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IMPULSIVE CONTROL FOR A
PLANT-PEST-NATURAL ENEMY MODEL
WITH STAGE STRUCTURE*

Weixuan Shi!, Sha Lu?', Jianzhong Zhang?

Abstract For integrated pest management (IPM), we propose a general-
ized stage-structured plant-pest-natural enemy system with impulsive spray-
ing pesticide and releasing natural enemies at different fixed moment. By the
stroboscopic maps, we obtain two types of periodic solutions: the plant-pest-
extinction and the pest-extinction. The sufficient conditions for the global at-
tractivity of a pest-extinction periodic solution and permanence of the system
are obtained by comparison theorem and stroboscopic technique. Moreover,
numerical simulations are inserted to verify the effectiveness and feasibility of
the theoretical results, which show that the impulsive control plays a key role
on the permanence of the system.
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1. Introduction

According to the reports of Food and Agriculture Organization of the United Na-
tions, the warfare between human and pests has lasted for thousands of years. With
the development of science and technology, to control pests many methods are avail-
able to farmers such as chemical control, biological control, remote sensing, atomic
energy and so on. Among these methods, biological control and chemical control are
considered as the two most effective methods to beat agricultural pests. Biological
control refers to reducing the pest population by introducing other living organisms,
which are often called natural enemies of the pest, or beneficial species [8]. As a
matter of fact, all pests have their natural enemies. The key to successful biological
control is to identify the natural enemy of the pest, and release the enemies at early
stage when pest’s level is still low. Chemical control means to spray pesticides on
farmland or forest, which quickly destroy a significant portion of the pest popula-
tion at its vulnerable stage and provide feasible method to prevent the economic
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loss. However, the sprayed pesticide assuredly bring about many ecological and en-
vironmental polluted problems, and is also recognized as a major hazard to human
health and beneficial enemies. All these means that one should utilize pesticide as
little as possible, i.e, achieve maximum effect at minimum levels of pesticide. How
to combine biological control and chemical control is a valuable issue, which is also
the primary aim of integrated pest management [14,24].

In comparison with the growth process of biological species, the releasing natural
enemies and spraying pesticides always happen in a short time or instantaneously,
which should be described by impulsive perturbations [10]. In recent decades, impul-
sive differential equations have been extensively used as models in biology, physics,
chemistry, engineering and other applied sciences [22,23], with particular emphasis
on population dynamics, see [11,16,18,26-28] and references therein. Yu et al. [20]
investigated an ecological model with impulsive perturbations of three species, and
obtained the condition which guarantees the globally asymptotical stability of the
prey and predator eradication periodic solutions. Recently, Liu et al. [18] considered
the predator-prey ecosystem with general functional response and impulsive control,
firstly established the sufficient conditions for the local and the global stabilities of
prey eradication periodic solution. Subsequently, it follows from their analysis that
the system is permanent if the impulsive perturbations are satisfied with certain
conditions. In the real world, many species usually go through two distinct life
stages from birth to death, immature and mature. And only mature predators can
attack prey and have reproductive ability. Stage-structured systems have received
great attention, see [1,6,12,13,21,25] and references therein. In [12], Jatav and
Dhar proposed a Lotka-Volterra-type plant-pest-natural enemy food chain model
with stage structure by the following set of differential system

ax(r T
X () :R()X(T) (1_ ngg)

X( ) ~AX ()Y (1),

O — A, B X (7)Y (1) — A2Y (1) Za(7) — D1Y (1),

T = A,ByY (1) Z2(7) — (D2 + p) Z1(7),

1220) = 17, (1) — DaZo(7),

where X (7) is the plant population, Z;(7), Z2(7) are the densities of immature and
mature natural enemy populations respectively and Y'(7) is the density of pest in
that region of consideration at time 7. Ry denotes the intrinsic growth rate of the
plant and Kj is the carrying capacity. A; and A, are per capita rates of predation;
By and B; are the product of per capita rate of predation and the conversion rates;
Dy and Ds are the death rates of pest and natural enemy, respectively. The param-
eter p is the maturity rate of natural enemy and all the parameters in the model
are positive constants. They studied plant-pest-natural enemy food chain model
with impulsive releasing natural enemy and spraying pesticides at fixed moment.
In fact, the sprayed pesticide invariably do harm to beneficial enemy [4,7,18,20,26],
which was not considered in [12]. To do this, we think that spraying pesticide and
releasing enemies should be applied at different moment. For simplicity, choosing
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the following non-dimensional variables

y(t) = Y(r)

_ Z(7)
= B, W

Zs(7)
==V t) =
BlBQK07 22()

BlBQKO’ 0T,

then system (1.1) can be written as the following general system

t#nT,t# (n+1-1)T,

22l — mz (1) — das(t)
x(tT) = z(t)
y(t") = (1= d1)y(t)
t=(n+1- 1T, (1.2)

21 (1) = (1 = d2)21(¢)

(t7) = (1 = d3)22(t)
z(tt) = z(t)
y(th) = y(t) -

21(t) = z1(t) +

2o(th) = 22(t) + 2

Whereclzmgi;m),wz%fz%,dl:%,d2:%,mzﬁoand0<l<l. The
constant T is the impulsive period, p1 and ug are respectively pulse releasing amount
of immature and mature natural enemies, and §; (0 < §; < 1,4 = 1,2,3) are the
death rates of the pest, immature and mature natural enemy when chemical control
is used at time t = (n +1—1)T,n € Ny respectively. If 6; = 4§, o =95 =0, 1 =1,
system (1.2) is considered by Jatav and Dhar in [12]. In this paper, we analyze the
local stabilities of periodic solutions (ie. plant-pest-extinction and pest-extinction)
to system (1.2), and investigate the global attractivity of a pest-extinction periodic
solution and the permanence of system (1.2) with impulsive perturbations.

The rest of this paper unfolds as follows: In section 2, we obtain two types
of periodic solutions: the plant-pest-extinction and the pest-extinction. The local
stability and global attractivity of the periodic solutions are studied in section 3.
In section 4, we investigate the permanence of system (1.2). In section 5, we give
the numerical simulations and discussions. The conclusions of this paper are given
in the last section.
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2. Preliminaries

Let Ry = [0,400), Ri = {z € RYz > 0}. Denote f = (f1,f2, f3,fs)T the
map defined by the right-hand side of system (1.2). The solution of system (1.2),
denoted by X (t) = (z(t),y(t), z1(t), 22(t))7, is a piecewise continuous function X :
Ry — R%. Again, X(¢) is continuous on ((n — 1)T,(n + ! — 1)T] and ((n + 1 —

NT,nT)], X((n+1—-1)T") = t—)(nEEl)T‘*’ X(t) and X (nT") = t—1>irrbr%+ X(t) exist.

