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Abstract

In this work, four iterative algorithms are provided for solving generalized discrete-time period-
ic Sylvester transpose matrix equations. Based on the Jacobi iterative algorithm and hierarchical
identification principle, the present work provides the full-row rank Jacobi gradient iterative (R-
RJGI) algorithm, the full-row rank accelerated Jacobi gradient iterative (RRAJGI) algorithm, the
full-column rank Jacobi gradient iterative (CRJGI) algorithm and the full-column rank accelerated
Jacobi gradient iterative (CRAJGI) algorithm. The convergence of the algorithms are proved, and
it is concluded that the proposed iterative methods are convergent under certain conditions for
arbitrary initial matrices. Numerical results show the feasibility of the proposed algorithms and its
superiority compared with other algorithms. Finally, an application example for the periodic state
observer design of linear systems is given.

Keywords: The generalized discrete-time periodic Sylvester transpose matrix equations; iterative
algorithm; iterative solutions; Convergence performance

1 Introduction

Periodic matrix equations are closely related to the analysis and synthesis of periodic control
systems for various engineering and mechanical problems. The solutions of discrete-time period
Sylvester matrix equations play an important role in engineering problems, such as modern control
theory, prediction and potential applications in signal processing [1-6]. The reason is that the
discrete-time periodic matrix equation is an important part of the analysis and design of linear
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discrete periodic systems, and it has also received extensive attention [7-9]. For instance, the
discrete-time period coupled Sylvester matrix equations{

A1,jXj + YjB1,j = C1,j ,
A2,jXj+1 + YjB2,j = C2,j ,

(1.1)

is encountered in the periodic discrete-time description subsystem [10, 11].

In recent years, many scholars have proposed effective methods for solving periodic matrix
equations. For example, in [12], Hajarian based on the bi-conjugate residual algorithm (BCR)
proposed a new numerical method for solving discrete-time periodic Sylveste matrix equations

AiXiBi + CiXi+1Di = Ei, i ∈ 1, γ. (1.2)

In addition, in [13] he also proposed two iterative algorithms based on the LSQR method for solving
Eq. (1.2) and Ma et al. in [33] generalized the factor gradient iterative method (FGI) for solving
Eq. (1.2). Wang and Song in [14] proposed the Jacobi gradient iterative algorithm (JGI) and the
accelerated JGI algorithm for solving the following periodic matrix equations

p∑
s=1

Ai,sXiBi,s +

q∑
t=1

Ei,tXi+1Fi,t = Ci, i ∈ 1, γ. (1.3)

In [31], Hajarian provided four new iterative methods to find the reflexive periodic solutions of the
general periodic matrix equations

σ−1∑
s=0

(Ai,sXi+sBi,s) +

σ−1∑
t=0

(Ci,tYi+tDi,t) = Ni, i = 1, 2, · · · , σ. (1.4)

Ma et al. in [34] proposed a finite iterative algorithm to find the least squares solutions of periodic
matrix equations (1.4). In [15], Huang and Ma constructed a finite iterative algorithm to solve the
least square solution of the periodic matrix equations. Lv et al. in [16] developed the least square
method to give an iterative algorithm for solving the generalized periodic discrete-time coupled
Sylvester matrix equations{

A1,jXjB1,j + C1,jYjD1,j = E1,j ,
A2,jXj+1B2,j + C2,jYjD2,j = E2,j .

(1.5)

Chen et al. in [30] constructed a conjugate gradient-based (CGB) method for solving Eq. (1.5).
In [17], Ma and Yan established an improved conjugate gradient algorithm to solve the generalized
discrete-time period Sylveste matrix equations

h∑
j=1

(AijXiBij + CijXi+1Dij + EijYiFij +GijYi+1Hij) = Mi, i = 1, 2, · · · , T. (1.6)

Moreover, in [18], Hajarian proposed the gradient based iterative (GI) algorithm to solve Eq.
(1.6). In [19], he also derived the matrix form of the conjugate gradient normal equations residual
minimizing (MCGNR) algorithm to find the least squares solution group of discrete-time periodic
coupled matrix equations{

A1,tXtB1,t + C1,tXt+1D1,t + E1,tYtF1,t = G1,t,
A2,tXtB2,t + C2,tXt+1D2,t + E2,tYtF2,t = G2,t.

(1.7)

2



There are also many studies on the coupled Sylvestre transpose matrix equation in recent years.
For example, in [35] Boonruangkan et al. based on gradients and hierarchical identification princi-
ple, built an iterative algorithm for solving the generalized Sylvester-transpose matrix equation

p∑
i=1

AiXBi +

q∑
j=1

CjX
TDj = F, (1.8)

Tansri et al. in [32] developed a conjugate-gradient type algorithm to produce approximate least-
squares (LS) solution for an inconsistent generalized Sylvester-transpose matrix equation (1.8).
Kittisopaporn et al. in [29] established an effective gradient-descent iterative algorithm for solving
Eq. (1.8). At present, there have been a lot of research results on iterative algorithms for solving
various matrix equations. Now we don’t state in detail. Please refer to references [20-27].

This paper focus on the following generalized discrete-time periodic Sylvester transpose matrix
equations

m∑
j=1

(Ei,jYiFi,j +Gi,jY
T
i+1Hi,j) = Mi, i ∈ 1, ξ, (1.9)

where the coefficient matrices Ei,j , Gi,j ∈ Rm×m, Fi,j ,Hi,j ∈ Rn×n, Mi ∈ Rm×n, and unknown
matrices Yi ∈ Rm×n are periodic with period ξ, i.e. Ei+ξ,j = Ei,j , Fi+ξ,j = Fi,j , Gi+ξ,j = Gi,j ,
Hi+ξ,j = Hi,j , Mi+ξ = Mi, Yi+ξ = Yi, for i ∈ 1, ξ, j ∈ 1,m. The problem for solving periodic
matrix equations appears in various application fields, but there are few researches on the iterative
solutions of periodic matrix equations. In this paper, based on Jacobi iterative algorithm, four
iterative algorithms are proposed to solve the generalized discrete-time periodic Sylvester transpose
matrix equations (1.9). The main contributions of this paper are as follows.

•In this present work, four iterative algorithms are presented for Eq. (1.9), which
are RRJGI algorithm, CRJGI algorithm, RRAJGI algorithm and CRAJGI algorithm.
Moreover, four algorithms presented in this paper are not only suitable for solving the
above generalized discrete-time periodic Sylvester transpose matrix equations, but also
can solve the numerical solutions of the coupled discrete-time periodic matrix equa-
tions if we give some small changes.
•Numerical examples show that the proposed algorithms have higher convergence effi-
ciency compared with the GI algorithm [18], the relaxed gradient based iterative (RGI)
algorithm [23] and the accelerated gradient based iterative (AGI) algorithm [26] be-
cause less cost is used in each iterative step and the data is sufficient to complete an
update. And each update uses less data, which can greatly save memory space and
improve operation efficiency.
•By applying Algorithm 2 to the linear systems, we obtain Algorithm 5 for solving
robust and minimum norm observer design of linear systems and a group of data is
given to deduce the gain of the state observer, which shows that the proposed algorithm
provides a choice for solving linear systems.

The rest of this article is arranged as follows. In Section 2, we provide several basic notations
and related theories. In Section 3, we present RRJGI algorithm, RRAJGI algorithm, CRJGI
algorithm and CRAJGI algorithm for solving Eq. (1.9), and also analyze the convergence of four
algorithms. In addition, we prove that for any given initial matrices, the iterative solutions obtained
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by the proposed algorithms will converge to the exact solutions. In Section 4, we give two examples
to demonstrate the superiority of the proposed algorithms. The numerical results indicate that
these four algorithms are ascendant to the GI algorithm [18], the RGI algorithm [23] and the AGI
algorithm [26]. In Section 5, an application example for solving the periodic state observer design
of linear discrete system is given. Finally, in Section 6, we give a short conclusion.

2 Preliminaries

Throughout this paper, we use the following notations. Let Rs×t be the set of all matrices of
size s× t over the real number field R. For A ∈ Rs×t, AT , rank(A), ρ(A), λ(A) and tr (A) represent
the transpose, the rank, the spectral radius, the eigenvalues and the trace of A, respectively. For
arbitrary integers p and q with p ≤ q, we denote p, q = {p, p+ 1, · · · , q}. For any matrices A,B ∈
Rs×t, A ⊗ B represented the Kronecker product of A and B. For X = (x1, x2, · · · , xn) ∈ Rm×n,

vec (X) =
(
xT1 , x

T
2 , · · · , xTn

)T
is represented as the streching operator of X. By combining vector

operator with Kronecker product, we get vec (AXB) =
(
BT ⊗A

)
vec (X). The real inner product

of two matrices A,B ∈ Rs×t is given by ⟨A,B⟩ = tr
(
ATB

)
. ∥A∥ stands for the Frobenious norm

of the matrix A and ||A||2 =
√

λmax(ATA) represents the 2-norm of the matrix A. I stands for
the identity matrix of the appropriate dimension.

