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Abstract: For a graph G and real number α ∈ [0, 1], the Aα-spectral radius of G is
the largest eigenvalue of Aα(G) := αD(G) + (1 − α)A(G), where A(G) and D(G) are
the adjacency matrix and the diagonal degree matrix of G, respectively. Recently, for
α ∈ [12 , 1], Chen, Li and Huang [Discrete Appl. Math., 340(2023), 350-362], as well as
Ye, Guo and Zhang [Discrete Appl. Math., 342(2024), 286-294] independently identified
the graph with maximum Aα-spectral radius among all graphs in G(m, g), the class of
connected graphs on m edges with girth g. In this paper, we further determine the
second to the

(
⌊g2⌋+ 2

)
th largest Aα-spectral radius of graphs in G(m, g). Moreover,

for α ∈ [12 , 1], we also determine the first to the
(
⌊g2⌋+ 3

)
th largest Aα-spectral radius

of graphs in G(m,≥ g), the class of connected graphs on m edges with girth no less
than g, which generalizes the recent result of Hu, Lou and Huang (2022) on α = 1

2 .
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1 Introduction

All graphs considered in this paper are undirected and simple (i.e., without loops or multiple
edges). Let G = (V (G), E(G)) be a graph of order n and size m. For v ∈ V (G), let dG(v) and
NG(v) (or d(v) and N(v) for short) be the degree and the set of neighbors of v, respectively.
And let NG[v] = NG(v)∪ {v}. The maximum degree of G is denoted by ∆(G) (or ∆ for short).
The girth of a graph G, denoted by g, is the length of the shortest cycle in G. Let A(G) and
D(G) be the adjacency matrix and the diagonal degree matrix of a graph G, respectively. For
α ∈ [0, 1], Nikiforov [14] defined the Aα(G)-matrix of G as

Aα(G) = αD(G) + (1− α)A(G).

Clearly, A0(G) = A(G), A1(G) = D(G) and A 1
2
(G) = 1

2Q(G), where Q(G) is known as the
signless Laplacian matrix of G. Note that Aα(G) is a non-negative and real symmetric matrix.
Then the eigenvalues of Aα(G) (also called the Aα-eigenvalues of G) are real. The largest
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eigenvalue of Aα(G), denoted by ρα(G), is called the Aα-spectral radius of G. Obviously, 2ρ 1
2
(G)

is the signless Laplacian spectral radius of G (the largest eigenvalue of Q(G)).
Cvetković et al. [5] proposed some possible directions for further investigations on graph

spectra. One of which is how to order graphs according to their spectral invariants. Hence
ordering graphs with various properties by their spectra, specially by their spectral radius (the
largest eigenvalues of various matrices associated with graphs), becomes an attractive topic and
has received a lot of attentions in recent years (see [1, 3, 6–11,13,15] for details).

Let G(m, g) (G(m,≥ g)) be the set of connected graphs with size m and girth g (girth at least
g). Moreover, let Cg = u0u1 . . . ug−2ug−1uo be a cycle of length g, and denote by Gi ∈ G(m, g)
the graph obtained from Cg by attaching m−g−1 pendent vertices to a vertex u0 and a pendent
vertex w being adjacent to ui in Cg, where 0 ≤ i ≤ ⌊ g2⌋. Clearly, G0 is the graph obtained by
identifying a vertex u0 of Cg and the central vertex of K1,m−g. Let G∗ be the graph obtained
from Cg by attaching m−g−2 pendent edges and a P3, respectively, to u0, where P3 = u0w1v1.
The above mentioned three graphs are shown in Figure 1.
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Figure 1: The graphs G0, Gi and G∗.

Among all graphs in G(m, g), Chen, Wang and Zhai [4] identified the graph with maximum
signless Laplacian spectral radius. Very recently, Hu, Lou and Huang [8] further determined the
second to the (⌊g2⌋ + 2)th largest graphs according to their signless Laplacian spectral radius.
Their results can be combined into the following theorem.

Theorem 1.1 ( [4,8]) Among all graphs in G(m, g) with m ≥ 3g ≥ 12, the order of the first
(⌊g2⌋+ 2)th largest graphs according to their signless Laplacian spectral radius is given by:

G0, G1, G
∗, G2, G3, . . . , G⌊ g

2
⌋.

Let Gi
g and G∗

g instead of Gi (0 ≤ i ≤ ⌊ g2⌋) and G∗, respectively. Hu, Lou and Huang [8]
also determined the first to the (⌊g2⌋+ 3)th largest graphs according to their signless Laplacian
spectral radius among all graphs in G(m,≥ g) as follows.

Theorem 1.2 ( [8]) Among all graphs in G(m,≥ g) with m ≥ 3g ≥ 12, the order of the first
(⌊g2⌋+ 3)th largest graphs according to their signless Laplacian spectral radius is given by:

G0
g, G

1
g, G

∗
g, G

2
g, G

3
g, . . . , G

⌊ g
2
⌋

g , G0
g+1.