The global existence and uniqueness of solution of system (1.2) are guaranteed by
the smoothness properties of f (see [2,15]). From the biological point, we only
consider system (1.2) in the following region

0 = {(@(t),y(0), 21(0), 22(0)” () > 0, (1) 2 0, 22(6) > 0, 2(t) > 0}

Let V: Ry X Rﬁ_ — R, then V is said to belong to class Vj if:
(i) V is continuous in ((n — 1)T, (n 4+ — 1)T] xR} and ((n + 1 — 1)T,nT] x RY.

For each X € RY, lim V(t,u) = V(KT, X) and lim V(t,u) =
(tyu)—(KT—,X) (t,u)—>(KT+,X)

V(KTT, X) exist, where K =n,n+1— 1.
(ii) V is locally Lipschitzian in X.

Definition 2.1. Let V' € Vp, then for (¢,X) € ((n — 1)T,(n+ 1 —1)T] x R} or
((n+1-1)T,nT) x Ri, the upper right derivative of V (¢, X) with respect to the
impulsive differential system (1.2) is defined as

DYV (t,X)= lim sup 1[V(?ﬁ +h, X+ hf(t, X)) - V(X))
h—07+ h

The following Lemma will be used several times throughout the paper. Let us
begin with Lemma 2.1 which is well known and the readers can refer [2,12,15, 25]
for more details.

Lemma 2.1. Suppose V € Vy and X (0) = Xo. Assume that

DTV (t, X) <g(t,V(t, X)), t#nT,t#(n+1-—1T,

V(X)) <o (V(E, X)), t=(n+1—1T, (2.1)

V({t, X)) <vp(V(t X)), t=nT,

where g : Ry x Ry — Ry is continuous in ((n — 1)T,(n + 1 — 1)T] x Ry and
(n+1—-1)T,nT] x Ry. For u € Ry, lim g(t,v) = g(nT*,u) and
(t,v)—=>(nT+,u)
lim t,v) = g((n+1—1)T*, u) exist, and i (i =1, 2) : Ry — Ry is
(t,v)%((n+l71)T+7u)g( ) =9(( ) ) U )Ry +
non-decreasing. Let r(t) be the maximal solution of the scalar impulsive differential
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equation

W = g(t,ult), t#nTt#(n+1- 1T,

u(tt) =y (u(t), t=n+1-1)T,
(2.2)

w(0T) = ug

existing on [0,00). Then V (0, X)) < wug, implies that V(t,X(t)) < r(t),t > 0,
where X (t) is any solution of system (1.2).

For the convenience of readers, we give the following lemma and its correspond-
ing proof.

Lemma 2.2. There exists a constant M > 0 such that x(t) < M,y(t) < M, z1(t) <
M, 25(t) < M for each solution of system (1.2) with t sufficiently large enough.

Proof. Define V (¢, X(t)) such that

V(t, X(1) = x(t) + y(t) + 21(t) + 22(2).

Then V € Vp, since dgfi(tt) < z(t)(1 — z(t)), then x(t) < 1. We calculate the right

derivative of V (¢, X) along a solution of system (1.2). Let 0 < L < min{dy,d»},
then for t # nT and t # (n+{ — 1)T, we obtain that

DYV () + LV (t) = x(t)(1 — (t)) — diy(t) — daz1(t) — daza(t)
+Lx(t) + Ly(t) + Lz1(t) + Lza(t)
= x(t) + La(t) — 2°(t) + (L — dv)y(t) + (L — da)(21(t) + 22(1))
(1+ L)Q.

< a(t) + La(t) — 2%(t) < I

When t = (n+1—-1)T,

Vin+1-DTT) =z((n+1—-1)T)+ (1 - 6)y((n+1—1)T)
+(1 = 89)z1((n+1—1)T) + (1 — d3)22((n + 1 — 1)T)
<z((n+1-D)T)+y((n+1—-D)T)+ 2z ((n+1—-1)T)
+z2((n+1-1)T)
=V((n+1-1)T),

and when t = nT,

V(nTt) = 2(nTh) +y(nTT) + 21(nTT) + 2o (nT™)
=z(nT) + y(nT) + z1(nT) + zo(nT) 4+ 1 + p2
=V (nT) + p1 + pa.

From Lemma 2.2 [15] (page 23), we have

e, A+ L)? ooy, (A pp)e P (et
V(t) < V0)e ™ 4 (1 —e7") + LT R %
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1 LQ LT
_>( + L) +(M1+M2)€

17 oIT _ 1 as t — o0.

Thus V (¢, X (¢)) is ultimately bounded. Hence, by the definition of V'(¢), there exists
2 LT
a constant M = G+~ 4 (“14;’;22? such that z(t) < M, y(t) < M, z(t) < M

and z3(t) < M for all ¢ large enough. This completes the proof. O

Lemma 2.3. Let

ae "=t e ((n— 1T, (n+1—1)T],
G(t) =

a(l —p)e"t==DT) ¢ € ((n+1—1)T,nT)

witha >0, 7 >0 and 0 < p < 1. Consider the following impulsive system

W — p(G(t) +¢) — dult), t#nT,t# (n+1—1)T,

u(tt) = (1 —qu(t), t=m+1-1T, (2.3)

wtt) =u(t) +p, t=nT,

whereb>0,c€R, r>d>0,0<q¢g<1,0<l<1andpu>0. Then system (2.3)
has a periodic solution:

(ab—ab(1—p)e™"T +p(r—d))e= = (=DT) | gp(g—p)e=d(t—(n—H =T —rIT
(r—d)(1—(1—q)e~4T)

a —r(t—(n—1)T be efd(tf(nﬁ»le)T) .
- be r—d - dq(l_(l_q)e—dT) + %7 t € ((n - 1)T7 (n +l - 1)T]F’

(ab—ab(1—p)e™"T4u(r—d))(1—q)e~ 2= (=D)L gp(q_p)e=d(t=(ntl=DT)—riT
(r=d)(1-(1—q)e~4T)

b(1— —r(t—(n—1)T bege—(t—(n+1—1)T) be
—ab=ple ™ — ey T %, te((n+ - 1T nT),

and for any solution u(t) of system (2.3), we haveu(t) — u(t) ast — oo.