Lemma 2.1. [27] Consider the matrix equation

A1XB1 = C, (2.1)

where A1 ∈ Rm×r, B1 ∈ Rs×n and C ∈ Rm×n are known matrices, and X ∈ Rr×s is unknown
matrix. Then, the solution of Eq. (2.1) can be obtained by the following algorithm

X (k + 1) = X (k) + µAT
1 (C −A1X (k)B1)B

T
1 , (2.2)

with

0 < µ <
2

∥A1∥22 ∥B1∥22
. (2.3)

Lemma 2.2. [28] The unique solution of Sx = b can be given by x = S†b, where S† is the unique
Moore-Penrose inverse of S. Especially, if S is a full-column rank matrix, then the unique solution
is given by

x = (STS)−1ST b, (2.4)

if S is a full-row rank matrix, then the unique minimum norm solution is

x = ST (SST )−1b. (2.5)

Next, we give a lemma by using of Lemma 2.2. In order to convenient expression, the following
symbols are defined.

Ej = diag(E1,j , E2,j , · · · , Eξ,j), (2.6)

Fj = diag(F1,j , F2,j , · · · , Fξ,j), (2.7)

Y = diag(Y1, Y2, · · · , Yξ), (2.8)

M = diag(M1,M2, · · · ,Mξ), (2.9)
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Gj =


0 G1,j 0
...

. . .

0 0 Gξ−1,j

Gξ,j 0 · · · 0

 , Hj =


0 · · · 0 Hξ,j

H1,j 0 0
. . .

...
0 Hξ−1,j 0

 . (2.10)

Lemma 2.3. Let A =
m∑
j=1

[FT
j ⊗ Ej + (HT

j ⊗ Gj)P ], where P is the permutation matrix that satisfies

vec(YT ) = Pvec(Y), if A is a full-column rank matrix, then the unique solution of Eq. (1.9) is
given by

vec(Y) = (ATA)−1AT vec(M), (2.11)

if A is a full-row rank matrix, then the unique minimum norm solution of Eq. (1.9) is

vec(Y) = AT (AAT )−1vec(M). (2.12)

Proof. Eq. (1.9) can be equivalent to

m∑
j=1

(EjYFj + GjYTHj) = M, (2.13)

where Ej ,Fj ,Gj ,Hj and Y,M are defined as (2.6)-(2.10). By the properties of the Kronecker
product and the vector function, Eq. (1.9) can be converted to the following form

{
m∑
j=1

[FT
j ⊗ Ej + (HT

j ⊗ Gj)P ]}vec(Y) = vec(M), (2.14)

i.e.

Avec(Y) = vec(M). (2.15)

Therefore, according to Lemma 2.2 if A is a full-column rank matrix, then Eq. (1.9) has a unique
solution, and if A is a full-row rank matrix, then Eq. (1.9) has unique minimum norm solutions
and completed the proof.

3 Iterative algorithms and convergence analysis

In this section, by using the Jacobi iterative algorithm we construct four iterative algorithms for
solving Eq.(1.9). In Lemma 2.1, when the size of the coefficient matrix is too large, it will require
longer running time and more storage space for solving equation (2.1) by (2.2). Therefore, the big
coefficient matrix is divided into the corresponding diagonal matrix.

According to the above analysis, based on Jacobi iterative algorithm and hierarchical identi-
fication principle, we propose the RRJGI algorithm, RRAJGI algorithm, CRJGI algorithm and

5



CRAJGI algorithm for computing the numerical solutions of Eq. (1.9). First, the coefficient ma-
trices Ei,j , Fi,j , Gi,j ,Hi,j are decomposed into the following form:

Ei,j = D
(1)
i,j +R

(1)
i,j , (3.1)

Fi,j = D
(2)
i,j +R

(2)
i,j , (3.2)

Gi,j = D
(3)
i,j +R

(3)
i,j , (3.3)

Hi,j = D
(4)
i,j +R

(4)
i,j , (3.4)

where D
(1)
i,j , D

(2)
i,j , D

(3)
i,j , D

(4)
i,j are the diagonal part of Ei,j , Fi,j , Gi,j , Hi,j , i ∈ 1, ξ, j ∈ 1,m , respec-

tively. Thus, D
(1)
i,j , D

(2)
i,j , D

(3)
i,j and D

(4)
i,j satisfy the following relations

(D
(1)
i,j )

T = D
(1)
i,j , (D

(2)
i,j )

T = D
(2)
i,j , (3.5)

(D
(3)
i,j )

T = D
(3)
i,j , (D

(4)
i,j )

T = D
(4)
i,j . (3.6)

Next, we present two intermediary matrices b
(1)
i , b

(2)
i as follows:

b
(1)
i = Mi −

m∑
j=1

Gi,jY
T
i+1Hi,j , (3.7)

b
(2)
i = Mi −

m∑
j=1

Ei,jYiFi,j . (3.8)

Therefore, Eq. (1.9) can be simply written as

m∑
j=1

Ei,jYiFi,j = b
(1)
i , (3.9)

m∑
j=1

Gi,jY
T
i+1Hi,j = b

(2)
i . (3.10)

Substituting (3.1)-(3.4) into (3.9) and (3.10), respectively, we have

m∑
j=1

(D
(1)
i,j +R

(1)
i,j )Yi(D

(2)
i,j +R

(2)
i,j ) = b

(1)
i , (3.11)

m∑
j=1

(D
(3)
i,j +R

(3)
i,j )Y

T
i+1(D

(4)
i,j +R

(4)
i,j ) = b

(2)
i , (3.12)

that is,

m∑
j=1

D
(1)
i,j YiD

(2)
i,j = b

(1)
i −

m∑
i=1

(D
(1)
i,j YiR

(2)
i,j +R

(1)
i,j YiD

(2)
i,j +R

(1)
i,j YiR

(2)
i,j ), (3.13)

m∑
j=1

D
(3)
i,j Y

T
i+1D

(4)
i,j = b

(2)
i −

m∑
i=1

(D
(3)
i,j Y

T
i+1R

(4)
i,j +R

(3)
i,j Y

T
i+1D

(4)
i,j +R

(3)
i,j Y

T
i+1R

(4)
i,j ). (3.14)
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By Lemma 2.1, we can derive the iterative algorithms for solving (3.13) and (3.14)

Y
(1)
i (k + 1) = Y

(1)
i (k) + µ

m∑
j=1

D
(1)
i,j [b

(1)
i −

m∑
j=1

(D
(1)
i,j YiR

(2)
i,j +R

(1)
i,j YiD

(2)
i,j

+R
(1)
i,j YiR

(2)
i,j )−

m∑
j=1

D
(1)
i,j Yi(k)D

(2)
i,j ]D

(2)
i,j , (3.15)

Y
(2)T
i (k + 1) = Y

(2)T
i (k) + µ

m∑
j=1

D
(3)
i−1,j [b

(2)
i−1 −

m∑
j=1

(D
(3)
i−1,jY

T
i R

(4)
i−1,j +R

(3)
i−1,jY

T
i D

(4)
i−1,j

+R
(3)
i−1,jY

T
i R

(4)
i−1,j)−

m∑
j=1

D
(3)
i−1,jY

T
i (k)D

(4)
i−1,j ]D

(4)
i−1,j . (3.16)

Now, we take the transpose of both sides of algorithm (3.16), and we can get

Y
(2)
i (k + 1) = Y

(2)
i (k) + µ

m∑
j=1

D
(4)
i−1,j [b

(2)
i−1 −

m∑
j=1

(D
(3)
i−1,jY

T
i R

(4)
i−1,j +R

(3)
i−1,jY

T
i D

(4)
i−1,j

+R
(3)
i−1,jY

T
i R

(4)
i−1,j)−

m∑
j=1

D
(3)
i−1,jY

T
i (k)D

(4)
i−1,j ]

TD
(3)
i−1,j . (3.17)

Substituting (3.7) and (3.8) into (3.15) and (3.17), we can obtain

Y
(1)
i (k + 1) = Y

(1)
i (k) + µ

m∑
i=1

D
(1)
i,j [Mi −

n∑
q=1

Gi,jY
T
i+1Gi,j −

m∑
j=1

(D
(1)
i,j YiR

(2)
i,j

+R
(1)
i,j YiD

(2)
i,j +R

(1)
i,j YiR

(2)
i,j )−

m∑
j=1

D
(1)
i,j Yi(k)D

(2)
i,j ]D

(2)
i,j , (3.18)

Y
(2)
i (k + 1) = Y

(2)
i (k) + µ

m∑
j=1

D
(4)
i−1,j [Mi−1 −

m∑
j=1

Ei−1,jYi−1Fi−1,j −
m∑
j=1

(D
(3)
i−1,jY

T
i R

(4)
i−1,j

+R
(3)
i−1,jY

T
i D

(4)
i−1,j +R

(3)
i−1,jY

T
i R

(4)
i−1,j)−

m∑
j=1

D
(3)
i−1,jYi(k)

TD
(4)
i−1,j ]

TD
(3)
i−1,j .

