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Abstract

In this paper we start generalizing the well known Secant and Müller methods by using higher
degree polynomials. Although such generalization does already exist, we prove in an original and
elegant way that the order of convergence p is limited by p = 2. The techniques used in this paper
could also be helpful in other contexts. We also perform some numerical experiments to reinforce
the theoretical results.
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1 Introduction

Methods to solve nonlinear equations have been defined and studied profusely from antique times in
history. It is not a surprise given its importance in addressing real problems where such equations
appear. Still nowadays a wide range of research is carried out in relation with this subject.

Secant method is one of the first methods that is taught in undergraduate courses, and is simple
both in its definition and in its application to solve certain equations. It is known to be a close
relative to Newton method that does not use derivatives in its computations. This fact allows the
application of the Secant method in occasions where the information about the derivative is not at
hand. Therefore, it finds its field of application. Many studies have been carried out regarding
conditions to ensure the convergence of the method, establishing an interval or ball of convergence,
considering new variants with some gain in certain scenarios, etcetera. Recent publications show the
current interest for deepening the knowledge about this prolific method, see for example [1, 2, 3, 4, 5].

Engineers are quite inclined to the application of Newton method in many scientific fields in order
to deal with nonlinear equations. However, there are applications where it is more suitable to apply
the secant method or any other method free of derivatives in its formulation. We can find in the
literature many situations of this kind, as for example [6, 7, 8, 9, 10].

Secant method belongs to the group of methods where the convergence of the method is not
guaranteed unless certain initial conditions are satisfied, normally requiring starting the iterations
from an initial point close enough to a solution of the equation. Once it is assume that the method
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is convergent, it appears another concept that is nothing more than the order of convergence which
somehow measures the speed at which the method converges. Studying the order of convergence
is a one of the first researches carried out about a new method after its definition. In the case
of Secant method, the order of convergence coincides with the golden ratio ϕ = 1+

√
5

2 ≈ 1.6. The
higher the order the convergence the faster it is expected the convergence of the method. Under
this assumption, it is normal to consider methods with higher order of convergence. Müller method
appears as a generalization of Secant method in the sense that it is derived from cutting a quadratic
polynomial with the x axis instead of a straight line as the Secant method does. Müller method attains
approximately an order of convergence p = 1.83, larger than the golden ratio. It seems then, that this
method would be superior, but it highly depends on the problem, on the initial conditions and so on.
It could happen that a method converges and the other does not for example. Müller method gives a
method capable to compute not only real roots of a given nonlinear equation, but also complex ones.
In this sense Müller method outperforms over Secant method. Many articles have been also written
about Müller method, see for example [11, 12]. In this article we generalize Secant and Müller methods
by considering higher degree polynomials. A thorough study is carried out on these new methods and
their convergence order. These method have been already considered in the literature previously, but
a proof for their order of convergence is not easy to find. We give a new proof of the fact that the
convergence orders of the generalized methods originate an increasing sequence with limit p = 2.
Different but similar techniques have been used in order to obtain high order iterative methods free
of derivatives, such us [13, 14]. The paper is organized as follows: Section 2 is devoted to remind the
classical Secant and Müller methods. In Section 3 we present new methods generated by considering
higher order polynomials. In Section 4 we study the convergence order for these methods using a witty
approach. In Section 5 we carry out some numerical test to check the performance of the presented
methods. Finally, we give some conclusions in Section 6.

2 Classical Secant and Müller methods

We start by reminding the Secant method. In order to obtain an approximation of the solution of the
equation f(x) = 0, where f is a continuous function, this method is derived as follows. Let us consider
two initial points (xn−1, f(xn−1)) and (xn, f(xn)). Then, we construct the point-slope equation of the
straight line that contains both of them,

f(x) = f(xn) +
f(xn)− f(xn−1)

xn − xn−1
(x− xn).

We force this straight line to intersect the x-axis, so f(xn+1) = 0. In this case,

f(xn) +
f(xn)− f(xn−1)

xn − xn−1
(xn+1 − xn) = 0.