Proof. Now, our central task is to prove Lemma 2.3. For any ¢t € (n — 1)T, (n +
I—1)T]orte ((n+!1—1)T,nT], integrating the first equation of system (2.3) over
the interval ((n — 1)T,¢t] or ((n +1—1)T,t], we arrive at

ab(e~ At (n=1T) _o—r(t—(n—1)T)) be(1—e—d(t—(n=1T))
r—d + d

Hu((n — 1)TH)e=t==0T) " ¢ ¢ (n— 1T, (n+1—1)T],

ab(l_p)(e—d(tf(n#»l—l)T)—rlT_efr(tf(nfl)T)) n bc(l_e—d(t—(nJrl—l)T))
r—d d

Fu((n+1—1)TH)e dt-H=DT) "t c ((n+1—1)T,nT).




Food chain with stage structure 7

After the successive pulse, the stroboscopic maps of system (2.3) are given by

ab(1 = )T — ) be(l — g)(1 — =)
d

u((n+1—-1)T") =

r—d
ful(n— DTH)(1 - g)eT (24)
and
o ab(l _p)(efd(lfl)TfrlT _ efrT) bC(l _ efd(lfl)T)
u(nT™) = — + y
+u((n 1= DT H)e 0T 4y, (2.5)

Substituting (2.4) into (2.5), we obtain that
ab((l _ q)ede _ (1 _ p)eiTT 4 (q _ p)efd(lfl)TfrlT)
r—d

1 — ge—d=DT _ (] _ ;\e—dT
ellzae = 202000 - T - g+

2 f(u(n—1)TH). (2.6)

u(nT™t) =

It is easy to check that (2.6) has a unique positive fixed point

ab((1 — g)e="" — (1 = p)e”"" + (g — p)e” " -IT"T)
(r—d)(1—(1—q)e )
be(1 — ge” U =DT — (1 — g)e~T) o
A0 (1 ge ) I ge
which satisfies u(t) < f(u(t)) < v*((n — 1)T7) if 0 < u(t) < u*((n — 1)TT), and
u*((n—1)TT) < fu(t)) < u(t) if u(t) > u*((n — 1)TT). According to the concept

of [5], we can know that u*(nT™) is globally asymptotically stable. It follows from
(2.4) and (2.7) that

w((n - )TT) =

(2.7)

(1= q)e=T (ab — ab(1 = p)e~T + u(r — d))
(r—d)(1—(1—q)edT)
_ab(l—g)(g—ple T ab(l —gq)e T
T (r—d)(1—(1—gq)edT) r—d

Lbel=gq)  beq(l—qle”™

d B d(1 — (1 - q)e—aTy’ (2:8)

u (n+1-1)TT) =

Similarly, we conclude that u*((n + [ — 1)TT) is globally asymptotically stable.
Therefore, the corresponding positive periodic solution of system (2.3) in the interval
(n=1DT,(n+1-1)TIU((n+1—-1)T,nT] is

(ab—ab(1—p)e~ T +pu(r—d))e~ 2= (=DT) L gp (g p)e—d@t—(n—+l=2)T—riT
(r—d)(1—(1—q)e=4T)

abe—T(t—(n=1T bege—d(t—(nHl=2)T) be

T —d — Sy T te((n =T, (n+1-1)T],

(ab—ab(1—p)e~ T 4 pu(r—d))(1—q)e~ 2= =DT) 4 4y (g p)e—d(t—(nti-DT)—riT
(r=d)(1-(1—g)e~9T)

_ab(l—p)e (DT poge—d(i-(ntl-DT)

r—d - d(l*(lfq)e*dT) + a t & ((n =+ l — l)T, TZT],
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which is globally asymptotically stable. That is, for any solution w(t) of system
(2.3), we arrive at u(t) — u(t) as t — oco. This completes the proof. O

In what follows, let us give two periodic solutions of system (1.2). From system
(1.2), we observe that

dz;t(t) = —(d2 + m)zl(t), t # nT,t ;A (n Ny - 1)T7

21(tT) =1 —=d2)z(t), t=(n+1-1T, (2.9)

21(t+) = Zl(t) + p1, t=nT.

Thanks to Lemma 2.3, we see that system (2.9) has a globally asymptotically stable
periodic solution as follows

—(dg+m)(t—(n—1)T)
#ff(1—62)e—<d2+’"” , te((n—1T,(n+1-1)T),

z1(t) = (2.10)

1§ e—(d2+m)(t=(n—1)T)
pa( 1_36_52)6*(‘12*"”” , te(ln+1—-1)T,nT)

with

~ ~ M1
21(07) =z, (nTT) = T (1 =8y @rmT

_ pi(l—46 e—(da+m)IT
Zi((n+1-1D)TH) = : 1_((1 : fsi)e—(dﬁm)T'

For a solution

(1 — 62)n—1(2;1 (O"F) _ 1_(1_52)#61_(d2+m)T )e—(d2+7rz)t
+21(t), te((n-1T,(n+1-1)T),

e—(dz-‘rm)t

(1= 85)"(21(0F) — T e Tor)

+24(t), te((n+1—1)T,nT)

of system (2.9) with any initial data 2, (07) > 0, we have 21 () — z1(t), t — oc.
It follows from system (1.2) that

dz;t(t) = mzl(t) — dQZQ(t), t 7§ nT,t # (n +1— I)T,

2o(tt) = (1 —83)2a(t), t=(n+1-1T, (2.11)

Zg(t+) :ZQ(t)+M2, t=nT.



Food chain with stage structure

Substituting (2.10) into system (2.11), we end up with

4220 — 7 (1) — dazo(t), t#£nT,t# (n+1—1)T,

dt
22(t+) = (1 — 53)2’2(t), t= (Tl +1— l)T,
2o(tT) = 2o(t) + po, t=nT.
For system (2.12), applying Lemma 2.3 yields
(u1+#2)e—d2(t—(n—l)T) ul(63762)67(12(tf(n72)T)77an
1—(1—683)e—d2T (1—(1—d2)e (@2 T T)(1—(1—d)e 927)
—(dpFm) (t—(n—1)T)
. _#fj(l,(b)e—(dg-;-mw , e ((n - 1)T» (n +1- 1)T]7
Z(t) =
(1 4p2)(1—83)ed2(t—(n=1T) 1 (85— 83)e~d2(t=(n=1)T)—mIT
1—(1—03)e—42T (1—(1=d2)e~(d2+m)T) (1 —(1—§3)e~92T)
1—8.)e— (da+m)(t—(n—1)T)
ol 1,2?52)6*(‘12“”” , te((n+1—1)T,nT],
where

=iy =y p1 + pr2 B fi1
Z(07) =2(nT™) = 1—(1—d3)e BT  1-(1— 52)67(d2+m)T

M1(53 _ 52>e—(d2+ml)T
(1 — (1= 8g)e(d2tm)T)(1 — (1 — §5)e—4=T)’
pr + po) (1= Gg)e™ T puy (1 = §y)e (datm)iT
1—(1—=0d3)e=T 1 —(1—4y)e(datm)T
N1(53 _ 52)67(d2+m)lT
(1 — (1 = 8g)e(d2tm)T)(1 — (1 — §3)e~4=T)’

+

Zo((n+1-1)TT) = (

+

which is globally asymptotically stable.
Moreover, owing to pest eradication, we observe that x(t) satisfies that
dx(t)
dt

= 2(t)(1 — z(t)).