(3.19)

To make the iterative procedure operate correctly, we can substitute the unknown matrix Yi
with the iterative solution Yi (k) acquired at the kth moment, so we can obtain the following
algorithms

Y
(1)
i (k + 1) = Yi (k) + µ

m∑
j=1

D
(1)
i,j [Mi −

m∑
j=1

(Ei,jYi (k)Fi,j +Gi,jY
T
i+1 (k)Hi,j)]D

(2)
i,j , (3.20)

Y
(2)
i (k + 1) = Yi (k) + µ

m∑
j=1

D
(4)
i−1,j [Mi−1 −

m∑
j=1

(Ei−1,jYi−1 (k)Fi−1,j

+Gi−1,jY
T
i (k)Hi−1,j)]

TD
(3)
i−1,j . (3.21)
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3.1 The RRJGI algorithm, the RRAJGI algorithm and conver-
gence analysis

Now, we introduce the full-row rank Jacobi gradient based iterative (RRJGI) algorithm for
solving matrix equations (1.9).

Algorithm 1 (The RRJGI algorithm)

Step 1. Given the coefficient matrices Ei,j , Gi,j ∈ Rm×m, Fi,j ,Hi,j ∈ Rn×n and Mi ∈ Rm×n for
i ∈ 1, ξ, j ∈ 1,m, choose an appropriate convergence number µ and the initial matrices Ki(0) ∈
Rm×n, Yi(0) =

m∑
j=1

(D
(1)
i,j Ki(0)D

(2)
i,j +D

(4)
i,j K

T
i+1(0)D

(3)
i,j ).

Step 2. SetKi+ξ(0) = Ki(0), Yi+ξ(0) = Yi(0), Ei+ξ,j = Ei,j , Fi+ξ,j = Fi,j , Gi+ξ,j = Gi,j ,Hi+ξ,j =

Hi,j ,Mi+ξ = Mi, D
(1)
i+ξ,j = D

(1)
i,j , D

(2)
i+ξ,j = D

(2)
i,j , D

(3)
i+ξ,j = D

(3)
i,j , and D

(4)
i+ξ,j = D

(4)
i,j for i ∈ 1, ξ,

j ∈ 1,m. Let k := 0.

Step 3. If δ(k) =

ξ∑
i=1

||Mi−
∑m

j=1 (Ei,jYi(k)Fi,j+Gi,jY
T
i+1(k)Hi,j)||2

ξ∑
i=1

||Mi||2
< ε, stop; otherwise, go to Step 4.

Step 4. Compute the following sequences

K1,i(k + 1) = Ki(k) + µ{Mi/2−
m∑
j=1

Ei,j [
m∑
j=1

(D
(1)
i,j Ki(k)D

(2)
i,j +D

(4)
i,j K

T
i+1(k)D

(3)
i,j )]Fi,j},

K2,i(k + 1) = Ki(k) + µ{Mi−1/2−
m∑
j=1

Gi−1,j [
m∑
j=1

(D
(1)
i−1,jKi−1(k)D

(2)
i−1,j

+D
(4)
i−1,jK

T
i (k)D

(3)
i−1,j)]

THi−1,j},

Ki(k + 1) =
K1,i(k + 1) +K2,i(k + 1)

2
,

Ki+ξ(k + 1) = Ki(k + 1),

Yi(k + 1) =

m∑
j=1

(D
(1)
i,j Ki(k + 1)D

(2)
i,j +D

(4)
i,j K

T
i+1(k + 1)D

(3)
i,j ),

Yi+ξ(k + 1) = Yi(k + 1).

Step 5. Let k := k + 1, go to Step 3.

Remark 1. The construction of Algorithm 1 is based on the splitting of matrix equations and

by the introduction of matrices b
(1)
i and b

(2)
i , we divide Eq. (1.9) into Eq. (3.9) and Eq. (3.10),

where b
(1)
i + b

(2)
i = Mi. It should be noted that the decomposition form of Eq. (1.9) is arbitrary,

and the values of b
(1)
i and b

(2)
i do not affect the progress of the algorithm. For convenience, we

take b
(1)
i = b

(2)
i = Mi/2 in Algorithm 1. Then, based on the hierarchical identification principle

and Jacobi iterative method, the iterative algorithms K1,i(k + 1) and K2,i(k + 1) are constructed
to solve Eq. (3.9) and Eq. (3.10), respectively. Next combine K1,i(k + 1) and K2,i(k + 1) to get
the iterative value Ki(k + 1), and finally the iterative solution Yi(k + 1) of Eq. (1.9) is obtained.

In order to improve the convergence speed and save time, we introduce an appropriate factor
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ω2, 0 < ω2 < 1 on the basis of RRJGI algorithm and propose an full-row rank accelerated Jacobi
gradient based iterative (RRAJGI) algorithm for solving Eq. (1.9).

Algorithm 2 (The RRAJGI algorithm)

Step 1. Given the coefficient matrices Ei,j , Gi,j ∈ Rm×m, Fi,j ,Hi,j ∈ Rn×n and Mi ∈ Rm×n for

i ∈ 1, ξ, j ∈ 1,m, choose the initial matricesKi(0),K2,i(0) ∈ Rm×n, Yi(0) =
m∑
j=1

(D
(1)
i,j Ki(0)D

(2)
i,j +D

(4)
i,j

KT
i+1(0)D

(3)
i,j ).

Step 2. SetKi+ξ(0) = Ki(0), Yi+ξ(0) = Yi(0), Ei+ξ,j = Ei,j , Fi+ξ,j = Fi,j , Gi+ξ,j = Gi,j ,Hi+ξ,j =

Hi,j ,Mi+ξ = Mi, D
(1)
i+ξ,j = D

(1)
i,j , D

(2)
i+ξ,j = D

(2)
i,j , D

(3)
i+ξ,j = D

(3)
i,j and D

(4)
i+ξ,j = D

(4)
i,j for i ∈ 1, ξ,

j ∈ 1,m. Let k := 0.

Step 3. If δ(k) =

ξ∑
i=1

||Mi−
∑m

j=1 (Ei,jYi(k)Fi,j+Gi,jY
T
i+1(k)Hi,j)||2

ξ∑
i=1

||Mi||2
< ε, stop; otherwise, go to Step 4.

Step 4. Compute the following sequences

K1,i(k + 1) = Ki(k) + µω2{Mi/2−
m∑
j=1

Ei,j [
m∑
j=1

(D
(1)
i,j Ki(k)D

(2)
i,j +D

(4)
i,j K

T
i+1(k)D

(3)
i,j )]Fi,j},

K̂i(k) = (1− ω2)K1,i(k + 1) + ω2K2,i(k),

K̂i+ξ(k) = K̂i(k),

K2,i(k + 1) = K̂i(k) + µ(1− ω2){Mi−1/2−
m∑
j=1

Gi−1,j [

m∑
j=1

(D
(1)
i−1,jK̂i−1(k)D

(2)
i−1,j

+D
(4)
i−1,jK̂

T
i (k)D

(3)
i−1,j)]

THi−1,j},
Ki(k + 1) = (1− ω2)K1,i(k + 1) + ω2K2,i(k + 1),

Ki+ξ(k + 1) = Ki(k + 1),

Yi(k + 1) =

m∑
j=1

(D
(1)
i,j Ki(k + 1)D

(2)
i,j +D

(4)
i,j K

T
i+1(k + 1)D

(3)
i,j ),

Yi+ξ(k + 1) = Yi(k + 1).

Step 5. Let k := k + 1, go to Step 3.

Theorem 3.1. Let A be a full-row rank matrix, the iterative solution K(k) = (K1(k), K2(k), · · · ,
Kξ(k)) given by Algorithm 1 (RRJGI) converges to the unique solutions K∗(k) = (K∗

1 (k),K
∗
2 (k), · · · ,

K∗
ξ (k)) for arbitrary initial matrices K(0) = (K1(0),K2(0), · · · ,Kξ(0)), if µ satisfies

0 < µ <
2

ξ∑
i=1

m∑
j=1

(∥∥∥D(1)
i,j

∥∥∥2∥∥∥D(2)
i,j

∥∥∥2 + ∥∥∥D(3)
i,j

∥∥∥2∥∥∥D(4)
i,j

∥∥∥2) . (3.22)

Proof. The error matrices are defined as follows

K̃i(k) = Ki(k)−K∗
i , K̃1,i(k) = K1,i(k)−K∗

i , K̃2,i(k) = K2,i(k)−K∗
i , (3.23)
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and

φ̃i(k) =

m∑
j=1

(D
(1)
i,j K̃i(k)D

(2)
i,j +D

(4)
i,j K̃

T
i+1(k)D

(3)
i,j ). (3.24)

From (3.23)-(3.26), Algorithm 1 and Remark 1, it is obvious that

K̃1,i(k + 1)

