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Abstract: This paper is concerned with existence and non-existence of traveling wave solutions in a non-
local dispersal endemic model with nonlinear incidence. With the aid of upper-lower solutions method and
Schauder’s fixed point theorem together with Lyapunov functional technique, we derive the existence of
super-critical and critical traveling wave solutions connecting disease-free equilibrium to endemic equilibri-
um. In a combination with the theory of two-sided Laplace transform and local skilled analysis, we obtain
the non-existence of sub-critical traveling wave solutions. Our results illustrate that: (i) the existence and
non-existence of traveling waves are determined by the basic reproduction number and the wave speed; (ii)
the critical wave speed is equal to the minimal wave speed; (iii) the traveling waves only propagate along

one direction.
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1 Introduction and main results

To model the transmission patterns of infectious disease, a great number of reaction-diffusion (Laplacian-operator-
type) and nonlocal dispersal (convolution-operator-type) epidemic models have been proposed in the last several decades
[3,5,7,10,12,13,21,24,27-30, 35-40,42,43]. From the viewpoint of mathematical epidemiology, the existence and
non-existence of the traveling wave solutions with a constant speed for these model are important issues because they can
predict whether or not the disease spread in the individuals and how fast a disease invades geographically. In the present

paper, we shall consider these problems in the following two-component nonlocal dispersal endemic model

Se(w,t) = di K[S](z,t) + b — p1S(z,t) — BS(z,t)g(I(z,1)),
It(x7t) = dQK[I](xvt) + ﬁS(:CJ)g(I(CL‘,t)) - (,u2 —i—’y)f(l‘,t),

(1.1)

where S(x,t) and I(x,t) stand for the densities of the susceptible and infected individuals in location x and at time ¢,

respectively. The convolution operator

K[6)(z.1) = / K@)z — y.1) — 8(z, t)]dy (1.2)

describes the probability that individuals in position y will jump to location x and it reflects that the movement of
individuals can be in a large, random and free way. The positive constant b refers to the entering flux of the susceptible
individuals. The parameters d; > 0 and p1; > 0 (j = 1, 2) denote the space diffusion rates and the natural death rates for
the susceptible and infected individuals, respectively. The infection rate 5 and the removal rate -y are positive numbers.
Note that the nonlinear incidence Sg¢(I) in epidemic models has played a crucial role in giving a reasonable qualitative
description for the disease dynamics [4,9,42,43]. Hereafter, the kernel function K (x) and nonlinear function g(I) satisfy

the following hypotheses.
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(H1) K(z) € C(R), K(x) = K(—x) > 0, [, K(x)dz = 1, K(x) is compactly supported and suppK = [—r, r] with

the constant radius r > 0.
(H2) g(I) is positive and continuous for I > 0 with g(0) = 0 and ¢'(I) > 0 for I > 0.
(H3) ¢'(0) = max;efo,00) 9'(I), g(1)/1 is continuous differential, non-increasing for / > 0 and lim; ., g(1)/1 = 0.
(H4) ¢"(I) <Oforall I > 0.
It is not difficult to observe that a standard kernel function [17,31]
Cexp ( ! > lz] <1
X 12 1 ) )
K(z) = 2> =1
0, || > 1,

where the constant C' > 0 is chosen such that fR K(x)dx = 1, satisfies (H1). As far as we know, the class of nonlinear

functions g(I) can include some types of functional responses, such as
(i) Holling type II functional response g(I) = ﬁ with the constant o > 0 [8,11,15,20,41];
(i) Ivlev type functional response g(I) = 1 — e~ with the constant n > 0 [1,6, 14, 16, 19,23,25,26,34].

Note that the reaction system of (1.1) is given by

S(t) =b—mS(t) - BS(t)g(L(1)),

. (1.3)
I(t) = BS)g(I(t)) — (u2 +7)I(D),

where the dot denotes the derivative with respect to t. System (1.3) always admits a disease-free equilibrium (Sp,0),

where Sy := b/u1. By [18], one knows that the basic reproduction number of (1.3) is

_ B50g'(0)

. (1.4)
Mo + 7y
Then if Ry > 1 and (H2)-(H4) hold, system (1.3) has a unique positive endemic equilibrium (S*, I*) satisfying
= w1 S* + BS*g(I"),
I BS*g(I") (1.5)

BS*g(I") = (p2 +)I".

Throughout this paper, we always assume that Ry > 1. By a traveling wave solution of (1.1), we mean a solution in
the form of
(S, I)(z,t) = (S,I)(2), z=x+ ct, (1.6)

where c is the wave speed. Inserting (1.6) into (1.1) yields
S'(2) = di | K(5)S(z = 9)dy+b— (dy+m)S(:) = BS()a(1(2), (1.7
eIz —d2/K y)dy + BS(2)g(I1(2)) — (da + 2 +7)1(2), (1.7b)

where the prime denotes the derivative with respect to z. The aim of this paper is to establish the existence and non-
existence of a positive solution (S, I)(z) on the real line of system (1.7a)-(1.7b) satisfying the following asymptotic

boundary conditions

(S, I)(—00) = (So,0) and (S, I)(c0) = (8*,1%). (1.8)

To this end, we define a function by

@()‘70) = d2 /]R K(y)e_xydy —cA+ 6509/(0) - d2 — M2 =7, ()‘70) € [07 OO) X [05 OO)



Using Ry > 1 and (H1), we derive that ©(0, ¢) = 8509’ (0) — pe —«y > 0 and
O(X,0) = ds RK(y)(e’Ay — 1)dy + BSog' (0) — pz —
> —/\dg/RyK(y)dy + 3S09'(0) — p2 — (since e® —1 > x for z € R)
= (3S09'(0) — pa — v > 0.

It follows from e® — 1 =3">° | % and K (—z) = K () for z € R that

e~ 1 > (=Ay)™ > \2n-1 .
/RK(y)fdy—/RK(y)Z Y dy—nz::l ) /RK(y)y dy — 0o as A — oco.

Then for each ¢ > 0, we deduce that lim_,oc O(X, ¢) = co and ©(0, ¢) = —[da [ yK (y)e dy + | ‘,\zo =—c<0.
For any (A,c) € R2 it follows that ©xx(\,¢) = da [5y*K(y)e *dy > 0. For each fixed A > 0, we note that

O.(A\¢) = =X\ < 0 and lim.,o, O(A,¢) = —oo. Based on the above computations and Ry > 1, we can define a

n=1

positive value
e inf da[ [ K (y)e *dy — 1] + BSog'(0) — p2 —
" Ag(0,00) A

and obtain the following proposition.
Proposition 1.1 Suppose that Ry > 1. Then the following assertions are true.
(i) There is a positive constant \*(c*) := \* such that ©(\*,c*) = 0 and O\ (\*,¢*) = 0.

(ii) If ¢ > c*, then ©O(\, c) = 0 admits two positive roots A1(c) := A1 and Aa(c) 1= Ao with \* € (A1, A2) such that
O(A,¢) > 0for A € [0, A1) U (A2,00) and O(\,c) < 0 for A € (A1, A2).

(iii) If0 < ¢ < c*, then O(X, ¢) > 0 for A € [0, 00).

Using (H3) and Ry > 1 yields thatlim;_,o+ 8S0g(I)/I = 8S0g'(0) > ua+vandlimy_,o 8Sog(I)/I =0 < pa+7.