Very recently, for α ∈ [12 , 1), Chen, Li and Huang [2], as well as Ye, Guo and Zhang [18]
independently determined the following graph with maximum Aα-spectral radius among all
graphs in G(m, g), which generalizes the result of Chen, Wang and Zhai [4] on α = 1

2 .

Theorem 1.3 ( [2,18]) For any G ∈ G(m, g) and α ∈ [12 , 1), we have ρα(G) ≤ ρα(G0). More-
over, the equality holds if and only if G ∼= G0.
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In this paper, for α ∈ [12 , 1), we further determine the second to the
(
⌊g2⌋+ 2

)
th largest

graphs in G(m, g) according to their Aα-spectral radius as follows.

Theorem 1.4 For α ∈ [12 , 1), the first ⌊g2⌋ + 1 graphs in G(m, g)
\
{G0} with m ≥ 3g ≥ 12

according to their Aα-spectral radius are as follows:

G1, G
∗, G2, G3, . . . , G⌊ g

2
⌋.

Remark 1.1 Combining Theorem 1.3 and Theorem 1.4, we know that among all graphs in
G(m, g), the first to

(
⌊g2⌋+ 2

)
th largest graphs according to their Aα-spectral radius for α ∈ [12 , 1)

are determined, which generalizes Theorem 1.1.

Moreover, we further consider the first to the (⌊g2⌋ + 3)th largest graphs according to their
Aα-spectral radius among all graphs in G(m,≥ g) and extend Theorem 1.2 as follows.

Theorem 1.5 For α ∈ [12 , 1), the first ⌊g2⌋+3 graphs in G(m,≥ g) with m ≥ 3g ≥ 12 according
to their Aα-spectral radius are as follows:

G0
g, G

1
g, G

∗
g, G

2
g, G

3
g, . . . , G

⌊ g
2
⌋

g , G0
g+1.

Clearly, Theorem 1.2 follow from Theorem 1.5 if we let α = 1
2 .

2 Preliminaries

In this section, we present some preliminary results and lemmas which are useful.
Recall that Aα(G) is a nonnegative and real symmetric matrix. Then there is a non-negative

unit eigenvector x of Aα(G) corresponding to ρα(G) such that

ρα(G) = xTAα(G)x = (2α− 1)
∑

u∈V (G)

d(u)x2u + (1− α)
∑

uv∈E(G)

(xu + xv)
2, (1)

where xu is the entry of x corresponding to the vertex u. We call such eigenvector x the Perron
vector of Aα(G). In addition, if G is connected, then Aα(G) is irreducible and thus its Perron
vector is a positive unit eigenvector. Clearly, the Perron vector of Aα(G) satisfies the eigenvalue
equation Aα(G)x = ρα(G)x, that is

ρα(G)xu = αd(u)xu + (1− α)
∑

v∈N(u)

xv. (2)

Consider an n× n real symmetric matrix

M =


M1,1 M1,2 · · · M1,m

M2,1 M2,2 · · · M2,m

...
... . . . ...

Mm,1 Mm,2 · · · Mm,m


whose rows and columns are partitioned according to a partitioningX1, X2, . . . , Xm of {1, 2, . . . , n}.
The quotient matrix B of the matrix M is the m×m matrix whose entries are the average row
sums of the blocks Mi,j of M . The partition is equitable if each block Mi,j of M has constant
row (and column) sum.
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Lemma 2.1 ( [19]) Let M be a square matrix with an equitable partition π and let Mπ be the
corresponding quotient matrix. Then every eigenvalue of Mπ is an eigenvalue of M . Further-
more, if M is nonnegative and Mπ is irreducible, then the largest eigenvalues of M and Mπ are
equal.

Let Sn,3 be a graph on n vertices obtained from K1,n−7 by attaching three pendant paths of
length 2 at the center vertex of K1,n−7, and let H0 be an unicycle graph of order n and girth 4.
The graphs Sn,3 and H0 are shown in Figure 2.
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Figure 2: The graphs Sn,3 and H0.

Lemma 2.2 For α ∈ [0, 1], ρα(Sn,3) and ρα(H0) are the largest root of f(λ, n) = 0 and g(λ, n) =
0, respectively, where

f(λ, n) =λ4 − αnλ3 +
[
(3α2 + 2α− 1)n− 6α− 8α2 + 3

]
λ2 −

[
(α3 + 8α2 − 4α)n− 36α2 + 18α

]
λ

+ 2α3n+ 3α2n− 4αn+ n− 2α3 − 27α2 + 28α− 7

and
g(λ, n)

=x6 − (n+ 5)αx5 + [(7α2 + 2α− 1)n+ α2]x4 − [(15α3 + 20α2 − 10α)n− 17α3 − 40α2 + 20α]x3

+ [(10α4 + 50α3 − 13α2 − 12α+ 3)n− 8α4 − 132α3 + 18α2 + 48α− 12]x2

− [(2α5 + 28α4 + 34α3 − 48α2 + 12α)n− 44α4 − 194α3 + 216α2 − 54α]x

+ (4α5 + 14α4 − 20α2 + 12α− 2)n− 48α4 − 48α3 + 132α2 − 72α+ 12.