= K1,i(k + 1)−K∗
i

= Ki(k)−K∗
i + µ{Mi/2−

m∑
j=1

Ei,j [

m∑
j=1

(D
(1)
i,j Ki(k)D

(2)
i,j +D

(4)
i,j K

T
i+1(k)D

(3)
i,j )]Fi,j}

= K̃i(k) + µ{
m∑
j=1

Ei,j [
m∑
j=1

(D
(1)
i,j K

∗
i D

(2)
i,j +D

(4)
i,j K

∗T
i+1D

(3)
i,j )]Fi,j}

− µ{
m∑
j=1

Ei,j [
m∑
j=1

(D
(1)
i,j Ki(k)D

(2)
i,j +D

(4)
i,j K

T
i+1(k)D

(3)
i,j )]Fi,j}

= K̃i(k) + µ{
m∑
j=1

Ei,j [

m∑
j=1

(D
(1)
i,j (K

∗
i −Ki(k))D

(2)
i,j +D

(4)
i,j (K

∗T
i+1 −KT

i+1(k))D
(3)
i,j )]Fi,j}

= K̃i(k)− µ{
m∑
j=1

Ei,j [

m∑
j=1

(D
(1)
i,j K̃i(k)D

(2)
i,j +D

(4)
i,j K̃

T
i+1(k)D

(3)
i,j )]Fi,j}

= K̃i(k)− µ

m∑
j=1

Ei,jφ̃i(k)Fi,j , (3.25)

and

K̃2,i(k + 1)

= K2,i(k)−K∗
i

= Ki(k)−K∗
i + µ{Mi−1/2−

m∑
j=1

Gi−1,j [
m∑
j=1

(D
(1)
i−1,jKi−1(k)D

(2)
i−1,j

+D
(4)
i−1,jK

T
i (k)D

(3)
i−1,j)]

THi−1,j}

= K̃i(k) + µ{
m∑
j=1

Gi−1,j [
m∑
j=1

(D
(1)
i−1,j(K

∗
i −Ki−1(k))D

(2)
i−1,j

+D
(4)
i−1,j(K

∗T
i −KT

i (k))D
(3)
i−1,j)]

THi−1,j}

= K̃i(k)− µ{
m∑
j=1

Gi−1,j [

m∑
j=1

(D
(1)
i−1,jK̃i−1(k)D

(2)
i−1,j +D

(4)
i−1,jK̃

T
i (k)D

(3)
i−1,j)]

THi−1,j}

= K̃i(k)− µ

m∑
j=1

Gi−1,jφ̃
T
i−1(k)Hi−1,j . (3.26)
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Taking the square of the norm on both sides of (3.25) and (3.26), it can be derived

∥∥∥K̃1,i(k + 1)
∥∥∥2 = ∥∥∥K̃i(k)

∥∥∥2 − 2µtr(K̃T
i (k)

m∑
j=1

Ei,jφ̃i(k)Fi,j) + µ2

∥∥∥∥∥∥
m∑
j=1

Ei,jφ̃i(k)Fi,j

∥∥∥∥∥∥
2

, (3.27)

∥∥∥K̃2,i(k + 1)
∥∥∥2 = ∥∥∥K̃i(k)

∥∥∥2 − 2µtr(K̃T
i (k)

m∑
j=1

Gi−1,jφ̃
T
i−1(k)Hi−1,j)

+ µ2

∥∥∥∥∥∥
m∑
j=1

Gi−1,jφ̃
T
i−1(k)Hi−1,j

∥∥∥∥∥∥
2

. (3.28)

The function W (k) is defined as

W (k) =

ξ∑
i=1

∥∥∥K̃i(k)
∥∥∥2. (3.29)

Thus, through (3.27)-(3.29) and Algorithm 1, we have

W (k + 1)

=

ξ∑
i=1

∥∥∥K̃i(k + 1)
∥∥∥2

=

ξ∑
i=1

∥∥∥∥∥K̃1,i(k + 1) + K̃2,i(k + 1)

2

∥∥∥∥∥
2

≤
ξ∑

i=1

(1
2

∥∥∥K̃1,i(k + 1)
∥∥∥2 + 1

2

∥∥∥K̃2,i(k + 1)
∥∥∥2)

=

ξ∑
i=1

[∥∥∥K̃i(k)
∥∥∥2 − µtr(K̃T

i (k)

m∑
j=1

Ei,jφ̃i(k)Fi,j) +
1

2
µ2

∥∥∥∥∥∥
m∑
j=1

Ei,jφ̃i(k)Fi,j

∥∥∥∥∥∥
2

− µtr(K̃T
i (k)

m∑
j=1

Gi−1,jφ̃
T
i−1(k)Hi−1,j) +

1

2
µ2

∥∥∥∥∥∥
m∑
j=1

Gi−1,jφ̃
T
i−1(k)Hi−1,j

∥∥∥∥∥∥
2]

=

ξ∑
i=1

[∥∥∥K̃i(k)
∥∥∥2 − µtr(K̃T

i (k)

m∑
j=1

Ei,jφ̃i(k)Fi,j) +
1

2
µ2

∥∥∥∥∥∥
m∑
j=1

Ei,jφ̃i(k)Fi,j

∥∥∥∥∥∥
2

− µtr(K̃T
i+1(k)

m∑
j=1

Gi,jφ̃
T
i (k)Hi,j) +

1

2
µ2

∥∥∥∥∥∥
m∑
j=1

Gi,jφ̃
T
i (k)Hi,j

∥∥∥∥∥∥
2]

=

ξ∑
i=1

[∥∥∥K̃i(k)
∥∥∥2 − µtr(φ̃i(k)

m∑
j=1

Ei,jK̃
T
i (k)Fi,j + φ̃T

i (k)
m∑
j=1

Gi,jK̃
T
i+1(k)Hi,j)

+
1

2
µ2

∥∥∥∥∥∥
m∑
j=1

Ei,jφ̃i(k)Fi,j

∥∥∥∥∥∥
2

+
1

2
µ2

∥∥∥∥∥∥
m∑
j=1

Gi,jφ̃
T
i (k)Hi,j

∥∥∥∥∥∥
2]
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≤W (k)− µ

ξ∑
i=1

∥φ̃i(k)∥2 +
1

2
µ2

ξ∑
i=1

[
m∑
j=1

(∥Ei,j∥2∥Fi,j∥2 + ∥Gi,j∥2∥Hi,j∥2)]∥φ̃i(k)∥2

=W (k)− 1

2
µ{2− µ

ξ∑
i=1

[ m∑
j=1

(∥Ei,j∥2∥Fi,j∥2 + ∥Gi,j∥2∥Hi,j∥2)
]
}

ξ∑
i=1

∥φ̃i(k)∥2

≤W (0)− 1

2
µ{2− µ

ξ∑
i=1

[ m∑
j=1

(∥Ei,j∥2∥Fi,j∥2 + ∥Gi,j∥2∥Hi,j∥2)
]
}

k∑
t=0

ξ∑
i=1

∥φ̃i(t)∥2.

Furthermore, if the convergence number µ satisfies (3.22), it can be obtained

k∑
t=0

ξ∑
i=1

∥φ̃i(t)∥2 < ∞. (3.30)

Because of the conditions that the series converges, when t → ∞, it has

ξ∑
i=1

∥φ̃i(t)∥2 → 0. (3.31)

Then it follows from (3.25) and (3.31) that

lim
t→∞

φ̃i(t) = 0, (3.32)

or

lim
t→∞

[ m∑
j=1

(D
(1)
i,j K̃i(t)D

(2)
i,j +D

(4)
i,j K̃

T
i+1(t)D

(3)
i,j )

]
= 0. (3.33)

Now, due to Lemma 2.3, it gets

lim
t→∞

K̃i(t) = 0. (3.34)

This completes the proof of Theorem 3.1.

To prove the following Theorem 3.2, we define several symbols

M = diag
( m∑

j=1

(F T
1,j ⊗ E1,j),

m∑
j=1

(F T
2,j ⊗ E2,j), · · · ,

m∑
j=1

(F T
ξ,j ⊗Eξ,j)

)
, (3.35)

N = diag
( m∑

j=1

(D
(2)
1,j ⊗D

(1)
1,j ),

m∑
j=1

(D
(2)
2,j ⊗D

(1)
2,j ), · · · ,

m∑
j=1

(D
(2)
ξ,j ⊗D

(1)
ξ,j )

)
, (3.36)

P = diag
( m∑

j=1

(HT
ξ,j ⊗Gξ,j)P,

m∑
j=1

(HT
1,j ⊗G1,j)P, · · · ,

m∑
j=1

(HT
ξ−1,j ⊗Gξ−1,j)P

)
, (3.37)

Q = diag
( m∑

j=1

(D
(3)
ξ,j ⊗D

(4)
ξ,j )P,

m∑
j=1

(D
(3)
1,j ⊗D

(4)
1,j )P, · · · ,

m∑
j=1

(D
(3)
ξ−1,j ⊗D

(4)
ξ−1,j)P

)
, (3.38)
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R =



0
m∑
j=1

(D
(3)
1,j ⊗D

(4)
1,j )P 0

. . .

0 0
m∑
j=1

(D
(3)
ξ−1,j ⊗D

(4)
ξ−1,j)P

m∑
j=1

(D
(3)
ξ,j ⊗D

(4)
ξ,j )P 0 · · · 0


, (3.39)

V =



0 · · · 0
m∑
j=1

(D
(2)
ξ,j ⊗D

(1)
ξ,j )

m∑
j=1

(D
(2)
1,j ⊗D

(1)
1,j ) 0 0

. . .

