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Abstract. In this paper, the solvability of boundary value problems for a class of nonlinear

Hilfer fractional differential equations at resonance in Rn is studied. In the past, research on matrix

boundary value problems has consistently been conducted within the context of linear differential

equations. The main contribution of this paper is the extension of linear problems to nonlinear

ones. We begin by defining two Banach spaces endowed with appropriate norms and constructing

suitable operators in these Banach spaces. Subsequently, by using the extension for the continuous

theorem, certain sufficient conditions for the solvability of the problem are obtained. Finally, an

example is provided to verify the effectiveness of our main results.
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1 Introduction

This work considers the solvability of the following nonlinear Hilfer fractional matrix boundary

value problems in Rn:
Dα1,β1

0+ φp(D
α2,β2
0+ u(t)) = f(t, u(t), Dα2,β2

0+ u(t)), 0 ≤ t ≤ 1,

Dα2,β2
0+ u(0) = Dγ2−2

0+ u(0) = · · · = Dγ2−m
0+ u(0) = θ,

u(1) = A
∫ 1
0 u(t)h(t)dt,

(1.1)
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where 0 < α1 ≤ 1, m− 1 < α2 ≤ m, 0 ≤ β1, β2 ≤ 1, γ2 = α2 +mβ2 −α2β2, p > 1, φp(ϑ) = |ϑ|p−2ϑ,

u = (ui)n×1, A = (aii)n×n, aii ≤ 0, m,n ∈ N+, h(t) ≥ 0, f ∈ C
(
[0, 1] × R2n,Rn

)
, θ is the zero

vector in Rn and Dα,β
0+ represents the Hilfer fractional derivative operator.

Fractional differential equations are widely used in physical and biological fields, such as elas-

tomers, vibration and diffusion systems [1–14]. Fractional boundary value problems have been

extensively studied, and numerous results regarding their solvability have been obtained. For ex-

ample, Seal et al. [15] analyzed the convergence of solutions of fractional differential equations with

integral boundary conditions by spline approximation method. In [16], Zaky discussed the exis-

tence, uniqueness and stability of solutions to nonlinear tempered fractional generalized boundary

value problems. Furthermore, the method of singular spectrum collocation for obtaining the numer-

ical solutions of these equations has been developed and analyzed. In [17], Azouzi et al. obtained

the existence of solutions for generalized fractional boundary value problems by using the Mawhin

continuation theorem. Moreover, Wang et al. [18] derived the existence of triple positive solutions

for a class of fractional boundary value problems at resonance. Some new height functions and

spectral theory are also used to solve the positive solutions. The main method used is the fixed

point index theorem.

Mawhin’s continuation theorem [19] is a classical method often used to study the existence of

solutions for differential equations of the form Lx = Nx under resonance conditions, where the

operator L is an irreversible linear operator. Ge et al. [20] first generalized the result of Mawhin

in [19], in which the existence theory of solutions was obtained for the non-invertible nonlinear

operator L. Furthermore, Jiang [21] considered the following nonlinear problem with integral

boundary conditions in one-dimensional space: Dθ
0+(φp(D

γ
0+x))(t) + f(t, x(t), Dγ−1

0+ x(t), Dγ
0+x(t)) = 0,

x(0) = Dγ
0+x(0) = 0, x(1) =

∫ 1
0 g(t)x(t)dt,

(1.2)

where p > 1, 0 < θ ≤ 1, 1 < γ ≤ 2, φp(µ) = |µ|p−2µ, Dα
0+ denotes the Riemann-Liouville derivative

operator. The author improved the results in [20] and proved the existence of the solution to the

problem (1.2). Obviously, the problem (1.2) is a particular case of the problem (1.1) when n = 1,

m = 2 and β1 = β2 = 0. Subsequently, Wang et al. [22] considered the solvability on the half-line at

resonance for the case n = 1 and β1 = β2 = 0 in the problem (1.1). Baitiche et al. [23] also studied

the boundary value problem similar to one of [22] by using upper and lower solution approximation.

Recently, Feng et al. [24] have discussed the solvability of linear fractional boundary value problems
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in Rn without the p-Laplacian operator in the problem (1.1).

We should mention the main results obtained in [21, 24–26], which prompts us to consider the

problem (1.1). In [25], Phung et al. first researched the following second-order linear boundary

value problem:  u′′(t) = g(t, u, u′), 0 < t < 1,

u′(0) = θ, u(1) = Au(ξ),
(1.3)

where θ is a zero vector in Rn, 0 < ξ < 1 and A is an n-order square matrix satisfying one of the

following two conditions:  A2 = I (I stands for the unit matrix),

A2 = A.
(1.4)

By using Mawhin’s continuation theorem, the solvability conditions of the problem (1.3) were ob-

tained. Then, Phung et al. [26] studied the following Riemann-Liouville fractional linear boundary

value problem:  Dµu(t) = g(t, u(t), Dµu(t)), a.e. 0 < t < 1,

u(0) = θ, Dµ−1u(1) = ADµ−1u(ξ),
(1.5)

where 1 < µ ≤ 2, Dµ is the Riemann-Liouville differential operator of order µ.

In general, the highlights of this paper can be summarized as follows.

• On the one hand, compared with the linear problems (1.3) and (1.5), the nonlinear term φp

is introduced in the problem (1.1), which makes it more complicated to study the existence

of solutions. It is worth noting that we also extend the nonlinear boundary value problem

(1.3) to n-dimensional Euclidean space. (To the best of the author’s knowledge, this is the

first study on nonlinear boundary value problems in Rn).

• On the other hand, the boundary condition of the problem (1.1) is presented as an integral

form with a coefficient matrix, and the constraints on the coefficient matrix A have been

weakened. It is no longer required the idempotent or involutory matrices in (1.4). This can

be regarded as a generalization of the boundary conditions in the problem (1.3).