(2.12)

Obviously, there exists an unstable equilibrium x = 0 and a globally asymptotically
stable equilibrium z = 1. Putting all the above solutions together, we conclude
that system (1.2) has two periodic solutions: plant-pest-extinction periodic solution

(0,0,%1(t), Z2(t)) and pest-extinction periodic solution (1,0, z1(t), Z2(t)).

3. Stability Analysis

In this section, we focus on the stability of the plant-pest eradication periodic

solution and the pest eradication periodic solution of system (1.2).

Theorem 3.1. Let (z(t),y(t), 21(t), 22(t)) be any solution of system (1.2).
(i) The plant-pest eradication periodic solution (0,0,21(t),22(t)) s unstable.

Then
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(i) The pest eradication periodic solution (1,0, z1(t), Z2(t)) of system (1.2) is locally
asymptotically stable if and only if (c1 — d1)T —ca(A+ B+ C) <ln ﬁ and it is
unstable if and only if (c; —d1)T —c2(A+ B+ C)>1n ﬁ, where

_ M1628_(d2+m)lT _ /Jl(l _ (1 _ 62)6—(d2+7n)T)

A=
(d2 +m)(1 — (1 — b)e(d2tm)T) :
B — (p1 + p2)(1 = (1 = 63)e=%T — §ze=%IT)
do(1 — (1 — 83)e—d2T) )
C = M1 ((53 — (52)6—(d2+M)lT(1 _ e—dQT)

do(1 — (1 — §y)e=(d2+m)T) (1 — (1 — d3)e—d2T)’

Proof. (i) To investigate the local stability of the periodic solution (0, 0, z1 (t), z2(t)),
we define

z(t) = (1), y(t) = d2(t), 21(t) = z21(t) + ¢3(t), 22(t) = 22(t) + ¢a(t),  (3.1)

where ¢;(t), i = 1,2, 3,4 are small component amplitude perturbation of the solution
(0,0,21(t), 22(t)), respectively. Substituting (3.1) into system (1.2), the linearization
of system (1.2) becomes

dd)dlt(t) = ¢1(t)

%t(t):—(dl + caZa(t)) P2 (t) t#nT, t# (n+1-1)T
nd, n - ’

st — % () pa(t) — (do +m) s (t)

%t(t) = m¢3(t) - d2¢4(t)
¢1 (t+) = ¢1 (t)
o (tT) = (1 — 61)a(t)

t=(m+1-1)T, (3.2)
P3(tT) = (1 — d2)p3(t)
Ga(t™) = (1 — 83)pa(t)
o1(th) = b1 (t)
d2(tT) = ¢alt)
t=nT.

¢3(t™) = ¢s(t)

Da(t™) = ¢alt)
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Let ®(¢) be the fundamental matrix of system (3.2), then ®(¢) must satisfy

1 0 0 0
dd(t) 0 —(di +c2%(t)) 0 0
Tdt o(t) == Ko(t).  (3.3)
0 cz(t)  —(d2+m) 0
0 0 m —ds

System (3.2) from the fifth equation to the eighth equation becomes

o1((n+1—1)TT) 1 0 0 0 o1((n+1-1)T)
oao((n+1=1)TH) [ [01—61 0 0 pa((n+1—1)T)
d3((n+1—1)T") ) 0 0 1-6 0 ¢3((n+1—1)T)
pa((n+1—1)TF) 0 0 0 1-0d3/) \ga((n+1-1)T)

System (3.2) from the ninth equation to the twelfth equation becomes

é1(nTF) 1000 | [ ¢1(nT)
¢ (nT) 0100 [ | ¢o(nT)
d3(nT) ) 0010 | | ¢s(nT)
¢a(nT) 0001 ) \ ¢a(nT)

Then the monodromy matrix of system (3.2) is given by

1 0 0 0 1000
01—6, 0 0 0100

M = (7).
0 0 1-48 0 0010
0 0 0 1-46)\0001

From (3.3), we get that ®(T) = (I>(0)efoT Kdt where ®(0) = I is the identify matrix.
Hence, the monodromy matrix M has the following eigenvalues:

A= el > 1, Ao = (1 - 51)€_fUT(d1+6222(t))dt <1,



12 Shi, Lu and Zhang

Az = (1—dp)e T <1 Ny = (1-d3)e 2T < 1.

According to the Floquet theory for impulsive differential equations, the plant-
pest eradication periodic solution (0,0, 21 (t), 22(t)) of system (1.2) is unstable since
|>\1| > 1.

(ii) The local stability of the periodic solution (1,0, z1(t), z2(¢)) is similar to the
previous case. Setting

x(t) =14 ¢1(t), y(t) = da(t), 21(t) = 21(t) + P3(t), 22(t) = Za(t) + Pa(t), (3.4)

where ¢;(t), i = 1,2,3,4 are small component amplitude perturbation of the so-
lution (1,0,z1(t),22(t)), respectively. Plugging (3.4) into system (1.2), then the
linearization of system (1.2) becomes

) — g, (t) — er0ha(t)

92l — (c1 — dy — c2%2(1))a(1)
t#nT,t#(n+1—-1)T,

9030 — % () (t) — (da + m)a(t)

28 — mes(t) — daga(t)
d1(th) = ¢1(2)
¢2(t+) = (]_ — 51)¢)2(t)

f=(n+1— 1T, (3.5)
P3(tT) = (1 — b2)p3(t)
da(t™) = (1 — d3)pa(t)
o1(t") = 1 (t)
d2(tT) = ¢alt)
t=nT.