Proof. We partition V (Sn,3) as V (Sn,3) = {u1, u2, u3} ∪ {w1, w2, w3} ∪ {u0} ∪ {w4, . . . , wn−4}.
Then the corresponding quotient matrix of Aα(Sn,3) is

B1 =


α 1− α 0 0

1− α 2α 1− α 0

0 3(1− α) (n− 4)α (n− 7)(1− α)

0 0 1− α α

 .

It is easy to versify that the characteristic polynomial of B1 is f(λ, n). Note that the partition
is equitable. Then Lemma 2.1 implies that ρα(Sn,3) is the largest root of f(λ, n) = 0.

Similarly, we partition V (H0) as V (H0) = {v1}∪{w1}∪{w2, . . . , wn−5}∪{u0}∪{u1, u3}∪{u2}.
Then the corresponding quotient matrix of Aα(H0) is

B2 =



α 1− α 0 0 0 0

1− α 2α 0 1− α 0 0

0 0 α 1− α 0 0

0 1− α (n− 6)(1− α) (n− 3)α 2(1− α) 0

0 0 0 1− α 2α 1− α

0 0 0 0 2(1− α) 2α


.
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It is easy to versify that the characteristic polynomial of B2 is g(λ, n). Note that the partition
is equitable. Then Lemma 2.1 implies that ρα(H0) is the largest root of g(λ, n) = 0. □

Lemma 2.3 ( [14]) If G is a connected graph and H is a proper subgraph of G, then we have
ρα(H) < ρα(G).

Lemma 2.4 ( [17]) For a connected graph G and u, v ∈ V (G), let W ⊆ N(v)\(N(u) ∪ {u}).
Let G′ = G− {vw : w ∈W}+ {uw : w ∈W} and x be the Perron vector of Aα(G). If xu ≥ xv

and W ̸= ∅, then ρα(G
′) > ρα(G) for α ∈ [0, 1).

The following lemma can be derived directly from lemma 2.3 in Ref. [12].

Lemma 2.5 ( [12]) Let G′ be a graph obtained from a connected graph G by a local switching
of edges u1v1 and u2v2 to the positions of non-edges u1v2 and v1u2. Let x be the Perron vector
of Aα(G). If (u1 − u2)(v1 − v2) ≥ 0, then ρα(G

′) ≥ ρα(G) for α ∈ [0, 1), with equality if and
only if u1 = u2 and v1 = v2.

Lemma 2.6 ( [14,16]) Let G be a graph of order n with maximum degree ∆. Then

ρα(G) ≥

α(∆ + 1), for α ∈ [0, 12 ],

α∆+ 1− α, for α ∈ [12 , 1).

Lemma 2.7 ( [14]) Let G be a graph without isolated vertices. Then for α ∈ [0, 1), we have

ρα(G) ≤ max
u∈V (G)

{αd(u) + (1− α)m(u)} ,

where m(u) = mG(u) = 1
d(u)

∑
v∈N(u)

d(v). If α ∈ (12 , 1) and G is connected, then the equality

holds if and only if G is regular.

Lemma 2.8 For any connected graph G with size m ≥ 5 and maximum degree ∆. If ∆ ≤ s

and s ≥ 2m
3 , then for α ∈ [12 , 1), we have

ρα(G) ≤ αs+ 2(1− α).

Proof. Let z ∈ V (G) such that

αd(z) + (1− α)

∑
v∈N(z) d(v)

d(z)
= max

u∈V (G)

{
αd(u) + (1− α)

∑
v∈N(u) d(v)

d(u)

}
.

If d(z) = 1, then by Lemma 2.7, ρα(G) ≤ αd(z)+(1−α)
∑

v∈N(z) d(v)

d(z) ≤ α+(1−α)∆ ≤ α+(1−α)s.

If d(z) = 2, then by Lemma 2.7, ρα(G) ≤ αd(z) + (1 − α)
∑

v∈N(z) d(v)

d(z) ≤ 2α + (1 − α)∆ ≤
2α+ (1− α)s. Next, we only need to consider d(z) ≥ 3. Then by Lemma 2.7, we have

ρα(G) ≤ αd(z)+(1−α)
∑

v∈N(z) d(v)

d(z)
≤ αd(z)+(1−α)2m− d(z)

d(z)
= αd(z)+(1−α) 2m

d(z)
−1+α.

