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Abstract: This paper is concerned with existence and non-existence of traveling wave solutions in a non-

local dispersal endemic model with nonlinear incidence. With the aid of upper-lower solutions method and

Schauder’s fixed point theorem together with Lyapunov functional technique, we derive the existence of

super-critical and critical traveling wave solutions connecting disease-free equilibrium to endemic equilibri-

um. In a combination with the theory of two-sided Laplace transform and local skilled analysis, we obtain

the non-existence of sub-critical traveling wave solutions. Our results illustrate that: (i) the existence and

non-existence of traveling waves are determined by the basic reproduction number and the wave speed; (ii)

the critical wave speed is equal to the minimal wave speed; (iii) the traveling waves only propagate along

one direction.
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1 Introduction and main results

To model the transmission patterns of infectious disease, a great number of reaction-diffusion (Laplacian-operator-

type) and nonlocal dispersal (convolution-operator-type) epidemic models have been proposed in the last several decades

[3, 5, 7, 10, 12, 13, 21, 24, 27–30, 35–40, 42, 43]. From the viewpoint of mathematical epidemiology, the existence and

non-existence of the traveling wave solutions with a constant speed for these model are important issues because they can

predict whether or not the disease spread in the individuals and how fast a disease invades geographically. In the present

paper, we shall consider these problems in the following two-component nonlocal dispersal endemic model St(x, t) = d1K[S](x, t) + b− µ1S(x, t)− βS(x, t)g(I(x, t)),

It(x, t) = d2K[I](x, t) + βS(x, t)g(I(x, t))− (µ2 + γ)I(x, t),
(1.1)

where S(x, t) and I(x, t) stand for the densities of the susceptible and infected individuals in location x and at time t,

respectively. The convolution operator

K[ϕ](x, t) :=

∫
R
K(y)[ϕ(x− y, t)− ϕ(x, t)]dy (1.2)

describes the probability that individuals in position y will jump to location x and it reflects that the movement of

individuals can be in a large, random and free way. The positive constant b refers to the entering flux of the susceptible

individuals. The parameters dj > 0 and µj > 0 (j = 1, 2) denote the space diffusion rates and the natural death rates for

the susceptible and infected individuals, respectively. The infection rate β and the removal rate γ are positive numbers.

Note that the nonlinear incidence Sg(I) in epidemic models has played a crucial role in giving a reasonable qualitative

description for the disease dynamics [4,9,42,43]. Hereafter, the kernel function K(x) and nonlinear function g(I) satisfy

the following hypotheses.
∗Corresponding author. E-mail address: zhenzaili@ujs.edu.cn (Z. Zhen).
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(H1) K(x) ∈ C(R), K(x) = K(−x) ≥ 0,
∫
R K(x)dx = 1, K(x) is compactly supported and suppK = [−r, r] with

the constant radius r > 0.

(H2) g(I) is positive and continuous for I > 0 with g(0) = 0 and g′(I) > 0 for I ≥ 0.

(H3) g′(0) = maxI∈[0,∞) g
′(I), g(I)/I is continuous differential, non-increasing for I > 0 and limI→∞ g(I)/I = 0.

(H4) g′′(I) ≤ 0 for all I > 0.

It is not difficult to observe that a standard kernel function [17, 31]

K(x) =

 C exp

(
1

|x|2 − 1

)
, |x| < 1,

0, |x| ≥ 1,

where the constant C > 0 is chosen such that
∫
R K(x)dx = 1, satisfies (H1). As far as we know, the class of nonlinear

functions g(I) can include some types of functional responses, such as

(i) Holling type II functional response g(I) = I
1+αI with the constant α > 0 [8, 11, 15, 20, 41];

(ii) Ivlev type functional response g(I) = 1− e−nI with the constant n > 0 [1, 6, 14, 16, 19, 23, 25, 26, 34].

Note that the reaction system of (1.1) is given by Ṡ(t) = b− µ1S(t)− βS(t)g(I(t)),

İ(t) = βS(t)g(I(t))− (µ2 + γ)I(t),
(1.3)

where the dot denotes the derivative with respect to t. System (1.3) always admits a disease-free equilibrium (S0, 0),

where S0 := b/µ1. By [18], one knows that the basic reproduction number of (1.3) is

R0 :=
βS0g

′(0)

µ2 + γ
. (1.4)

Then if R0 > 1 and (H2)-(H4) hold, system (1.3) has a unique positive endemic equilibrium (S∗, I∗) satisfying b = µ1S
∗ + βS∗g(I∗),

βS∗g(I∗) = (µ2 + γ)I∗.
(1.5)

Throughout this paper, we always assume that R0 > 1. By a traveling wave solution of (1.1), we mean a solution in

the form of

(S, I)(x, t) = (S, I)(z), z = x+ ct, (1.6)

where c is the wave speed. Inserting (1.6) into (1.1) yields
cS′(z) = d1

∫
R
K(y)S(z − y)dy + b− (d1 + µ1)S(z)− βS(z)g(I(z)), (1.7a)

cI ′(z) = d2

∫
R
K(y)I(z − y)dy + βS(z)g(I(z))− (d2 + µ2 + γ)I(z), (1.7b)

where the prime denotes the derivative with respect to z. The aim of this paper is to establish the existence and non-

existence of a positive solution (S, I)(z) on the real line of system (1.7a)-(1.7b) satisfying the following asymptotic

boundary conditions

(S, I)(−∞) = (S0, 0) and (S, I)(∞) = (S∗, I∗). (1.8)

To this end, we define a function by

Θ(λ, c) := d2

∫
R
K(y)e−λydy − cλ+ βS0g

′(0)− d2 − µ2 − γ, (λ, c) ∈ [0,∞)× [0,∞).
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Using R0 > 1 and (H1), we derive that Θ(0, c) = βS0g
′(0)− µ2 − γ > 0 and

Θ(λ, 0) = d2

∫
R
K(y)(e−λy − 1)dy + βS0g

′(0)− µ2 − γ

≥ −λd2

∫
R
yK(y)dy + βS0g

′(0)− µ2 − γ (since ex − 1 ≥ x for x ∈ R)

= βS0g
′(0)− µ2 − γ > 0.

It follows from ex − 1 =
∑∞

n=1
xn

n! and K(−x) = K(x) for x ∈ R that∫
R
K(y)

e−λy − 1

λ
dy =

∫
R
K(y)

∞∑
n=1

(−λy)n

n!λ
dy =

∞∑
n=1

λ2n−1

(2n)!

∫
R
K(y)y2ndy → ∞ as λ → ∞.

Then for each c > 0, we deduce that limλ→∞ Θ(λ, c) = ∞ and Θλ(0, c) = −
[
d2

∫
R yK(y)e−λydy+ c

]∣∣
λ=0

= −c < 0.

For any (λ, c) ∈ R2, it follows that Θλλ(λ, c) = d2
∫
R y2K(y)e−λydy > 0. For each fixed λ > 0, we note that

Θc(λ, c) = −λ < 0 and limc→∞ Θ(λ, c) = −∞. Based on the above computations and R0 > 1, we can define a

positive value

c∗ := inf
λ∈(0,∞)

d2[
∫
R K(y)e−λydy − 1] + βS0g

′(0)− µ2 − γ

λ

and obtain the following proposition.

Proposition 1.1 Suppose that R0 > 1. Then the following assertions are true.

(i) There is a positive constant λ∗(c∗) := λ∗ such that Θ(λ∗, c∗) = 0 and Θλ(λ
∗, c∗) = 0.

(ii) If c > c∗, then Θ(λ, c) = 0 admits two positive roots λ1(c) := λ1 and λ2(c) := λ2 with λ∗ ∈ (λ1, λ2) such that

Θ(λ, c) > 0 for λ ∈ [0, λ1) ∪ (λ2,∞) and Θ(λ, c) < 0 for λ ∈ (λ1, λ2).

(iii) If 0 < c < c∗, then Θ(λ, c) > 0 for λ ∈ [0,∞).

Using (H3) and R0 > 1 yields that limI→0+ βS0g(I)/I = βS0g
′(0) > µ2+γ and limI→∞ βS0g(I)/I = 0 < µ2+γ.

Then there exists a unique constant Ī > 0 such that

βS0g(Ī)/Ī = µ2 + γ. (1.9)

Now we are in a position to state our results.

Theorem 1.1 If R0 > 1 and c ≥ c∗, then system (1.1) admits a non-trivial traveling wave solution (S, I)(z), z := x+ ct

satisfying (S, I)(−∞) = (S0, 0) and (S, I)(∞) = (S∗, I∗). Moreover, (S, I)(z) satisfies the following properties.

(I) Positiveness and global boundedness of traveling wave solutions in (1.1). For z ∈ R,

S < S(z) < S0 and 0 < I(z) < Ī

where S := b/[µ1 + βg′(0)Ī] and Ī > 0 is defined in (1.9).

(II) Limit behavior of I-component of traveling wave solutions in (1.1). If z → −∞, then

I(z) =

 O(eλ1z) for c > c∗,

O(zeλ
∗z) for c = c∗.

Theorem 1.2 If R0 > 1 and c < c∗, then system (1.1) has no traveling wave solutions satisfying (S, I)(−∞) = (S0, 0)

and (S, I)(∞) = (S∗, I∗), together with S < S(z) < S0 and 0 < I(z) < Ī for z ∈ R.
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Remark 1.1 Theorems 1.1 and 1.2 assert that the existence and non-existence of traveling wave solutions of (1.1) depend

on both the basic reproduction number and the critical wave speed. From the biomathematics point of view, the disease

can transmit at the critical wave speed while can not spread for any wave speed smaller than the critical wave speed.

These results mean that the critical wave speed is equal to the minimal wave speed.

Remark 1.2 Theorem 1.2 shows that system (1.1) has no non-trivial bounded traveling wave solutions with non-positive

wave speed which implies that the traveling waves propagate in one direction. Chen et al. [5] and Yang et al. [38] also

established the similar results for their models. However, our method adopted here is quite different from the work [5,38].