• In addition, the Hilfer fractional derivative in the problem (1.1) covers both Caputo and

Riemann-Liouville derivatives, and can be regarded as a generalization of these two types of

derivatives. Therefore, the research in this paper is not only an extension of the nonlinear

boundary value problem but also provides an interesting case for the application of Hilfer

fractional derivative in the field of calculus.
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The rest of this paper includes the following sections. In Sect. 2, some definitions and lemmas

are introduced, and two Banach spaces are constructed. In Sect. 3, we first give some preliminary

results that on needed in the proof of our main theorem. Based on the extension for the continuous

theorem, we then prove the existence of the solution of the problem (1.1). In Sect. 4, the main

results are illustrated by an example. A conclusion is introduced in Sect. 5.

2 Preliminaries

Definition 2.1. [20] Suppose that Y and Z are two Banach spaces with norms of ∥ · ∥Y and ∥ · ∥Z

respectively. If the continuous operator F : domF ∩ Y → Z satisfies the following conditions :

(a) KerF := {u ∈ domF ∩ Y : Fu = 0} is linearly homeomorphic to Rn,

(b) ImF := F (domF ∩ Y ) ⊂ Z is a closed,

where n <∞, domF is the domain of the operator F . Then the operator F is called quasi-linear.

Definition 2.2. [21] Assuming Nκ : Ω → Z, κ ∈ [0, 1] is a bounded and continuous operator, let

Σκ = {x ∈ Ω : Fx = Nκx}, KerF = Y1. Suppose furthermore that at least one vector space Z1 ⊂ Z

satisfies dimY1 = dimZ1. If there exist operators P , R and Q satisfying the following conditions

for any 0 ≤ κ ≤ 1:

(a) KerQ = ImF ,

(b) QNx = θ ⇔ QNκx = θ,

(c) R(·, 0) is the zero operator, and R(·, κ) |Σκ= (I − P ) |Σκ,

(d) F [P +R(·, κ)] = (I −Q)Nκ,

where P : Y → Y1 is a projector, R : Ω × [0, 1] → Y2 is a continuous compact operator, and

Q : Z → Z1 is a continuous bounded operator satisfying Q(I − Q) = 0. Then the operator Nκ is

called F-quasi-compact in Ω.

Definition 2.3. [27] Suppose the function u(t) is defined on the interval (a, b), and n−1 < µ ≤ n,

n ∈ N∗. The left Riemann-Liouville fractional derivative and integral of order µ are defined as:

Dµ
a+
u(t) =

dn

dtn
(In−µ

a+
u)(t) and Iµa+u(t) =

1

Γ(µ)

∫ t

a
(t− ξ)µ−1u(ξ)dξ.

Definition 2.4. [28] Suppose the function u(t) is defined on the interval (a, b), and n−1 < µ ≤ n,

n ∈ N∗, 0 ≤ δ ≤ 1. The left/right Hilfer fractional derivative of order µ and type δ is defined as:

Dµ,δ
a±u(t) = (±)nI

δ(n−µ)
a±

dn

dtn
(I

(1−δ)(n−µ)
a± u)(t).
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Remark 2.5. [28]

(1) The differential operator Dµ,δ
a± can be equivalently expressed as Dµ,δ

a± = I
δ(n−µ)
a± Dγ

a±, γ = µ +

nδ − µδ.

(2) The Riemann-Liouville derivative is equivalent to the Hilfer derivative when δ = 0, that is,

Dµ
a± = Dµ,0

a± .

(3) The Caputo derivative is equivalent to the Hilfer derivative when δ = 1, that is, CDµ
a± = Dµ,1

a± .

Lemma 2.6. [21] Assuming Y and Z are two Banach spaces with norms ∥ · ∥Y and ∥ · ∥Z ,

respectively, and Ω is a bounded non-empty open subset of Y . Suppose furthermore that the operator

F : domF ∩ Y → Z is quasi-linear, and Nκ : Ω → Z, κ ∈ [0, 1] is F-quasi-compact. If

(a) Fx ̸= Nκx, for all x ∈ domF ∩ ∂Ω and κ ∈ (0, 1),

(b) deg{KQN,Ω ∩KerF, 0} ≠ 0,

holds, where K : ImQ→ KerF is a homeomorphism with K(θ) = θ. Then there exists at least one

solution for the abstract equation Fx = Nx in domF ∩ Ω.

Lemma 2.7. [29] Assume m − 1 ≤ µ ≤ m, m ∈ N∗, Suppose furthermore that u ∈ L1(0, 1) and

Im−µ
0+ u ∈ ACm[0, 1], then

Iµ0+D
µ
0+u(t) = u(t)−

m∑
j=1

(Im−µ
0+ u(t))(m−j)

∣∣
t=0

Γ(µ− j + 1)
tµ−j .

Lemma 2.8. [29] Suppose µ > 0 and δ > 0, then

Dµ
0+t

δ−1 =
Γ(δ)

Γ(µ+ δ)
tµ+δ−1.

Lemma 2.9. [30] For any x and y with x, y ≥ 0, the following inequalities hold:

(1) φp(x+ y) ≤ 2p−2(φp(x) + φp(y)), p ≥ 2,

(2) φp(x+ y) ≤ φp(x) + φp(y), 1 < p ≤ 2,

where φp(x) = |x|p−2x.

Next, we define several Banach spaces and operators. By ∥u∥X = max{∥u∥∞, ∥Dα2,β2
0+ u∥∞}

we denote the norm of u in the space X =
{
u|u,Dα1,β1

0+ u ∈ C
(
[0, 1];Rn

)}
, where ∥u∥∞ =

maxt∈[0,1]max1≤i≤n |ui(t)|. Furthermore, by ∥y∥∞ we denote the norm of u in the space Y =

C
(
[0, 1];Rn

)
. The operators L : domL ∩X → Y and Nλ : X → Y are defined as follows

Lu(t) = Dα1,β1
0+ φp(D

α2,β2
0+ u(t)), t ∈ [0, 1], (2.1)
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Nλu(t) = λf(t, u(t), Dα2,β2
0+ u(t)), λ ∈ [0, 1], (2.2)

where

domL =
{
u|u ∈ X,Dα1,β1

0+ φp(D
α2,β2
0+ u) ∈ Y,Dα2,β2

0+ u(0) = Dγ2−2
0+ u(0) = · · · = Dγ2−m

0+ u(0) = θ,

u(1) = A

∫ 1

0
u(t)h(t)dt

}
. (2.3)

Therefore, we can write the problem (1.1) as Lu = Nu, u ∈ domL.