Let f(x) = αx + 2m(1−α)
x . Clearly, f(x) ≥ fmin = f

(√
2m(1−α)

α

)
for x > 0. Note that

3 ≤ x ≤ ∆ ≤ s,
√

2m(1−α)
α ≤

√
2m < 2m

3 and

f

(
2m

3

)
− f(3) =

2m

3
(2α− 1) + 3(1− 2α) ≥ 10

3
(2α− 1) + 3(1− 2α) =

1

3
(2α− 1) ≥ 0.
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Then for any s ≥ 2m
3 , we have

ρα(G) ≤ f(d(z))− 1+ α ≤ αs+ (1− α)
2m

s
− 1+ α ≤ αs+ (1− α)

2m
2m
3

− 1+ α = αs+2(1− α).

On the other hand, note that max{2α + (1 − α)s, α + (1 − α)s} ≤ αs + 2(1 − α). Thus,
ρα(G) ≤ αs+ 2(1− α), as desired. □

Note that if m = g, then G(m, g) = Cg. If m = g + 1, then G(m, g) = C+
g , where C+

g is a
graph obtained from Cg by attaching a pendant edge at some vertex of Cg. In what follows, we
consider m ≥ g + 2 and the corresponding |G(m, g)| ≥ 2. For g ≥ 3 and m ≥ g + 2, let H(m, g)

be the set of graphs in G(m, g) with maximum degree ∆ = m − g + 1. Hu, Lou and Huang [8]
obtained the following result.

Lemma 2.9 ( [8]) H(m, g) = {G1, G2, . . . , G⌊ g
2
⌋, G

∗}, where g ≥ 4 and m ≥ g + 2.

By simple observation, we see that G0 is the unique graph among G(m,≥ g) with maximum
degree ∆(G0) = m− g + 2. Then from Lemma 2.8, we have the following result.

Corollary 2.10 Let G ∈ G(m,≥ g) with m ≥ 3g−3. Then α ∈ [12 , 1), we have ρα(G) ≤ ρα(G0),
with equality holds if and only if G ∼= G0.

Proof. For any graph G ∈ G(m,≥ g)
\
{G0}, we have ∆(G) ≤ m−g+1. Note that m−g+1 ≥ 2m

3

since m ≥ 3g−3. Then by Lemma 2.8, we have ρα(G) ≤ α(m−g+1)+2(1−α) = α(m−g−1)+2.
On the other hand, since ∆(G0) = m− g + 2 and K1,∆(G0) is a proper subgraph of G0, then by
Lemmas 2.3 and 2.6, we have

ρα(G0) > α(m− g + 2) + 1− α = α(m− g + 1) + 1 ≥ α(m− g − 1) + 2 ≥ ρα(G),

as desired. □
By Lemma 2.8, we can compare the Aα-spectral radius of graphs with distinct girths and

maximum degrees, respectively.

Corollary 2.11 Let G and H respectively be graph with the maximum Aα-spectral radius in
G(m, g) and G(m, g′). If g < g′ and m ≥ 3g′ − 3, then ρα(G) > ρα(H).

Proof.Since m ≥ 3g′ − 3 and g′ > g, we have m ≥ 3g − 3. Then Corollary 2.10 implies that
∆(G) = m−g+2 and ∆(H) = m−g′+2. Note that ∆(H) = m−g′+2 ≥ 2m

3 since m ≥ 3g′−6.
Then by Lemma 2.8, we have ρα(H) ≤ α(m− g′ + 2) + 2(1− α) = α(m− g′) + 2. On the other
hand, since ∆(G) = m − g + 2 and K1,∆(G) is a proper subgraph of G, then by Lemmas 2.3
and 2.6, we have

ρα(G) > α(m− g+2)+1−α = α(m− g+1)+1 ≥ α(m− g′+2)+1 ≥ α(m− g′)+ 2 ≥ ρα(H),

as desired. □

Corollary 2.12 Let G and H be graphs with size m ≥ 5 and maximum degree ∆(G) and ∆(H),
respectively. If ∆(G) > ∆(H) ≥ 2m

3 , then ρα(G) > ρα(H).

Proof. Since K1,∆(G) is a proper subgraph of G, then by Lemmas 2.3 and 2.6, we have ρα(G) >
α∆(G) + 1 − α ≥ α∆(H) + 1. On the other hand, since ∆(H) ≥ 2m

3 , then by Lemma 2.6, we
have ρα(H) ≤ α∆(H) + 2(1− α) ≤ α∆(H) + 1 < ρα(G), as desired. □
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3 Proofs of Theroems 1.4 and 1.5

Before giving the proofs of Theorems 1.4 and 1.5, we need some necessary lemmas.