Here we sketch our strategies. To prove the existence of traveling wave solutions of (1.1) with c > c∗, we first

construct a pair of upper-lower solutions of (1.7a)-(1.7b) and an invariant cone of initial functions defined on a large

bounded interval. Secondly, we apply the Schauder’s fixed point theorem to prove the existence of solutions on the

cone. Thirdly, we derive a uniform prior estimate of solutions on the large bounded domain and extend the existence

of solutions on the bounded interval to the whole real line by a limiting argument. Finally, we study the asymptotic

boundary of solutions at infinity via squeeze theorem coupled with Lyapunov functional techniques [20, 35, 44]. To

show the existence of traveling wave solutions of (1.1) with c = c∗, we re-construct a pair of upper-lower solution of

(1.7a)-(1.7b) to achieve our goal. Note that the used Lyapunov functional to get the convergence towards the endemic

equilibrium point at plus infinity is independent of the wave speed c. So we still have (S, I)(∞) = (S∗, I∗) when c = c∗.

To investigate the non-existence of traveling wave solutions of (1.1) with c < c∗, we shall apply the theory of two-sided

Laplace transform and local skilled analysis to attain our aim. The remainder of this paper is organized as follows. In

Section 2, we establish the existence of super-critical traveling waves. In Section 3, we obtain the existence of critical

traveling waves. In Section 4, we investigate the non-existence of sub-critical traveling waves.

2 Existence of super-critical traveling wave solutions

2.1 Construction of the upper and lower solutions for (1.7a)-(1.7b)

Definition 2.1 If S±(z) and I±(z) are of class C(R) ∩ C1(R \ S) for some finite set S and if they satisfy

d1

∫
R
K(y)S+(z − y)dy − cS′

+(z) + b− (d1 + µ1)S+(z)− βS+(z)g(I−(z)) ≤ 0,

d1

∫
R
K(y)S−(z − y)dy − cS′

−(z) + b− (d1 + µ1)S−(z)− βS−(z)g(I+(z)) ≥ 0,

d2

∫
R
K(y)I+(z − y)dy − cI ′+(z) + βS+(z)g(I+(z))− (d2 + µ2 + γ)I+(z) ≤ 0

d2

∫
R
K(y)I−(z − y)dy − cI ′−(z) + βS−(z)g(I−(z))− (d2 + µ2 + γ)I−(z) ≥ 0

for any z ∈ R \ S , then the function pairs (S±, I±)(z) are called a pair of upper and lower solutions for (1.7a)-(1.7b).

Now we construct four non-negative continuous functions on the real line, which are

S+(z) := S0, (2.1)

I+(z) := min{eλ1z, Ī}, (2.2)

S−(z) := max{S0 − ϵ−1
1 eϵ1z, S}, (2.3)

I−(z) := max{eλ1z −M1e
(λ1+ϵ2)z, 0}. (2.4)

In (2.1)-(2.4), λ1 > 0 is defined in Proposition 1.1(ii), Ī > 0 is given in (1.9),

S :=
b

µ1 + βg′(0)Ī
<

b

µ1
= S0, (2.5)
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and the constants M1, ϵ1, ϵ2 > 0 will be determined later.

In the following lemmata of this subsection, we shall show that the function pairs (S±, I±)(z) constructed in (2.1)-

(2.4) are a pair of upper and lower solutions for (1.7a)-(1.7b).

Lemma 2.1 The function S+(z) satisfies

d1

∫
R
K(y)S+(z − y)dy − cS′

+(z) + b− (d1 + µ1)S+(z)− βS+(z)g(I−(z)) ≤ 0 (2.6)

for any z ∈ R.

Proof. Since S+(z) = S0 = b/µ1 and I−(z) ≥ 0 for z ∈ R, we have from (H1) and (H2) that

d1

∫
R
K(y)S+(z − y)dy − cS′

+(z) + b− (d1 + µ1)S+(z)− βS+(z)g(I−(z))

= d1S0 + b− (d1 + µ1)S0 − βS0g(I−(z))

= −βS0g(I−(z)) ≤ 0 for z ∈ R.

Then inequality (2.6) holds and the proof is finished.

Lemma 2.2 The function I+(z) satisfies

d2

∫
R
K(y)I+(z − y)dy − cI ′+(z) + βS+(z)g(I+(z))− (d2 + µ2 + γ)I+(z) ≤ 0 (2.7)

for any z ̸= z1 := λ−1
1 log Ī .

Proof. By (2.2) and (H1)-(H3), we have for z ∈ R that∫
R
K(y)I+(z − y)dy ≤ min

{
eλ1z

∫
R
K(y)e−λ1ydy, Ī

}
(2.8)

and

g(I+(z)) = g(I+(z))− g(0) ≤ g′(0)I+(z). (2.9)

If z < z1, then I+(z) = eλ1z. Using (2.8), (2.9) and Θ(λ1, c) = 0, we obtain for z < z1 that

d2

∫
R
K(y)I+(z − y)dy − cI ′+(z) + βS+(z)g(I+(z))− (d2 + µ2 + γ)I+(z)

≤ d2e
λ1z

∫
R
K(y)e−λ1ydy − cλ1e

λ1z + βS0g
′(0)eλ1z − (d2 + µ2 + γ)eλ1z

= eλ1zΘ(λ1, c) = 0.

If z > z1, then I+(z) = Ī . By (1.9) and (2.8), we get for z > z1 that

d2

∫
R
K(y)I+(z − y)dy − cI ′+(z) + βS+(z)g(I+(z))− (d2 + µ2 + γ)I+(z)

≤ d2Ī + βS0g(Ī)− (d2 + µ2 + γ)Ī = 0.

Hence inequality (2.7) holds and the proof is completed.

Lemma 2.3 Suppose that ϵ1 ∈ (0, λ1) is a sufficiently small constant. Then the function S−(z) satisfies

d1

∫
R
K(y)S−(z − y)dy − cS′

−(z) + b− (d1 + µ1)S−(z)− βS−(z)g(I+(z)) ≥ 0

for any z ̸= z2 := ϵ−1
1 log[ϵ1(S0 − S)].
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Proof. Utilizing (2.3) and (H1), we have for z ∈ R that∫
R
K(y)S−(z − y)dy ≥ max

{
S0 − ϵ−1

1 eϵ1z
∫
R
K(y)e−ϵ1ydy, S

}
. (2.10)

Noticing the fact that∫
R
K(y)

1− e−ϵ1y

ϵ1
dy =

∞∑
n=1

(−ϵ1)
2n−1

(2n)!

∫
R
K(y)y2ndy → 0 as ϵ1 → 0+,

one can select a sufficiently small constant ϵ1 ∈ (0, λ1) such that z2 < z1 and

d1

∫
R
K(y)

1− e−ϵ1y

ϵ1
dy + c+

µ1

ϵ1
− βS0g

′(0)e(λ1−ϵ1)z2 ≥ 0. (2.11)

If z < z2, we get that S−(z) = S0 − ϵ−1
1 eϵ1z and I+(z) = eλ1z . Then it follows from (2.9)-(2.11) that

d1

∫
R
K(y)S−(z − y)dy − cS′

−(z) + b− (d1 + µ1)S−(z)− βS−(z)g(I+(z))

≥ d1ϵ
−1
1 eϵ1z

∫
R
K(y)(1− e−ϵ1y)dy + ceϵ1z + b− µ1S0 + µ1ϵ

−1
1 eϵ1z − β(S0 − ϵ−1

1 eϵ1z)g′(0)eλ1z

≥ eϵ1z
[
d1ϵ

−1
1

∫
R
K(y)(1− e−ϵ1y)dy + c+ µ1ϵ

−1
1 − βS0g

′(0)e(λ1−ϵ1)z

]
≥ eϵ1z

[
d1

∫
R
K(y)

1− e−ϵ1y

ϵ1
dy + c+

µ1

ϵ1
− βS0g

′(0)e(λ1−ϵ1)z2

]
≥ 0 for z < z2.

If z > z2, then S−(z) = S. By (2.5) and (2.10), we deduce for z > z2 that

d1

∫
R
K(y)S−(z − y)dy − cS′

−(z) + b− (d1 + µ1)S−(z)− βS−(z)g(I+(z))

≥ d1S + b− (d1 + µ1)S − βSg′(0)Ī = 0.

The proof of this lemma is completed.

Lemma 2.4 Assume that M1 ∈ (1,∞) is a sufficiently large constant and ϵ2 ∈ (0,min{ϵ1, λ2−λ1}). Then the function

I−(z) satisfies

d2

∫
R
K(y)I−(z − y)dy − cI ′−(z) + βS−(z)g(I−(z))− (d2 + µ2 + γ)I−(z) ≥ 0 (2.12)

for any z ̸= z3 := −ϵ−1
2 logM1.