Let T = I − A
∫ 1
0 h(t)t

γ2−1dt and T+ be the Moore-Penrose pseudoinverse matrix of T . It is

necessary to give the following conclusions in [31] for our subsequent research:

(a) Im(I − T+T ) = KerT ;

(b) ImT+T = ImT ;

(c) TT+T = T ;

(d) T+TT+ = T+.

In addition, throughout this paper, we always suppose that det
(
I −A

∫ 1
0 h(t)t

γ2−1dt
)
= 0.

3 Main results

In this section, we will prove that the problem (1.1) has at least one solution. To make the

proof process clearer, six lemmas and one theorem will be given respectively.

Lemma 3.1. Suppose the condition det
(
I − A

∫ 1
0 h(t)t

γ2−1dt
)
= 0 holds, then the operator L

defined in (2.1) is quasi-linear.

Proof. It is not difficult to obtain that

KerL =
{
u ∈ domL|u(t) = ctγ2−1, c ∈ KerT

}
, (3.1)

where T = I −A
∫ 1
0 h(t)t

γ2−1dt. Now, we prove

ImL =
{
y ∈ Y |ϕy ∈ ImT

}
, (3.2)

where ϕ : Y → Rn is a linear operator defined by

ϕy = Iα2
0+φq(I

α1
0+y(t))

∣∣
t=1

−A

∫ 1

0
h(t)Iα2

0+φq(I
α1
0+y(t))dt, ∀y ∈ Y. (3.3)
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In fact, for each y ∈ ImL, there exists a function vector u ∈ domL such that

Dα1,β1
0+ φp(D

α2,β2
0+ u(t)) = y(t).

By Lemma 2.7 and Remark 2.5, we obtain

Dα2,β2
0+ u(t) = φq

(
Iα1
0+y(t) + c0t

γ1−1
)
,

where γ1 = α1 + β1 − α1β1, q = p
p−1 . Since Dα2,β2

0+ u(0) = Dγ2−2
0+ u(0) = · · · = Dγ2−m

0+ u(0) = θ, we

can get

u(t) = Iα2
0+φq(I

α1
0+y(t)) + c1t

γ2−1, c1 ∈ Rn.

From u(1) = A
∫ 1
0 h(t)u(t)dt, it can be deduced that

Iα2
0+φq(I

α1
0+y(t))|t=1 −A

∫ 1

0
h(t)Iα2

0+φq(I
α1
0+y(t))dt+

(
I −A

∫ 1

0
h(t)tγ2−1dt

)
c1 = θ. (3.4)

Consequently,

ImL ⊆
{
y ∈ Y |ϕy ∈ ImL

}
. (3.5)

On the other hand, let u(t) = Iα2
0+φq(I

α1
0+y(t)) + ξtγ2−1, ξ ∈ Rn, and assume that y ∈ Y satisfies

(3.4). By simple calculation, we can infer that u(t) satisfies the boundary conditions of the problem

(1.1) and

Lu(t) = Dα1,β1
0+ φp

(
Dα2,β2

0+

(
Iα2
0+φq(I

α1
0+y(t)) + ξtγ2−1

))
= Dα1,β1

0+ φp(φqI
α1
0+y(t)) = y(t).

Thus,

ImL ⊇
{
y ∈ Y |ϕy ∈ ImL

}
. (3.6)

Combining (3.5) and (3.6), we can get

ImL =
{
y ∈ Y |ϕy ∈ ImL

}
. (3.7)

Clearly, ImL ⊂ Y is closed. Thus, the operator L is called a quasi-linear operator.

The operator P : X → KerL is defined as

(Pu)(t) = (I − T+T )
tγ2−1

Γ(γ2)
Dγ2−1

0+ u(0). (3.8)

It can be derived by simple calculation that P 2u = Pu and ImP = KerL, thenKerP⊕KerL = X.

Hence, P : X → KerL is a projector.
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The operator Q : Y → Rn is defined as

Qy = c, (3.9)

where c satisfies

1

Γ(α2)

∫ 1

0
(1− s)α2−1φq

(
1

Γ(α1)

∫ s

0
(s− τ)α1−1[y(τ)− c]dτ

)
ds+ Tξ

−A

∫ 1

0

h(t)

Γ(α2)

∫ t

0
(t− s)α2−1φq

( 1

Γ(α1)

∫ s

0
(s− τ)α1−1[y(τ)− c]dτ

)
dsdt = θ. (3.10)

It can be proved that c is the unique constant vector satisfying (3.10). In fact, let

F (c) =
1

Γ(α2)

∫ 1

0
(1− s)α2−1φq

(
1

Γ(α1)

∫ s

0
(s− τ)α1−1[y(τ)− c]dτ

)
ds+ Tξ

−A

∫ 1

0

h(t)

Γ(α2)

∫ t

0
(t− s)α2−1φq

( 1

Γ(α1)

∫ s

0
(s− τ)α1−1[y(τ)− c]dτ

)
dsdt (3.11)

for all y ∈ Y . Since

T = I −A

∫ 1

0
h(t)tγ2−1dt

=


1

1

. . .

1

−


a11
∫ 1
0 h(t)t

γ2−1dt

a22
∫ 1
0 h(t)t

γ2−1dt

. . .

ann
∫ 1
0 h(t)t

γ2−1dt



=


1− a11

∫ 1
0 h(t)t

γ2−1dt

1− a22
∫ 1
0 h(t)t

γ2−1dt

. . .