P3(t) = ¢3(t)
Ga(tT) = ¢ult)

The fundamental matrix ®(¢) must fulfill

-1 —C1 0 0
d(I)(t) _ O C1 — dl — ngg(t) 0 O (I)(t)
dt N
0 coza(t) —(da+m) 0
0 0 m —d2
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It follows from system (3.5) that

P1((n+1—-1)TT)

d2((n+1—1)TT)

p3((n+1—1)TT)

Ga((n+1—-1)TT)
Similarly,

¢1 (7"LT+)
(]52 (nT+)
¢3(nT")

¢4 (nT‘*‘)

1 0 0
01-6 O
0 0 1-46
0 O 0
1000
0100
0010
0001

¢1 (7"LT)
(]52 (nT)

¢3(nT)

¢4 (TLT)

We observe that the monodromy matrix of system (3.5) is

which has the following eigenvalues

A1 = e_T <1,
A3 = (1 — 52)67(d2+m)T <1,

1000

0100

0010

0001

$1((n+1—1)T)
$2((n+1-1)T)
¢3((n+1-1)T)

¢a((n+1-1)T)

Ay = (1 — (51)6f0T(cl_dl_szz(t))dt’

A= (1—683)e T < 1.

(3.6)

These eigenvalues imply that the pest eradication periodic solution (1,0, z1 (t), z2(t))
is locally asymptotically stable if and only if |A2| < 1, that is to say, (¢ — dq)T —
c(A+B+C)<In ﬁ. The pest eradication periodic solution (1,0, 21 (t), Z2(t))
is unstable if and only if [z > 1, ie., (¢ —d1)T —c2(A+B+C) >1n ﬁ. This

completes the proof.

O

Next, we will prove the global attractivity of the pest eradication periodic solu-
tion of system (1.2) under the condition for Theorem 3.1.

Theorem 3.2. The pest eradication periodic solution (1,0,%1(t),z2(t)) of system
(1.2) is globally attractive if (¢c1 —d1)T —c2(A+ B+ C) <In ﬁ, where A, B, C
are the same definitions as in Theorem 3.1.
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Proof. Choose an ¢ > 0 (sufficiently small) such that

51 _ (1 B 51)6 ((:Lllrl;)T(Cl(l"rSo)—dl—CQ(EQ(t)—mTZO—Eo))dt < 1

as (g —d)T—ca(A+B+C) <In 1_—151 Let (x(t),y(t), z1(t), 22(t)) be any solution
of system (1.2). Then we get from the first equation of system (1.2) that

dz(t)
dt

<z(t)(1 —x(t)),

which implies that . 1i1$1 supz(t) = 1. So there exists an integer k1 > 0 such that
— 400

x(t) < 14¢p for all t > k;. It follows from the third, seventh and eleventh equations
of system (1.2) that

dz;t(t) > —(d2 + m)?&(t), t 7é nT,t ;é (n Iy 1)T7

z7(tT) =1 -08)z(t), t=(n+1-1T,

21(t+) :Zl(t)—i-/.n, t=nT.

Consider the following auxiliary system

dudlt(t) — —(dQ + m)ul(t), t 7& T},T'7 t 7£ (n + | — ]_)T’

ur(tt) = (1 =d2)ua(t), t=(n+1-1)T, (3.7)

ul(t+) =U1(t)+,u1, t=nT.
With the aid of Lemma 2.3, we obtain that system (3.7) has a periodic solution

p e~ (d2+m)(t=(n-1)T)

—(1_ “(dot+m)T >
@ =nm=4 "

te((n—1)T, (n+1—1)T),

p11(1—85)e— (d2+m) (b= (n—1)T)
1_(1_52)6—(d2+m)T 9

te((n+!1—-1),nT],

which is globally asymptotically stable. Taking advantage of Lemma 2.1, we see
that z1(t) > wui(t) and uy(t) — w1(t) as t — oo. Then there exists an integer
ky > %Lt > kT such that

z1(t) > ur(t) > z1(t) —eo, te€ (nT,(n+1)T], n> ks. (3.8)

Incorporating (3.8) with the fourth equation of system (1.2), we have

dz;t(t) >m (51(75) — 60) — dQZg(t), t 75 nT,t 7& (n +1— l)T’

2(tt) = (1 —83)20(t), t=(n+1-1)T, (3.9)

Zg(t+) zzg(t)+u2, t=nT.



Food chain with stage structure 15

The comparison system of system (3.9) is

@0 — g (21(t) — e0) — dous(t), t#nT,t# (n+1— 1T,
un(tT) = (1 — 83)ua(t), t=n+1—1T, (3.10)

ug(t+) = ua(t) + po, t=nT.
Lemma 2.3 ensures that system (3.10) has a periodic solution

—do (t—(n+1—2)T)

N Z(t) + m;;?;i(lfég)e,dﬂ) — 2%, te((n—1T,(n+1-1)T],

us(t) =
~ m e—d2(t—(n+1-1)T) m
() + PN ey — 6 L€ (n+ 1= DTonT]
>&@yf%@,t€“nfDTmﬂ,
2

which is globally asymptotically stable. Due to Lemma 2.1, we observe that z5(t) >
us(t) and wue(t) — ua(t) as t — oco. Thus, there exists an integer ks > ko, t > k3T
such that

meo

Zg(t) > Ug(t) > zg(t) — T — €0, te (’I’LT, (TL + 1)T], n > ]413. (3.11)

We get from system (1.2), (3.11) and z(t) < 1 + ¢ that

d%—g’) <y (el +eo) —di —c2(22() — 5% —e0)), t#m+1-1)T,
(3.12)

y(tt) =1 —=6)y(t), t=m+1-1)T.

Fort € ((n+1—1)T,(n+1)T] (n > k3 + 1), integrating the first equation of system
(3.12) on ((n +1—1)T,t] yields

y(t) <yl(n+1— 1)T+)ef<tn+l—1>T(Cl(1+50)_"ll‘62(52(8)_WQZ0 —<0))ds

After the successive pulse, we note that, due to & < 1,

Y((n+ DT) < y((n 41— DTHY(L - )i (er e —di—ea(Ea)= 5 —eona
y(n+1-1)TH)&
<y(Th)ey,

which leads to y((n +1)T") — 0 as n — oo. Since 0 < y(t) < y((n+1—1)T") 25

fort € (n+1—1)T,(n+1)T] (n > ks+ 1), we have y(t) — 0 as n — oco. Therefore,

there exists an €1 > 0 (sufficiently small) such that 0 < y(t) < €1 for ¢ large enough.