Then there exists a unique constant / > 0 such that

BSog(I)/1 = p2 +1. (1.9)
Now we are in a position to state our results.

Theorem 1.1 If Ry > 1 and ¢ > c*, then system (1.1) admits a non-trivial traveling wave solution (S,1)(z), z := x +ct
satisfying (S, I)(—o0) = (Sp,0) and (S, I)(c0) = (S*,I*). Moreover, (S, I)(z) satisfies the following properties.

(I) Positiveness and global boundedness of traveling wave solutions in (1.1). For z € R,

S<S(z)<Spand 0 < I(z) <1
where S :=b/[111 + B¢’ (0)I] and I > 0 is defined in (1.9).
(Il) Limit behavior of I-component of traveling wave solutions in (1.1). If z — —oo, then

O(eM?) for ¢ > ¢,

=4 7
O(ze* ?) for ¢ = c*.

Theorem 1.2 If Ry > 1 and ¢ < c*, then system (1.1) has no traveling wave solutions satisfying (S, I)(—o0) = (Sp,0)
and (S, I)(c0) = (S*, I*), together with S < S(z) < So and 0 < I(z) < I for z € R.



Remark 1.1 Theorems 1.1 and 1.2 assert that the existence and non-existence of traveling wave solutions of (1.1) depend
on both the basic reproduction number and the critical wave speed. From the biomathematics point of view, the disease
can transmit at the critical wave speed while can not spread for any wave speed smaller than the critical wave speed.

These results mean that the critical wave speed is equal to the minimal wave speed.

Remark 1.2 Theorem 1.2 shows that system (1.1) has no non-trivial bounded traveling wave solutions with non-positive
wave speed which implies that the traveling waves propagate in one direction. Chen et al. [5] and Yang et al. [38] also

established the similar results for their models. However, our method adopted here is quite different from the work [5,38].

Here we sketch our strategies. To prove the existence of traveling wave solutions of (1.1) with ¢ > ¢*, we first
construct a pair of upper-lower solutions of (1.7a)-(1.7b) and an invariant cone of initial functions defined on a large
bounded interval. Secondly, we apply the Schauder’s fixed point theorem to prove the existence of solutions on the
cone. Thirdly, we derive a uniform prior estimate of solutions on the large bounded domain and extend the existence
of solutions on the bounded interval to the whole real line by a limiting argument. Finally, we study the asymptotic
boundary of solutions at infinity via squeeze theorem coupled with Lyapunov functional techniques [20, 35, 44]. To
show the existence of traveling wave solutions of (1.1) with ¢ = ¢*, we re-construct a pair of upper-lower solution of
(1.7a)-(1.7b) to achieve our goal. Note that the used Lyapunov functional to get the convergence towards the endemic
equilibrium point at plus infinity is independent of the wave speed c. So we still have (S, I)(co) = (S*, I*) when ¢ = c*.
To investigate the non-existence of traveling wave solutions of (1.1) with ¢ < ¢*, we shall apply the theory of two-sided
Laplace transform and local skilled analysis to attain our aim. The remainder of this paper is organized as follows. In
Section 2, we establish the existence of super-critical traveling waves. In Section 3, we obtain the existence of critical

traveling waves. In Section 4, we investigate the non-existence of sub-critical traveling waves.

2 Existence of super-critical traveling wave solutions
2.1 Construction of the upper and lower solutions for (1.7a)-(1.7b)
Definition 2.1 If 5. (z) and 1+ (z) are of class C(R) N C* (R \ S) for some finite set S and if they satisfy
| K)S1 (= )y = eSL(:) +b (£ )i (2) = S (gl (2) <0,
| K)S- (= )y = e (2) + = (s + ) (2) = BS- ()L () = 0,
| KT = 0)dy = eI (2) + B, (a1 (2)) = (0 + 2+ ) (2) <0
dz/RK(y)I-(z —y)dy — I’ (2) + BS_(2)g(I-(2)) = (d2 + p2 + 7)I-(2) = 0
forany z € R\ S, then the function pairs (S, 1) (z) are called a pair of upper and lower solutions for (1.7a)-(1.7b).

Now we construct four non-negative continuous functions on the real line, which are

Sy (2) = So, @.1)
I, (2) := min{eM* T}, (2.2)
S_(z) := max{Sy — e 'e**, S}, (2.3)
I_(z) := max{eM?* — MjeM+e2)z o}, (2.4)

In (2.1)-(2.4), A\; > 0 is defined in Proposition 1.1(ii), I > 0 is given in (1.9),
b b

=< — =9, 2.5
ST+ B8O Y )
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and the constants M, €1, €2 > 0 will be determined later.

In the following lemmata of this subsection, we shall show that the function pairs (Sy, I )(z) constructed in (2.1)-

(2.4) are a pair of upper and lower solutions for (1.7a)-(1.7b).
Lemma 2.1 The function S (z) satisfies
dy / K (9)S4(z = y)dy — ¢Sy () + b — (dy + 1) Sy (2) — B+ (2)g(I- () < 0
R

forany z € R.
Proof. Since S, (2) = Sg =b/p1 and I_(z) > 0 for 2z € R, we have from (H1) and (H2) that

n / K(y)S (= — y)dy — S, (2) + b — (dy + ) S, () — BS+ (2)g(I_(2))

R

= d1So + b — (d1 + p11)So — BSog(1-(2))

= —BSog(I_(2)) <0 forz € R.
Then inequality (2.6) holds and the proof is finished. m

Lemma 2.2 The function I (z) satisfies
da /R K(y) I+ (2 — y)dy — eI (2) + BS1(2)9(1+(2)) — (d2 + p2 +7)11(2) <0
forany z # z1 := X\ log I.
Proof. By (2.2) and (H1)-(H3), we have for z € R that
[ KL~ )y < win {A | Kweray, f}
and
9(I4(2)) = 9(I(2)) — g(0) < g'(0) 14 (2).
If 2 < zy, then I (z) = e**. Using (2.8), (2.9) and ©(\y, ¢) = 0, we obtain for z < z; that
da [ K4~ y)dy = eI} () + B84 (29(L4 () = (da + i + )4 (2
< doe?® /RK(y)e_’\lydy — e\ eMF 4 BSog (0)eM* — (do + pg +y)e?
= eM*O(\,¢) = 0.
If z > 2, then I, () = I. By (1.9) and (2.8), we get for z > z; that
da [ K4 (= u)dy = eI} () + 554 (20(L4 () = (da + 2 +9) 14 (2
< dyl + BSog(1) — (d2 + p2 + )T = 0.
Hence inequality (2.7) holds and the proof is completed. m

Lemma 2.3 Suppose that €1 € (0, \1) is a sufficiently small constant. Then the function S_(z) satisfies
dy [ K)S-(z = )y — S (2) + b= (dy + m)S-(2) = 55 (2)g(14(2)) 2 0
R

for any z # zy 1= €; *log[e1(So — S)).