1− ann
∫ 1
0 h(t)t

γ2−1dt

 ,

we have

Tξ =


1− ka11

1− ka22
. . .

1− kann




ξ1

ξ2
...

ξn

 =


ξ1(1− ka11)

ξ2(1− ka22)
...

ξn(1− kann)

 , (3.12)

where k =
∫ 1
0 h(t)t

γ2−1dt. Substituting (3.12) into F (c) =
(
Fi(c)

)
1×n

defined in (3.11), we can

obtain

Fi(c) =
1

Γ(α2)

∫ 1

0
(1− s)α2−1φq

(
1

Γ(α1)

∫ s

0
(s− τ)α1−1[yi(τ)− ci]dτ

)
ds+ ξi(1− kaii)
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− aii
Γ(α2)

∫ 1

0
h(t)

∫ t

0
(t− s)α2−1φq

( 1

Γ(α1)

∫ s

0
(s− τ)α1−1[yi(τ)− ci]dτ

)
dsdt.

Obviously, Fi(c) is continuous and strictly decreasing in R. Define a cone Λ in Rn as

Λ =
{
(Λ1,Λ2, · · · ,Λn)

⊤,Λi ≥ 0,Λi ∈ R, i = 1, 2, · · · , n
}
. (3.13)

Take

bi = min
t∈[0,1]

yi(t) +mi, di = max
t∈[0,1]

yi(t) +mi, i = 1, 2, · · ·n,

where mi =
ξi(1−kaii)φq(Γ(α1+1))Γ(α2+α1q−α1+1)

Γ(α1q−α1+1)(1−aii
∫ 1
0 h(t)tα2+α1q−α1dt)

, bi, di ∈ R. If bi = mint∈[0,1] yi(t) +mi, then

Fi(b) ≥0− mi

Γ(α2)

∫ 1

0
(1− s)α2−1φq

(
1

Γ(α1)

∫ s

0
(s− τ)α1−1dτ

)
ds

+
aiimi

Γ(α2)

∫ 1

0
h(t)

∫ t

0
(t− s)α2−1φq

(
1

Γ(α1)

∫ s

0
(s− τ)α1−1dτ

)
dsdt+ ξi(1− kaii)

=− miΓ(α1(q − 1) + 1)

φq(Γ(α1 + 1))Γ(α2 + α1(q − 1) + 1)
+
miaiiΓ(α1(q − 1) + 1)

∫ 1
0 h(t)t

α2+α1q−α1dt

φq(Γ(α1 + 1))Γ(α2 + α1(q − 1) + 1)

+ ξi(1− kaii)

=−
miΓ(α1(q − 1) + 1)

(
1− aii

∫ 1
0 h(t)t

α2+α1q−α1dt
)

φq(Γ(α1 + 1))Γ(α2 + α1(q − 1) + 1)
+ ξi(1− kaii)

=− ξi(1− kaii) + ξi(1− kaii) = 0.

Similarly, if di = maxt∈[0,1] yi(t) +mi, then Fi(d) ≤ 0. It is not difficult to see that F (b) ∈ Λ and

−F (d) ∈ Λ, where b = (b1, b2, · · · , bn)⊤, d = (d1, d2, · · · , dn)⊤. Hence, there must be a unique c

satisfying c− b ∈ Λ and d− c ∈ Λ, such that F (c) = θ. In addition, the boundedness of Q(Ω) can

be deduced from the fact that space Ω ⊂ Y is bounded.

Remark 3.2. By the definition of Q in (3.9), it is not difficult to conclude that Q is not a projector

but satisfies Q(I −Q)y = θ for all y ∈ Y .

Lemma 3.3. The operator Q by (3.9) is continuous in Y .

Proof. For any g, y ∈ Y , suppose Qg = d, Qy = b, where b, d ∈ Rn. Since φq is strictly increasing,

if di − bi > maxt∈[0,1]
(
gi(t)− yi(t)

)
, i = 1, 2, · · · , n, then

0 =
1

Γ(α2)

∫ 1

0
(1− s)α2−1φq

(
1

Γ(α1)

∫ s

0
(s− τ)α1−1[gi(τ)− di]dτ

)
dsdt+ ξi(1− kaii)

− aii

∫ 1

0
h(t)

1

Γ(α2)

∫ t

0
(t− s)α2−1φq

(
1

Γ(α1)

∫ s

0
(s− τ)α1−1[gi(τ)− di]dτ

)
dsdt
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=

∫ 1

0

(1− s)α2−1

Γ(α2)
φq

(
1

Γ(α1)

∫ s

0
(s− τ)α1−1[(yi(τ)− bi) + (gi(τ)− yi(τ))− (di − bi)]dτ

)
dsdt

+ ξi(1− kaii)− aii

∫ 1

0
h(t)

1

Γ(α2)

∫ t

0
(t− s)α2−1φq

(
1

Γ(α1)

∫ s

0
(s− τ)α1−1[(yi(τ)− bi)

+ (gi(τ)− yi(τ))− (di − bi)]dτ

)
dsdt

<
1

Γ(α2)

∫ 1

0
(1− s)α2−1φq

(
1

Γ(α1)

∫ s

0
(s− τ)α1−1[yi(τ)− bi]dτ

)
ds+ ξi(1− kaii)

− aii

∫ 1

0
h(t)

1

Γ(α2)

∫ t

0
(t− s)α2−1φq

(
1

Γ(α1)

∫ s

0
(s− τ)α1−1[yi(τ)− bi]dτ

)
dsdt = 0.