0
m∑
j=1

(D
(2)
ξ−1,j ⊗D

(1)
ξ−1,j) 0


. (3.40)

Theorem 3.2. If A is a full-row rank matrix, then the iterative solution K(k) = (K1(k),K2(k), · · · ,
Kξ(k)) given by Algorithm 1 (RRJGI) converges to the unique solution K∗ = (K∗

1 ,K
∗
2 , · · · ,K∗

ξ ) for
arbitrary initial matrices K(0) = (K1(0),K2(0), · · · ,Kξ(0)), if and only if

0 < µ <
4

λmax(MN +MR+ PV + PQ)
. (3.41)

Proof. From Algorithm 1 (RRJGI), (3.25) and (3.26), we have

K̃i(k + 1) =
K̃1,i(k + 1) + K̃2,i(k + 1)

2

= K̃i(k)−
µ

2

m∑
j=1

Ei,jφ̃i(k)Fi,j −
µ

2

m∑
j=1

Gi−1,jφ̃
T
i−1(k)Hi−1,j . (3.42)

Taking the vec operator on both sides of (3.24) and (3.42), we can obtain

vec(φ̃i(k)) =
m∑
j=1

(D
(2)
i,j ⊗D

(1)
i,j )vec(K̃i(k)) +

m∑
j=1

(D
(3)
i,j ⊗D

(4)
i,j )Pvec(K̃i+1(k)), (3.43)

and

vec(K̃i(k + 1)) = vec(K̃i(k))−
µ

2

m∑
j=1

(F T
i,j ⊗ Ei,j)vec(φ̃i(k))

− µ

2

m∑
j=1

(HT
i−1,j ⊗Gi−1,j)Pvec(φ̃i−1(k))

= vec(K̃i(k))−
µ

2

m∑
j=1

(F T
i,j ⊗ Ei,j)

m∑
j=1

(D
(2)
i,j ⊗D

(1)
i,j )vec(K̃i(k))

− µ

2

m∑
j=1

(F T
i,j ⊗ Ei,j)

m∑
j=1

(D
(3)
i,j ⊗D

(4)
i,j )Pvec(K̃i+1(k))
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− µ

2

m∑
j=1

(HT
i−1,j ⊗Gi−1,j)P

m∑
j=1

(D
(2)
i−1,j ⊗D

(1)
i−1,j)vec(K̃i−1(k))

− µ

2

m∑
j=1

(HT
i−1,j ⊗Gi−1,j)P

m∑
j=1

(D
(3)
i−1,j ⊗D

(4)
i−1,j)Pvec(K̃i(k)). (3.44)

It follows from (3.35)-(3.40) and (3.44) that
vec(K̃1(k + 1))

vec(K̃2(k + 1))
...

vec(K̃ξ(k + 1))

 = [I − µ

2
(MN +MR+ PV + PQ)]


vec(K̃1(k))

vec(K̃2(k))
...

vec(K̃ξ(k))

 . (3.45)

Eq. (3.45) shows that Algorithm 1 is convergent if and only if

ρ[I − µ

2
(MN +MR+ PV + PQ)] < 1. (3.46)

Then, it is obvious that

λ[I − µ

2
(MN +MR+ PV + PQ)]

= {1− µ

2
λs(MN +MR+ PV + PQ), s = 1, 2, · · · , r}, (3.47)

where r = rank(MN +MR+PV +PQ). Since ρ[I − µ
2 (MN +MR+PV +PQ)] < 1, it can be

derived

−1 < 1− µ

2
λs(MN +MR+ PV + PQ)] < 1, (3.48)

i.e.

0 < µ <
4

λs(MN +MR+ PV + PQ)
, s = 1, 2, · · · , r, (3.49)

and using the yields from the intersection (3.41). Thus, the proof of the conclusion is complete.

Theorem 3.3. Let A be a full-row rank matrix, the iterative solution K(k) = (K1(k),K2(k), · · · ,
Kξ(k)) given by Algorithm 2(RRAJGI) converges to the unique solution K∗(k) = (K∗

1 (k),K
∗
2 (k), · · · ,

K∗
ξ (k)) for arbitrary initial matrices K(0) = (K1(0),K2(0), · · · ,Kξ(0)), if µ satisfies

0 < µ < min


2

ω2

ξ∑
i=1

m∑
j=1

∥∥∥D(1)
i,j

∥∥∥2∥∥∥D(2)
i,j

∥∥∥2 ,
2

(1− ω2)
ξ∑

i=1

m∑
j=1

∥∥∥D(3)
i,j

∥∥∥2∥∥∥D(4)
i,j

∥∥∥2
 . (3.50)

Proof. The error matrices are defined as

K̃i(k) = Ki(k)−K∗
i ,

˜̂
Ki(k) = K̂i(k)−K∗

i , (3.51)

K̃1,i(k) = K1,i(k)−K∗
i , K̃2,i(k) = K2,i(k)−K∗

i , (3.52)
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and

φ̃i(k) =

m∑
j=1

(D
(1)
i,j K̃i(k)D

(2)
i,j +D

(4)
i,j K̃

T
i+1(k)D

(3)
i,j ), (3.53)

δ̃i(k) =

m∑
j=1

(D
(1)
i,j

˜̂
Ki(k)D

(2)
i,j +D

(4)
i,j

˜̂
K

T

i+1(k)D
(3)
i,j ). (3.54)

From (3.51)-(3.54) and Algorithm 2, we can get the following relations

K̃1,i(k + 1) = K̃i(k)− µω2

m∑
j=1

Ei,jφ̃i(k)Fi,j , (3.55)

K̃2,i(k + 1) =
˜̂
Ki(k)− µ(1− ω2)

m∑
j=1

Gi−1,j δ̃
T
i−1(k)Hi−1,j . (3.56)

Taking the square of the norm on both sides of (3.55) and (3.56), it has

∥∥∥K̃1,i(k + 1)
∥∥∥2 = ∥∥∥K̃i(k)

∥∥∥2 − 2µω2tr
(
K̃T

i (k)

m∑
j=1

Ei,jφ̃i(k)Fi,j

)
+ µ2ω2

2

∥∥∥∥∥∥
m∑
j=1

Ei,jφ̃i(k)Fi,j

∥∥∥∥∥∥
2

,

(3.57)∥∥∥K̃2,i(k + 1)
∥∥∥2 = ∥∥∥∥ ˜̂Ki(k)

∥∥∥∥2 − 2µ(1− ω2)tr
( ˜̂
K

T

i (k)

m∑
j=1

Gi−1,j δ̃
T
i−1(k)Hi−1,j

)

+ µ2(1− ω2)
2

∥∥∥∥∥∥
m∑
j=1

Gi−1,j δ̃
T
i−1(k)Hi−1,j

∥∥∥∥∥∥
2

. (3.58)

The function W (k) is defined as

W (k) =

ξ∑
i=1

∥∥∥K̃i(k)
∥∥∥2. (3.59)

Thus, through (3.57)-(3.59) and Algorithm 2, we have

W (k + 1)

=

ξ∑
i=1

∥∥∥K̃i(k + 1)
∥∥∥2

=

ξ∑
i=1

∥∥∥(1− ω2)K̃1,i(k + 1) + ω2K̃2,i(k + 1)
∥∥∥2

≤
ξ∑

i=1

[
(1− ω2)

2
∥∥∥K̃1,i(k + 1)

∥∥∥2 + ω2
2

∥∥∥K̃2,i(k + 1)
∥∥∥2]

=

ξ∑
i=1

[
(1− ω2)

2
∥∥∥K̃i(k)

∥∥∥2 + ω2
2

∥∥∥∥ ˜̂Ki(k)

∥∥∥∥2 − 2µω2(1− ω2)
2tr(K̃T

i (k)
m∑
j=1

Ei,jφ̃i(k)Fi,j)
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+ µ2ω2
2(1− ω2)

2

∥∥∥∥∥∥
m∑
j=1

Ei,jφ̃i(k)Fi,j

∥∥∥∥∥∥
2

− 2µω2
2(1− ω2)tr(

˜̂
K

T

i (k)

m∑
j=1

Gi−1,j δ̃
T
i−1(k)Hi−1,j)

+ µ2ω2
2(1− ω2)

2

∥∥∥∥∥∥
m∑
j=1

Gi−1,j δ̃
T
i−1(k)Hi−1,j

∥∥∥∥∥∥
2]

=

ξ∑
i=1

[
(1− ω2)

2
∥∥∥K̃i(k)

∥∥∥2 + ω2
2

∥∥∥∥ ˜̂Ki(k)

∥∥∥∥2 − 2µω2(1− ω2)
2tr(φ̃i(k)

m∑
j=1

Ei,jK̃
T
i (k)Fi,j)

+ µ2ω2
2(1− ω2)

2

∥∥∥∥∥∥
m∑
j=1

Ei,jφ̃i(k)Fi,j

∥∥∥∥∥∥
2

− 2µω2
2(1− ω2)tr(δ̃

T
i (k)

m∑
j=1

Gi,j
˜̂
K

T

i+1(k)Hi,j)

+ µ2ω2
2(1− ω2)