2.6)

Q2.7)

2.8)

(2.9)



Proof. Utilizing (2.3) and (H1), we have for z € R that

/ K(y)S—(z — y)dy > max {SO — e ter® / K(y)e~“Ydy, S}. (2.10)
R R

Noticing the fact that

761y & —6 2n 1
/K Z /K Y2 dy — 0 as e; — 0T,

one can select a sufficiently small constant e; € (0, A1) such that zo < 27 and
— p—€1Y
dy / K(y 2Ty tet+ B BSug (0)ePime)= >, (2.11)
€1
If 2 < 25, we get that S_(2) = Sy — efle“z and I, (z) = eMZ. Then it follows from (2.9)-(2.11) that
[ K(w)S- (=~ y)dy = e5(2) + b= (dy + m)S- () = BS_ (g (L (=)
R
> dye; e / K(y)(1— e “¥)dy + ce”" +b— 11 So + paey =" — B(Sp — € ' %)g/ (0)eM?
et [dle / K(y)(1 — e Y)dy 4 ¢ + pre; t — BSog’ (0 ) (M- 61)2]
€12 e Y H1 / (A —€1)22
> e | dy K ————dy+c+— —BSog’ (0)e
€1

> 0 for z < z5.
If z > 25, then S_(2) = S. By (2.5) and (2.10), we deduce for z > z5 that
| K)S- (= )y = e (2) +b = (ds + ) (2) = BS. (L1 (=)
>diS+b—(di +p1)S—BSq (0)I =0.
The proof of this lemma is completed. m

Lemma 2.4 Assume that M, € (1,00) is a sufficiently large constant and €3 € (0, min{e1, Ao — A1 }). Then the function
I_(z) satisfies

dz/RK(y)I—(z —y)dy — I’ (2) + BS—_(2)g(I-(2)) — (d2 + p2 +7)I-(2) = 0 (2.12)

forany z # z3 1= —62_1 log M;.

Proof. Using (2.4) and (H1) lead to for z € R that

/K (z — )dy>max{ Alz{/K e MYy — M, e /K )e ()‘1+62)ydy] O} (2.13)

Let M7 € (1,00) be a sufficiently large constant and ez € (0, min{e;, Ao — A1}) such that —62_1 log M7, <
e; Hlog[e1(So — S)) i.e., 23 < zo. Thenif z < 23, we deduce that

S _(2)=So — e e and I_(2) = eM*(1 — Mye?). (2.14)
To show (2.12) with z < z3 is equivalent to prove that
da [ K()I-(z = w)dy = eI (2) + [350g/(0) = da ~ pz = 7] 12
R

> BSog’ (0)I_(2) — BS_(2)g(I_(2)) for z < z3. (2.15)



Then it follows from (2.13), (2.14), ©(A1, ¢) = 0 and the left-hand side of (2.15) that
2 | KT = )dy = eI’ (2)+ [3509/0) = da = = 5] - (2
> eM? [dz /R K(y)e dy — chy + BSog'(0) — da — p1a — 7
— MyeMite)? {dz /]RK(ZJ)G_(’\ﬁQ)ydy —c(M +€2) + BSog'(0) —dz — p2 =

= MO, ¢) — Mle(/\1+€2)z@(>\1 + €2,¢)

= —MePMT2)2Q()\| + €9, ¢) for z < 2. (2.16)

Note from (H3) that lim; _(.)_,o+ 9(11:7((;)) = ¢'(0), that is, for any & € (0, g/(0)), there exists a small number § > 0

such that 5‘7(11_‘7((;))) > ¢'(0) —efor I_(z) € (0,6). Then we take M; € (1, 00) to be a sufficiently large constant such that
I_(z) € (0,6) and S_(z) is close to Sy for z < z3. Now choosing & € (0, ¢’(0)) to be sufficiently small, we have from

the right-hand side of (2.15) that
BSog' (0)I-(2) — BS-(2)g(I-(2)) = BSog' (0)I-(2) — BSog(I-(2)) + Bey e *g(I-(2))

_ / g(I—(Z)) —1 €1z

= pso1-(2)| g 0) - L5 4 petensr2)
5 ’ _9U_(2) 12

I—( )+g(g) I_(z) :| _"_561*166129/(())[7(2:)

< BSo [
I 2
< BS, |: (22) + €:| + IBel_lg/(O)e(€1+Al)z
< BSoI2 (2) + Bey L' (0)elcrt )z
< BSpe*MF 4+ Beflg/(O)e(qJ”\l)Z for z < z3. 2.17)
Hence to prove (2.15) is sufficient to show
BSgeP—e2)z 4 Beflg’(O)e(“_”)Z < —M1O(A + €3, ¢) for z < zs3. (2.18)

Since A1 + €2 € (A1, A2), we get from Proposition 1.1(ii) that ©(A; + €2,¢) < 0. Then by the boundedness of the
left-hand side of (2.18), we obtain that (2.18) holds for sufficiently large constant M.
If z > z3, then I_(z) = 0 and one can have from (2.13) that

da [ K)I-(z = w)dy — e (2) + BS-(:)glI-(2) ~ (da + 2 + )1 (2)
R
= dg/ K(y)I_(z—y)dy > 0.
R
Consequently, inequality (2.12) holds and the proof is finished. m

Remark 2.1 Obviously, it follows from (2.1), (2.3) and (2.5) that S_(z) < S1(z) for z € R. Moreover, by elementary
computation, we have for z € R that 1_(z) attains its maximum at the point z := i log m Then based on

the choices of parameters M and €1 (see Lemma 2.3 and Lemma 2.4), one can obtain that Z < z1, which implies that
I_(z) < Iy(2) forz € R.

2.2 Existence of solutions of (1.7a)-(1.7b) on a bounded interval

Now we define a set
I - {<¢,w>(z> € O, 1. B)| (9 ) (1) = (S—, I_)(—1), S_() < 6(2) < S4(2),

I_(2) <p(z)<Ii(2), Vz € [—l,l]},



where [ > max {|23|, r} (r is the radius of suppK). It is not difficult to verify that I'; is a non-empty, bounded, closed
and convex subset in C([—[,1],R?). For any (¢, ¢)(z) € I';, we define

o), z>1, o), z>1,
$(2) =1 ¢(2), el <L, Pl2) =19 ¢(2), Izl <,
S_(2), z< -, I_(2), z<-l
Consider the initial value problem
¢S'(2 dl/K Y)dy + 0d(z) +b— (di + pm +a)S(2) — B()9(0(2)), 2.19)
oI'(z) = dy / K(y)3( — y)dy + Bo(2)g(0(2)) — (da + 1z +)1(2) (220
on [, 1] with
S(—1) = S_(—1)and I(—1) = I_(—1), where o > Bg(I). (2.21)

The theory of ODEs claims that (2.19)-(2.21) has a unique solution (S;, I;)(z) € C*([-1,1],R?). Define an operator
O = (01,02): Ty = C([—1,1],R?) as follows

O1(9, 9)(2) := Si(2) and O2(¢p, p)(z) := I;(2) for z € [-1,1].
Lemma 2.5 The operator O = (O1, O3) maps T into T;.

Proof. For any given (¢, ¢)(z) € I'j, it suffices to prove that

S-(2) <O, ¢)(2) < 54 (2) and I_(2) < Oa(¢, ¢)(2) < 14 (2),

that is,
S_(z) < S1(z) < S4(2) and I_(z) < I1)(2) < I (2).