Proof. Using (2.4) and (H1) lead to for z ∈ R that∫
R
K(y)I−(z − y)dy ≥ max

{
eλ1z

[ ∫
R
K(y)e−λ1ydy −M1e

ϵ2z

∫
R
K(y)e−(λ1+ϵ2)ydy

]
, 0

}
. (2.13)

Let M1 ∈ (1,∞) be a sufficiently large constant and ϵ2 ∈ (0,min{ϵ1, λ2 − λ1}) such that −ϵ−1
2 logM1 <

ϵ−1
1 log[ϵ1(S0 − S)], i.e., z3 < z2. Then if z < z3, we deduce that

S−(z) = S0 − ϵ−1
1 eϵ1z and I−(z) = eλ1z(1−M1e

ϵ2z). (2.14)

To show (2.12) with z < z3 is equivalent to prove that

d2

∫
R
K(y)I−(z − y)dy − cI ′−(z) +

[
βS0g

′(0)− d2 − µ2 − γ
]
I−(z)

≥ βS0g
′(0)I−(z)− βS−(z)g(I−(z)) for z < z3. (2.15)
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Then it follows from (2.13), (2.14), Θ(λ1, c) = 0 and the left-hand side of (2.15) that

d2

∫
R
K(y)I−(z − y)dy − cI ′−(z) +

[
βS0g

′(0)− d2 − µ2 − γ
]
I−(z)

≥ eλ1z

[
d2

∫
R
K(y)e−λ1ydy − cλ1 + βS0g

′(0)− d2 − µ2 − γ

]
−M1e

(λ1+ϵ2)z

[
d2

∫
R
K(y)e−(λ1+ϵ2)ydy − c(λ1 + ϵ2) + βS0g

′(0)− d2 − µ2 − γ

]
= eλ1zΘ(λ1, c)−M1e

(λ1+ϵ2)zΘ(λ1 + ϵ2, c)

= −M1e
(λ1+ϵ2)zΘ(λ1 + ϵ2, c) for z < z3. (2.16)

Note from (H3) that limI−(z)→0+
g(I−(z))
I−(z) = g′(0), that is, for any ε ∈ (0, g′(0)), there exists a small number δ̃ > 0

such that g(I−(z))
I−(z) ≥ g′(0)− ε for I−(z) ∈ (0, δ̃). Then we take M1 ∈ (1,∞) to be a sufficiently large constant such that

I−(z) ∈ (0, δ̃) and S−(z) is close to S0 for z < z3. Now choosing ε ∈ (0, g′(0)) to be sufficiently small, we have from

the right-hand side of (2.15) that

βS0g
′(0)I−(z)− βS−(z)g(I−(z)) = βS0g

′(0)I−(z)− βS0g(I−(z)) + βϵ−1
1 eϵ1zg(I−(z))

= βS0I−(z)

[
g′(0)− g(I−(z))

I−(z)

]
+ βϵ−1

1 eϵ1zg(I−(z))

≤ βS0

[I−(z) + g′(0)− g(I−(z))
I−(z)

2

]2
+ βϵ−1

1 eϵ1zg′(0)I−(z)

≤ βS0

[
I−(z) + ε

2

]2
+ βϵ−1

1 g′(0)e(ϵ1+λ1)z

≤ βS0I
2
−(z) + βϵ−1

1 g′(0)e(ϵ1+λ1)z

≤ βS0e
2λ1z + βϵ−1

1 g′(0)e(ϵ1+λ1)z for z < z3. (2.17)

Hence to prove (2.15) is sufficient to show

βS0e
(λ1−ϵ2)z + βϵ−1

1 g′(0)e(ϵ1−ϵ2)z ≤ −M1Θ(λ1 + ϵ2, c) for z < z3. (2.18)

Since λ1 + ϵ2 ∈ (λ1, λ2), we get from Proposition 1.1(ii) that Θ(λ1 + ϵ2, c) < 0. Then by the boundedness of the

left-hand side of (2.18), we obtain that (2.18) holds for sufficiently large constant M1.

If z > z3, then I−(z) = 0 and one can have from (2.13) that

d2

∫
R
K(y)I−(z − y)dy − cI ′−(z) + βS−(z)g(I−(z))− (d2 + µ2 + γ)I−(z)

= d2

∫
R
K(y)I−(z − y)dy ≥ 0.

Consequently, inequality (2.12) holds and the proof is finished.

Remark 2.1 Obviously, it follows from (2.1), (2.3) and (2.5) that S−(z) < S+(z) for z ∈ R. Moreover, by elementary

computation, we have for z ∈ R that I−(z) attains its maximum at the point z̃ := 1
ϵ1

log λ1

M1(λ1+ϵ1)
. Then based on

the choices of parameters M1 and ϵ1 (see Lemma 2.3 and Lemma 2.4), one can obtain that z̃ < z1, which implies that

I−(z) < I+(z) for z ∈ R.

2.2 Existence of solutions of (1.7a)-(1.7b) on a bounded interval

Now we define a set

Γl :=

{
(ϕ, φ)(z) ∈ C([−l, l],R2)

∣∣∣∣(ϕ, φ)(−l) = (S−, I−)(−l), S−(z) ≤ ϕ(z) ≤ S+(z),

I−(z) ≤ φ(z) ≤ I+(z), ∀z ∈ [−l, l]

}
,
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where l ≫ max
{
|z3|, r

}
(r is the radius of suppK). It is not difficult to verify that Γl is a non-empty, bounded, closed

and convex subset in C([−l, l],R2). For any (ϕ, φ)(z) ∈ Γl, we define

ϕ̂(z) :=


ϕ(l), z > l,

ϕ(z), |z| ≤ l,

S−(z), z < −l,

φ̂(z) :=


φ(l), z > l,

φ(z), |z| ≤ l,

I−(z), z < −l.

Consider the initial value problem

cS′(z) = d1

∫
R
K(y)ϕ̂(z − y)dy + αϕ(z) + b− (d1 + µ1 + α)S(z)− βϕ(z)g(φ(z)), (2.19)

cI ′(z) = d2

∫
R
K(y)φ̂(z − y)dy + βϕ(z)g(φ(z))− (d2 + µ2 + γ)I(z) (2.20)

on [−l, l] with

S(−l) = S−(−l) and I(−l) = I−(−l), where α > βg(Ī). (2.21)

The theory of ODEs claims that (2.19)-(2.21) has a unique solution (Sl, Il)(z) ∈ C1([−l, l],R2). Define an operator

O = (O1,O2): Γl 7→ C([−l, l],R2) as follows

O1(ϕ, φ)(z) := Sl(z) and O2(ϕ, φ)(z) := Il(z) for z ∈ [−l, l].

Lemma 2.5 The operator O = (O1,O2) maps Γl into Γl.

Proof. For any given (ϕ, φ)(z) ∈ Γl, it suffices to prove that

S−(z) ≤ O1(ϕ, φ)(z) ≤ S+(z) and I−(z) ≤ O2(ϕ, φ)(z) ≤ I+(z),

that is,

S−(z) ≤ Sl(z) ≤ S+(z) and I−(z) ≤ Il(z) ≤ I+(z).

Since α > βg(Ī) and φ ≤ Ī , we have that αϕ−βϕg(φ) is increasing with respect to ϕ. Then by Lemma 2.1 and Lemma

2.3, we obtain that

d1

∫
R
K(y)ϕ̂(z − y)dy − cS′

+(z) + αϕ(z) + b− (d1 + µ1 + α)S+(z)− βϕ(z)g(φ(z))

≤ d1

∫
R
K(y)S+(z − y)dy − cS′

+(z) + αS+(z) + b− (d1 + µ1 + α)S+(z)− βS+(z)g(I−(z))

≤ 0 for z ∈ [−l, l] (2.22)

and

d1

∫
R
K(y)ϕ̂(z − y)dy − cS′

−(z) + αϕ(z) + b− (d1 + µ1 + α)S−(z)− βϕ(z)g(φ(z))

≥ d1

∫
R
K(y)S−(z − y)dy − cS′

−(z) + αS−(z) + b− (d1 + µ1 + α)S−(z)− βS−(z)g(I+(z))

≥ 0 for z ∈ [−l, z2) ∪ (z2, l]. (2.23)

Using Lemma 2.2 and Lemma 2.4, we derive

d2

∫
R
K(y)φ̂(z − y)dy − cI ′+(z) + βϕ(z)g(φ(z))− (d2 + µ2 + γ)I+(z)

≤ d2

∫
R
K(y)I+(z − y)dy − cI ′+(z) + βS+(z)g(I+(z))− (d2 + µ2 + γ)I+(z)

≤ 0 for z ∈ [−l, z1) ∪ (z1, l] (2.24)
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and

d2

∫
R
K(y)φ̂(z − y)dy − cI ′−(z) + βϕ(z)g(φ(z))− (d2 + µ2 + γ)I−(z)

≥ d2

∫
R
K(y)I−(z − y)dy − cI ′−(z) + βS−(z)g(I−(z))− (d2 + µ2 + γ)I−(z)

≥ 0 for z ∈ [−l, z3) ∪ (z3, l]. (2.25)

Noting that (2.21) gives that

S−(−l) = Sl(−l) ≤ S+(−l) and I−(−l) = Il(−l) ≤ I+(−l),

which together with (2.22)-(2.25), Comparison theorem and the continuity of S±(z), I±(z), Sl(z), Il(z), we obtain

S−(z) ≤ Sl(z) ≤ S+(z) and I−(z) ≤ Il(z) ≤ I+(z) for z ∈ [−l, l].

The proof of this lemma is completed.

Lemma 2.6 The operator O is completely continuous with respect to the supremum norm in C([−l, l],R2).

Proof. Since 0 ≤ Sl(z) ≤ S0 and 0 ≤ Il(z) ≤ Ī , we obtain from (2.19)-(2.21) that

|cS′
l(z)| ≤ b+

[
2d1 + 2α+ µ1 + βg(Ī)

]
S0 (2.26)

and

|cI ′l(z)| ≤
(
2d2 + µ2 + γ

)
Ī + βS0g(Ī) (2.27)

on [−l, l]. Hence S′
l(z) and I ′l(z) are uniformly bounded for any z ∈ [−l, l]. Then applying Arzelà-Ascoli theorem on

[−l, l] yields that the operator O is compact on Γl.

The unique solution (Sl, Il)(z) of initial value problem (2.19)-(2.21) can be given by

Sl(z) = S−(−l)e−
d1+µ1+α

c (z+l) +
1

c

∫ z

−l

e−
d1+µ1+α

c (z−η)vϕ,φ(η)dη, (2.28)

Il(z) = I−(−l)e−
d2+µ2+γ

c (z+l) +
1

c

∫ z

−l

e−
d2+µ2+γ

c (z−η)wϕ,φ(η)dη, (2.29)

where

vϕ,φ(η) = d1

∫
R
K(y)ϕ̂(η − y)dy + αϕ(η) + b− βϕ(η)g(φ(η)),

wϕ,φ(η) = d2

∫
R
K(y)φ̂(η − y)dy + βϕ(η)g(φ(η)).