2

∥∥∥∥∥∥
m∑
j=1

Gi,j δ̃
T
i (k)Hi,j

∥∥∥∥∥∥
2]

≤
ξ∑

i=1

[
(1− ω2)

2
∥∥∥K̃i(k)

∥∥∥2 + ω2
2

∥∥∥∥ ˜̂Ki(k)

∥∥∥∥2 − 2µω2(1− ω2)
2∥φ̃i(k)∥2

+ µ2ω2
2(1− ω2)

2
m∑
j=1

∥Ei,j∥2∥Fi,j∥2∥φ̃i(k)∥2

− 2µω2
2(1− ω2)

∥∥∥δ̃Ti (k)∥∥∥2 + µ2ω2
2(1− ω2)

2
m∑
j=1

∥Gi,j∥2∥Hi,j∥2
∥∥∥δ̃Ti (k)∥∥∥2]

=(1− ω2)
2W (k) + ω2

2

ξ∑
i=1

∥∥∥∥ ˜̂Ki(k)

∥∥∥∥2 − µω2(1− ω2)
2
[
2− µω2

ξ∑
i=1

m∑
j=1

∥Ei,j∥2∥Fi,j∥2
] ξ∑

i=1

∥φ̃i(k)∥2

− µω2
2(1− ω2)

[
2− µ(1− ω2)

ξ∑
i=1

m∑
j=1

∥Gi,j∥2∥Hi,j∥2
] ξ∑

i=1

∥∥∥δ̃Ti (k)∥∥∥2

≤(1− ω2)
2W (0) + ω2

2

ξ∑
i=1

k∑
t=0

∥∥∥∥ ˜̂Ki(t)

∥∥∥∥
2

− µω(1− ω2)
2
[
2− µω2

ξ∑
i=1

m∑
j=1

∥Ei,j∥2∥Fi,j∥2
] ξ∑

i=1

k∑
t=0

∥φ̃i(t)∥2

− µω2
2(1− ω2)

[
2− µ(1− ω2)

ξ∑
i=1

m∑
j=1

∥Gi,j∥2∥Hi,j∥2
] ξ∑

i=1

k∑
t=0

∥∥∥δ̃Ti (t)∥∥∥2.
Furthermore, if the convergence number µ satisfies (3.50), it can be obtained

k∑
t=0

ξ∑
i=1

∥φ̃i(t)∥2 < ∞,

k∑
t=0

ξ∑
i=1

∥∥∥δ̃Ti (t)∥∥∥2 < ∞. (3.60)
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Because of the conditions that the series converges, when t → ∞, it is derived

ξ∑
i=1

∥φ̃i(t)∥2 → 0,

ξ∑
i=1

∥∥∥δ̃Ti (t)∥∥∥2 → 0. (3.61)

It follows from (3.53), (3.54) and (3.61) that

lim
t→∞

φ̃i(k − t) = 0, lim
t→∞

δ̃Ti (k − t) = 0. (3.62)

or

lim
t→∞

[ m∑
j=1

(D
(1)
i,j K̃i(t)D

(2)
i,j +D

(4)
i,j K̃

T
i+1(t)D

(3)
i,j )

]
= 0, (3.63)

lim
t→∞

[ m∑
j=1

(D
(1)
i,j

˜̂
Ki(t)D

(2)
i,j +D

(4)
i,j

˜̂
K

T

i+1(t)D
(3)
i,j )

]T
= 0. (3.64)

Now, from Lemma 2.3, it gets

lim
t→∞

K̃i(t) = 0. (3.65)

This completes the proof of Theorem 3.3.

3.2 The CRJGI algorithm, the CRAJGI algorithm and conver-
gence analysis

In the following, first we introduce the full-column rank Jacobi gradient based iterative (CR-
JGI) algorithm and the full-collumn rank accelerated Jacobi gradient based iterative algorithm
(CRAJGI) for solving Eq. (1.9). Then we give the convergence analysis on these two iterative
algorithms.

Algorithm 3 (The CRJGI algorithm)

Step 1. Given the coefficient matrices Ei,j , Gi,j ∈ Rm×m, Fi,j ,Hi,j ∈ Rn×n and Mi ∈ Rm×n for
i ∈ 1, ξ, j ∈ 1,m, choose an appropriate convergence number µ and the initial matrices Yi(0) ∈
Rm×n.

Step 2. Set Yi+ξ(0) = Yi(0), Ei+ξ,j = Ei,j , Fi+ξ,j = Fi,j , Gi+ξ,j = Gi,j ,Hi+ξ,j = Hi,j ,Mi+ξ =

Mi, D
(1)
i+ξ,j = D

(1)
i,j , D

(2)
i+ξ,j = D

(2)
i,j , D

(3)
i+ξ,j = D

(3)
i,j , and D

(4)
i+ξ,j = D

(4)
i,j for i ∈ 1, ξ, j ∈ 1,m. Let k := 0.

Step 3. If δ(k) =

ξ∑
i=1

||Mi−
∑m

j=1 (Ei,jYi(k)Fi,j+Gi,jY
T
i+1(k)Hi,j)||2

ξ∑
i=1

||Mi||2
< ε, stop; otherwise, go to Step 4.

Step 4. Compute the following sequences

Y1,i(k + 1) = Yi(k) + µ
m∑
j=1

D
(1)
i,j [Mi −

m∑
j=1

(Ei,jYi(k)Fi,j +Gi,jY
T
i+1(k)Hi,j)]D

(2)
i,j ,

Y2,i(k + 1) = Yi(k) + µ

m∑
j=1

D
(4)
i−1,j [Mi−1 −

m∑
j=1

(Ei−1,jYi−1(k)Fi−1,j

+Gi−1,jY
T
i (k)Hi−1,j)]

TD
(3)
i−1,j ,
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Yi(k + 1) =
Y1,i(k + 1) + Y2,i(k + 1)

2
,

Yi+ξ(k + 1) = Yi(k + 1).

Step 5. Let k := k + 1, go to Step 3.

Similar to the construction of RRAJGI algorithm, we introduce an appropriate factor ω1, 0 <
ω1 < 1 on the basis of CRJGI algorithm, and propose the following full-column rank accelerated
Jacobi gradient based iterative (CRAJGI) algorithm for solving Eq. (1.9).

Algorithm 4 (The CRAJGI algorithm)

Step 1. Given the coefficient matrices Ei,j , Gi,j ∈ Rm×m, Fi,j ,Hi,j ∈ Rn×n and Mi ∈ Rm×n for
i ∈ 1, ξ, j ∈ 1,m, choose the initial matrices Yi(0), Y2,i(0) ∈ Rm×n.

Step 2. Set Yi+ξ(0) = Yi(0), Ei+ξ,j = Ei,j , Fi+ξ,j = Fi,j , Gi+ξ,j = Gi,j ,Hi+ξ,j = Hi,j ,Mi+ξ =

Mi, D
(1)
i+ξ,j = D

(1)
i,j , D

(2)
i+ξ,j = D

(2)
i,j , D

(3)
i+ξ,j = D

(3)
i,j , and D

(4)
i+ξ,j = D

(4)
i,j for i ∈ 1, ξ, j ∈ 1,m. Let k := 0.

Step 3. If δ(k) =

ξ∑
i=1

||Mi−
∑m

j=1 (Ei,jYi(k)Fi,j+Gi,jY
T
i+1(k)Hi,j)||2

ξ∑
i=1

||Mi||2
< ε, stop; otherwise, go to Step 4.

Step 4. Compute the following sequences

Y1,i(k + 1) = Yi(k) + µω1

m∑
j=1

D
(1)
i,j [Mi −

m∑
j=1

(Ei,jYi(k)Fi,j +Gi,jY
T
i+1(k)Hi,j)]D

(2)
i,j ,

Ŷi(k) = (1− ω1)Y1,i(k + 1) + ω1Y2,i(k),

Ŷi+ξ(k) = Ŷi(k),

Y2,i(k + 1) = Ŷi(k) + µ(1− ω1)

m∑
j=1

D
(4)
i−1,j [Mi−1 −

m∑
j=1

(Ei−1,j Ŷi−1(k)Fi−1,j

+Gi−1,j Ŷ
T
i (k)Hi−1,j)]

TD
(3)
i−1,j ,

Yi(k + 1) = (1− ω1)Y1,i(k + 1) + ω1Y2,i(k + 1),

Yi+ξ(k + 1) = Yi(k + 1).

Step 5. Let k := k + 1, go to Step 3.

Theorem 3.4. Assumed that A be a full-column rank matrix, then the iterative solution Y (k) =
(Y1(k), Y2(k), · · · , Yξ(k)) given by Algorithm 3 (CRJGI) converges to the unique solution Y ∗(k) =
(Y ∗

1 (k), Y
∗
2 (k), · · · , Y ∗

ξ (k)) of Eq. (1.9) for arbitrary initial matrix group Y (0) = (Y1(0), Y2(0), · · · ,
Yξ(0)), if

0 < µ <
2

ξ∑
i=1

m∑
j=1

(∥∥∥D(1)
i,j

∥∥∥2∥∥∥D(2)
i,j

∥∥∥2 + ∥∥∥D(3)
i,j

∥∥∥2∥∥∥D(4)
i,j

∥∥∥2) . (3.66)

Proof. We can prove this result by using the same line as Theorem 3.1. Hence, it has been omitted
here.
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Similarly, in order to prove the following Theorem 3.5, we define the following notations

B =



0
m∑
j=1

(HT
1,j ⊗G1,j)P 0

. . .