Lemma 3.1 Let Gi ∈ H(m, g) be the graph as shown in Figure 1, where 1 ≤ i ≤ ⌊ g2⌋. Then

ρα(G1) > ρα(G2) > · · · > ρα(G⌊ g
2
⌋).

Proof. For any 2 ≤ i ≤ ⌊ g2⌋, let x be the Perron vector of ρα(Gi). It suffices to show
ρα(Gi) < ρα(Gi−1). To prove our result, first we give the following claim.
Claim 1. If there exists 1 ≤ j ≤ i − 1 such that xui−j < xui+j−1 and xui−j−1 ≥ xui+j , then
ρα(Gi) < ρα(Gi−1).
Proof. Let G′ = Gi − {ui−j−1ui−j , ui+j−1, ui+j} + {ui−j−1ui+j−1, ui−jui+j}, where Gi and G′

are shown in Figure 3. Clearly, G′ ∼= Gi−1. Note that xui−j < xui+j−1 and xui−j−1 ≥ xui+j . Then
by Lemma 2.5, we have ρα(Gi) < ρα(G

′) = ρα(Gi−1). □
We start to prove by firstly assuming xui−1 ≥ xui . Now we construct

G′′ = Gi − {wui}+ {wui−1}

from Gi, where G′′ is shown in Figure 3. Clearly, G′′ ∼= Gi−1. By Lemma 2.4, we have ρα(Gi) <

ρα(G
′′) = ρα(Gi−1). Otherwise xui−1 < xui , if xui−2 ≥ xui+1 then from Claim 1 we get ρα(Gi) <

ρα(Gi−1) by taking j = 1. Otherwise xui−2 < xui+1 , if xui−3 ≥ xui+2 then from Claim 1 we get
ρα(Gi) < ρα(Gi−1) by taking j = 2. Repeating i steps we come to the assumption xu0 < xu2i−1

for j = i. Note that NGi(u0) = {u1, ug−1, w1, . . . , wm−g−1}. Let

G′′′ = Gi − {u0ws|1 ≤ s ≤ m− g − 1}+ {u2i−1wt|1 ≤ t ≤ m− g − 1}.

Clearly, G′′′ ∼= Gi−1. By Lemma 2.4, we have ρα(Gi) < ρα(G
′′′) = ρα(Gi−1), as desired. □
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Figure 3: The graphs Gi, G′ and G′′, where the edge with “X” represents it is deleted.

Lemma 3.2 Let Gi ∈ H(m, g) be graphs as shown in Figure 1, where 1 ≤ i ≤ ⌊ g2⌋. If m ≥ g+3

and 1
2 ≤ α < 1, then

α(m− g) + 1 < ρα(Gi) ≤ α(m− g) + 1 +
2(1− α)

m− g + 1
< α(m− g) + 2− α.

Proof. Since ∆(Gi) = m− g+1 and K1,∆(Gi) is a proper subgraph of Gi, then by Lemmas 2.3
and 2.6, we have ρα(Gi) > ρα(K1,∆(Gi)) = α(m− g + 1) + 1− α = α(m− g) + 1. On the other
hand, let z ∈ V (Gi) such that

αd(z) + (1− α)

∑
v∈NGi

(z) d(v)

d(z)
= max

u∈V (Gi)

{
αd(u) + (1− α)

∑
v∈NGi

(u) d(v)

d(u)

}
.
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If z = u0, then by Lemma 2.7, we have

ρα(Gi) ≤ α(m− g + 1) + (1− α)
m− g + 3

m− g + 1
= α(m− g) + 1 +

2(1− α)

m− g + 1
:= f(α).

If z = ui, then by Lemma 2.7 and Wolfram Mathematica, we have

ρα(Gi) ≤ αd(ui)+(1−α)d(w) + d(ui−1) + d(u0)

d(ui)
= 3α+(1−α)m− g + 4

3
< α(m−g)+1+

2(1− α)

m− g + 1
.

If d(z) = 1, then by Lemma 2.7, we have

ρα(Gi) ≤ αd(z) + (1− α)d(u0) = α+ (1− α)(m− g + 1) := g(α).

Now let φ(α) = f(α)− g(α) = (2α− 1)(m− g) + 2(1−α)
m−g+1 . Then we have

φ′(α) = 2(m− g)− 2

m− g + 1
= 2

(
m− g − 1

m− g + 1

)
> 0.

Thus φ(α) is a monotonically increasing function on α ≥ 1
2 . Hence, φ(α) ≥ φ

(
1
2

)
= 1

m−g+1 > 0.
It follows that

ρα(Gi) ≤ g(α) < f(α) = α(m− g) + 1 +
2(1− α)

m− g + 1
.

If z ∈ V (G)\{u0, ui} is not a pendent vertex, then d(z) = 2 and by Lemma 2.7, we have

ρα(Gi) ≤ 2α+ (1− α)
d(u0) + d(ui)

2
= 2α+ (1− α)

m− g + 4

2
:= ϕ(α).