This is a contradiction. Conversely, if di − bi < mint∈[0,1](gi(t)− yi(t)), then

0 =
1

Γ(α2)

∫ 1

0
(1− s)α2−1φq

(
1

Γ(α1)

∫ s

0
(s− τ)α1−1[gi(τ)− di]dτ

)
dsdt+ ξi(1− kaii)

− aii

∫ 1

0
h(t)

1

Γ(α2)

∫ t

0
(t− s)α2−1φq

(
1

Γ(α1)

∫ s

0
(s− τ)α1−1[gi(τ)− di]dτ

)
dsdt

>
1

Γ(α2)

∫ 1

0
(1− s)α2−1φq

(
1

Γ(α1)

∫ s

0
(s− τ)α1−1[yi(τ)− bi]dτ

)
dsdt+ ξi(1− kaii)

− aii

∫ 1

0
h(t)

1

Γ(α2)

∫ t

0
(t− s)α2−1φq

(
1

Γ(α1)

∫ s

0
(s− τ)α1−1[yi(τ)− bi]dτ

)
dsdt = 0,

the contradiction appears. Consequently,

min
t∈[0,1]

(
gi(t)− yi(t)

)
≤ di − bi ≤ max

t∈[0,1]

(
gi(t)− yi(t)

)
.

Then, it can be concluded that Q : Y → Rn is continuous.

Lemma 3.4. The definition of the operator R : X × [0, 1] → X2 is

R(u, λ)(t) = Iα2
0+φq

(
Iα1
0+(Nλu(t)−QNλu(t))

)
− T+ϕ

(
Nλu(t)−QNλu(t)

)
tγ2−1, (3.14)

where ϕ is defined in (3.3), KerL⊕X2 = X. Then the operator R : Ω× [0, 1] → X2 is continuous

and compact, where Ω ⊂ X is an open bounded set.

Proof. Obviously, R is continuous. Next, we show that R is compact. In fact, for any u ∈ Ω,

by the boundedness of f on a bounded closed domain and the boundedness of Q, we obtain

that there exist constants k1 > 0, k2 > 0 such that max(t,u)∈[0,1]×Ω |f(t, u(t), Dα2,β2
0+ u(t))| ≤ k1,

|Qf(t, u(t), Dα2,β2
0+ u(t))| ≤ k2, then

|R(u, λ)(t)| =
∣∣∣ 1

Γ(α2)

∫ t

0
(t− s)α2−1φq

( 1

Γ(α1)

∫ s

0
(s− r)α1−1[Nλu(r)−QNλu(r)]dr

)
ds
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− T+ϕ
(
Nλu(t)−QNλu(t)

)
tγ2−1

∣∣∣
≤ 1

Γ(α2)

∫ t

0
(t− s)α2−1φq

( k1 + k2
Γ(α1 + 1)

)
ds+ ∥T+∥∗

∣∣ϕ(Nλu(t)−QNλu(t))
∣∣

≤ 1

Γ(α2 + 1)
φq

(
k1 + k2

Γ(α1 + 1)

)
+ ∥T+∥∗

∣∣∣Iα2
0+φq

(
Iα1
0+[Nλu(t)−QNλu(t)]

)∣∣
t=1

−A

∫ 1

0
h(t)Iα2

0+φq

(
Iα1
0+[Nλu(t)−QNλu(t)]

)
dt
∣∣∣

≤ 1

Γ(α2 + 1)
φq

(
k1 + k2

Γ(α1 + 1)

)
+

∥T+∥∗
Γ(α2 + 1)

φq

(
k1 + k2

Γ(α1 + 1)

)

+
∥T+∥∗∥A∥∗
Γ(α2 + 1)

φq

(
k1 + k2

Γ(α1 + 1)

)∫ 1

0
h(t)dt

≤
(
1 + ∥T+∥∗ + ∥T+∥∗∥A∥∗

∫ 1

0
h(t)dt

)φq

(
k1+k2

Γ(α1+1)

)
Γ(α2 + 1)

and

|Dα2,β2
0+ R(u, λ)(t)| =

∣∣Iβ2(n−α2)
0+ Dγ2

0+R(u, λ)(t)
∣∣ = ∣∣φq

(
Iα1
0+[Nλu(t)−QNλu(t)]

)∣∣ ≤ φq

(
k1 + k2

Γ(α1 + 1)

)
,

where ∥ · ∥∗ stand for the max-norm of matrices, |x| = max{|xi|, i = 1, 2, · · ·n}. Therefore, R is

bounded.

For any u ∈ Ω̄, 0 ≤ λ ≤ 1 and 0 ≤ t1 < t2 ≤ 1, there are∣∣∣R(u, λ)(t2)−R(u, λ)(t1)
∣∣∣

=

∣∣∣∣∣ 1

Γ(α2)

∫ t2

0
(t2 − s)α2−1φq

( 1

Γ(α1)

∫ s

0
(s− r)α1−1

(
Nλu(r)−QNλu(r)

)
dr
)
ds

− 1

Γ(α2)

∫ t1

0
(t1 − s)α2−1φq

( 1

Γ(α1)

∫ s

0
(s− r)α1−1

(
Nλu(r)−QNλu(r)

)
dr
)
ds

− T+

[
Iα2
0+φq(I

α1
0+[Nλu(t)−QNλu(t)])|t=1

−A

∫ 1

0
h(t2)

1

Γ(α2)

∫ t2

0
(t2 − s)α2−1φq

( 1

Γ(α1)

∫ s

0
(s− r)α1−1[Nλu(r)−QNλu(r)]dr)dsdt2

]
tγ2−1
2

+ T+

[
Iα2
0+φq(I

α1
0+[Nλu(t)−QNλu(t)])|t=1

−A

∫ 1

0
h(t1)

1

Γ(α2)

∫ t1

0
(t1 − s)α2−1φq

( 1

Γ(α1)

∫ s

0
(s− r)α1−1[Nλu(r)−QNλu(r)]dr)dsdt1

]
tγ2−1
1

∣∣∣∣∣
≤ 1

Γ(α2)

∣∣∣ ∫ t1

0
[(t2 − s)α2−1 − (t1 − s)α2−1]φq

( 1

Γ(α1)

∫ s

0
(s− r)α1−1[Nλu(r)−QNλu(r)]dr

)
ds

+

∫ t2

t1

(t2 − s)α2−1φq

( 1

Γ(α1)