Solving for xn+1 we find,

xn+1 = xn − xn − xn−1

f(xn)− f(xn−1)
f(xn), n ≥ 1, (1)

which is the iteration of the Secant method. As it is well-known, the order of convergence of this

method is given by the golden ratio, 1+
√
5

2 ≈ 1.62.
We continue with Müller method. We depart in this case from three initial points (xn−2, f(xn−2)),
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(xn−1, f(xn−1)) y (xn, f(xn)). And, we build the parabola that pass through them,

p(x) = A(x− xn)
2 +B(x− xn) + C. (2)

The coefficients of this equation are obtained by solving the following system of equations and using
the definition of divided differences,

ip(xn−2) = A(xn−2 − xn)
2 +B(xn−2 − xn) + C,

ip(xn−1) = A(xn−1 − xn)
2 +B(xn−1 − xn) + C,

iaip(xn) = A(xn − xn)
2 +B(xn − xn) + C = C.

Its solution is given by,
aaaA = f [xn−2, xn, xn−1],
aaaB = f [xn−1, xn] + f [xn−2, xn, xn−1](xn − xn−1),
aaaC = f(xn).

We force the expression (2) to intersect the x-axis, so p(xn+1) = 0. It follows that the next iterate
will be the solution of the equation,

A(xn+1 − xn)
2 +B(xn+1 − xn) + C = 0.

Solving the second degree polynomial equation we find,

xn+1 = xn − 2C

B ±
√
B2 − 4AC

, (3)

which is the Muller’s method algorithm. This expression is different from the most usual one for
quadratic equations due to the fact that it is needed to avoid catastrophic cancellation. The sign at
the denominator is chosen to make the denominator as large as possible with the aim of reducing the
distance between xn and xn+1.
For this method, it is known that the order of convergence is approximately 1.84.
A clear question arises immediately at this point, and it is to analyze the behavior of the family of
methods that appears if we raise the degree of the polynomials.

3 Higher order methods: secant polynomial methods

Let us consider k + 1 pairs of points

(x0, f(x0)), (x1, f(x1)), (x2, f(x2)), ..., (xk, f(xk)).

We construct the interpolation polynomial pk that contains them and we force it to intersect the x-
axis, so pk(x) = 0. Solving this equation, we find k options for the next iteration xk+1 of the sequence
that approximates the root of a given equation f(x) = 0. We choose the one which is closer to xk.
At this point, to continue with the method we take the last k + 1 points

(x1, f(x1)), (x2, f(x2)), (x3, f(x3)), ..., (xk, f(xk)), (xk+1, f(xk+1)).

and we proceed in the same way as we have done in the previous step, we construct the interpolation
polynomial pk+1 that includes them and we intersect it with the x-axis. Hence, we get xk+2 for the next
iteration, and so on and so forth. We repeat the process till we get a sufficiently good approximation
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of the root in case of convergence. It is not expected that this method is always convergent, since the
simpler Secant method is not convergent. But in case of convergence, it is expected that the larger k
the larger the convergence order of the method. And this is true as we will see in the next section.
Notice that the polynomial equation is more or less easily solvable for third and fourth degrees, but
special methods for polynomials must be used for higher degrees.
In Figure 1, we show an example for cubic polynomials of how this method works. We start with four
points, (x0, f(x0)), (x1, f(x1)), (x2, f(x2)) and (x3, f(x3)), and two iterations of the explained method
are performed.

Figure 1: Two iterations of the Cubic Secant method starting with four initial points

4 Convergence order for the secant polynomial methods

Before we analyze the order of convergence of this generalized methods seen in previous section, we
prove some useful lemmas.

Lemma 1. Fore every k ≥ 2, the equation xk − ...− x− 1 = 0 has a unique positive and real root in
the interval (1, 2).

Proof. Let us consider the function g(x) = xk − ...− x− 1, for all k ≥ 2. We know that,

� g ∈ C([1, 2]), because g is a polynomial function.

� g(1) · g(2) < 0 due to:

1. g(1) = 1k − ...− 1− 1 = (1k − 1)− 1− ...− 1 = −(k − 1) = 1− k < 0,

2. g(2) = 2k − ...− 2− 1 = 2k −
∑k−1

i=0 2i = 2k − 1−2k

1−2 = 2k + 1− 2k = 1 > 0.