0 0
m∑
j=1

(HT
ξ−1,j ⊗Gξ−1,j)P

m∑
j=1

(HT
ξ,j ⊗Gξ,j)P 0 · · · 0


, (3.67)

C =



0 · · · 0
m∑
j=1

(F T
ξ,j ⊗ Eξ,j)

m∑
j=1

(F T
1,j ⊗ E1,j) 0 0

. . .

0
m∑
j=1

(F T
ξ−1,j ⊗ Eξ−1,j) 0


. (3.68)

Theorem 3.5. If A is a full-column rank matrix, Y ∗(k) = (Y ∗
1 (k), Y

∗
2 (k), · · · , Y ∗

ξ (k)) is the unique

solution group of Eq. (1.9), then the Algorithm 3 (CRJGI) obtains limk→∞Yi(k) = Y ∗
i (k), i ∈ 1, ξ,

for arbitrary initial matrix group Y (0) = (Y1(0), Y2(0), · · · , Yξ(0)), if and only if

0 < µ <
4

λmax(NM+NB +QC +QP)
. (3.69)

Proof. We can use the same line as Theorem 3.2 to demonstrate this result. So, it is not included
here.

Theorem 3.6. Supposed that A be a full-column rank matrix, then the iterative solution Y (k) =
(Y1(k), Y2(k), · · · , Yξ(k)) given by Algorithm 4 (CRAJGI) converges to the unique solution Y ∗(k) =
(Y ∗

1 (k), Y
∗
2 (k), · · · , Y ∗

ξ (k)) of Eq. (1.9) for arbitrary initial matrix group Y (0) = (Y1(0), Y2(0), · · · ,
Yξ(0)), if

0 < µ < min


2

ω1

ξ∑
i=1

m∑
j=1

∥∥∥D(1)
i,j

∥∥∥2∥∥∥D(2)
i,j

∥∥∥2 ,
2

(1− ω1)
ξ∑

i=1

m∑
j=1

∥∥∥D(3)
i,j

∥∥∥2∥∥∥D(4)
i,j

∥∥∥2
 . (3.70)

Proof. We can prove this result by using the same line as Theorem 3.3. Therefore, it has been
omitted here.

4 Numerical experiments

In this section, we give two examples to illustrate the performance of the proposed algorithms.
All algorithms are calculated using MATLAB R2020a.
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Example 4.1. Consider the discrete-time periodic Sylvester transpose matrix equations

AiXiBi + CiX
T
i+1Ei = Gi, i = 1, 2,

where the coefficient matrices are given by

A1 = tril (rand (m) ,m) + diag (1.5 + diag (rand (m))) ,

B1 = −triu (rand (m) ,m)− b× diag (2.6 + diag (rand (m))) ,

C1 = tril (rand (m) ,m)− diag (1 + diag (rand (m))) ,

E1 = −triu (rand (m) ,m) + diag (2 + diag (rand (m))) ,

G1 = rand (m)− eye (m)× b,

A2 = triu (rand (m) ,m) + diag (1.8 + diag (rand (m))) ,

B2 = −tril (rand (m) ,m) + b× diag (4.4 + diag (rand (m))) ,

C2 = triu (rand (m) ,m) + diag (2.8 + diag (rand (m))) ,

E2 = −tril (rand (m) ,m) + diag (3.4 + diag (rand (m))) ,

G2 = −rand (m)− eye (m)× b.

The initial matrices are chosen as Xi(0) = zeros(m), i = 1, 2 and the iterative residual is defined
as

ri(k) := log10
∥∥Gi −AiXi(k)Bi − CiX

T
i+1(k)Ei

∥∥ , i = 1, 2,

where Xi(k) are the kth iterative solutions of the Algorithms 1-4. In this example, let m = 4, b = 4.
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Fig. 1: Comparison of the convergence curves for Example 4.1.

Fig. 1 compares the convergence curves of GI algorithm, RGI algorithm, AGI algorithm, CRJGI
algorithm, RRJGI algorithm, CRAJGI algorithm, and RRAJGI algorithm. It can be seen from
Fig. 1 that the four algorithms proposed in this paper are effective for solving matrix equations,
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Table 1: Iterative steps, residual and CPU time of Fig.1

Method Step r1(k) r2(k) Time

GI algorithm 631 −13.0101 −13.5179 0.0140
RGI algorithm 554 −14.0144 −14.2214 0.0126
AGI algorithm 448 −14.0020 −14.2179 0.0121
CRJGI algorithm 354 −14.0002 −14.2403 0.0104
RRJGI algorithm 275 −14.0050 −14.6148 0.0100
CRAJGI algorithm 185 −14.0513 −14.3357 0.0095
RRAJGI algorithm 126 −14.0956 −14.6313 0.0092

which shows the correctness of the algorithms and the convergence speed of these four algorithms
are obviously faster than other algorithms which also shows the superiority of the algorithms.

Table 1 compares the number of iterative steps, iterative residual and computation time of
several algorithms. It is showed from the Table 1 that the four algorithms proposed in this paper
have more advantages than other algorithms in terms of convergence efficiency, convergence accu-
racy and calculation time. Especially, the advantage of RRAJGI algorithm is more obvious, which
shows that this algorithm can save a lot of computing time and storage space.

Example 4.2. Consider the discrete-time periodic Sylvester transpose matrix equations{
A11X1B11 + C11X

T
2 D11 +A12X1B12 + C12X

T
2 D12 = M1,

A21X2B21 + C21X
T
1 D21 +A22X2B22 + C22X

T
1 D22 = M2,

where the coefficient matrices are given by

A11 = tril (rand (m) ,m) + diag (2.5 + diag (rand (m))) ,

B11 = −triu (rand (m) ,m)− a ∗ diag (1.6 + diag (rand (m))) ,

C11 = tril (rand (m) ,m)− diag (3.1 + diag (rand (m))) ,

D11 = −triu (rand (m) ,m) + diag (1 + diag (rand (m))) ,

A12 = tril (rand (m) ,m) + diag (1.5 + diag (rand (m))) ,

B12 = −triu (rand (m) ,m)− a ∗ diag (0.6 + diag (rand (m))) ,

C12 = tril (rand (m) ,m)− diag (1 + diag (rand (m))) ,

D12 = −triu (rand (m) ,m) + diag (2.2 + diag (rand (m))) ,

M1 = rand (m)− eye (m) ∗ a,
A21 = tril (rand (m) ,m) + diag (0.5 + diag (rand (m))) ,

B21 = −triu (rand (m) ,m)− a ∗ diag (1.6 + diag (rand (m))) ,

C21 = tril (rand (m) ,m)− diag (1 + diag (rand (m))) ,

D21 = −triu (rand (m) ,m) + diag (2 + diag (rand (m))) ,

A22 = tril (rand (m) ,m) + diag (1.5 + diag (rand (m))) ,

B22 = −triu (rand (m) ,m)− a ∗ diag (2.6 + diag (rand (m))) ,

C22 = tril (rand (m) ,m)− diag (1 + diag (rand (m))) ,
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D22 = −triu (rand (m) ,m) + diag (2 + diag (rand (m))) ,

M2 = rand (m)− eye (m) ∗ a.

0 500 1000 1500 2000

k(iteration number)

-16

-14

-12

-10

-8

-6

-4

-2

0

2

r i(k
)

r
1
(k) of GI

r
2
(k) of GI

r
1
(k) of RGI

r
2
(k) of RGI

r
1
(k) of AGI

r
2
(k) of AGI

r
1
(k) of CRJGI

r
2
(k) of CRJGI

r
1
(k) of RRJGI

r
2
(k) of RRJGI

r
1
(k) of CRAJGI

r
2
(k) of CRAJGI

r
1
(k) of RRAJGI

r
2
(k) of RRAJGI

Fig. 2: Comparison of the convergence curves for Example 4.2.

The initial matrices are chosen as Xi(0) = zeros(m), i = 1, 2 and the iterative residual are
defined as

r1(k) := log10
∥∥M1 −A11X1(k)B11 − C11X

T
2 (k)D11 −A12X1(k)B12 − C12X

T
2 (k)D12

∥∥ ,
r2(k) := log10

∥∥M2 −A21X2(k)B21 − C21X
T
1 (k)D21 −A22X2(k)B22 − C22X

T
1 (k)D22

∥∥ ,
where Xi(k) are the kth iterative solutions of the Algorithms 1-4. In this example, let m = 7, a = 5.