Since o > Bg(I) and ¢ < I, we have that ag — B¢pg(ip) is increasing with respect to ¢. Then by Lemma 2.1 and Lemma
2.3, we obtain that

d, / K@)z — y)dy — ¢S, (2) + ad(2) + b — (di + 1 + 2)S4 (2) — Bo(2)g((2))

<d, / K (y)S4 (= — y)dy — 5, () + a4 (2) b — (ds + 1 + ). (2) — A5 (2)g(I_(2))

< 0 for z € [—1,1] (2.22)
and

dy / K(y)d(z — y)dy — ¢S (2) + ag(2) + b — (di + i + 0)S_(2) — Bé(2)g(p(2))

>d1/K y)dy — ¢S (2) + aS_(2) + b — (di + . + @)S_(2) — BS_(2)g(I+(2))

> 0 for z € [—1, 23) U (20, 1]. (2.23)

Using Lemma 2.2 and Lemma 2.4, we derive
& / K(y)@(z — y)dy — eI’y (=) + Bo(2)g(0(2)) = (da + 2 +7) L+ (2)

< dy /R K(y)L4(z = y)dy — cI' (2) + BS4(2)g(11(2)) = (da + p2 + 7)I1(2)

<O0forz e [-1,21)U(z,]] (2.24)



and

&, / K(y)@(z — y)dy — eI’ (2) + Bo(2)g(9(2)) — (da + iz +7)I(2)
> dy / K(y Yy — oI’ (2) + BS_(2)g(I_(2)) — (da + iz +7)(2)
>0 for z € [, 2z3) U (23,1]. (2.25)

Noting that (2.21) gives that
S_(=1) = Si(=1) < Sy (1) and I_(~1) = L(~1) < L4 (1),
which together with (2.22)-(2.25), Comparison theorem and the continuity of Sy (z), I (2), Si(2), I;(z), we obtain
S_(2) < Si(z) < 84(z)and I_(z) < Ij)(z) < I1(2) for z € [—1,1].
The proof of this lemma is completed. m
Lemma 2.6 The operator O is completely continuous with respect to the supremum norm in C([—1,1],R?).
Proof. Since 0 < S;(z) < Sp and 0 < I;(z) < I, we obtain from (2.19)-(2.21) that
|eS](2)] < b+ [2dy + 200+ p1 + Bg(I)] So (2.26)

and

eI} (2)] < (2d2 + p2 + )T + BSog(I) 2.27)

on [—I,!]. Hence S}(z) and I](z) are uniformly bounded for any z € [—[,[]. Then applying Arzela-Ascoli theorem on
[—1,1] yields that the operator O is compact on T';.
The unique solution (S;, I;)(z) of initial value problem (2.19)-(2.21) can be given by

L] TH] T ]. Z 1+m a
Si(2) :s_(fz)e*“‘f””luE / e TGy, (n)dn, (2.28)
—1
u 1 z 1o+
I(2) :I_(—l)e’idzﬂczﬂ(”l)+E/ e~ =y, (n)dn, (2.29)
1
where
o) = di | K)o =)y +adln) + b= Botn)aleln)

we,o(n —dg/K o(n —y)dy + Bo(n)g(w(n)).

Let (¢5,%;) € I't (j = 1,2), then we have

|v¢17§01 (77) — Va2 (77)‘

= |dy /RK(U — ) [1(y) — d2(Y)]dy + a1 (n) — 2(n)] — B1(M)gle1(n) — d2(n)g(w2(n))]

<dy

l
/_l K(n=y)le(y) - <bz(y)]dy’ +d

| Ko=) - a0l
+ Blor(m)gler(n) — d1(m)g(p2(n) + d1(n)gle2(n)) — ¢2(n)g(w2(n))| + alé1(n) — d2(n)|

< [2dy 4+ a+ Bg(I)] max |¢1(y) — d2(y)| + BSog’ (0) max [p1(y) — 2(y)|
ye[—1,1] y€[—1,1]

and

|w¢1,801 (77) — W, (n)‘ =

do /R K(n—y[e1(y) — ¢2(y)ldy + B[e1(n)g(e1(n) — ¢2(n)g(e2(n))]

< [2ds + BS0g'(0)] H[lafl]lw( y) — wa(y)| + Bg(I) H[lafl]\cbl( y) — d2(y)l.

9



Then by (2.28) and (2.29), we conclude that O is continuous on I';. Therefore, O is completely continuous with respect
to the supremum norm. m

Combining Lemma 2.5, Lemma 2.6 and Schauder’s fixed point theorem, we obtain the following proposition.

Proposition 2.1 The operator O admits a fixed point on T}, that is, (S}, 1;)(z) = O(S}, I;)(2), which satisfies

S_(2) < 8i(2) < S4(2) and I_(2) < I1(2) < I (2) for z € [-1,1]. (2.30)

2.3 Existence of solutions of (1.7a)-(1.7b) on R

Choose a positive increasing sequence {l,, }° ; such that [, > max{|z3|,r} and lim,,_,~ I, = co. Then by Propo-

sition 2.1, we have that there exists some (5}, , I}, )(z) € I';, satisfying

¢Sl (2) = dy / K ()81, (= — y)dy + b — (dy + )81, (=) — BS1, (2)g(T, (=),

) 2.31)
clj (2) = do /RK(y)Izn(z —y)dy + BS., (2)g(L1, (2)) — (d2 + p2 + )11, (2)
R
for each n € N*, where
Sln (ln>7 z2 > ln, Il,” (ln), z >y,
S.(z) =18 8,(2), |2l <ln, L,(z)=1 I,(2), |2 <ln,
S_(2), z<—lp, I_(2), z<-l,
with
S_(2) <8, (2) <Si(z)and I_(2) < I (2) < Ii(2) for z € [y, 1p)- (2.32)

Inequalities (2.32) imply that S; (z) and I;, (z) are all uniformly bounded on [—I,,[,], which together with (2.31)
implies that S (2) and [] (2) are all uniformly bounded on [~I,, + r, [, — r]. By differentiating system (2.31), one can
infer that S}’ (2) and I}’ (z) are all uniformly bounded on [—[,, + 27,1, — 2r]. Utilizing the Arzela-Ascoli theorem on
[l + 27,1, — 2r] for every n € N* large enough, we obtain a subsequence which is still labeled I,, through the diagonal

process such that lim,, [, = co and
S, =S L, =18 —=S.1, =TI, 8,9(,)— Sg(I)asn — oo
uniformly in any compact subinterval of R. Moreover, by Lebesgue dominated convergence theorem, we get that

i [ K=y = [ K(5)S(z~)dy

n—oo R

and
im [ Kk, (= - y)dy = / K@)I(z - y)dy.

n—oQ R

Passing to the limits in (2.31) and (2.32) as n — oo yields

¢S'(2) = dy / K(y)S(z — y)dy +b — (d + 1)S(=) — BS(2)g(I(2),

cl'(z) = dy /}jK(y)I(Z —y)dy + BS(2)g(I1(2)) — (d2 + p2 +7)1(2) =
with
S_(2) <S(z) < Sy(z)and I_(z) < I(z) < I(z) for z € R. (2.34)
Therefore, we have proved the following results.
Theorem 2.1 If ¢ > c*, then there exists some (S,I)(z), z € R satisfying (1.7a)-(1.7b) and (2.34). Furthermore,
I1Sllcz2 @) + 1Hllez_ @) < Co (2.35)

for some positive constant C.
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2.4 Positiveness and asymptotic boundary of solutions of (1.7a)-(1.7b)
Proposition 2.2 The solution of (1.7a)-(1.7b) satisfies the following properties:
(i) (S,I)(—o0) = (So,0) and lim,_, o, e~ **I(z) = 1;
(ii) S < S(2) < Sgand0 < I(z) < I forz € R;
(iii) (S.1)(00) = (5%, 1),
Proof. (i) Using (2.34), we have for z € R that
So — € 'et* < 9(2) < Sp and eMF(1 — Mye®) < I(z) < M7,

which together with squeeze theorem implies that (.S, I)(—o00) = (Sp,0) and lim, , o, e %[ (2) = 1.