Let (ϕj , φj) ∈ Γl (j = 1, 2), then we have

|vϕ1,φ1(η)− vϕ2,φ2(η)|

=

∣∣∣∣d1 ∫
R
K(η − y)[ϕ̂1(y)− ϕ̂2(y)]dy + α[ϕ1(η)− ϕ2(η)]− β

[
ϕ1(η)g(φ1(η))− ϕ2(η)g(φ2(η))

]∣∣∣∣
≤ d1

∣∣∣∣ ∫ l

−l

K(η − y)[ϕ1(y)− ϕ2(y)]dy

∣∣∣∣+ d1

∣∣∣∣ ∫ ∞

l

K(η − y)[ϕ1(l)− ϕ2(l)]dy

∣∣∣∣
+ β

∣∣ϕ1(η)g(φ1(η))− ϕ1(η)g(φ2(η)) + ϕ1(η)g(φ2(η))− ϕ2(η)g(φ2(η))
∣∣+ α|ϕ1(η)− ϕ2(η)|

≤
[
2d1 + α+ βg(Ī)

]
max

y∈[−l,l]
|ϕ1(y)− ϕ2(y)|+ βS0g

′(0) max
y∈[−l,l]

|φ1(y)− φ2(y)|

and

|wϕ1,φ1(η)− wϕ2,φ2(η)| =
∣∣∣∣d2 ∫

R
K(η − y)[φ̂1(y)− φ̂2(y)]dy + β

[
ϕ1(η)g(φ1(η))− ϕ2(η)g(φ2(η))

]∣∣∣∣
≤

[
2d2 + βS0g

′(0)
]

max
y∈[−l,l]

|φ1(y)− φ2(y)|+ βg(Ī) max
y∈[−l,l]

|ϕ1(y)− ϕ2(y)|.
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Then by (2.28) and (2.29), we conclude that O is continuous on Γl. Therefore, O is completely continuous with respect

to the supremum norm.

Combining Lemma 2.5, Lemma 2.6 and Schauder’s fixed point theorem, we obtain the following proposition.

Proposition 2.1 The operator O admits a fixed point on Γl, that is, (Sl, Il)(z) = O(Sl, Il)(z), which satisfies

S−(z) ≤ Sl(z) ≤ S+(z) and I−(z) ≤ Il(z) ≤ I+(z) for z ∈ [−l, l]. (2.30)

2.3 Existence of solutions of (1.7a)-(1.7b) on R

Choose a positive increasing sequence {ln}∞n=1 such that ln ≫ max{|z3|, r} and limn→∞ ln = ∞. Then by Propo-

sition 2.1, we have that there exists some (Sln , Iln)(z) ∈ Γln satisfying
cS′

ln(z) = d1

∫
R
K(y)Ŝln(z − y)dy + b− (d1 + µ1)Sln(z)− βSln(z)g(Iln(z)),

cI ′ln(z) = d2

∫
R
K(y)Îln(z − y)dy + βSln(z)g(Iln(z))− (d2 + µ2 + γ)Iln(z)

(2.31)

for each n ∈ N∗, where

Ŝln(z) =


Sln(ln), z > ln,

Sln(z), |z| ≤ ln,

S−(z), z < −ln,

Îln(z) =


Iln(ln), z > ln,

Iln(z), |z| ≤ ln,

I−(z), z < −ln

with

S−(z) ≤ Sln(z) ≤ S+(z) and I−(z) ≤ Iln(z) ≤ I+(z) for z ∈ [−ln, ln]. (2.32)

Inequalities (2.32) imply that Sln(z) and Iln(z) are all uniformly bounded on [−ln, ln], which together with (2.31)

implies that S′
ln
(z) and I ′ln(z) are all uniformly bounded on [−ln + r, ln − r]. By differentiating system (2.31), one can

infer that S′′
ln
(z) and I ′′ln(z) are all uniformly bounded on [−ln + 2r, ln − 2r]. Utilizing the Arzelà-Ascoli theorem on

[−ln+2r, ln−2r] for every n ∈ N∗ large enough, we obtain a subsequence which is still labeled ln through the diagonal

process such that limn→∞ ln = ∞ and

Sln → S, Iln → I, S′
ln → S′, I ′ln → I ′, Slng(Iln) → Sg(I) as n → ∞

uniformly in any compact subinterval of R. Moreover, by Lebesgue dominated convergence theorem, we get that

lim
n→∞

∫
R
K(y)Ŝln(z − y)dy =

∫
R
K(y)S(z − y)dy

and

lim
n→∞

∫
R
K(y)Îln(z − y)dy =

∫
R
K(y)I(z − y)dy.

Passing to the limits in (2.31) and (2.32) as n → ∞ yields
cS′(z) = d1

∫
R
K(y)S(z − y)dy + b− (d1 + µ1)S(z)− βS(z)g(I(z)),

cI ′(z) = d2

∫
R
K(y)I(z − y)dy + βS(z)g(I(z))− (d2 + µ2 + γ)I(z)

(2.33)

with

S−(z) ≤ S(z) ≤ S+(z) and I−(z) ≤ I(z) ≤ I+(z) for z ∈ R. (2.34)

Therefore, we have proved the following results.

Theorem 2.1 If c > c∗, then there exists some (S, I)(z), z ∈ R satisfying (1.7a)-(1.7b) and (2.34). Furthermore,

||S||C2
loc(R) + ||I||C2

loc(R) ≤ C0 (2.35)

for some positive constant C0.
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2.4 Positiveness and asymptotic boundary of solutions of (1.7a)-(1.7b)

Proposition 2.2 The solution of (1.7a)-(1.7b) satisfies the following properties:

(i) (S, I)(−∞) = (S0, 0) and limz→−∞ e−λ1zI(z) = 1;

(ii) S < S(z) < S0 and 0 < I(z) < Ī for z ∈ R;

(iii) (S, I)(∞) = (S∗, I∗).

Proof. (i) Using (2.34), we have for z ∈ R that

S0 − ϵ−1
1 eϵ1z ≤ S(z) ≤ S0 and eλ1z(1−M1e

ϵ2z) ≤ I(z) ≤ eλ1z,

which together with squeeze theorem implies that (S, I)(−∞) = (S0, 0) and limz→−∞ e−λ1zI(z) = 1.

(ii) Firstly, we show that I(z) > 0 for z ∈ R. Assume that there exists some z∗ ∈ R such that I(z∗) = 0 for the

contrary. So I ′(z∗) = 0. By (1.7b), we obtain
∫
R K(y)I(z∗ − y)dy = 0, which yields I(z) = 0 for z ∈ [z∗ − r, z∗ + r].

Now, take some z∗∗ ∈ [z∗ − r, z∗ + r]. It is obvious that I(z∗∗) = 0 and I ′(z∗∗) = 0. Hence, it follows from (1.7b) that∫
R K(y)I(z∗∗ − y)dy = 0. Similarly, one can get that I(z) = 0 for z ∈ [z∗∗ − r, z∗∗ + r]. Repeating this process, one

can deduce that I(z) ≡ 0 for z ∈ R. This contradicts the fact that I(z) ≥ I−(z) > 0 for z ∈ (−∞, z3) (see (2.4)). Thus,

I(z) > 0 for z ∈ R.

Secondly, we prove that S(z) < S0 for z ∈ R. Suppose that there is some z∗ ∈ R such that S(z∗) = S0. Thus

S′(z∗) = 0. Using(1.7a), we have

0 = −cS′(z∗) + d1

∫
R
K(y)S(z∗ − y)dy + b− (d1 + µ1)S(z∗)− βS(z∗)g(I(z∗))

= d1

∫
R
K(y)S(z∗ − y)dy + b− (d1 + µ1)S0 − βS0g(I(z∗))

= d1

[ ∫
R
K(y)S(z∗ − y)dy − S0

]
− βS0g(I(z∗))

≤ −βS0g(I(z∗)) < 0,

since
∫
R K(y)S(z∗ − y)dy ≤ S0, b = µ1S0 and g(I(z∗)) > 0 for I(z∗) > 0. Then a contradiction appears. Thus

S(z) < S0 for z ∈ R.

Thirdly, we demonstrate that I(z) < Ī for z ∈ R. Suppose that there is a z̃ ∈ R such that I(z̃) = Ī . Hence I ′(z̃) = 0.

Utilizing (1.7b), we obtain

0 = −cI ′(z̃) + d2

∫
R
K(y)I(z̃ − y)dy + βS(z̃)g(I(z̃))− (d2 + µ2 + γ)I(z̃)

= d2

∫
R
K(y)I(z̃ − y)dy − d2Ī + βS(z̃)g(Ī)− (µ2 + γ)Ī

< d2

[ ∫
R
K(y)I(z̃ − y)dy − Ī

]
+ βS0g(Ī)− (µ2 + γ)Ī

≤ βS0g(Ī)− (µ2 + γ)Ī = 0,

due to S(z̃) < S0,
∫
R K(y)I(z̃ − y)dy ≤ Ī and βS0g(Ī) = (µ2 + γ)Ī (see (1.9)). Then a contradiction occurs. So

I(z) < Ī for z ∈ R.

Finally, we prove that S(z) > S for z ∈ R. Assume that there exists some ẑ ∈ R such that S(ẑ) = S. Hence

S′(ẑ) = 0. It follows from (1.7a) that

0 = −cS′(ẑ) + d1

∫
R
K(y)S(ẑ − y)dy + b− (d1 + µ1)S(ẑ)− βS(ẑ)g(I(ẑ))

= d1

∫
R
K(y)S(ẑ − y)dy + b− (d1 + µ1)S − βSg(I(ẑ))

≥ b− [µ1 + βg(I(ẑ))]S
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≥ b− [µ1 + βg′(0)I(ẑ)]S

> b− [µ1 + βg′(0)Ī]S = 0,

where we have used
∫
R K(y)S(ẑ − y)dy ≥ S, I(ẑ) < Ī and b =

[
µ1 + βg′(0)Ī

]
S (see (2.5)). Thus a contradiction

appears. Then S(z) > S for z ∈ R.