Applying Bolzano’s theorem it follows that there exists x0 ∈ (1, 2) such that g(x0) = 0.
On one hand, the last result shows the existence of a real root in (1, 2), and on the other hand, the
real coefficients of g ordered by descending variable exponents are,

1 − 1 (k−1)... −1 − 1.
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Since there is only a sign change in the sequence of coefficients for all k ≥ 2, we can deduce that there
is only a unique positive root of the polynomial, thanks to Descartes rule of signs. Therefore we can
conclude that for every k ≥ 2 the equation xk − ... − x − 1 = 0 has an unique positive and real root
in the interval (1, 2).

In the following lemmas we prove that all the other roots of the polynomial g have modulus less
than 1.

Lemma 2. Let us consider the equation xk − ...− x− 1 = 0 for k ≥ 3 an odd integer number. Then,
there is not a value of α ∈ (−1, 0] such that g(α) = 0.

Proof. Given g(x) = xk − ...− x− 1 for k ≥ 3 odd, we can rewrite it as,

g(x) = xk−1(x− 1)− xk−3(x+ 1)− ...− x2(x+ 1)− (x+ 1), ∀x ∈ (−1, 0].

On one hand, since k ≥ 3 and odd, we have that xj > 0 ∀j = 2, 4, ..., k − 3, k − 1. On the other
hand, x− 1 < 0 y x+1 > 0 because x ∈ (−1, 0]. Therefore, g(x) < 0 ∀x ∈ (−1, 0]. This implies, that
there exists no α ∈ (−1, 0] satisfying g(α) = 0.

Lemma 3. Let us consider the equation xk − ...− x− 1 = 0 for k ≥ 2 an even integer number. Then,
there exists a unique α ∈ (−1, 0) such that g(α) = 0.

Proof. Let us consider g(x) = xk − ...− x− 1 for k ≥ 2 even.

� Uniqueness. Since g is a polynomial function, g ∈ C([−1, 0]) and g is derivable in (−1, 0). In

fact,

g′(x) = kxk−1 − (k − 1)xk−2 − ...− 3x2 − 2x− 1 = kxk−1 −
k−2∑
i=0

(i+ 1)xi. (4)

We observe that,
k−2∑
i=0

(i+ 1)xi = 1 + 2x+ 3x2 + ...+ (k − 1)xk−2 (5)

is a aritmetico-geometric sequence, and then there is an easy way to get its sum.
Multiplying (5) by x,

x ·
k−2∑
i=0

(i+ 1)xi = x+ 2x2 + 3x3 + ...+ (k − 1)xk−1, (6)

and substracting (5) and (6) we get,

k−2∑
i=0

(i+ 1)xi − x ·
k−2∑
i=0

(i+ 1)xi = 1 + x+ x2 + x3 + ...+ xk−2 − (k − 1)xk−1

=
k−2∑
i=0

xi − (k − 1)xk−1 =
1− xk−1

1− x
− (k − 1)xk−1.

Our term of interest,
∑k−2

i=0 (i+ 1)xi, becomes,

(1− x)

k−2∑
i=0

(i+ 1)xi =
1− xk−1

1− x
− (k − 1)xk−1 ⇔

k−2∑
i=0

(i+ 1)xi =
1− xk−1

(1− x)2
− (k − 1)xk−1

1− x
. (7)
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Plugging (7) into (4) we obtain,

g′(x) = kxk−1 − 1− xk−1

(1− x)2
+

(k − 1)xk−1

1− x
=
kxk−1(1− x)2 − 1 + xk−1 + (k − 1)xk−1(1− x)

(1− x)2
.

Thus, it is easy to inferred that g′(x) < 0,

g′(x) < 0 ⇔ kxk−1(1− x)2 − 1 + xk−1 + (k − 1)xk−1(1− x)

(1− x)2
< 0

⇔ kxk−1(1− x)2 − 1 + xk−1 + (k − 1)xk−1(1− x) < 0

⇔ kxk−1 + kxk+1 − 2kxk − 1 + xk−1 + (k − 1)xk−1 − (k − 1)xk < 0

⇔ kxk+1 + (1− 3k)xk + 2kxk−1 − 1 < 0.

