) ≤ u(t+ 1, x) ≤ Ū (1)(t, x) for
t ≥ 0 and x ∈ Ω. Similarly, we can conclude that for any m,

U (m)(t, x) ≤ u(t+m,x) ≤ Ū (m)(t, x), t ≥ 0, x ∈ Ω

by iteration. Therefore, lim
m→∞

U (m) and lim
m→∞

Ū (m) exist. Also, lim
m→∞

U (m)(t, x) = lim
m→∞

Ū (m)(t, x) =

U(t, x) by the uniqueness of the solution to problem (3.1), which ends the proof. �

Combining Theorems 3.2, 4.1 and 4.2 gives the following corollary.

Corollary 4.3 Assume that a(x, t) := a(t) and the period 1 is replaced by T . Let u(t, x) be
the solution to problem (1.1).

(i) If dλ1T > ln[(1 + α)(1− β)] +
∫ T

0
a(t)dt, then lim

t→∞
u(t, x) = 0 uniformly for x ∈ Ω̄;

(ii) if dλ1T < ln[(1 +α)(1−β)] +
∫ T

0
a(t)dt, then limm→∞ u(t+mT, x) = U(t, x) for any

t ≥ 0 and uniformly for x ∈ Ω, where U(t, x) is the unique solution of the periodic problem
(3.1).

Our result shows that large diffusion rate (d), impulsive timing (T ) and harvesting rate
(β) all are unfavorable to the survival of species, while large birth rate (α) and habitat
(which means that λ1 is small) are beneficial for the survival of species.

12



References
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