(iii) We shall use Lyapunov functional method to derive the asymptotic boundary of solution for (1.7a)-(1.7b) at plus

infinity. Define four functions by

G(S, I)(z) := S(z)g(I)(z), h(y) := y − 1− log y, y > 0,

α1(y) :=

∫ ∞

y

K(x)dx and α2(y) :=

∫ y

−∞
K(x)dx.

It is obvious that the function G(S, I)(z) is positive and bounded for S < S(z) < S̄ and 0 < I(z) < Ī . Meanwhile, the

function h(y) satisfies  h(y) > 0, y ∈ (0, 1) ∪ (1,∞),

h(y) = 0, y = 1.
(2.36)

Since
∫
R K(x)dx = 1, K is compactly supported and r is the radius of suppK, we have that α1(y) ≡ 0, y ≥ r,

α2(y) ≡ 0, y ≤ −r
(2.37)

with

α1(0) = α2(0) =
1

2
and

d

dy
α2(y) = − d

dy
α1(y) = K(y). (2.38)

Define a Lyapunov functional by

V (S, I)(z) := V1(S, I)(z) + d1S
∗V2(S)(z) + d2I

∗V3(I)(z), (2.39)

where

V1(S, I)(z) = c

[
S(z)− S∗ − S∗ log

S(z)

S∗ + I(z)− I∗ − I∗ log
I(z)

I∗

]
,

V2(S)(z) =

∫ ∞

0

α1(y)h

(
S(z − y)

S∗

)
dy −

∫ 0

−∞
α2(y)h

(
S(z − y)

S∗

)
dy,

V3(I)(z) =

∫ ∞

0

α1(y)h

(
I(z − y)

I∗

)
dy −

∫ 0

−∞
α2(y)h

(
I(z − y)

I∗

)
dy.

Obviously, the Lyapunov functional V (S, I)(z) is bounded on R. For convenience, we will drop some variables z in the

sequel calculations. Differentiating the function V1(S, I)(z) with respect to z and using b = µ1S
∗ + βG(S∗, I∗),

βG(S∗, I∗) = (µ2 + γ)I∗,

we derive

dV1(S, I)

dz
= cS′

(
1− S∗

S

)
+ cI ′

(
1− I∗

I

)
=

(
1− S∗

S

)[
d1

∫
R
K(y)S(z − y)dy − d1S + b− µ1S − βG(S, I)

]
+

(
1− I∗

I

)[
d2

∫
R
K(y)I(z − y)dy − d2I + βG(S, I)− (µ2 + γ)I

]
= d1

(
1− S∗

S

)[∫
R
K(y)S(z − y)dy − S

]
+ d2

(
1− I∗

I

)[∫
R
K(y)I(z − y)dy − I

]
+

(
1− S∗

S

)[
µ1S

∗ − µ1S + βG(S∗, I∗)− βG(S, I)
]
+

(
1− I∗

I

)[
βG(S, I)− βG(S∗, I∗)

I

I∗

]
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= d1

(
1− S∗

S

)[∫
R
K(y)S(z − y)dy − S

]
+ d2

(
1− I∗

I

)[∫
R
K(y)I(z − y)dy − I

]
+ µ1S

∗
(
1− S∗

S

)(
1− S

S∗

)
+ βG(S∗, I∗)

{(
1− S∗

S

)[
1− G(S, I)

G(S∗, I∗)

]
+

(
1− I∗

I

)[
G(S, I)

G(S∗, I∗)
− I

I∗

]}
= d1

(
1− S∗

S

)[∫
R
K(y)S(z − y)dy − S

]
+ d2

(
1− I∗

I

)[∫
R
K(y)I(z − y)dy − I

]
+ µ1S

∗
(
1− S∗

S

)(
1− S

S∗

)
+ βG(S∗, I∗)

[
G(S, I)S∗

G(S∗, I∗)S
− I

I∗
+ log

G(S∗, I∗)SI

G(S, I)S∗I∗

]
+ βG(S∗, I∗)

[
1− S∗

S
+ log

S∗

S
+ 1− G(S, I)I∗

G(S∗, I∗)I
+ log

G(S, I)I∗

G(S∗, I∗)I

]
= d1

(
1− S∗

S

)[∫
R
K(y)S(z − y)dy − S

]
+ d2

(
1− I∗

I

)[∫
R
K(y)I(z − y)dy − I

]
+ µ1S

∗
(
1− S∗

S

)(
1− S

S∗

)
+ βG(S∗, I∗)

(
1− S∗

S
+ log

S∗

S

)
+ βG(S∗, I∗)

[
1− G(S, I)I∗

G(S∗, I∗)I
+ log

G(S, I)I∗

G(S∗, I∗)I

]
+ βG(S∗, I∗)

[
− 1− I

I∗
+

G(S, I)S∗

G(S∗, I∗)S
+

G(S∗, I∗)SI

G(S, I)S∗I∗
+ 1− G(S∗, I∗)SI

G(S, I)S∗I∗
+ log

G(S∗, I∗)SI

G(S, I)S∗I∗

]
= d1

(
1− S∗

S

)[∫
R
K(y)S(z − y)dy − S

]
+ d2

(
1− I∗

I

)[∫
R
K(y)I(z − y)dy − I

]
+ µ1S

∗
(
1− S∗

S

)(
1− S

S∗

)
+ βG(S∗, S∗)

(
1− S∗

S
+ log

S∗

S

)
+ βG(S∗, I∗)

[
1− G(S, I)I∗

G(S∗, I∗)I
+ log

G(S, I)I∗

G(S∗, I∗)I

]
+ βG(S∗, I∗)

[
1− G(S∗, I∗)SI

G(S, I)S∗I∗
+ log

G(S∗, I∗)SI

G(S, I)S∗I∗

]
+ βG(S∗, I∗)

[
I

I∗
− G(S, I)S∗

G(S∗, I∗)S

][
G(S∗, I∗)S

G(S, I)S∗ − 1

]
=

7∑
i=1

Φi, (2.40)

where

Φ1 = d1

(
1− S∗

S

)[∫
R
K(y)S(z − y)dy − S

]
, Φ2 = d2

(
1− I∗

I

)[∫
R
K(y)I(z − y)dy − I

]
,

Φ3 = µ1S
∗
(
1− S∗

S

)(
1− S

S∗

)
= µ1S

∗
(
2− S∗

S
− S

S∗

)
≤ 0,

Φ4 = βG(S∗, I∗)

(
1− S∗

S
+ log

S∗

S

)
= −βS∗g(I∗)h

(
S∗

S

)
≤ 0,

Φ5 = βG(S∗, I∗)

[
1− G(S, I)I∗

G(S∗, I∗)I
+ log

G(S, I)I∗

G(S∗, I∗)I

]
= −βG(S∗, I∗)h

(
G(S, I)I∗

G(S∗, I∗)I

)
≤ 0,

Φ6 = βG(S∗, I∗)

[
1− G(S∗, I∗)SI

G(S, I)S∗I∗
+ log

G(S∗, I∗)SI

G(S, I)S∗I∗

]
= −βG(S∗, I∗)h

(
G(S∗, I∗)SI

G(S, I)S∗I∗

)
≤ 0,

Φ7 = βG(S∗, I∗)

[
I

I∗
− G(S, I)S∗

G(S∗, I∗)S

][
G(S∗, I∗)S

G(S, I)S∗ − 1

]
= βS∗g(I∗)

[
I

I∗
− g(I)

g(I∗)

][
g(I∗)

g(I)
− 1

]
.

From (2.37) and (2.38), we obtain

dV2(S)

dz
=

d

dz

∫ ∞

0

α1(y)h

(
S(z − y)

S∗

)
dy − d

dz

∫ 0

−∞
α2(y)h

(
S(z − y)

S∗

)
dy

=

∫ ∞

0

α1(y)
d

dz
h

(
S(z − y)

S∗

)
dy −

∫ 0

−∞
α2(y)

d

dz
h

(
S(z − y)

S∗

)
dy

= −
∫ ∞

0

α1(y)
d

dy
h

(
S(z − y)

S∗

)
dy +

∫ 0

−∞
α2(y)

d

dy
h

(
S(z − y)

S∗

)
dy

= −α1(y)h

(
S(z − y)

S∗

)∣∣∣∣r
y=0

+

∫ ∞

0

d

dy
α1(y)h

(
S(z − y)

S∗

)
dy

+ α2(y)h

(
S(z − y)

S∗

)∣∣∣∣0
y=−r

−
∫ 0

−∞

d

dy
α2(y)h

(
S(z − y)

S∗

)
dy

13



= h

(
S

S∗

)
−
∫
R
K(y)h

(
S(z − y)

S∗

)
dy. (2.41)

Then it follows from (2.36), (2.40) and (2.41) that

Φ1 + d1S
∗ dV2(S)

dz
= d1

(
1− S∗

S

)[∫
R
K(y)S(z − y)dy − S

]
+ d1S

∗h

(
S

S∗

)
− d1S

∗
∫
R
K(y)h

(
S(z − y)

S∗

)
dy

= d1

∫
R
K(y)S(z − y)dy − d1S − d1S

∗
∫
R
K(y)

S(z − y)

S
dy + d1S

∗

+ d1

(
S − S∗ − S∗ log

S

S∗

)
− d1S

∗
∫
R
K(y)h

(
S(z − y)

S∗

)
dy

= d1S
∗
∫
R
K(y)

[
S(z − y)

S∗ − S(z − y)

S
− log

S

S∗

]
dy − d1S

∗
∫
R
K(y)h

(
S(z − y)

S∗

)
dy

= d1S
∗
∫
R
K(y)

[
S(z − y)

S∗ − 1− log
S(z − y)

S∗

]
dy − d1S

∗
∫
R
K(y)h

(
S(z − y)

S∗

)
dy

− d1S
∗
∫
R
K(y)

[
S(z − y)

S
− 1− log

S(z − y)

S

]
dy

= −d1S
∗
∫
R
K(y)h

(
S(z − y)

S

)
dy ≤ 0. (2.42)

By the same calculations as (2.42), one can get

Φ2 + d2I
∗ dV3(I)

dz
= −d2I

∗
∫
R
K(y)h

(
I(z − y)

I

)
dy ≤ 0. (2.43)

From (H2) and (H3), we know that g(I) is strictly increasing and g(I)/I is non-increasing for I > 0, which imply that
[
I

I∗
− g(I)

g(I∗)

][
g(I∗)

g(I)
− 1

]
≤ 0, 0 < I ≤ I∗,[

I

I∗
− g(I)

g(I∗)

][
g(I∗)

g(I)
− 1

]
≤ 0, I ≥ I∗.