∫ s

0
(s− r)α1−1[Nλu(r)−QNλu(r)]dr)ds

∣∣∣
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+
∥T+∥∗

Γ(α2 + 1)
φq

(
k1 + k2

Γ(α1 + 1)

)
(tγ2−1

2 − tγ2−1
1 ) +

∥T+A∥∗
∫ 1
0 h(t)dt

Γ(α2 + 1)
(tγ2−1

2 − tγ2−1
1 )φq

(
k1 + k2

Γ(α1 + 1)

)

≤ 1

Γ(α2 + 1)
φq

(
k1 + k2

Γ(α1 + 1)

)
(tα2

2 − tα2
1 )

+
(
∥T ∗∥∗ + ∥T ∗A∥∗

∫ 1

0
h(t)dt

) 1

Γ(α2 + 1)
φq

(
k1 + k2

Γ(α1 + 1)

)
(tγ2−1

2 − tγ2−1
1 )

and∣∣∣Dα2,β2
0+ R(u, λ)(t2)−Dα2,β2

0+ R(u, λ)(t1)
∣∣∣ =∣∣∣∣∣φq

( 1

Γ(α1)

∫ t2

0
(t2 − s)α1−1(Nλu(s)−QNλu(s))ds

)
− φq

( 1

Γ(α1)

∫ t1

0
(t1 − s)α1−1(Nλu(s)−QNλu(s))ds

)∣∣∣∣∣.
Since∣∣∣∣∣ 1

Γ(α1)

∫ t2

0
(t2 − s)α1−1(Nλu(s)−QNλu(s))ds−

1

Γ(α1)

∫ t1

0
(t1 − s)α1−1(Nλu(s)−QNλu(s))ds

∣∣∣∣∣
=

1

Γ(α1)

∣∣∣∣∣
∫ t1

0
[(t2 − s)α1−1 − (t1 − s)α1−1](Nλu(s)−QNλu(s))ds

+

∫ t2

t1

(t2 − s)α1−1(Nλu(s)−QNλu(s))ds

∣∣∣∣∣
≤k1 + k2

Γ(α1)

∣∣∣∣∣
∫ t1

0
[(t2 − s)α1−1 − (t1 − s)α1−1]ds+

∫ t2

t1

(t2 − s)α1−1ds

∣∣∣∣∣
≤ k1 + k2
Γ(α1 + 1)

(tα1
2 − tα1

1 ),

∣∣∣ ∫ t

0

(t− s)α1−1

Γ(α1)
(Nλu(s)−QNλu(s))ds

∣∣∣ ≤ k1 + k2
Γ(α1 + 1)

and φq(ϑ) is uniformly continuous on
[
− k1+k2

Γ(α1+1) ,
k1+k2

Γ(α1+1)

]
. Consequently, {R(u, λ) | (u, λ) ∈

Ω× [0, 1]} and {Dα2,β2
0+ R(u, λ) | (u, λ) ∈ Ω× [0, 1]} are equicontinuous. In view of the Arzela-Ascoli

Theorem, it yields that R : Ω× [0, 1] → X2 is compact.

Lemma 3.5. Suppose that Ω is a bounded, open subset of X. Then the operator Nλ defined in

(2.2) is L-quasi-compact in Ω̄.

Proof. It is not difficult to deduce that dimKerL = dimImQ, KerQ = ImL, R(·, 0) = θ and

QNλu(t) = θ ⇔ QNu(t) = θ. Then (a) and (b) of Definition 2.2 hold.
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For each u ∈ Σλ = {u ∈ Ω | Lu = Nλu}, there is Nλu ∈ ImL = KerQ, so QNλu = θ. It follows

from Nλu = Lu(t) = Dα1,β1

0+
φp

(
Dα2,β2

0+
u(t)

)
and R(u, 0)(t) = Dα2,β2

0+ R(u, 0)(t) = θ that

R(u, λ)(t) =Iα2
0+φq(I

α1
0+(Nλu(t)−QNλu(t))− T+ϕ

(
Nλu(t)−QNλu(t)

)
tγ2−1

=Iα2
0+φq

(
Iα1
0+(Nλu(t)

)
− T+ϕ

(
Nλu(t)

)
tγ2−1

=Iα2
0+φq

(
Iα1
0+I

β1(1−α1)
0+ Dγ1

0+φp(D
α2,β2
0+ u(t)

)
− T+ϕ

(
Nλu(t)

)
tγ2−1

=u(t)− tγ2−1

Γ(γ2)
Dγ2−1

0+ u(0) + T+T
tγ2−1

Γ(γ2)
Dγ2−1

0+ u(0)

=u(t)− (I − T+T )
tγ2−1

Γ(γ2)
Dγ2−1

0+ u(0)

=(I − P )u.

Consequently, (c) in Definition 2.2 is satisfied.

For any u ∈ Ω, there is

L[Pu+R(u, λ)](t) =Dα1,β1
0+ φp

(
Dα2,β2

0+

(
pu(t) +R(u, λ)(t)

))
=Dα1,β1

0+ φp

[
Dα2,β2

0+ (I − T+T )
tγ2−1

Γ(γ2)
Dγ2−1

0+ u(0)

+Dα2,β2
0+

(
Iα2
0+φq

(
Iα1
0+(Nλu(t)−QNλu(t))

)
− T+ϕ

(
Nλu(t)−QNλu(t)

)
tγ2−1

)]
=Dα1,β1

0+ φp

(
Dα2,β2

0+ Iα2
0+φq

(
Iα1
0+(Nλu(t)−QNλu(t))

))
=(I −Q)Nλu(t),

then (d) of Definition 2.2 holds. Thus, the operator Nλ is L-quasi-compact in Ω.

Next, we will give the main theorem.