Table 2: Iterative steps, residual and CPU time of Fig.2

Method Step r1(k) r2(k) Time

GI algorithm 1098 −13.7999 −13.8522 0.0686
RGI algorithm 854 −13.9414 −13.9744 0.0556
AGI algorithm 665 −13.9424 −14.0249 0.0518
CRJGI algorithm 541 −13.9487 −14.0915 0.0445
RRJGI algorithm 456 −14.2657 −14.3814 0.0375
CRAJGI algorithm 308 −13.9626 −14.2871 0.0293
RRAJGI algorithm 237 −14.4063 −14.5005 0.0260

Fig. 2 shows the comparison of the convergence curves of several algorithms. From Fig. 2
we can conclude that the iterative residual decreases gradually as the number of iterative steps
increases, which indicates that these four algorithms are given by this paper can obtain the exact
solutions of the equations under a limited number of iterative steps, and the algorithm proposed
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in this paper is better than other algorithms in terms of both the running time and the iterative
residual.

Table 2 compares the number of iterative steps, iterative residuals and calculation time of
several algorithms. Table 2 shows that RRJGI algorithm, RRAJGI algorithm, CRJGI algorithm
and CRAJGI algorithm have significantly better computational efficiency than other algorithms.
In addition, it can be obtained that the RRAJGI algorithm needs the minimum number of iterative
steps and the shortest calculation time when convergence is achieved.

5 Application in state observer design of periodic lin-

ear systems

Example 5.1. We consider the following linear discrete-time periodic system

qk+1 = Akqk +Bkuk, (5.1)

where Ak ∈ Rn×n is the state matrix, Bk ∈ Rn×r is the input matrix, and both Ak, Bk are matrices
with period T .

Periodic state observer based on state error feedback is the most widely used, which can be
expressed as follows

x̂t+1 = Atx̂t +Btut + Lt(yt − ŷt), (5.2)

where x̂t ∈ Rn is the observer state, ŷt = Ctx̂t is the observer output and Lt ∈ Rn×m is observer
gain.

Obviously, the system (5.2) is equivalent to the following periodic closed-loop system

x̂t+1 = (At − LtCt)x̂t +Btut + Ltyt, (5.3)

its univalued matrix is written as

ΦA = ÃT−1ÃT−2 · · · Ã0,

where Ãt = At−LtCt, t ∈ 0, T − 1. Then the problem of state-observer design for first-order linear
periodic discrete system (5.1) can be described as follows.

Consider a fully observable first-order linear periodic discrete system (5.1) and find a periodic
matrix Lt ∈ Rn×m so that the observer system (5.2) can give a asymptotic approximation to the
state xt of the system (5.1).

Next, we solve the periodic matrix Lt according to Algorithm 2 proposed in this paper, which
is summarized as follows.

Algorithm 5 (The periodic state observer design in linear systems)

Step 1. Choose the appropriate matrices Ft ∈ Rn×n with periodic T that satisfies Λ(ΦF ) = Γ
and Λ(ΦF )∩Λ(ΦA) = ∅, and choose the periodic matrices Gt ∈ Rr×n satisfying that the matrix pair
(Ãt, Gt) is fully observable, give an appropriate convergence factor µ and an appropriate relaxation

factor ω, where 0 < ω < 1, D
(1)
t and D

(2)
t are the diagonal matrices corresponding to AT

t and −Ft,
respectively.
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Step 2. Set tolerance error ε, the initial matrices are chosen as Yt(0), Y2,t(0) ∈ Rn×n, Xt(0) =

D
(1)
t Yt(0) + Yt+1(0)D

(2)
t , compute

Rt(0) = CT
t Gt −AT

t Xt(0) +Xt+1(0)Ft,

k := 0.

Step 3. When ||Rt(k)|| ≤ ε, compute

Y1,t(k + 1) = Yt(k) + µω{(CT
t Gt)

/
2−AT

t [D
(1)
t Yt(k) + Yt+1(k)D

(2)
t ]},

Ŷt(k) = (1− ω)Y1,t(k + 1) + ωY2,t(k),

Ŷt+T (k) = Ŷt(k),

Y2,t(k + 1) = Ŷt(k) + µ(1− ω){(CT
t−1Gt−1)

/
2− [D

(1)
t−1Ŷt−1(k) + Ŷt(k)D

(2)
t−1](−Ft−1)},

Y (k + 1) = (1− ω)Y1,t(k + 1) + ωY2,t(k + 1),

Yt+T (k + 1) = Yt(k),

Xt(k + 1) = D
(1)
t Yt(k + 1) + Yt+1(k + 1)D

(2)
t ,

Xt+T (k + 1) = Xt(k),

k = k + 1.

Step 4. Let X∗
t = Xt(k), calculate the periodic state observer gain Lt

Lt = (Gt(X
∗
t )

−1)T .

We know that the solution matrixX∗
t generated by Algorithm 5 are the solutions of the following

Sylvester matrix equations

AT
t Xt −Xt+1Ft = CT

t Gt, t ∈ 1, T . (5.4)

If we choose T = 2 and

A1 =


3.3856 0.8913 0.8214 0.9218
0.2311 2.6150 0.4447 0.7382
0.6068 0.4565 2.3142 0.1763
0.4860 0.0185 0.7919 2.6525

 ,

A2 =


−2.0185 0.0000 0.0000 0.0000
0.0000 −2.9667 0.0000 0.0000
0.0000 0.0000 −4.2146 0.0000
0.0000 0.0000 0.0000 −3.3796

 ,

F1 =


−1.0768 0.3412 0.8385 0.5466
0.6602 −1.5457 0.5681 0.4449
0.3420 0.7271 −0.8661 0.6946
0.2897 0.3093 0.7027 −1.1401

 ,

F2 =


2.7833 0.0000 0.0000 0.0000
0.0000 2.0592 0.0000 0.0000
0.0000 0.0000 2.8744 0.0000
0.0000 0.0000 0.0000 2.7889

 ,

24



C1 =


−3.1951 0.3200 0.7446 0.6833
0.4983 −3.1150 0.2679 0.2126
0.2140 0.7266 −3.0729 0.8392
0.6435 0.4120 0.9334 −3.4836

 ,

C2 =


3.8078 0.5869 0.7176 0.4418
0.0158 3.0083 0.6927 0.3533
0.0164 0.3676 3.4497 0.1536
0.1901 0.6315 0.4544 3.4150

 ,

G1 =


6.1085 11.7455 9.8025 7.8521
−7.8425 −15.6279 −20.9538 −11.7712
−11.1380 −20.4830 −25.4317 −13.8007
12.9317 28.7359 39.4289 28.1247

 ,

G2 =


17.8223 14.8889 19.9818 4.8605
22.1746 22.0385 29.7235 14.8262
20.8185 20.0357 19.5413 11.9351
−29.7677 −17.8096 −28.6271 15.9366

 .

By Algorithm 5, we get

X∗
1 =


8.6666 −16.4843 −9.8988 −32.8552
−9.5983 21.3601 −1.8898 31.9227
11.9932 61.3474 81.4414 −0.0952
−19.1405 −44.7243 −74.8887 12.3186

 ,

X∗
2 =


−43.1103 −9.9278 −21.2932 34.5128
−13.2501 −38.8111 −28.5908 −50.8758
−28.4303 −50.6079 −76.7389 −14.6883
40.2481 40.0852 86.0114 −28.9959

 .

Then we can derive periodic state observer gain

L1 =


0.2221 0.2190 0.0746 −0.7496
1.0525 −0.8458 −1.3244 1.4393
−1.2140 1.4337 1.9888 −2.7621
−1.5071 1.8314 2.5259 −3.4675

 ,

L2 =


1.2435 3.1756 0.2750 1.4361
−4.1305 −9.2566 −2.0688 −2.2803
6.7149 15.3388 2.8153 4.2151
5.1582 11.7399 2.1194 3.0254

 .

Remark 2. Explanation of convergence factors of several algorithms in this paper is as follows.
The convergence factor µ is used in Algorithms 1-5. In addition, In Algorithm 2, the relaxation
factor ω2 is used. The the relaxation factor ω1 is used in Algorithm 4, and in Algorithm 5, the
relaxation factor ω is used. It should be noted that the convergence factors in the several algorithms
can be chosen to be the same or different under conditions that satisfy the theorems. The relaxation
factors are selected to be any number between 0 and 1.

Remark 3. The idea of solving linear systems is to transform general linear systems into corre-
sponding Sylvester matrix equations. The algorithm proposed in this paper can be used to solve a
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variety of Sylvester matrix equations, so it is suitable for solving systems that can be transformed
into Sylvester matrix equations.

6 Concluding remark

In this paper, RRJGI algorithm, RRAJGI algorithm, CRJGI algorithm and CRAJGI algorithm
are proposed for the discrete-time periodic Sylvester transpose matrix equations. Furthermore,
the convergence theorems of the algorithms under arbitrary initial matrices are given by using the
Frobenious norm. Two numerical examples show that the algorithms have faster convergence speed
than GI algorithm, RGI algorithm and AGI algorithm which shows that the cost of computing time
and storage space can be saved. At the end of this paper, the control application on the proposed
Algorithm 2 is given. Therefore, our proposed algorithm is benefit to solve the observer design
problem. In addition, our proposed algorithm can also solve the iterative solution of the other
matrix equations, for example, the periodic coupled Sylvester conjugate matrix equations, the
coupled discrete-time periodic Sylvester conjugate (transpose) matrix equations.
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