(2.44)

Utilizing (2.39)-(2.44), we obtain

dV (S, I)

dz
=

dV1(S, I)

dz
+ d1S

∗ dV2(S)

dz
+ d2I

∗ dV3(I)

dz

=

[
Φ1 + d1S

∗ dV2(S)

dz

]
+

[
Φ2 + d2I

∗ dV3(I)

dz

]
+

7∑
i=3

Φi ≤ 0, (2.45)

which yields that V (S, I)(z) is non-increasing and

dV (S, I)(z)

dz
= 0 ⇔ S(z) = S∗ and I(z) = I∗ for z ∈ R. (2.46)

Choose an increasing constant sequence {zn} satisfying limn→∞ zn = ∞ and denote

{Sn(z)}∞n=1 = {S(z + zn)}∞n=1 and {In(z)}∞n=1 = {I(z + zn)}∞n=1.

Since {Sn(z)}∞n=1 and {In(z)}∞n=1 are uniformly bounded in C2
loc(R), there exists a subsequence of functions (still

labeled by Sn and In) such that limn→∞ Sn(z) = S̃(z) and limn→∞ In(z) = Ĩ(z). Applying Lebesgue dominated

convergence theorem yields limn→∞ V (Sn, In)(z) = V (S̃, Ĩ)(z). Note that V (S, I)(z) is non-increasing and bounded

from below, then for any n ∈ N∗, there exists a constant C1 such that

V (Sn, In)(z) = V (S, I)(z + zn) ≥ C1,

which means that there is a constant V0 ∈ R satisfying

lim
n→∞

V (Sn, In)(z) = lim
z+zn→∞

V (S, I)(z + zn) = V0

for any z ∈ R. So we obtain V (S̃, Ĩ)(z) = V0, which implies that

dV (S̃, Ĩ)(z)

dz
= 0. (2.47)

Then it follows from (2.46) and (2.47) that (S̃, Ĩ)(z) = (S∗, I∗), that is, (S, I)(∞) = (S∗, I∗).
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3 Existence of critical traveling wave solutions

In this section, we will establish the existence of traveling wave solution for R0 > 1 and c = c∗. To this aim, we

choose a constant L1 > λ∗eĪ to be suitable large such that the equation −L1ze
λ∗z = Ī has two negative roots z4 and z∗

satisfying

z∗ − z4 > r, (3.1)

where r > 0 is the radius of suppK. Now for z ∈ R, we define the following non-negative continuous functions.

S∗
+(z) := S0, I∗+(z) :=

 −L1ze
λ∗z, z < z4,

Ī, z ≥ z4,

S∗
−(z) :=

 S0 − ε−1
1 eε1z, z < z5,

S, z ≥ z5,
I∗−(z) :=

 −L1ze
λ∗z − L2(−z)

1
2 eλ

∗z, z < z6,

0, z ≥ z6,

where λ∗ is defined in Proposition 1.1, S0 = b/µ1, Ī is given in (1.9), z4 is in (3.1), z5 = ε−1
1 log[ε1(S0 − S)],

S = b
µ1+βg′(0)Ī

, z6 = −L2
2

L2
1

, ε1 and L2 are positive constants to be determined later.

Lemma 3.1 The function S∗
+(z) satisfies

d1

∫
R
K(y)S∗

+(z − y)dy − c∗(S∗
+)

′(z) + b− (d1 + µ1)S
∗
+(z)− βS∗

+(z)g(I
∗
−(z)) ≤ 0

for any z ∈ R.

Proof. By S∗
+(z) = S0 = b/µ1 and I∗−(z) ≥ 0 for z ∈ R, we deduce from (H1) and (H2) that

d1

∫
R
K(y)S∗

+(z − y)dy − c∗(S∗
+)

′(z) + b− (d1 + µ1)S
∗
+(z)− βS∗

+(z)g(I
∗
−(z))

= d1S0 + b− (d1 + µ1)S0 − βS0g(I
∗
−(z))

= −βS0g(I
∗
−(z)) ≤ 0 for z ∈ R.

This ends the proof.

Lemma 3.2 The function I∗+(z) satisfies

d2

∫
R
K(y)I∗+(z − y)dy − c∗(I∗+)

′(z) + βS∗
+(z)g(I

∗
+(z))− (d2 + µ2 + γ)I∗+(z) ≤ 0

for any z ̸= z4.

Proof. By the definition of I∗+(z), we have

I∗+(z) ≤ −L1ze
λ∗z for z ∈ (−∞, z∗] (3.2)

and

g(I∗+(z)) = g(I∗+(z))− g(0) ≤ g′(0)I∗+(z) for z ∈ R. (3.3)

If z < z4, we obtain that

I∗+(z) = −L1ze
λ∗z, (I∗+)

′(z) = −L1e
λ∗z(1 + λ∗z) (3.4)

and ∫
R
K(y)I∗+(z − y)dy =

∫ z−z∗

−∞
K(y)I∗+(z − y)dy +

∫ ∞

z−z∗
K(y)I∗+(z − y)dy

=

∫ ∞

z−z∗
K(y)I∗+(z − y)dy [by (3.1) and (H1)]

≤ −L1

∫ ∞

z−z∗
K(y)(z − y)eλ

∗(z−y)dy [by (3.2)]

= −L1

∫
R
K(y)(z − y)eλ

∗(z−y)dy
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= −L1

∫
R
K(y)(z + y)eλ

∗(z+y)dy [by K(−y) = K(y)]

= −L1ze
λ∗z

∫
R
K(y)eλ

∗ydy − L1e
λ∗z

∫
R
K(y)yeλ

∗ydy. (3.5)

Then by (3.3)-(3.5) and Θ(λ∗, c∗) = Θλ(λ
∗, c∗) = 0, we derive for z < z4 that

d2

∫
R
K(y)I∗+(z − y)dy − c∗(I∗+)

′(z) + βS∗
+(z)g(I

∗
+(z))− (d2 + µ2 + γ)I∗+(z)

≤ d2

[
− L1ze

λ∗z

∫
R
K(y)eλ

∗ydy − L1e
λ∗z

∫
R
K(y)yeλ

∗ydy

]
− c∗

[
− L1e

λ∗z(1 + λ∗z)
]

+ βS0g
′(0)(−L1ze

λ∗z)− (d2 + µ2 + γ)(−L1ze
λ∗z)

= −L1ze
λ∗z

[
d2

∫
R
K(y)eλ

∗ydy − c∗λ∗ + βS0g
′(0)− d2 − µ2 − γ

]
− L1e

λ∗z

[
d2

∫
R
K(y)yeλ

∗ydy − c∗
]

= −L1ze
λ∗zΘ(λ∗, c∗)− L1e

λ∗zΘλ(λ
∗, c∗) = 0.

On the other hand, by (1.9) and I∗+(z) ≤ Ī for z ∈ R, we have for z > z4 that

d2

∫
R
K(y)I∗+(z − y)dy − c∗(I∗+)

′(z) + βS∗
+(z)g(I

∗
+(z))− (d2 + µ2 + γ)I∗+(z)

≤ d2Ī + βS0g(Ī)− (d2 + µ2 + γ)Ī = 0.

Thus the proof is finished.

Lemma 3.3 Assume that ε1 ∈ (0, λ∗) is a small enough constant. Then the function S∗
−(z) satisfies

d1

∫
R
K(y)S∗

−(z − y)dy − c∗(S∗
−)

′(z) + b− (d1 + µ1)S
∗
−(z)− βS∗

−(z)g(I
∗
+(z)) ≥ 0

for any z ̸= z5 = ε−1
1 log[ε1(S0 − S)].

Proof. Noting that z5 = ε−1
1 log[ε1(S0 − S)] → −∞ as ε1 → 0+, we can choose a small enough constant ε1 ∈ (0, λ∗)

such that z5 < z4. Then I∗+(z) = −L1ze
λ∗z for z < z5. Since∫

R
K(y)

1− e−ε1y

ε1
dy =

∞∑
n=1

(−ε1)
2n−1

(2n)!

∫
R
K(y)y2ndy → 0 as ε1 → 0+,

we have

d1

∫
R
K(y)

1− e−ε1y

ε1
dy + c∗ +

µ1

ε1
+ βS0g

′(0)L1ze
(λ∗−ε1)z ≥ 0 for z < z5. (3.6)

By (H1) and the definition of S∗
−(z), one has that∫

R
K(y)S∗

−(z − y)dy ≥ S0 − ε−1
1 eε1z

∫
R
K(y)e−ε1ydy for z ∈ R. (3.7)

For z < z5, we obtain from (3.6) and (3.7) that

d1

∫
R
K(y)S∗

−(z − y)dy − c∗(S∗
−)

′(z) + b− (d1 + µ1)S
∗
−(z)− βS∗

−(z)g(I
∗
+(z))

≥ d1ε
−1
1 eε1z

∫
R
K(y)(1− e−ε1y)dy + c∗eε1z + b− µ1S0 + µ1ε

−1
1 eε1z − βS0g

′(0)I∗+(z)

=

[
d1

∫
R
K(y)

1− e−ε1y

ε1
dy + c∗ +

µ1

ε1
+ βS0g

′(0)L1ze
(λ∗−ε1)z

]
eε1z ≥ 0.