Theorem 3.6. Suppose the following conditions hold:

(H1) There exists a constant M > 0 such that for every u ∈ domL, if |t1−γ2u(t)| > M , t ∈ [0, 1],

then either

(1) ⟨t1−γ2u,Qf⟩ > 0 or (2) ⟨t1−γ2u,Qf⟩ < 0, ∀t ∈ [0, 1]

holds, where ⟨·, ·⟩ is the scalar product in Rn.

(H2) There exist three non-negative functions a, ψ, ς ∈ C[0, 1] such that∣∣∣f(t, ω,ϖ)
∣∣∣ ≤ a(t)φp(|ω|) + ψ(t)φp(|ϖ|) + ς(t), 0 ≤ t ≤ 1,

where max{1, 2q−2}
[
φq(∥ψ∥∞) +

2φq(∥a∥∞)
Γ(α2+1)

]
< φq(Γ(α1 + 1)).

Then there exists at least one solution in X for the problem (1.1).
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To prove Theorem 3.6, the following lemmas are first established.

Lemma 3.7. Assume that (H1) and (H2) hold. Let Ω1 = {u ∈ domL|Lu = Nλu, λ ∈ (0, 1)}, then

Ω1 is bounded in X.

Proof. For any u ∈ Ω1, we have Lu = Nλu, Nλu ∈ ImL = KerQ, then QNλu(t) = θ. It is known

from (H1) that there exists t0 ∈ [0, 1] such that
∣∣t1−γ2
0 u(t0)

∣∣ ≤M . Since Lu = Nλu, there is

u(t) = Iα2
0+φq(λI

α1
0+Nu(t)) + ξtγ2−1, (3.15)

and then by (H2), it follows that

|ξ| ≤|t1−γ2
0 u(t)|+ |t1−γ2

0 Iα2
0+φq(I

α1
0+Nu(t))|

≤M +
t1−γ2
0

Γ(α2)

∫ t0

0
(t0 − s)α2−1φq

( 1

Γ(α1)

∫ s

0
(s− ϱ)α1−1|f(ϱ, u(ϱ), Dα2,β2

0+ u(ϱ))|dϱ
)
ds

≤M +
t1−γ2
0

Γ(α2)

∫ t0

0
(t0 − s)α2−1φq

(∥a∥∞φp(∥u∥∞) + ∥ψ∥∞φp(∥Dα2,β2
0+ u∥∞) + ∥ς∥∞

Γ(α1 + 1)

)
ds

≤M +
max{1, 2q−2}

[
φq(∥a∥∞)∥u∥∞ + φq(∥ψ∥∞)∥Dα2,β2

0+ u∥∞ + φq(∥ς∥∞)
]

Γ(α2 + 1)φq(Γ(α1 + 1))
.

Since

|Dα2,β2
0+ u(t)| =|Dα2,β2

0+ Iα2
0+φq

(
λIα1

0+Nu(t)
)
+Dα2,β2

0+ ξtγ2−1|

≤
max{1, 2q−2}

[
φq(∥a∥∞)∥u∥∞ + φq(∥ς∥∞) + φq(∥ψ∥∞)∥Dα2,β2

0+ u∥∞
]

φq(Γ(α1 + 1))
,

we can get

∥Dα2,β2
0+ u∥∞ ≤

max{1, 2q−2}
[
φq(∥a∥∞)∥u∥∞ + φq(∥ς∥∞)

]
φq(Γ(α1 + 1))−max{1, 2q−2}φq(∥ψ∥∞)

. (3.16)

Therefore,

|ξ| ≤M +
max{1, 2q−2}[φq(∥a∥∞)∥u∥∞ + φq(∥ς∥∞)]

Γ(α2 + 1)φq(Γ(α1 + 1))

+
max{1, 2q−2}φq(∥ψ∥∞)[φq(∥a∥∞)∥u∥∞ + φq(∥ς∥∞)]

Γ(α2 + 1)φq(Γ(α1 + 1))[φq(Γ(α1 + 1))−max{1, 2q−2}φq(∥ψ∥∞)]

=M +
max{1, 2q−2}φq(Γ(α1 + 1))

[
φq(∥a∥∞)∥u∥∞ + φq(∥ς∥∞)

]
Γ(α2 + 1)φq(Γ(α1 + 1))

[
φq(Γ(α1 + 1))−max{1, 2q−2}φq(∥ψ∥∞)

] .
Bring the above inequality into (3.15) to get

|u(t)| ≤|Iα2
0+φq(λI

α1
0+Nu(t))|+ |ξtγ2−1|
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≤
max{2, 2q−1}φq(Γ(α1 + 1))

[
φq(∥a∥∞)∥u∥∞ + φq(∥ς∥∞)

]
Γ(α2 + 1)φq(Γ(α1 + 1))

[
φq(Γ(α1 + 1))−max{1, 2q−2}φq(∥ψ∥∞)

] +M.

Then,

∥u∥∞ ≤
max{2, 2q−1}φq(∥ς∥∞) +MΓ(α2 + 1)

[
φq(Γ(α1 + 1))−max{1, 2q−2}φq(∥ψ∥∞)

]
Γ(α2 + 1)

[
φq(Γ(α1 + 1))−max{1, 2q−2}φq(∥ψ∥∞)

]
−max{2, 2q−1}φq(∥a∥∞)

. (3.17)

Hence, together with (3.16) and (3.17), it can be deduced that Ω1 is bounded in X.

Lemma 3.8. Assume that (H1) holds, then Ω2 = {u|u ∈ KerL,QNu = θ} is bounded in X.

Proof. Let u ∈ Ω2, we have QNu(t) = θ and u(t) = ctγ2−1, c ∈ Rn. According to (H1), there exists

t0 ∈ [0, 1] such that
∣∣t1−γ2
0 u(t0)

∣∣ ≤M . Thus we get that |c| ≤M , then Ω2 is bounded in X.

The following is the proof of Theorem 3.6.