(ii) Firstly, we show that I(z) > 0 for z € R. Assume that there exists some z* € R such that I(z*) = 0 for the
contrary. So I'(z*) = 0. By (1.7b), we obtain [, K (y)I(z* —y)dy = 0, which yields I(z) = 0 for z € [z* —r, z* +r].
Now, take some z** € [z* — r, 2* + r]. It is obvious that I (z**) = 0 and I'(2**) = 0. Hence, it follows from (1.7b) that
Je K(y)I(z** — y)dy = 0. Similarly, one can get that I(z) = 0 for z € [2** — r, 2** + r]. Repeating this process, one
can deduce that I(z) = 0 for z € R. This contradicts the fact that I(z) > I_(z) > 0 for z € (—o0, z3) (see (2.4)). Thus,
I(z) > 0forz € R.

Secondly, we prove that S(z) < Sy for z € R. Suppose that there is some z, € R such that S(z.) = Sp. Thus
S’(z«) = 0. Using(1.7a), we have

0= —cS'(s) +dy / K(5)S(z —y)dy + b — (1 + 11)S(z) — B5(z)a(I(=.))
_ dl/K —y)dy +b— (dy -‘er)SO —BSOQ( ( ))
dl{/RK(y)S(z* y)dySo] — BSog(1(24))

< =BSog(I(z)) <0,

since [, K (y)S(z« — y)dy < So, b = 1Sy and g(I(z.)) > O for I(z,) > 0. Then a contradiction appears. Thus
S(z) < Sy for z € R.

Thirdly, we demonstrate that I(z) < I for z € R. Suppose that there is a Z € R such that I(?) = I. Hence I'(Z) = 0
Utilizing (1.7b), we obtain

0= —cl'(3)+ds | KW)IG - y)dy + BSE)g(T(3) — (ds + s+ )I(2)
=dy | K(y)I(2—y)dy —doI + BS(2)g(I) — (u2 +7)I
<dy { A Kz —y)dy — f} + BSog(I) = (pa + )1

< BSog(I) = (p2 + )1 =0,

due to S(2) < So, [ K(y)I(2 — y)dy < I and BSog(I) = (p2 + 7)1 (see (1.9)). Then a contradiction occurs. So
I(z) < Iforz€R.

Finally, we prove that S(z) > S for z € R. Assume that there exists some Z € R such that S(2) = S. Hence
S’(2) = 0. It follows from (1.7a) that

= —eS'(2) +n / K()S( = y)dy +b— (ds +1)S() - BSE)g(1(2)
—dl/K Y)dy +b— (dy + )8 — BSg(I(2))
>b—[u1 + Bg(I(2))]S

11



>b—[p1+ B9’ (0)I(2)]S

>b— [+ B9 (0)I)S =
where we have used [, K (y)S(2 — y)dy > S, I(2) < I and b = [py + B¢'(0)I]S (see (2.5)). Thus a contradiction

appears. Then S(z) > S for z € R.
(iii) We shall use Lyapunov functional method to derive the asymptotic boundary of solution for (1.7a)-(1.7b) at plus

infinity. Define four functions by

G(S,1)(z) := S(2)g9(I)(2), hly) :=y—1—logy, y >0,

)
a1(y) = /yoo K (z)dx and as(y / K(x

It is obvious that the function G(S, I)(2) is positive and bounded for S < S(z) < S and 0 < I(z) < I. Meanwhile, the

function h(y) satisfies
h(y) >0, y € (0,1) U (1, 00),
(v) y € (0,1) U(1,00) (2.36)
Since fR x)dx = 1, K is compactly supported and r is the radius of suppK, we have that
« =0,y>r,
1(y) y 2.37)
az(y) =0,y < —r
with
1 d d
a1(0) = ay(0) = 3 and d—ag(y) = —d—al(y) = K(y). (2.38)

Define a Lyapunov functional by

V(S,I)(z) :=

Vi(S, I)(2) + d1.5™Va(S)(2) + do 1" V3(I)(2), (2.39)

where

V(51 1)(2) = e[ 5(0) - 5" = 5 1og 5

Va(5)(2) = /OOO al(y)h(s(z:y)>dy - /_OC>o az(y)h<W)dy,
S A e e B = I

Obviously, the Lyapunov functional V' (.S, I')(z) is bounded on R. For convenience, we will drop some variables z in the

(2) — I* — I*log IE?}

sequel calculations. Differentiating the function V3 (.S, I')(z) with respect to z and using

b=uS*+ BG(S*, 1Y),
BG(S™, I") = (u2 + )17,

we derive
dVl(Sv I) _Qf _ g / _ E
P =cS'(1 5 +ecl'(1 7
( 55’,) {dl/K y)dy —d1 S +b— 1S — BG(S, I)}
[dz/K y)dy — dol + BG(S, 1) — (/~L2+W’)I}

Y[ n-s]afo-5)] -]

las - s+ 5657 17) - gees. ) + (1- 7 ) [BG( N - A6

+
[t

H
/\/—\/_\
\_/\_/\/
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ST R OV
wns(1-5) (“)”GS {-5) P -awm] (- Tlasm 7
e e
+ BG(S", 1Y) 1—%+log%+1 (f((; II) )I+log g((; II)I)* ]
- §){ - 5) [
+M15*(1—§) (1 5>+BG(S I )(1—SS+1 og S)
+BG(S*, I |1 - ;g’jl)f)IJrlog gg II)*)J
PN SR Y
Do Do
+ms*(1—i,*) (1 5>+6G(S 5 )(1—5;—&—10g§>
i SO SO s s
where
P, d1<1— S;) L/RK(y)S(z—y)dy—S}, D, _dQ(]. - I;) [/RK(y)I( —y)dy—]]
oenn (5 ) - 5)
By = 66(5*,I*>(1 - % T log SS> — —BS"g(l )h(SS*) <0,
s G S (G
‘DWG(S*’I"‘)}I* i) e~ =05 = i i =)
From (2.37) and (2.38), we obtai
WalS) _ di e (*C a2 [ watn(*E 2 Yay
/Oooal(y)cih<s(2*y) dy/om@(y)ih<s(25*y) dy
:_/Oooal(y)z/h(S(;: y))dy+/_oooa2(y);;h S(ZS: y)>dy
() P (),



() - [ ron(252)a, e

Then it follows from (2.36), (2.40) and (2.41) that

a5 (1 SV [ st i8] s £) s [ xn(SE2 )y

—dl/K Z* dy d1$ dlS*/K %derdlS*

+d1<S—S* S* log — )—dS*/K ( ))dy
dlS*/K(y)[S(z: v S(ZS_ v) log;]dydlS*/RK(y)h(w>dy