For z > z5, it is easy to see that S∗
−(z) = S, I∗+(z) ≤ Ī and

∫
R K(y)S∗

−(z − y)dy ≥ S. Then it follows that

d1

∫
R
K(y)S∗

−(z − y)dy − c∗(S∗
−)

′(z) + b− (d1 + µ1)S
∗
−(z)− βS∗

−(z)g(I
∗
+(z))

≥ d1S + b− (d1 + µ1)S − βSg′(0)I∗+(z)

≥ b− µ1S − βSg′(0)Ī = 0,
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where we have used the fact that S = b
µ1+βg′(0)Ī

in the last equality. Hence the claim of this lemma is shown.

Lemma 3.4 Assume that L2 > 1 is a large enough constant. Then the function I∗−(z) satisfies

d2

∫
R
K(y)I∗−(z − y)dy − c∗(I∗−)

′(z) + βS∗
−(z)g(I

∗
−(z))− (d2 + µ2 + γ)I∗−(z) ≥ 0

for any z ̸= z6 = −L2
2

L2
1

.

Proof. Due to L1 > λ∗eĪ is a fixed constant and z6 = −L2
2

L2
1
→ −∞ as L2 → ∞, one can select a large enough constant

L2 > 1 such that

1

16
d2L2

∫ r

−r

K(y)y2e−λ∗ydy − βS0L
2
1(−z)

7
2 eλ

∗z − βε−1
1 g′(0)L1(−z)

5
2 eε1z ≥ 0 (3.8)

and ∫ r

−r

K(y)y2e−λ∗ydy +
1

z

∫ r

−r

K(y)y3e−λ∗ydy ≥ 0 for z < z6. (3.9)

A simple computation gives that

(I∗−)
′(z) = −L1e

λ∗z − L1λ
∗zeλ

∗z +
1

2
L2(−z)−

1
2 eλ

∗z − L2λ
∗(−z)

1
2 eλ

∗z for z < z6. (3.10)

By Taylor’s formula, we get for z < z6 that

(−z + y)
1
2 ≤ (−z)

1
2 +

1

2
(−z)−

1
2 y − 1

8
(−z)−

3
2 y2 +

1

16
(−z)−

5
2 y3,

which implies that∫
R
K(y)I∗−(z − y)dy =

∫ r

−r

K(y)I∗−(z − y)dy

≥
∫ r

−r

K(y)
[
− L1(z − y)eλ

∗(z−y) − L2(−z + y)
1
2 eλ

∗(z−y)
]
dy

≥ −L1

∫ r

−r

K(y)(z − y)eλ
∗(z−y)dy

− L2

∫ r

−r

K(y)

[
(−z)

1
2 +

1

2
(−z)−

1
2 y − 1

8
(−z)−

3
2 y2 +

1

16
(−z)−

5
2 y3

]
eλ

∗(z−y)dy

= −L1ze
λ∗z

∫ r

−r

K(y)eλ
∗ydy − L1e

λ∗z

∫ r

−r

K(y)yeλ
∗ydy − L2(−z)

1
2 eλ

∗z

∫ r

−r

K(y)eλ
∗ydy

+
1

2
L2(−z)−

1
2 eλ

∗z

∫ r

−r

K(y)yeλ
∗ydy +

1

8
L2(−z)−

3
2 eλ

∗z

∫ r

−r

K(y)y2e−λ∗ydy

− 1

16
L2(−z)−

5
2 eλ

∗z

∫ r

−r

K(y)y3e−λ∗ydy. (3.11)

The assumption limI→0+ g(I)/I = g′(0) yields that for any ϵ ∈ (0, g′(0)), there exists a constant δ > 0 such that

g(I)/I ≥ g′(0)− ϵ for I ∈ (0, δ). (3.12)

Since L2 > 1 is large enough, I∗−(z) ∈ (0, δ) and z6 < z5 < z4 for z < z6. Thus we obtain from (3.12) that

βS0g
′(0)I∗−(z)− βS∗

−(z)g(I
∗
−(z)) = βS0g

′(0)I∗−(z)− βS0g(I
∗
−(z)) + βε−1

1 eε1zg(I∗−(z))

= βS0I
∗
−(z)

[
g′(0)−

g(I∗−(z))

I∗−(z)

]
+ βε−1

1 eε1zg(I∗−(z))

≤ βS0

[I∗−(z) + g′(0)− g(I∗
−(z))

I∗
−(z)

2

]2
+ βε−1

1 eε1zg′(0)I∗−(z)

≤ βS0

[
I∗−(z) + ϵ

2

]2
+ βε−1

1 g′(0)eε1zI∗−(z)

≤ βS0(I
∗
−)

2(z) + βε−1
1 g′(0)eε1zI∗−(z)

≤ βS0L
2
1z

2e2λ
∗z − βε−1

1 g′(0)L1ze
(ε1+λ∗)z for z < z6. (3.13)
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Using Θ(λ∗, c∗) = Θλ(λ
∗, c∗) = 0 and (3.8)-(3.13), we derive that

d2

∫
R
K(y)I∗−(z − y)dy − c∗(I∗−)

′(z) + βS∗
−(z)g(I

∗
−(z))− (d2 + µ2 + γ)I∗−(z)

= d2

∫
R
K(y)I∗−(z − y)dy − c∗(I∗−)

′(z) +
[
βS0g

′(0)− d2 − µ2 − γ
]
I∗−(z)−

[
βS0g

′(0)I∗−(z)− βS∗
−(z)g(I

∗
−(z))

]
≥ d2

[
− L1ze

λ∗z

∫ r

−r

K(y)eλ
∗ydy − L1e

λ∗z

∫ r

−r

K(y)yeλ
∗ydy − L2(−z)

1
2 eλ

∗z

∫ r

−r

K(y)eλ
∗ydy

+
1

2
L2(−z)−

1
2 eλ

∗z

∫ r

−r

K(y)yeλ
∗ydy +

1

8
L2(−z)−

3
2 eλ

∗z

∫ r

−r

K(y)y2e−λ∗ydy

− 1

16
L2(−z)−

5
2 eλ

∗z

∫
R
K(y)y3e−λ∗ydy

]
− c∗

[
− L1e

λ∗z − L1λ
∗zeλ

∗z +
1

2
L2(−z)−

1
2 eλ

∗z − L2λ
∗(−z)

1
2 eλ

∗z
]

+
[
βS0g

′(0)− d2 − µ2 − γ
][

− L1ze
λ∗z − L2(−z)

1
2 eλ

∗z
]
−
[
βS0L

2
1z

2e2λ
∗z − βε−1

1 g′(0)L1ze
(ε1+λ∗)z

]
= −L1e

λ∗z

{
d2z

∫ r

−r

K(y)eλ
∗ydy − c∗λ∗z +

[
βS0g

′(0)− d2 − µ2 − γ
]
z + d2

∫ r

−r

K(y)yeλ
∗ydy − c∗

}
− L2(−z)

1
2 eλ

∗z

[
d2

∫ r

−r

K(y)eλ
∗ydy − c∗λ∗ + βS0g

′(0)− d2 − µ2 − γ

]
+

1

2
L2(−z)−

1
2 eλ

∗z

[
d2

∫ r

−r

K(y)yeλ
∗ydy − c∗

]
+

1

16
d2L2(−z)−

3
2 eλ

∗z

∫ r

−r

K(y)y2e−λ∗ydy

−
[
βS0L

2
1z

2e2λ
∗z − βε−1

1 g′(0)L1ze
(ε1+λ∗)z

]
+

1

16
d2L2(−z)−

3
2 eλ

∗z

∫ r

−r

K(y)y2e−λ∗ydy − 1

16
d2L2(−z)−

5
2 eλ

∗z

∫
R
K(y)y3e−λ∗ydy

= −L1e
λ∗z

[
zΘ(λ∗, c∗) + Θλ(λ

∗, c∗)
]
− L2(−z)

1
2 eλ

∗zΘ(λ∗, c∗) +
1

2
L2(−z)−

1
2 eλ

∗zΘλ(λ
∗, c∗)

+ (−z)−
3
2 eλ

∗z

[
1

16
d2L2

∫ r

−r

K(y)y2e−λ∗ydy − βS0L
2
1(−z)

7
2 eλ

∗z − βε−1
1 g′(0)L1(−z)

5
2 eε1z

]
+

1

16
d2L2(−z)−

3
2 eλ

∗z

[ ∫ r

−r

K(y)y2e−λ∗ydy +
1

z

∫ r

−r

K(y)y3e−λ∗ydy

]
≥ 0 for z < z6.

If z > z6, then I∗−(z) = 0, which implies that

d2

∫
R
K(y)I∗−(z − y)dy − c∗(I∗−)

′(z) + βS∗
−(z)g(I

∗
−(z))− (d2 + µ2 + γ)I∗−(z) ≥ 0 for z > z6.

The proof of this lemma is completed.

Using Lemma 3.1-Lemma 3.4 yields that the continuous functions pairs (S∗
−, I

∗
−)(z) and (S∗

+, I
∗
+)(z) are a pair of

upper and lower solutions of system (1.7a)-(1.7b) with c = c∗. Then by the analogous argument in Section 2, one

can obtain that model (1.1) has a nontrivial, bounded and positive traveling wave solution with critical speed c∗, which

satisfies (1.8). In particular, if z → −∞, I∗(z) = O(zeλ
∗z) for R0 > 1 and c = c∗. In a combination with Section 2 and

Section 3, we finish the proof of Theorem 1.1.