Now let ψ(α) = f(α)− ϕ(α), it follows that

ψ(α) = f(α)− ϕ(α) = α(m− g − 1) + (1− α)
m− g + 3

m− g + 1
− (1− α)

m− g + 4

2

=
1

2

(
(3α− 1)(m− g) +

4(1− α)

m− g + 1
− 2

)
.

Then we have

ψ′(α) =
1

2

(
3(m− g)− 4

m− g + 1

)
=

3(m− g)(m− g + 1)− 4

2(m− g + 1)
> 0.

Thus ψ(α) is a monotonically increasing function on α ≥ 1
2 . Hence

ψ(α) ≥ ψ

(
1

2

)
=
m− g

4
+

1

m− g + 1
− 1 ≥ 0.

It follows that
ρα(Gi) ≤ ψ(α) ≤ f(α) = α(m− g) + 1 +

2(1− α)

m− g + 1
,

as desired. This completes the proof of Lemma 3.2. □

Lemma 3.3 For 1 ≤ i ≤ ⌊ g2⌋ and m ≥ g + 4, let x be the Perron vector of ρα(Gi). Then for
1
2 ≤ α < 1, we have xu0 = max

u∈V (Gi)
xu.

Proof. By Lemma 3.2, we have ρα(Gi) > α(m − g) + 1 ≥ 3. On the other hand, let xu∗ =

max
u∈V (Gi)

xu. We then assert that dGi(u
∗) ≥ 4. Suppose to the contrary that dGi(u

∗) ≤ 3. Then,

by (2), we have
ρα(Gi)xu∗ = αdGi(u

∗)xu∗ + (1− α)
∑

u∈NGi
(u∗)

xu

≤ αdGi(u
∗)xu∗ + (1− α)dGi(u

∗)xu∗ ≤ 3xu∗ ,

which implies that ρα(Gi) ≤ 3. However, recall that ρα(Gi) > 3, a contradiction. Thus,
dGi(u

∗) ≥ 4. It follows that u∗ = u0, as desired. □
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Lemma 3.4 If g ≥ 4, 1
2 ≤ α < 1 and m ≥ g + 7, then ρα(G1) > ρα(G

∗) > ρα(G2).

Proof. We first prove ρα(G1) > ρα(G
∗). Let x be the Perron vector of Aα(G

∗). The vertices
w1 and v1 of G∗ are shown in Fig. 1. By (2), we have

ρα (G
∗)xv1 = αxv1 + (1− α)xw1 , ρα (G

∗)xw1 = 2αxw1 + (1− α)(xv1 + xu0),

ρα (G
∗)xu0 = α(m− g + 1)xu0 + (1− α)

(
(1− α)(m− g − 2)

ρα (G∗)− α
xu0 + xw1 + xu1 + xug−1

)
.

Note that xu1 = xug−1 due to the symmetry of G∗. From the above equalities, we have
xw1 = (1−α)(ρα(G∗)−α)

(ρα(G∗)−2α)(ρα(G∗)−α)−(1−α)2
xu0 ,

xu1 = 1
2

(
ρα(G∗)−α(m−g+1)

1−α − (1−α)(m−g−2)
ρα(G∗)−α − (ρα(G∗)−α)(1−α)

(ρα(G∗)−2α)(ρα(G∗)−α)−(1−α)2

)
xu0 .

Let

f(x) =
1

2

(
x− α(m− g + 1)

1− α
− (1− α)(m− g − 2)

x− α

)
− 3(x− α)(1− α)

2 (x− 2α) (x− α)− (1− α)2

=
(x2 − 3αx+ α2 − 1 + 2α)((x− α(m− g + 1))(x− α)− (1− α)2(m− g − 2))− 3(x− α)2(1− α)2

2 (x2 − 3αx+ α2 − 1 + 2α) (x− α)(1− α)
.

Then xu1 − xw1 = f (ρα (G
∗))xu0 . On the other hand, by Wolfram Mathematica, we have

f(x,m− g + 5)

=x4 − (m− g + 5)αx3 + ((3m− 3g + 7)α2 + 2(m− g + 2)α−m+ g − 2)x2

+ α(4m− (m− g + 5)α2 − 4(2m− 2g + 1)α− 4g + 2)x+ (m− g + 5)(2α3 + 3α2 − 4α) +m

− g − 2α3 − 27α2 + 28α− 2

=(x2 − 3αx+ α2 − 1 + 2α)((x− α(m− g + 1))(x− α)− (1− α)2(m− g − 2))− 3(x− α)2(1− α)2,

where f(x,m− g + 5) is defined in Lemma 2.2. Then

f(x) =
f(x,m− g + 5)

2 (x2 − 3αx+ α2 − 1 + 2α) (x− α)(1− α)
, (3)