_dlS*/K [ = ) 1—1ogW]dy—dls*AK(y)h<W)dy
(2 —

—dS*/K [ )—1—logS(ZS_y)]dy

= —d; S*/K ( >>d <0. (2.42)

By the same calculations as (2.42), one can get

By + dol*—2L dVS —doI* / K(y ( )>dy <0. (2.43)

From (H2) and (H3), we know that g([) is strictly increasing and ¢g(/)/I is non-increasing for I > 0, which imply that
I 9() |]eU7)

-1/ <0,0<I<LI"
r | e@m =Y =
I g1y 1[g(I) (244)

s 1| <0, I>1"
I g(I*) ] [ 9(D)
Utilizing (2.39)-(2.44), we obtain
dz dz TS dz d2l dz
dV: dV
®y + dls*"‘(s)} + |:<I)2 + doI* a( } Zcb <0, (2.45)
dz
which yields that V' (.S, I)(z) is non-increasing and
MzO@S(Z):S* and I(z) = I"* for z € R. (2.46)
z

Choose an increasing constant sequence { z, } satisfying lim,, ., 2, = co and denote

{Sn(2)}ntr = {5z + 20)}ly and {1 (2) 1320 = {(2 + 20) 0l

Since {5, (2)}5%; and {I,,(2)}5°; are uniformly bounded in C{

loc

labeled by S,, and I,,) such that lim, . S,(2) = S(z) and lim,, o I,,(2) = 1:(2) Applying Lebesgue dominated

(R), there exists a subsequence of functions (still

convergence theorem yields lim,, o V' (S, I,)(2) = V(S,I)(z). Note that V' (S, I)(z) is non-increasing and bounded

from below, then for any n € N*, there exists a constant Cy such that
V(Sn, In)(2) =V (S,I)(z + z,) > C1,
which means that there is a constant V;; € R satisfying

lim V(Sp,In)(z) = lim V(S,)(z+z,) =W

n— 00 242y —00
for any z € R. So we obtain V'(S, I)(z) = V;, which implies that
av(S,I)(z)
dz
Then it follows from (2.46) and (2.47) that (S, I)(z) = (S*,1*), thatis, (S, I)(c0) = (S*,I*). m

(2.47)
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3 Existence of critical traveling wave solutions

In this section, we will establish the existence of traveling wave solution for Ry > 1 and ¢ = c¢*. To this aim, we
choose a constant L; > \*el to be suitable large such that the equation —L;ze* * = I has two negative roots z, and z*
satisfying

2=z >, 3.1

where 7 > 0 is the radius of suppK. Now for z € R, we define the following non-negative continuous functions.

—LyzeN %, 2 < 24,

51 (2) := So, I(z) =14 _
Ia z Z 24,
—1 A* 1 3\
Si(z) - S() — & eflz’ z < zs, Ii(z) — —Lize z_ LQ(_Z)2€ Z’ z < zg,
S, z > zs, 0, z > zg,

where \* is defined in Proposition 1.1, Sy = b/u1, I is given in (1.9), z4 is in (3.1), 25 = ] log[e1(So — S)],
S —

b N _L;.% .. .
8= heon %= I8 El and L are positive constants to be determined later.

Lemma 3.1 The function S% (z) satisfies
dy /RK(y)Si(Z —y)dy — c*(S7)(2) + b — (di + p1) S5 (2) — BSL(2)g(I2(2)) < 0
forany z € R.
Proof. By S* (z) = So = b/p1 and I* (2) > 0 for z € R, we deduce from (H1) and (H2) that
dy / K(y)S1(z —y)dy — c"(S1)(2) + b — (dr + p1) S (2) — BT (2)g(I" (2))
R
= d1S0 + b — (d1 + p1)So — BSog(1Z(2))
= —PSog(I*(2)) <0 forz € R.
This ends the proof. m
Lemma 3.2 The function I’ (z) satisfies
| KT = )dy = ¢ (13)/(2) + B} (2a(T3 () = (da + pa + )T} ) <0

forany z # zy4.

Proof. By the definition of I (z), we have

I (2) < —Lyze * for z € (—o0, 2*] (3.2)
and
9(I5(2)) = g(I5(2)) — 9(0) < /()L (:) for = € . (33)
If z < z4, we obtain that
Ii(2) = —Lize™?, (I1)'(2) = —Lie* #(1 + \*2) (3.4)

and

¢

[ Kwri-pa- | KW (= — )y + / T KW - y)dy
R -

— 00

— [ KO-y by 6.1 and )
<o [ K@E-ne Ty by G2)

=—I, / K(y)(z —y)e* FVdy
R
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=-I /RK(y)(z +y)et Ty by K(—y) = K(y)]
= —Lize*'? /RK(y)e)‘*ydy — LN /RK(y)ye)‘*ydy. (3.5)
Then by (3.3)-(3.5) and ©(\*, ¢*) = O, (\*,¢*) = 0, we derive for z < z, that
dg/RK(y)I y)dy — c*(I7)'(2) + BST(2)g(I1(2)) — (d2 + p2 + )1 (2)
< ds [ — Lyze™? /RK(y)eA*ydy — LieM'? /]R K(y)ye)‘*ydy} —c[- Lie* #(1+ A*z)]
+ BS0g (0)(~Lze"?) = (dz + iz + 7) (~Lrze?"?)
= —LyzeM? [dg /R K(y)eN Vdy — ¢\ + 3S0g’(0) — dy — pig — 'y}
— LyeM? |:d2 /R K (y)ye Vdy — c*}
= —L1zeN 2O\, ¢*) — Lie) 20, (\, ¢*) = 0.
On the other hand, by (1.9) and I} (2) < I for z € R, we have for z > z, that
da | KWL= )y - (1) () + 5LULE) — (da -+ a4 DIEE)

< dol + BSog(I) — (d2 + p2 +~v)I = 0.
Thus the proof is finished. m

Lemma 3.3 Assume that e1 € (0, \*) is a small enough constant. Then the function S* (z) satisfies
dy / K(y)SZ(z —y)dy — ¢*(S2) (2) + b — (di + 11)S%(2) — BSZ(2)g(I{(2)) > 0
R

for any z # z5 = €7 * log[e1(So — S)).