Due to the fact that x ∈ (−1, 0) and k ≥ 2 even, we have,

xk+1 < 0 ⇒ kxk+1 < 0, xk > 0 ⇒ (1− 3k)xk < 0, xk−1 < 0 ⇒ 2kxk−1 < 0.

Therefore, kxk+1 + (1 − 3k)xk + 2kxk−1 − 1 < 0, and g′(x) < 0, what means, g(x) is strictly
decreasing. This implies that in case of existence of a root of the equation xk − ...− x− 1 = 0,
for k ≥ 2 even, this root must be unique.

� Existence. We know that g ∈ C([−1, 0]) and g(−1) · g(0) < 0 since,

aaaaaaaiii g(−1) = (−1)k − (−1)k−1 − ...− 12 − 1− 1 = (−1)k −
∑k−1

i=0 (−1)i =

aaaaaaaaaaaaa = (−1)k − 1−(−1)k

1−(−1)

k≥2par
= 1− 1−1

2 = 1 > 0,

aaaaaaaiii g(0) = 0k − ...− 0− 1 = −1 < 0.

Using Bolzano theorem, there exist at least a value α ∈ (−1, 0) such that g(α) = 0.

Once we have proven existence and uniqueness, we can affirm that for all k ≥ 2 even, there exists
a unique α ∈ (−1, 0) such that g(α) = 0.

Before proving the next lemma, we give without proof a useful calculus result that can be found
for example in [15, 16].

Theorem 1. (Cauchy theorem) Let us consider a polynomial xn − bn−1x
n−1 − ...− b1x− b0 with a

unique real root r and bi > 0, |bi| ≥ |ai| ∀i = 0, 1, 2, ..., n. Then, the roots of xn+an−1x
n−1+...+a1x+a0

are located inside the ball |x| ≤ r.

Lemma 4. Let us consider the polynomial equation xk − ...− x− 1 = 0 for all integer number k ≥ 2.
Let us call αk the unique real root in (1, 2). Then, if α is another root of the equation, then |α| < 1.

Proof. We define the polynomial,

pk(x) = xk + bk−1x
k−1 + bk−2x

k−2 + ...+ b2x
2 + b1x+ b0 = (x− α1)(x− α2) · · · (x− αk).

According to the Cardano Vieta formulas for this polynomial we get,

bj = (−1)k−jSk
k−j ∀j = 0, 1, ..., k − 1, (8)
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where

Sk
j :=

∑
i∈V k

j

αi1αi2 · · ·αij ,

with V k
j standing for the set containing all possible j−tuples among k indexes without repetition.

This means that
(
k
j

)
is the number of addends.

In our case, pk(x) = xk − ...− x− 1 for all k ≥ 2, and then bj = −1, j = 0, 1, 2, ..., k − 1.

We also consider the following polynomial,

qk−1(x) = xk−1 + ck−2x
k−2 + ...+ c2x

2 + c1x+ c0 = (x− α1)(x− α2) · · · (x− αk−1), (9)

and we search for its Cardano Vieta formulas.

cj = (−1)k−j−1Sk−1
k−j−1 ∀j = 0, 1, ..., k − 2. (10)

Given now bj = (−1)k−jSk
k−j = −1 for j = 0, 1, 2, ..., k − 1, we decompose Sk

k−j in two terms:

� One term comprising the sum of all products of roots including αk, that is, αkS
k−1
k−j−1.

� Another term avoiding αk, that is, S
k−1
k−j .

It follows that, bj = (−1)k−j(αkS
k−1
k−j−1 + Sk−1

k−j ) = −1.
By successive equivalences, we get,

(−1)k−j(αkS
k−1
k−j−1 + Sk−1

k−j ) = −1 ⇔ (−1)k−j(αkS
k−1
k−j−1+Sk−1

k−j )

−1 = −1
−1 ⇔

⇔ (−1)k−j−1(αkS
k−1
k−j−1 + Sk−1

k−j ) = 1 ⇔ (−1)k−j−1αkS
k−1
k−j−1 = 1− (−1)k−j−1Sk−1

k−j ⇔

⇔ (−1)k−j−1Sk−1
k−j−1 =

1+(−1)k−jSk−1
k−j

αk
,

and this allows us to define a recurrence equation for cj ,

cj = (−1)k−j−1Sk−1
k−j−1 =

1 + (−1)k−jSk−1
k−j

αk
∀j = 1, 2, ..., k − 2, (11)

and using the expression of cj in (10), the equation (11) can be written,

cj =
1 + cj−1

αk
∀j = 1, 2, ..., k − 2.