Proof. Let Ω ⊃
(
Ω1 ∪ Ω2 ∪ {x|x ∈ X, ∥x∥ ≤ M}

)
be a bounded open subset of X. Lemma 3.7

implies that Lu ̸= Nλu, u ∈ domL ∩ ∂Ω, while Lemma 3.8 leads to the conclusion that QNu ̸= θ,

u ∈ KerL∩∂Ω. LetH(u, ζ) = ρζu+(1−ζ)JQNu, where u ∈ KerL∩Ω, ζ ∈ [0, 1], J : ImQ→ KerL

is a homeomorphism with Jη = ηtγ2−1, and

ρ =

 1, if (H1) (1) holds,

−1, if (H1) (2) holds.

Given any u ∈ KerL ∩ ∂Ω, there are u(t) = η0t
γ2−1 and H(u, ζ) = ρζη0t

γ2−1 + (1− ζ)(Qf)tγ2−1.

If ζ = 1, then H(u, 1) = ρη0t
γ2−1 ̸= θ.

If ζ = 0, then H(u, 0) = (Qf)tγ2−1 ̸= θ.

If 0 < ζ < 1, supposeH(u, ζ) = θ, then ρζη0t
γ2−1 = −(1−ζ)(Qf)tγ2−1. So there is η0 = − (1−ζ)(Qf)

ζρ .

It follows from (H1) and |η0| = |t1−γ2u(t)| > M that

⟨η0, η0⟩ = −1− ζ

ζ

⟨η0, Qf⟩
ρ

< 0.

This is a contradiction. Hence, H(u, ζ) ̸= θ, for all u ∈ KerL ∩ ∂Ω, ζ ∈ [0, 1]. The homotopy

property of degree yields the result that

deg(JQN |KerL,Ω ∩KerL, θ) = deg(H(·, 0),Ω ∩KerL, θ)

= deg(H(·, 1),Ω ∩KerL, θ)

= deg(ρI,Ω ∩KerL, θ) ̸= 0.

Combining Lemmas 3.1-3.5 and applying Lemma 2.6, we conclude that the problem (1.1) has at

least one solution in X. The proof is completed.
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4 Example

Example 1. We consider the following boundary value problem at resonance in R2:

D
1
2
, 1
2

0+ φ 5
2
(D

5
2
, 1
2

0+ u1(t)) = f1(t, u1(t), u2(t), D
5
2
, 1
2

0+ u1(t), D
5
2
, 1
2

0+ u2(t)), 0 ≤ t ≤ 1,

D
1
2
, 1
2

0+ φ 5
2
(D

5
2
, 1
2

0+ u2(t)) = f2(t, u1(t), u2(t), D
5
2
, 1
2

0+ u1(t), D
5
2
, 1
2

0+ u2(t)), 0 ≤ t ≤ 1,

D
5
2
, 1
2

0+ u1(0) = D
5
2
, 1
2

0+ u2(0) = 0, D
3
4
0+u1(0) = D

3
4
0+u2(0) = 0,

u1(1) = −2
∫ 1
0 t

− 3
4u1(t)dt, u2(1) = −3

∫ 1
0 t

− 3
4u2(t)dt,

(4.1)

where α1 =
1
2 , β1 =

1
2 , α2 =

5
2 , β2 =

1
2 , γ2 =

11
4 , p =

5
2 , h(t) = t−

3
4 , f : [0, 1]×R4 → R2 are defined

as

f(t, u, z) =
(
f1(t, u1, u2, z1, z2), f2(t, u1, u2, z1, z2)

)⊤
=
(
− u1 + z1 − e5

20
,
|u2|+ |z2|+ e3

40

)⊤
for any t ∈ [0, 1] and u = (u1, u2)

⊤, z = (z1, z2)
⊤ ∈ R2.

Clearly, A =

−2 0

0 −3

, T =
∫ 1
0 h(t)t

γ2−1dt =

2 0

0 5
2

. Let ξ =

1

2

, then Tξ =

2

5

.

Now we prove that the conditions of Theorem 3.6 hold. Choose nonnegative integrable functions

a = ψ = 1
20 and ς = e5

20 , then there is

∣∣f(t, u, z)∣∣ ≤ a(t)φp(|u|) + ψ(t)φp(|z|) + ς(t).

After some simple calculations,

φq(Γ(α1 + 1))−max{1, 2q−2}
[
φq(∥ψ∥∞) +

2

Γ(α2 + 1)
φq(∥a∥∞)

]
≈ 0.6505 > 0

can be obtaind. Therefore, (H2) is satisfied.

In order to check (H1), let M = 3, c = (∥f1∥∞ + 5.8997, ∥f2∥∞ + 12.6422)⊤, then c satisfies

(3.10). If
∣∣t1−γ2
0 u(t0)

∣∣ > M = 3 hold for any t ∈ [0, 1], then ⟨t1−γ2u,Qf⟩ = ⟨t1−γ2u, c⟩ > 0. Hence,

the condition (H1) holds. From Theorem 3.6, it can be obtained that the problem (4.1) has at least

one solution.

To intuitively illustrate the existence of solutions for the problem (4.1), we conducted numerical

simulations using MATLAB. Figures 1 and 2 depict the cases for p = 2.5 and p = 1.5, respectively.



17

Fig. 1: State u(t) of the system (4.1) when p = 2.5. Fig. 2: State u(t) of the system (4.1) when p = 1.5.

5 Conclusion

In this paper, we investigated the nonlinear Hilfer fractional boundary value problem at reso-

nance in Rn. By using the extension for the continuous theorem, the conclusion that the problem

(1.1) has at least one solution in X was obtained. To achieve our main results, we defined two

Banach spaces with specified norms and construct the appropriate operators P , Q and R within

these Banach spaces. Subsequently, we proved the necessary requirements before applying Lemma

2.6. It is worth noting that the variables in the n-dimensional Euclidean space are represented as

vectors or matrices, and we cannot assume a direct size relationship. The cone in (3.13) is skillfully

defined, effectively resolving existing issues. Finally, we provided an example to verify the validity

of our conclusion.
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