Proof. Noting that z5 = £; * log[e1(So — S)] — —oo as e; — 0T, we can choose a small enough constant £; € (0, \*)

such that z5 < z4. Then I (z) = —Lyze* * for 2 < z5. Since

1_6—6111 e (_ 2n 1 on N
/K —dy =) @n /K dy — 0ase; — 0%,

n=1
we have
e €1y -
dy / K(y)—dy+c* + + BSog’ (0 )lee(A €12 > 0 for 2 < 2. (3.6)

By (H1) and the definition of S* (2 ), one has that
/RK(y)Si(z —y)dy > Sy — 61_16612/RK(y)e’51ydy for z € R. 3.7)
For z < z5, we obtain from (3.6) and (3.7) that
dy /RK(Z/)Si(Z —y)dy — ¢ (S2)'(2) + b — (di + p1)SZ(2) — BSZ(2)g(I1(2))
> dlsfleglz/ K(y)(1 — e =Y)dy + c*e** + b — 1S + piey "% — BSog’ (0)I7 ()
{dl / K(y ﬂflydy +cf 4+ % + ,BSog'(O)lee()‘*fsl)z €% > ().
For z > z5, it is easy to see that S* (z) = S, I (z) < I and [ K(y)S* (2 — y)dy > S. Then it follows that
dy /RK(y)Si(Z —y)dy — " (57)'(2) + b — (dy + p1)S™(2) — BS” (2)9(I1(2))
> dyS +b—(di 4 p1)S — BSg'(0)I (2)

>b— S —BSq(0)I =0,
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where we have used the fact that S =

+6 aon

Lemma 3.4 Assume that Lo > 1 is a large enough constant. Then the function I* (z) satisfies

ds / K@) (2 — y)dy — *(I*)'(2) + BS™ (2)g(I* (2)) —

2

L
forany z # zg = 1

(do + po +7)12(2) > 0

in the last equality. Hence the claim of this lemma is shown. m

Proof. Due to L; > \*el is a fixed constant and zg = _L — —oo as Ly — 00, one can select a large enough constant

Ly > 1 such that

L2

1 r .
ool | Ky)y*e ™ vdy - BSoL3(~2)2eN* — ey g (0)Li(—2)F e > 0
and
s . 1 r .
K(y)ye™ vdy + - K(y)y*e N Ydy > 0 for z < z.

-Tr

A simple computation gives that

(1) (2) = —Lye"™

—-T

By Taylor’s formula, we get for z < zg that

(—2+9)? < (-2

which implies that

* 1 . *
— LNz 4 iLg(fz)*%e)‘ - LQA*(*Z)%CA * for z < zg.
1 1 : 1
)E + 5(—2)‘%y - g(—Z)‘%y2 + E(—Z)‘%zf’,

[ K== [ K@=y
> K(y) [ _ Ll(z _ y)e)\*(zfy) _ Lg(—Z + y)%e)\*(zfy)]dy
>—Li [ K(y)( )er vy
" 11 _1 1 _3 o9 1 3.3 X G-w)
=Ly | K(y)|(=2)> +5(=2)" 2y — 2(=2)2y" + —(-2) "2y Yy
. 2 8 16
= —Lize) ? K(y)eM Ydy — Lie*™* K(y)ye) Vdy — Lo(—z)7eM K(y)et vdy
1 —L Xz " A* 1 —32 Xz A
+g5Lla(=2)"%e K(y)ye™ Ydy + gLa(—2)"2e K(y) Ydy
1 5y r *
— Lg(—z)_ie’\ z K(y)y?’e_/\ Ydy.

16
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The assumption lim;_,q+ g(I)/I = ¢’(0) yields that for any € € (0, g’(0)), there exists a constant § > 0 such that

Since Lo > 1 is large enough, I* ()

BSog ()1~ (2) — BS™(2)g

g(I)/1 > g'(0) —efor I € (0,0).

€ (0,9) and zg < z5 < z4 for z < zg. Thus we obtain from (3.12) that

(IZ(2)) = BSog'(0)IZ(2) —

851" (2)|4/(0) -

ﬂSog(I* (2)) + Ber e Fg(I2(2))
):| +/8€_1 €12 I*( ))
(%))

(2)+4'(0) - ( y 2

+ Ber e (O (2)

I
< 550[
I— -1 7 £12 T*
< Sy [ + Bey g (0)e* 1" (2)

< BSo(I*)*(2) + Bey 'g' (0)e** I* (2)

< BSoL222e*N' % — BeT g (0)LyzeE1 2% for 2 < z.

17
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Using ©(\*, ¢*) = ©,(A*, ¢*) = 0 and (3.8)-(3.13), we derive that
do /}R K(y)I*(z = y)dy — c*(I2)'(2) + BS(2)g(12(2)) — (d2 + p2 + 1) I (2)
= dy /RK(Z/)K (z —y)dy — c*(I")'(2) + [BS0g'(0) — da — pa — 7| I*(2) — [BSog'(0)I* (2) — BS*(2)g(I" (2))]

> do { — LyzeM'? K(y)e* Ydy — Lie™* K (y)ye* Vdy — Lg(—z)%e’\*z K(y)eM vdy

-r —r —r

1 Y . 1 . [T .
o Lo(—2)" 2N | K(y)ye Yy + ZLao(—2)" 2N | K(y)yPe N Vdy

8
1 O * *
—fmew%aZ/K@ffM@
16 &

. « 1 x .
—c[- LieN? — LiNzed ® + §L2(—Z)_%eA 7 — Lg)\*(—z)%eA “]

—r

+ [8Soy’ dz — pp — ][ = Lize®™® — La(—2)%eX"?] — [BSL32%e*"* — Bey g/ (0) Ly zel1+A7)7]

(0)
= —LieM* { N Vdy — N2+ [BSOg (0) —da — 2 77}Z+d2 K(y)ye)‘*ydy — c*}

— Ly(—z)2eM" {dQ K(y)eM Ydy — ¢*X* 4 8Sog'(0) — dy — pig — 7]
Az

x T x 1 X r *
[dg K(y)ye Ydy — c*| + Edng(fz)fge)‘ i K(y)y?e > Ydy

-T T

+ §L2(—z)7ie
— [BSoL322e* "% — Ber g (0)Lyze= +27)7]

1 o [T
+ 1—6d2L2(72)7%e’\ [ K(y)yPe N Vdy — —dng /K

-T

= — L1 2OV, ) + Oh(\*, )] = La(—2)7e* "0\, ¢*) + §L2(—z)_§e>‘ O\, ")

1 " x .
F(—z) BN LGdng/ K(y)y2e > Ydy — BSoL3(—2)7e)* — BeT g/ (0)Ly(—2)3 17
1 -3 Xz ' 2 -\ L 3 ,—A"
+ 1—6d2L2(fz) 2e K(y)y“e ™ Ydy + — K(y)y’e " Ydy

- -Tr

> 0 for z < zg.

If z > zg, then I* (z) = 0, which implies that

dz/RK(y)fi(Z —y)dy — " (I") () + BS™(2)g(I" (2)) = (d2 + p2 + 7)1"(2) = 0 for z > z.

The proof of this lemma is completed. m

Using Lemma 3.1-Lemma 3.4 yields that the continuous functions pairs (S*,I*)(z) and (S7%,I})(2) are a pair of
upper and lower solutions of system (1.7a)-(1.7b) with ¢ = c¢*. Then by the analogous argument in Section 2, one
can obtain that model (1.1) has a nontrivial, bounded and positive traveling wave solution with critical speed c¢*, which
satisfies (1.8). In particular, if 2 — —oco, I*(2) = O(ze* #) for Ry > 1 and ¢ = ¢*. In a combination with Section 2 and

Section 3, we finish the proof of Theorem 1.1.