If g ≥ 5, then Sm−g+5,3 is a proper subgraph of G∗, where Sm−g+5,3 is shown in Figure 2.
Therefore, ρα (G∗) > ρα (Sm−g+5,3). Note that ∆(G∗) = m − g + 1 and K1,(G∗) is a proper
subgraph of G∗. By Lemma 2.6, we have ρα(G∗) > α(m − g) + 1. It is easy to versify that
x2− 3αx+α2− 1+2α > 0 for x > 7α+1. Thus f (ρα (G∗)) > 0, which implies that xu1 > xw1 .
If g = 4, then G∗ ∼= H0, where H0 is shown in Fig.2. Thus, (3) becomes

f(x) =
1

2 (x2 − 3αx+ α2 − 1 + 2α) (x− α)(1− α)
· g(x,m) + 2(α− 1)4(x− α)x

x2 − 4αx+ 2(α2 + 2α− 1)
,

where g(x,m) is defined by Lemma 2.2. Clearly, g(ρα(G∗),m) = 0. On the other hand, we have
x2 − 3αx + α2 − 1 + 2α > 0 and x2 − 4αx + 2(α2 + 2α − 1) > 0 for x > 7α + 1. Recall that
ρα(G

∗) > 7α+1. Thus f(ρα(G∗)) > 0, it follows that xu1 > xw1 . Let G′ = G∗−{w1v1}+{u1v1}.
Clearly, G′ ∼= G1. By Lemma 2.4, we have ρα(G∗) < ρα(G

′) = ρα(G1).
Next we will prove ρα(G∗) > ρα(G2). Let y be the Perron vector of Aα(G2). By Lemma 3.3,

we have yu0 = max
u∈V (G2)

yu. Let u ∈ V (G2) with dG2(u) = 2, by (2), we have

ρα(G2)yu = 2αyu + (1− α)
∑

v∈NG2
(u)

yv ≤ 2αyu + 2(1− α)yu0 .
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It follows that yu ≤ 2(1−α)
ρα(G2)−2αyu0 . Using (2) again, we have

ρα(G2)yw = αyw + (1− α)yu2 , ρα(G2)yu2 = 3αyu2 + (1− α)(yw + yu1 + yu3).

Then
ρα(G2)(yu2 − yw) = (4α− 1)yu2 + (1− 2α)yw + (1− α)(yu1 + yu3).

Thus

ρα(G2)(ρα(G2)− 1)

ρα(G2)− α
yu2 =

(4α− 1)(ρα(G2)− α) + (1− 2α)(1− α)

ρα(G2)− α
yu2 + (1− α)(yu1 + yu3),

which implies that

yu2 ≤ ρα(G2)− α

ρ2α(G2)− 4αρα(G2) + 2α(α+ 1)− 1
· 4(1− α)2

ρα(G2)− 2α
yu0 . (4)

Now let f1(x) = 4(1 − α)2(x − a)2, g1(x) = (1 − α)(x − 2α)(x2 − 4αx + 2α(α + 1) − 1),
h(x) = g1(x)− f1(x) and x > 7α+ 1. Then we have

h(x) = (1− a)
[
x3 − 2(α+ 2)x2 + (2α(α+ 5)− 1)x+ 2α(1− 4α)

]
:= (1− α)ζ(x).

It follows that

ζ ′(x) = 3x2 − 4(α+ 2)x+ 2α(α+ 5)− 1

> 3(7α+ 1)2 − 4(α+ 2)(7α+ 1) + 2α(α+ 5)− 1 = 121α2 − 8α− 6 > 0.

Thus ζ(x) is a monotonically increasing function on x > 7α + 1. Hence, h(x) = (1 − α)ζ(x) >

(1− α)ζ(7α+ 1) = (1− α)(259α3 − 13α2 − 32α− 4) > 0. It follows that g1(x) > f1(x) and

x− α

x2 − 4αx+ 2α(α+ 1)− 1
· 4(1− α)2

x− 2α
<

1− α

x− α
.

Note that ρα(G2) > 7α + 1 and yv = 1−α
ρα(G2)−αyu0 for any v ∈ {w1, . . . , wm−g−1}, then by (4),

we have

yu2 ≤ ρα(G2)− α

ρ2α(G2)− 4αρα(G2) + 2α(α+ 1)− 1
· 4(1− α)2

ρα(G2)− 2α
yu0 <

1− α

ρα(G2)− α
yu0 = yw1 .

Hence, yu2 < yw1 . Let G′′ = G2 − {wu2}+ {w1w}. Clearly, G′′ ∼= G∗. By Lemma 2.4, we have
ρα(G2) < ρα(G

′′) = ρα(G
∗). □

Now we can give the proof of Theorem 1.4.
Proof of Theorem 1.4: Notice that g ≥ 4 and m ≥ g + 7 since m ≥ 3g ≥ 12. Then by
Lemmas 3.1 and 3.4, we have

ρα(G1) > ρα(G
∗) > ρα(G2) > · · · > ρα(G⌊ g

2
⌋).