Moreover, for j = 0, using (10), c0 = (−1)k−1Sk−1
k−1 = (−1)k−1 · α1 · α2 · · ·αk−1.

Taking into account that b0 = −1, by (8), we get,

(−1)kSk
k = −1 ⇔ (−1)k · α1 · α2 · · ·αk−1αk = −1 ⇔ (−1)k · Sk−1

k−1αk = −1 ⇔ (−1)k−1Sk−1
k−1 =

1

αk
.
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Then, c0 = (−1)k−1Sk−1
k−1 = 1

αk
.

We obtain the Cardano Vieta formulas for the polynomial (9),{
c0 =

1
αk
, aaaaaaaaaaaaaaaaaa

cj =
1+cj−1

αk
∀j = 1, 2, ..., k − 2.

We notice that these coefficients present noticeable properties,

1. cj > 0, ∀j = 0, 1, ..., k − 2.

2. cj <
1

αk−1 , ∀j = 0, 1, ..., k − 2.

3. cj forms an increasing sequence ∀j = 0, 1, ..., k − 2 : cj+1 > cj , ∀j = 0, 1, ..., k − 2.

Let us prove it by induction,

� First, we verify the properties for j = 0,

1. Since αk ∈ (1, 2), then c0 =
1
αk

> 0.

2. αk ∈ (1, 2) implies c0 =
1
αk

< 1
αk−1 .

3. We now check that c1 > c0,

c1 =
1+c0
αk

= 1
αk

+ c0
αk

= c0 +
c0
αk

> c0, because αk ∈ (1, 2) and c0 > 0.

� By induction hypothesis we suppose the result true for j ∈ N, that is,

1. cj > 0.

2. cj <
1

αk−1 .

3. cj is and increasing sequence, cj+1 > cj .

� Let us prove it for j + 1,

1. Since αk ∈ (1, 2) and cj > 0 by the induction hypothesis, then cj+1 =
1+cj
αk

> 0.

2. Also, from cj <
1

αk−1 by induction hypothesis, we get,

cj+1 =
cj + 1

αk
<

1
αk−1 + 1

αk
=

1 + αk − 1

αk(αk − 1)
=

αk

αk(αk − 1)
=

1

αk − 1
.

3. Finally, we prove that cj+2 > cj+1,

cj+2 =
cj+1 + 1

αk
> cj+1 ⇔ cj+1 + 1 > cj+1αk ⇔ 1 > cj+1(αk − 1) ⇔ 1

αk − 1
> cj+1.

And since the last inequality holds as we have just seen in the previous point, then cj+2 >
cj+1.

8



Now, we build a k degree polynomial which posseses α = 1 as root, apart from the same roots as
pk(x) except αk, being αk the unique root of pk(x) in (1, 2).

aaaaa gk(x) = (x− 1)(xk−1 + ck−2x
k−2 + ...+ c2x

2 + c1x+ c0)
aaaaiiiiaaaaaaaa = xk + (ck−2 − 1)xk−1 + (ck−3 − ck−2)x

k−2 + (ck−4 − ck−3)x
k−3 + ...− c0

aaaaiiiiaaaaaaaa = xk + (ck−2 − 1)xk−1 +
∑1

i=k−2(ci−1 − ci)x
i − c0.

In order to apply the Cauchy theorem, Theorem 1, we also define the following auxiliary polynomial,

g̃k(x) = xk − (1 + ck−2)x
k−1 −

1∑
i=k−2

(ci − ci−1)x
i − c0.

It is easy to see that g̃k has also α = 1 as root. Moreover, its coefficients, except the leading coefficient,
are all negative. In fact, these coefficients in decreasing order are,

1 − (1 + ck−2) − (ck−2 − ck−3) ... − c0, where

� 1 > 0.

� −(1 + ck−2) < 0, since ck−2 > 0.

� −(cj − cj−1) < 0, because cj > cj−1, ∀j = 0, 1, ..., k − 2.