4 Non-existence of sub-critical traveling wave solutions

In this section, we will show the non-existence of traveling wave solutions with the wave speed ¢ € (—o0, ¢*) for
(1.1). To this end, we shall explore separately the cases ¢ € (—o0,0] and ¢ € (0, ¢*). By the way of contradiction, for
¢ € (—o0, ¢*), we suppose that (1.7a)-(1.7b) possesses a nontrivial and positive solution (S, I')(z) satisfying

(Sv I)(*OO) = (5070) and (57 I)(OO) = (S*aI*)a 4.1)
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together with
S < S(z) < Spand 0 < I(z) < I forz€R, 4.2)

where S is defined in (2.5) and I is given in (1.9). From (4.1) and (H3), we have
g((z))

. _ /
ZEIPOO B8S(z) o) BS0g’(0). 4.3)
Then it follows from Ry = ﬁi‘;iigo) > 1 and (4.3) that there exists a number Z < 0 such that
g(I(2)) _ BSog'(0) | p2+~ .
S for z < 2. 4.4

In view of (4.4), we obtain from (1.7b) that

cl'(z) = dy /R K()(z —y) — I(z)]dy + BS(2)g(1(2)) = (n2 + 7)1 (2)

> d, / K@) —y) - I()dy + P09 O F 82 ¥ Y ry 1)

2
— ds /]R K)[I(z—y) — I(2)]dy + 5509/(0)2_ B2 7012 for = < 2. 4.5)
Noting the fact that
/_ /RK(y)[I(n—y) — I(n)]dydn = ilmoo 3 " K@)l —y) — 10n)dyd

S——00

n— y
= lim / / (t)dtdndy
S—r—00

= [ &) [ / I'(n — 0y)(~y)dbdndy

s——o0 [_.

~ lim K(y) /Z[I(n y) — I(n)]dndy

— im [ (9K | 1= 09) ~ 165~ 0y)a0ay

S——00 —r 0

r 1
- [ okt [ 16~ omyasay “6)

-

Then integrating (4.5) over (—oo, z] with z < £ and using (4.1), (4.2) and (4.6) yield that
z ﬁS / 0 _ _ z
R B R e e IR L

—da [ o) [ 1= ogpasay+ PO [y

T S —5 [*
2—2d21/0 yK (y)dy 509()2 K2 7[ I(n)dn,

which implies that the improper integral J(z) := [~__ I(n)dn is well-defined for any z < 2. Obviously, J(z) is a

continuously differentiable, positive and strictly increasing function for z € (—oo, Z].
Case I: The wave speed ¢ € (—o0,0]. Note that J(z) > 0 and —y.J(z — fy) is non-decreasing with respect to
6 € [0,1]. Then integrating (4.5) twice over (—o0, z] with z < 2 and using (4.6) give that

z r 1 / _ — Z
0> cJ(2) Zd2[ L (*y)K(y)/ 1 — by)dbdydn + 7209 (0)2 a 7/ J(n)dn

— lim dg// /J (n— Oy)dodydy + 52090 =12 =7 / J(n
s——00 _r

= lim dz/_ (—y)K(y)/[ (Z—Gy)—J(8—9y)}d9dy+B Og( >2 Mz—V/_ J(n)dn

§——00 0

z

— iz [ Corw) [ 9= opavay+ PO [ g0

—r —o0
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> 10(e) [ oKy + BLO 220 [ g,

Sog’ (0) — — #
_B 09()2 M2 7/ T(n)dy > 0,

which leads to a contradiction.

Case II: The wave speed ¢ € (0, ¢*). Note from (4.7) that

BS0g’ (0) — po — 7
2

/ J(n)dn < ¢J(z) for z < 2,

which implies that there exists a large enough constant 2y > 0 such that

20 [5509/(0) — M2 — 7}

J(z — z0) < cJ(z) for z < Z,

2
that is,

J(z — z0) < 6o J(z) for z < 2,
where the constant 8 := ——c—25————. Define

20[8S0g’(0)—p2—71]"
1 1 _ .
to := — log — and H(z) := J(z)e "% for z < 2.
20 do
Utilizing (4.8) and (4.9) gives that
H(z — 20) = J(z — zp)e H0(Z7%0) < §,.J(z)e M0 o0 = H(z) for z < 2,

which together with H(z) > 0 ensures that the limit value lim,_, ., H(z) exists. This implies that

sup {J(z)e "%} < 0.

z€(—00,2]

By (4.2), g(I(z)) < ¢'(0)I(2) for = € R and (1.7b), we have

oI'(:) < da | K= ) = Iy + [350g/(0) = o = 1)
Integrating (4.11) over (—oo, 2] with z < 2 — r and using I(—o0) = 0 yield that

eI(2) < da / K()[J(z—y) — J(2))dy + [8S0g'(0) — 2 — 21 (2).
From (4.10) and (4.12), we obtain that

sup  {I(z)e "%} < o0.

z€(—00,2—7]

Using (4.13) and (4.2), we define the following two-sided Laplace transform of I(z) by

£\ = /RI(z)e’/\Zdz,

where A € C with 0 < ReA < . Rewrite (1.7b) as follows

dz/RK(y) [1(2 = y) = I(2)]dy — cI'(2) + [BS0g'(0) — p2 = ¥} I(2) = BSog'(0)I(2) — BS(2)g(I(2)).

Taking the two-sided Laplace transform on (4.14) and using I(—o0) = 0, we deduce that

O.120) = [ [0/ O)1(2) — BS(JglI ()]

.7

(4.8)

(4.9)

(4.10)

@.11)

4.12)

(4.13)

(4.14)

(4.15)

where 0 < ReX < g and O(X, ¢) = ds [ K(y)e ™ *dy — cA+ $S0g'(0) — da — piz — 7. Recall that lim;_,q+ g(I)/I =

¢'(0), which indicates that for any & € (0, g’(0)), there exists a small positive constant § such that

> ¢'(0) —&when 0 < I <.
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Then if 0 < I(z) < 4, it follows that

(4.16)

Since (4.16) holds for arbitrary small enough é € (0, ¢'(0)) and (S,I)(z) — (So,0) as z — —oo, one can infer from
(4.16) that there exists a sufficient large number Z > 0 such that

B8S0g' (0)1(2) — BS(2)g(I(2)) < BI*(2) for z < = Z. (4.17)
Hence, we obtain from (4.17) and (4.13) that
sup e 02 [BSog'(0)(2) — BS(2)g(I(2))] < o0,
z€(—oo,min{Z—r,—Z}]

which implies that

/ [8S0g’ (0)I(2) — ﬂS(z)g(I(z))]e_Azdz < oo for 0 < ReA < 2pyp. (4.18)
R

In view of the property of Laplace transform [32], one can infer that one of the following two conclusions holds:
(i) £(N) is well-defined for A € C with ReX > 0;

(ii) There exists a positive constant g, such that £()\) is analytic for A € C with 0 < ReX\ < p, and A = p. is a
singular point of £(\).

Notice from (4.15) that two Laplace integrals [, I(z)e™**dz and [;[8S09'(0)I(2) — 3S(2)g(I(z))]e”**dz must be
analytically extended to the entire right half plane. If not, the Laplace [, I (2)e~**dz in (4.15) is analytic for A\ € C
with 0 < Rel < pp and admits a singular point A = . However, it follows from (4.18) that fR[ﬂsog/(O)I (z) —
BS(2)g(I(z))]e”**dz in (4.15) is analytic for A € C with 0 < Re\ < 2y, which yields a contradiction. Therefore,
(4.15) holds for A € C with ReA > 0. Note that for each ¢ € (0,¢*), ©(A,¢) — 0o as A — oo. Then let A — oo in

(4.15) lead to another contradiction. Based on the above arguments, we complete the proof of Theorem 1.2.
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