Again, we get from system (1.2) that dfi(tt) > x(t)(1 —c1e1 —x(t)), which implies

that tlim infa(t) = 1, i.e, (t) > 1 as t — oo. For all n > ks + 1, it follows from
—00
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system (1.2) that

dz;t(t) <coerM — (do+m)z1(t), t#nT,t# (n+1-—1)T,

2(tt) = (1-8)x), t=(@n+1-1)T, (3.13)

2 (th) = 21(t) + 1, t=nT.

For system (3.13), we use Lemma 2.1 and Lemma 2.3, and get

- Soe— (d2+m)(t—(n+1-2)T)
a(t) — S e @y T t€ (=T, (n+1-1)T],

Zl(t) S
~ , (dg4m)(t—(n+1—1)T) )
21 (t) - ]Zi;f;f)z(el (12 52)e (d2+m)T) + %?fr;’ t e ((TL +1— l)T, TLT]
~ Mecae
<A+ g anll t e ((n—1)T,nT).

Therefore, we conclude that z;(¢) <z (t) + % for t large enough. If n > k3 + 1,
then we observe that zo(t) satisfies

22 < m(E (1) + 9 ) — dyza(t), t#0T, (4 (n+1— 1T,

2(tT) = (1—683)22(t), t=(n+1-1)T, (3.14)

20(tT) = 29(t) + p2, t=nT.
For system (3.14), using Lemma 2.1 and Lemma 2.3, we obtain that

~ M CoSae—d2 (b= (nT1=2)T) -
2(t) - ]L\idz(dil-i-frff(l—fl—ég)e’dQT) + d];/[(d;ﬁni)y te((n—10T,(n+1-1)T7,

Zg(t) S
=~ Mmeycgdge %2t~ (n+l-1)T) Mmeic:
%) = G (=050 T) T da(datmy t € (R +1—=1)T,nT]
~ Mmé'ng
< ZHt)+ — 22 e ((n—1)T,nT].
(1) + s e (- DT
Hence, we conclude that z2(t) < z3(t)+ % for ¢ large enough, which evidences
that z1(¢t) — 21(¢) and 22(t) — 23(¢) as ¢ — oo. This completes the proof. O

4. Permanence

In this section, the permanence of system (1.2) will be investigated. The result is
stated as follows.

Theorem 4.1. System (1.2) is permanent if (cy —dy)T — co(A+B+C) > In =5,
where A, B, C are defined as in Theorem 3.1.
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Proof. Suppose (x(t),y(t), z1(t), 22(t)) is a solution of system (1.2). From Lemma
2.2, we note that x(t) < M, y(t) < M, z1(t) < M and 29(t) < M for sufficiently
large t. It follows from (1.2) that dz(tt) > 2(t)(1 — ey M — x(t)), which implies that
z(t)>1—cM 2 my for all ¢ large enough. For sufficiently small e5 > 0, we choose
my1 =1 —¢&9 > 0 and also define

pa(l = dg)e” (AT
1-— (1 — 52)e*(d2+m)T
mgm(l — 53)(1 — eidzT) + dgug(l — 53)67d2T

"= 41— (1~ d)e ) Tt

mo = —e9 >0,

Now, it follows from system (1.2) that

210 > (dy +m)z (1)

t#£nT,t# (n+1-1)T,

21 (%) = (1= d2)21(¢)
t=(n+1-1T, (4.1)

2a(t*) = (1= 0a)z(t)

Zl(t+) = Zl(t) + p1
t=nT.

2(t7) = 22(t) + p2

For system (4.1), we can easily obtain that z1(t) > mg and 22(t) > msg for all ¢
large enough. Therefore, for the permanence of system (1.2), we only need to find
a positive constant my4 such that y(t) > my for ¢ large enough. The proof is divided
into two steps.

step I: Let 0 < ms < é, €3 > 0 and &4 > 0 be small enough such that

(n+1) Mecom
£ = (1 — o)t hr(ermi—di—caGa(o)+ fy CEERE +ea) rea)ds o

as (c1 — d1)T — c2(A+ B + C) > In =5 For sufficiently large ¢, we assume that
y(t) > ms is not true. Then there ex1sts atime t; € (0, 00) such that y(t) < ms for
all ¢t > t;. With the aid of this assumption, we deduce that

d21 (t)

< Mcoms — (do +m)z(t), t#nT,t#(n+1—-1T,

2 (tT) = (1—62)z(t), t=(m+1-1)T,

21(t+) :Zl(t)-‘r/,(,l, t=nT.
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Consider the following comparison system

du;t(t) — M02m5 — (dg + m)u3(t), t ;ﬁ TLT’t # (n +1— ]_)T,

us(tt) = (1 — &2)us(t), t=(n+1—1T, (4.2)

us(t*) = us(t) + p1, t=nT.

Due to Lemma 2.3, then system (4.2) has a globally asymptotically stable periodic
solution:

~ , —(dg+m)(t—(n+1-2)T)
% (t) + Mcoms Mcomsdoe

,te((n—1T,(n+1-1)T7,

s (1) Tim' ()i —(1-5)e @)
3 =
~ Mecom Mcomedoe— (d2+m)(t—(n+1-1)T)
21 (t) + d2j.m5 - (d;_i_ri)?l_(l_(;Q)e—(d2+7n)T) , e ((TL +1- I)Ta TLT]
~ M02m5
< z(t) + , te€((n—1)T,nT|.
)+ 522, e (n—DTynT)

According to Lemma 2.1, we have 21 (t) < us(t) < ug(t) +e3 < z1(t) + A:l[;j:?; +e3
for t large enough. From system (1.2), we arrive at

dzjt(t) <m(Z (1) + Y205 4 e3) — dozo(t), t#nT,t# (n+1-1)T,
2(tT) = (1 = 83)z(t), t=(n+1—1)T, (4.3)

2o(t1) = 29(t) + p2, t=nT.

Consider the comparison system of (4.3) as follows

du%t(t) =m(z(t) + % +e3) — douy(t), t#nT,t# (n+1—1T,
us(tt) = (1= d3)ua(t), t=(n+1-1T, (4.4)

ug(th) = ua(t) + p2, t=nT.