4 Non-existence of sub-critical traveling wave solutions

In this section, we will show the non-existence of traveling wave solutions with the wave speed c ∈ (−∞, c∗) for

(1.1). To this end, we shall explore separately the cases c ∈ (−∞, 0] and c ∈ (0, c∗). By the way of contradiction, for

c ∈ (−∞, c∗), we suppose that (1.7a)-(1.7b) possesses a nontrivial and positive solution (S, I)(z) satisfying

(S, I)(−∞) = (S0, 0) and (S, I)(∞) = (S∗, I∗), (4.1)
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together with

S < S(z) < S0 and 0 < I(z) < Ī for z ∈ R, (4.2)

where S is defined in (2.5) and Ī is given in (1.9). From (4.1) and (H3), we have

lim
z→−∞

βS(z)
g(I(z))

I(z)
= βS0g

′(0). (4.3)

Then it follows from R0 = βS0g
′(0)

µ2+γ > 1 and (4.3) that there exists a number ẑ ≪ 0 such that

βS(z)
g(I(z))

I(z)
>

βS0g
′(0)

2
+

µ2 + γ

2
for z ≤ ẑ. (4.4)

In view of (4.4), we obtain from (1.7b) that

cI ′(z) = d2

∫
R
K(y)[I(z − y)− I(z)]dy + βS(z)g(I(z))− (µ2 + γ)I(z)

≥ d2

∫
R
K(y)[I(z − y)− I(z)]dy +

βS0g
′(0) + µ2 + γ

2
I(z)− (µ2 + γ)I(z)

= d2

∫
R
K(y)[I(z − y)− I(z)]dy +

βS0g
′(0)− µ2 − γ

2
I(z) for z ≤ ẑ. (4.5)

Noting the fact that∫ z

−∞

∫
R
K(y)[I(η − y)− I(η)]dydη = lim

s→−∞

∫ z

s

∫ r

−r

K(y)[I(η − y)− I(η)]dydη

= lim
s→−∞

∫ r

−r

K(y)

∫ z

s

[I(η − y)− I(η)]dηdy

= lim
s→−∞

∫ r

−r

K(y)

∫ z

s

∫ η−y

η

I ′(t)dtdηdy

= lim
s→−∞

∫ r

−r

K(y)

∫ z

s

∫ 1

0

I ′(η − θy)(−y)dθdηdy

= lim
s→−∞

∫ r

−r

(−y)K(y)

∫ 1

0

[I(z − θy)− I(s− θy)]dθdy

=

∫ r

−r

(−y)K(y)

∫ 1

0

I(z − θy)dθdy. (4.6)

Then integrating (4.5) over (−∞, z] with z ≤ ẑ and using (4.1), (4.2) and (4.6) yield that

cI(z) ≥ d2

∫ z

−∞

∫
R
K(y)[I(η − y)− I(η)]dydη +

βS0g
′(0)− µ2 − γ

2

∫ z

−∞
I(η)dη

= d2

∫ r

−r

(−y)K(y)

∫ 1

0

I(z − θy)dθdy +
βS0g

′(0)− µ2 − γ

2

∫ z

−∞
I(η)dη

≥ −2d2Ī

∫ r

0

yK(y)dy +
βS0g

′(0)− µ2 − γ

2

∫ z

−∞
I(η)dη,

which implies that the improper integral J(z) :=
∫ z

−∞ I(η)dη is well-defined for any z ≤ ẑ. Obviously, J(z) is a

continuously differentiable, positive and strictly increasing function for z ∈ (−∞, ẑ].

Case I: The wave speed c ∈ (−∞, 0]. Note that J(z) > 0 and −yJ(z − θy) is non-decreasing with respect to

θ ∈ [0, 1]. Then integrating (4.5) twice over (−∞, z] with z ≤ ẑ and using (4.6) give that

0 ≥ cJ(z) ≥ d2

∫ z

−∞

∫ r

−r

(−y)K(y)

∫ 1

0

I(η − θy)dθdydη +
βS0g

′(0)− µ2 − γ

2

∫ z

−∞
J(η)dη

= lim
s→−∞

d2

∫ z

s

∫ r

−r

(−y)K(y)

∫ 1

0

J ′(η − θy)dθdydη +
βS0g

′(0)− µ2 − γ

2

∫ z

−∞
J(η)dη

= lim
s→−∞

d2

∫ r

−r

(−y)K(y)

∫ 1

0

[J(z − θy)− J(s− θy)]dθdy +
βS0g

′(0)− µ2 − γ

2

∫ z

−∞
J(η)dη

= d2

∫ r

−r

(−y)K(y)

∫ 1

0

J(z − θy)dθdy +
βS0g

′(0)− µ2 − γ

2

∫ z

−∞
J(η)dη
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≥ d2J(z)

∫ r

−r

(−y)K(y)dy +
βS0g

′(0)− µ2 − γ

2

∫ z

−∞
J(η)dη

=
βS0g

′(0)− µ2 − γ

2

∫ z

−∞
J(η)dη > 0, (4.7)

which leads to a contradiction.

Case II: The wave speed c ∈ (0, c∗). Note from (4.7) that

βS0g
′(0)− µ2 − γ

2

∫ z

−∞
J(η)dη ≤ cJ(z) for z ≤ ẑ,

which implies that there exists a large enough constant z0 > 0 such that

z0[βS0g
′(0)− µ2 − γ]

2
J(z − z0) ≤ cJ(z) for z ≤ ẑ,

that is,

J(z − z0) ≤ δ0J(z) for z ≤ ẑ, (4.8)

where the constant δ0 := 2c
z0[βS0g′(0)−µ2−γ] . Define

µ0 :=
1

z0
log

1

δ0
and H(z) := J(z)e−µ0z for z ≤ ẑ. (4.9)

Utilizing (4.8) and (4.9) gives that

H(z − z0) = J(z − z0)e
−µ0(z−z0) ≤ δ0J(z)e

−µ0zeµ0z0 = H(z) for z ≤ ẑ,

which together with H(z) > 0 ensures that the limit value limz→−∞ H(z) exists. This implies that

sup
z∈(−∞,ẑ]

{J(z)e−µ0z} < ∞. (4.10)

By (4.2), g(I(z)) ≤ g′(0)I(z) for z ∈ R and (1.7b), we have

cI ′(z) ≤ d2

∫
R
K(y)[I(z − y)− I(z)]dy + [βS0g

′(0)− µ2 − γ]I(z). (4.11)

Integrating (4.11) over (−∞, z] with z ≤ ẑ − r and using I(−∞) = 0 yield that

cI(z) ≤ d2

∫
R
K(y)[J(z − y)− J(z)]dy + [βS0g

′(0)− µ2 − γ]J(z). (4.12)

From (4.10) and (4.12), we obtain that

sup
z∈(−∞,ẑ−r]

{I(z)e−µ0z} < ∞. (4.13)

Using (4.13) and (4.2), we define the following two-sided Laplace transform of I(z) by

L(λ) :=

∫
R
I(z)e−λzdz,

where λ ∈ C with 0 < Reλ < µ0. Rewrite (1.7b) as follows

d2

∫
R
K(y)

[
I(z − y)− I(z)

]
dy − cI ′(z) +

[
βS0g

′(0)− µ2 − γ
]
I(z) = βS0g

′(0)I(z)− βS(z)g(I(z)). (4.14)

Taking the two-sided Laplace transform on (4.14) and using I(−∞) = 0, we deduce that

Θ(λ, c)L(λ) =

∫
R

[
βS0g

′(0)I(z)− βS(z)g(I(z))
]
e−λzdz, (4.15)

where 0 < Reλ < µ0 and Θ(λ, c) = d2
∫
R K(y)e−λydy− cλ+ βS0g

′(0)− d2 −µ2 − γ. Recall that limI→0+ g(I)/I =

g′(0), which indicates that for any ε̂ ∈ (0, g′(0)), there exists a small positive constant δ̂ such that

g(I)

I
≥ g′(0)− ε̂ when 0 < I < δ̂.
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Then if 0 < I(z) < δ̂, it follows that

βS0g
′(0)I(z)− βS(z)g(I(z)) = βI(z)

[
S0g

′(0)− S(z)
g(I(z))

I(z)

]

≤ β

[S0g
′(0)− S(z) g(I(z))I(z) + I(z)

2

]2
≤ β

[
S0g

′(0)− S(z)(g′(0)− ε̂) + I(z)

2

]2
. (4.16)

Since (4.16) holds for arbitrary small enough ε̂ ∈ (0, g′(0)) and (S, I)(z) → (S0, 0) as z → −∞, one can infer from

(4.16) that there exists a sufficient large number Z > 0 such that

βS0g
′(0)I(z)− βS(z)g(I(z)) ≤ βI2(z) for z ≤ −Z. (4.17)

Hence, we obtain from (4.17) and (4.13) that

sup
z∈(−∞,min{ẑ−r,−Z}]

e−2µ0z
[
βS0g

′(0)I(z)− βS(z)g(I(z))
]
< ∞,

which implies that ∫
R

[
βS0g

′(0)I(z)− βS(z)g(I(z))
]
e−λzdz < ∞ for 0 < Reλ < 2µ0. (4.18)

In view of the property of Laplace transform [32], one can infer that one of the following two conclusions holds:

(i) L(λ) is well-defined for λ ∈ C with Reλ > 0;

(ii) There exists a positive constant µ∗ such that L(λ) is analytic for λ ∈ C with 0 < Reλ < µ∗ and λ = µ∗ is a

singular point of L(λ).

Notice from (4.15) that two Laplace integrals
∫
R I(z)e−λzdz and

∫
R[βS0g

′(0)I(z)− βS(z)g(I(z))]e−λzdz must be

analytically extended to the entire right half plane. If not, the Laplace
∫
R I(z)e−λzdz in (4.15) is analytic for λ ∈ C

with 0 < Reλ < µ0 and admits a singular point λ = µ0. However, it follows from (4.18) that
∫
R[βS0g

′(0)I(z) −
βS(z)g(I(z))]e−λzdz in (4.15) is analytic for λ ∈ C with 0 < Reλ < 2µ0, which yields a contradiction. Therefore,

(4.15) holds for λ ∈ C with Reλ > 0. Note that for each c ∈ (0, c∗), Θ(λ, c) → ∞ as λ → ∞. Then let λ → ∞ in

(4.15) lead to another contradiction. Based on the above arguments, we complete the proof of Theorem 1.2.
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