Set Gm−g(m, g) = G(m, g)
\
({G0}∪H(m, g)). Note that G0 is a unique graph with maximum

degree m − g + 2 among G(m, g). By Lemma 2.9, H(m, g) = {G1, G2, . . . , G⌊ g
2
⌋, G

∗} is the set
of graphs in G(m, g) with maximum degree m− g + 1. Then for any G′ ∈ Gm−g(m, g), we have
∆(G′) ≤ m− g. On the other hand, we have ∆(G⌊ g

2
⌋) = m− g+1 > m− g ≥ ∆(G′) ≥ 2m

3 since
m ≥ 3g. By Corollary 2.12, we obtain ρα(G⌊ g

2
⌋) > ρα(G

′). Thus, the second to the
(
⌊g2⌋+ 2

)
th

largest graphs in G(m, g)
\
{G0} by their Aα-spectral radius is given by

ρα(G1) > ρα(G
∗) > ρα(G2) > · · · > ρα(G⌊ g

2
⌋).
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This completes the proof of Theorem 1.4. □
Moreover, we further consider the first to the (⌊g2⌋ + 3)th largest graphs according to their

Aα-spectral radius among all graphs in G(m,≥ g). For 0 ≤ i ≤ ⌊ g2⌋, we use Gi
g and G∗

g instead
of Gi and G∗ to distinguish the girth of the graphs in the following proof. Now, we give the
proof of Theorem 1.5.
Proof of Theorem 1.5: Denote by M and N are the sets of all graphs in G(m,≥ g) with
maximum degree at least m− g+1 and at most m− g, respectively. It follows that G(m,≥ g) =

M ∪ N . It is easy to check that M = {G0
g, G

1
g, G

∗
g, G

2
g, . . . , G

⌊ g
2
⌋

g , G0
g+1}, where the maximum

degree of G1
g, G

∗
g, G

2
g, . . . , G

⌊ g
2
⌋

g , G0
g+1 is m − g + 1 and ∆(G0

g) = m − g + 2. For any G ∈ M ,
note that ∆(G) ≥ m − g + 1 and K1,(G) is a proper subgraph of G. By Lemma 2.6, we have
ρα(G) > α(m − g) + 1. For any G′ ∈ N , since ∆(G′) ≤ m − g and m − g ≥ 2m

3 , then by
Lemma 2.8, we have

ρα(G
′) ≤ α(m− g) + 2(1− α).

Since α(m − g) + 2(1 − α) ≤ α(m − g) + 1, each Aα-spectral radius of the graph in M is
more than that of the graph in N . By Theorem 1.4, to complete the proof it remains to show
ρα(G

⌊ g
2
⌋

g ) > ρα(G
0
g+1).

Let x be the Perron vector of ρα(G0
g+1). Note that

ρα(G
0
g+1) > α(m− g) + 1 = 8α+ 1

since m ≥ 3g ≥ 12. If g is even, by the symmetry of G0
g+1, then xu⌊ g

2 ⌋
= xu⌊ g

2 ⌋+1
(see Figure 4).

If g is odd, by the symmetry of G0
g+1, then xu⌊ g

2 ⌋
= xu⌊ g

2 ⌋+2
(see Figure 4). By (2), we have

ρα(G
0
g+1)xu⌊ g

2 ⌋+1
= 2αxu⌊ g

2 ⌋+1
+ (1− α)(xu⌊ g

2 ⌋
+ xu⌊ g

2 ⌋+2
) = 2αxu⌊ g

2 ⌋+1
+ 2(1− α)xu⌊ g

2 ⌋
,

which implies that

xu⌊ g
2 ⌋

=
ρα(G

0
g+1)− 2α

2(1− α)
xu⌊ g

2 ⌋+1
>

6α+ 1

2(1− α)
xu⌊ g

2 ⌋+1
≥ 4xu⌊ g

2 ⌋+1
.

It follows that xu⌊ g
2 ⌋
> xu⌊ g

2 ⌋+1
. Thus, we have xu⌊ g

2 ⌋
≥ xu⌊ g

2 ⌋+1
. Let

G′ = G0
g+1 − {u⌊ g

2
⌋+1u⌊ g

2
⌋+2}+ {u⌊ g

2
⌋u⌊ g

2
⌋+2}.

Clearly, G′ ∼= G
⌊ g
2
⌋

g (see Figure 4). By Lemma 2.4, we have ρα(G0
g+1) < ρα(G

′) = ρα(G
⌊ g
2
⌋

g ).
This completes the proof of Theorem 1.5. □
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Figure 4: The graphs G0
g+1 and G′, where the edge with “X” represents it is deleted.
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