In the similar manner, system (4.4) also has a periodic solution

—do (t—(n+1—2)T)

g2(t> + (dﬂ - %S%f—(l—ég)e*@ﬂ )(Ag;f,'ff’ + 53)7t € ((n - 1)T7 (n +1- 1)T]?

uy(t) =
- m mae—d2(t—(n+i—1)T) cams
Z(t) + (£ — d;s:zlf(ifag)e*dﬂ) )(Igzj_m +e3), t€((n+1—-1)T,nT],
~ m , Mcoms
< zo(t) + — +e¢e3), te€((n—1)T,nT|.
() + LA ), e (n— )T

which is globally asymptotically stable. It follows that zo(t) < ug(t) < Ug(t) +e4 <

Zo(t) + %(Ag;ﬂ?; + €3) + &4 for t large enough. We observe that there exists an
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integer ng > 0 such that

WO > y(t)(ermy — dy — ea(Z(1) + F(YB 4 e5) +e4)), t#(n+1—-1)T

y(t") = A =d)y(t), t=m+Ii-1T

(4.5)
for all n > ng. For t € ((n+1— 1)T,(n 4 1)T], integrating the first equation of
system (4.5) on ((n +1 — 1)T,t], we can obtain that

(1) > ({1 1T )elisrosyplerms—does o)+ 3 (R3S desyreanas
which leads to

y((n+DTF) = y((n+1-DTT)(1 - 1)

T ~ Megm
Xef<(::lil)T(c1m17d1702(z2(s) ( dzi"f +e3)+eq))ds

=y((n+1-1)TT)&.

Then we infer that y((ng + 1+ k)TF) > y((ng + 1)T1)€5 — oo as k — oo, which
is a contradiction of our assumption y(t) < ms for all ¢ > ¢;. Hence, there exists a
time to > t; such that y(ta) > ms.

step II: If y(t) > ms for all ¢ > to, then our aim will be fulfilled. Otherwise,
there exists some t > to such that y(¢) < ms. Let t* = inf{t|y(t) < ms,t > ta},
then there will be two cases.

case i Let t* = (n1+1—1)T (ny € N.), then we have y(t) > ms for all ¢t € [ta, t*]
and (1 — 81)ms < y(t*T) = (1 — §1)y(t*) < ms. Assume that Ty = noT + nsT,
where ng = nb, + nf, nb, nY and n3 are positive integer and satisfy the following
inequalities

1
(nlg—l)T>—mlnﬁ, (Tlg—l)T> hl M+M2

(1 — (51)n2e77n2T£;la > (1 _ 51)"26"(”2+1)T§§”3 >1

with n = ¢ymy —dy —caM < 0. Now, we claim that there exists a time t, € (¢*,¢*+
To] such that y(th) > ms, if it is not true, then y(t) < ms for all t € (t*,¢* + Tp].
Indeed, if system (4.2) is considered with initial data us(t*T) = 21 (t*), and we get

+\ _ (Mcams p1 __ Mcamgdge” (d2tm-OT
(US(an ) ( dat+m + 1—(1—63)e (d2Fm)T (d2+m)(1_(1_52)3—(d2+7n)T)))X

(1 — )= (mtD) e=(atm)(t=mT) 4 Go(t) ¢ € ((n— 1T, (n+1—1)T),

+\ _ (Mcoms “i _ Mcomgdge ™ (d2tm)(1-DT
(U3(7’l1T ) (d2+m + 1—(1=03)e (G2 tm)T (dat+m)(1—(1—=d2)e— (d2+m)T)))

(1= Gy le=(dbm)t=m®) L igo(6), ¢ € ((n+1 — 1)T,nT),

where n1 +1 < n < ng + ng + n3. Hence, we have |uz(t) — us(t)] < (M +
pp)e~(detm)t=mT) oo and 2 (t) < ug(t) < Uz(t) +e3 < Z1(t) + Mc2m5 +eq
for all t € [(n1 +nb — 1)T,t* + Tp)].
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Now, for system (4.4) with initial data ug((t* +nbT)T) = 20((t* + nbT)T), we
conclude that [uy(t) — s (t)] < (M + po)e~42t=(mFn)T) < o) and zo(t) < ug(t) <
Ua(t) +ea < Z(t) + P (42Ms 4 g5) + 4 for all ¢ € [(ny +nh + nf — DT, t* + Ty,

which ensures that system (4.5) holds for [t* + noT,t* + Tp]. Integrating the first
equation of system (4.5) on [t* + noT, t* + Tp|, we arrive at

y(t* +Tp) > y(t* + n2T)EL". (4.6)

Fourthermore, it follows from system (1.2) that

dliliit) > (clml —dy — czM)y(t) = 772/(75), t# (n +1- 1)T7

(4.7)
y(tt) = (1 —-01)y(t), t=(n+1-1)T.
Integrating the first equation of system (4.7) on [t*,t* 4+ noT] yields
y(t* +ngT) > mg(1 — 0y)"2e™2T (4.8)

Plugging (4.8) into (4.6), we deduce that
y(t* —+ To) Z m5(1 — 51)n2€nn2T533 > ms,

which is a contradiction of y(t) < ms for all t € (¢*,t* +Tp]. Therefore, there exists
a time t) € [t*,t* + Tp] such that y(ty) > ms. Let t = inf{t|y(t) > ms, t > t*},
since 0 < 0y <1, y(n+1-DTH) =1 =56)y((n+1-1)T) <y((n+1—-1)T)
and y(t) < ms for t € (t*,t), we have y(t) = ms. Suppose that t € (t*,t) and
te "+ (k—1)T,t" +kT) (k € Ny and k < ny + n3), we get from system (4.7)
that
y(t) > ms(1 — 6)keFT > mg(1 — 6y )netneenatna)l 2

For t > ¢, the same arguments can be continued since y(tN) > ms.

case ii: If t* # (ny +1 — 1)T, then we have y(t*) = ms and y(t) > my for all
t € [ta,t*]. Assume that t* € (0} +1— 1T, (n} +1)T], n} € N1, we also have two
subcases for t € (¢t*, (n} +1)T).

case a: If y(t) < ms for all t € (t*, (n} + )T, then we claim that there exists a
time t3 € ((n} + )T, (0} + )T + Tp] such that y(¢3) > ms. Otherwise, integrating
system (4.5) on the interval [(n} + 1+ n2)T, (n} + 1+ n2 + n3)T], we have

y((ny +1+n2+n3)T) > y((n} + 1+ no)T)EL3. (4.9)

Integrating the first equation of system (4.7) in the interval [t*, (n] + | + n2)T], we
obtain that

y((nh +1+n2)T) > y(t*)(1 — 5y)"2en(itEn) =)
> ms(1 — §;)n2enm2 DT, (4.10)

Putting (4.10) into (4.9), we arrive at

y((n} +1+n2 +n3)T) > ms(1 — 61)"2e"(1+"2>T533 > ms,
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which is again a contradiction. Let ¢ = inf{t|y(t) > ms,¢ > t*}, then y(f) = ms and
y(t) < my for all t € (t*,%). For t € (t*,) and t € (n}, +1— )T+ (¥ — V)T, (n} +
I—1)T + K'T] (K is a positive integer and k' < 1+ ns + n3), we obtain that

y(t) = y(((nh +1= 1) + K = DT H)ent=(irtmh =D

> y(t*)(1 — 6;)F ~Lent=t")
Z m5(1 — 51)n2+n3e(”2+n3+1)nT.

Letting myg £ ms(1 — 6;) 2T e(m2tns+nT we have y(t) > my for t € (t*,7). For
t > ¢, the same arguments can be continued since y(t) > ms.

case b: If there exists a time ¢t € (t*,(n] + {)T] such that y(t) > ms. Let
t = inf{t|ly(t) > ms,t > t*}, then y(t) < ms for t € (t*,t) and y(t) = ms. For
t € (t*,t), system (4.7) holds and integrating system (4.7) on (t*,t), we have

y(t) > y(t")e™ ) > mge > my.

Since y(t) > ms for all ¢ > ¢, the same argument can be continued. Hence, we have
y(t) > my for all ¢ > to. Thus in both case, we can conclude that y(t) > my for all
t > to. This completes the proof. O

5. Numerical simulations

In this section, our main purpose is to numerically investigate the effects of impulsive
harvest, pulse releasing amount of immature and mature natural enemies on system
(1.2). For this, we will give some numerical simulations of system (1.2) with z(0") =
05,y(0+) = 1,21(0+) = 0.8,22(0+) = 4,61 = 1,02 = 0.3,d1 = 001,d2 = 03,m =
0.4 and I = 0.5. Here all the parameter values come from [12]. If we choose
01 = 62 = 63 = 0, u1 = po = 0, i.e., without impulsive control, then the plant and
natural enemies decrease to zero rapidly (see Figure 1). It follows from Figure 1
that this phenomenon is harmful for the stability of ecology. If we set d; = 0.2,02 =
0.1,03 = 0.2, u1 = 2 and e = 4, we can obtain that the threshold limit for the
impulsive period is Tiax = 4.7364 as (¢; — d1)T —c2(A+ B+ C)=1n 1}—51. Then
we have T' < Thax if (1 —d1)T —c2(A+B+C) <1In ﬁ, and we get T > Ty if
(C1 — dl)T — 02(A+B—|— C) > lnﬁ

It follows from Theorem 3.1 and Theorem 3.2 that the pest-extinction periodic
solution (1,0, z1(t), 22(t)) of system (1.2) is globally asymptotically stable if T' <
Tmax- Let T = 4 < Tyax, the pest-extinction periodic solution (1,0, 2 (t), 22(t)) of
system (1.2) is globally attractive (see Figure 2). Further, the result of Theorem 4.1
is verified for T' > Tax, i.e., the coexistence of permanence of the system (1.2) is
occurred for T'= 6.5 > Tihax (see Figure 3). The pest population will again extinct
when we increase pulse releasing amounts of immature and mature natural enemies
under the constant values of impulsive period, which implies that the coexistence
of population transfer to the extinction of pest population (see Figure. 4). These
numerical simulations and obtained results of system (1.2) show that more pulse
releasing amount of the immature and mature natural enemies or shorter impulsive
period is highly significant for the extinction of the pest populations.
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Figure 1 Dynamical behavior of system (1.2) without impulsive control
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Figure 2 The pest-extinction periodic solution (1,0, 21 (t), 22(t)) of system (1.2) is
globally attractive for T'= 4 < Tiax = 4.7364.
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Figure 3 System (1.2) is permanent for T' = 6.5 > Tiax = 4.7364.
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Figure 4 The coexistence of populations transfer to extinction of pests for T' = 6.5,
p1 =5 and pug = 8.

6. Conclusions and discussion

In this paper, we investigated the dynamics of a stage-structured plant-pest-natural
enemy system with impulsive spraying pesticide and releasing immature and mature
natural enemies at different fixed moment. It is observed both analytically and
numerically that the impulsive control strategy play a significant role on the pest
extinction and permanence of species.

Obviously, if 61 = 62 = d3 = 0 and pu; = pe = 0, then system (1.2) will
be simplified a typical plant-pest-natural enemy model without impulsive control.
As the density of pest outweigh a certain number, the plant will suffer from it.
Meanwhile, the amount of natural enemies decrease sharply in a short period of
time even to zero (see Figure 1). In fact, this is very worse for the stability of
ecology. To maintain a stable ecology, we uses a so called impulsive control strategy,
a combination of chemical and biological tactics (spraying pesticide and releasing
natural enemies). By using Floquet theory for impulsive differential equations and
comparison techniques, the local behavior of plant-pest-extinction periodic solution
and pest-extinction periodic solution of system (1.2) are investigated in Theorem
3.1. Theorem 3.2 tells us that the pest-extinction periodic solution is globally
attractive. From Theorem 4.1, we can determine the impulsive period T" according
to the effect of the chemical pesticides on the populations and the amount of the
releasing natural enemies such that (¢; — dy)T — c2(A+ B+ C) > In ﬁ. This
means that the number of pest can be controlled under a safe level, so that it can do
little harm to the crops as we release natural enemies and spray pesticide at different
moments. As a matter of fact, the main purposes of integrated pest management are
often to keep the size of the pest population under a certain economic injury level,
and needn’t to eradicated the pest completely. It follows from Theorem 4.1 that
the densities of the pest can be controlled at a lower level and the goal of integrated
pest management can be achieved by suitable pesticide input and releasing natural
enemies at different moments. Hence, to combine chemical pesticide and releasing
beneficial enemy are more efficacious than to use only one control method for pest
control.
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In this paper, we assumed that the death rate d; of pests, the death rate do
of immature natural enemies and the death rate d3 of mature natural enemies are
constant. Furthermore, we assumed that the number of releasing natural enemies
is also constant. In the real world, there exist lots of factors that may disturb
the efficacy of pesticide sprayed and the survival ratio of natural enemies released.
So the death rate &; of pests, the death rate do of immature natural enemies and
the death rate d3 of mature natural enemies should be considered as stochastic
variable. The number of releasing natural enemies should also be considered as
stochastic variable. If like this, our chain model will become stochastic population
model and be more realistic (see [3,9,17,19,29]). We need to investigate stochastic
differential equations and apply it to our model in the future.
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