� −c0 < 0, due to the fact that cj > 0, ∀j = 0, 1, ..., k − 2.

Again using Descartes rule, since there is only one change of signs in the sequence of the coefficients,
g̃k(x) has a unique positive real root, and it is α = 1.
Applying now Theorem 1, we get that for any other root α of gk(x) we have |α| ≤ 1. It just remain
to see that the equality is not possible, and then |α| < 1.
Evaluating pk(x) = xk − ...− x− 1 = 0 at x = α we get,

αk− ...−α− 1 = 0 ⇔ αk−
k−1∑
i=0

αi = 0 ⇔ αk− 1− αk

1− α
= 0 ⇔ αk−αk+1− 1+αk = 0 ⇔ αk(2−α) = 1.

Taking absolute values, |α|k|2− α| = 1.

Let us suppose by reduction to absurdity that |α| = 1. In this case, it must be satisfied that
|2−α| = 1. Thus, α ∈ B((2, 0), 1). Together with |α| ≤ 1, that is, α ∈ B((0, 0), 1), means that α = 1.
However, this reaches an absurd since,

pk(1) = 1k − ...− 1− 1 = −(k − 1) ̸= 0.

From this observation we get that |α| < 1.

The next result proves a key equation to prove the order of convergence for the secant polynomial
method defined.
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Proposition 1. Let us suppose that the secant polynomial method with polynomials of degree k is
convergent for a given set of initial points towards a simple root α of a k+1 differentiable function f,
that is, f(α) = 0, f ′(α) ̸= 0. The errors en = α− xn committed by the iterations xn, n ∈ N satisfy the
following equation,

en+1 =Mk,nenen−1en−2 · · · en−k, (12)

where Mk,n is a constant dependent on n and k. Moreover, if en+1 ̸= 0, then there exists,

mk = limn→∞Mk =
−f (k+1)(α)

f ′(α)(k + 1)!
. (13)

Proof. Notice that equation (12) is already known for the secant method (k = 1) and for Müller
method (k = 2).
Let us consider the interpolating polynomial pk(x) of degree k which passes through the points
{(xn, f(xn)), (xn−1, f(xn−1)), . . . , (xn−k, f(xn−k))}. The next iteration of the method xn+1 is built
by choosing the root of pk(x) closest to the previous iteration, that is,

1. pk(xn+1) = 0,

2. xn+1 is chosen such that |xn+1 − xn| = min
s

|s− xn| with pk(s) = 0.

On one hand, if xn+1 = α, then Mk = 0 and equation (12) is trivially true.

On the other hand, if xn+1 ̸= α, by using the Lagrange mean value theorem, there exists τn
between xn+1 and α such that p′k(τn) = pk(α)−pk(xn+1)

α−xn+1
. Due to the fact that pk(xn+1) = 0, we get

p′k(τn) =
pk(α)

α−xn+1
, what amounts to,

en+1 =
pk(α)

p′k(τn)
. (14)

Let us now prove by induction on k that pk(α) = −f [xn−k, . . . , xn, α]enen−1 . . . en−k. The base
case for k = 1 comes from the secant method in this way,

p1(α) = f(xn) + f [xn, xn−1](α− xn) =
f(xn)− f(α)

α− xn
(α− xn) + f [xn, xn−1](α− xn)

= (α− xn)(
−f [xn, α] + f [xn−1, xn]

α− xn−1
)(α− xn−1) = −f [xn−1, xn, α]enen−1.

Let us suppose the result true for k, that is, pk(α) = −f [xn−k, . . . , xn, α]enen−1 . . . en−k, and let us
prove it for k + 1.

pk+1(α) = pk(α) + f [xn−k−1, xn−k, . . . , xn](α− xn−k) . . . (α− xn)

= pk(α) + f [xn−k−1, xn−k, . . . , xn]en . . . en−k

= −f [xn−k, . . . , xn, α]enen−1 . . . en−k + f [xn−k−1, xn−k, . . . , xn]en . . . en−k

=
f [xn−k−1, xn−k, . . . , xn]− f [xn−k, . . . , xn, α]

(α− xn−k−1)
(α− xn−k−1)en . . . en−k

= −f [xn−k−1, xn−k, . . . , xn, α]en . . . en−ken−k−1.
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And the proof by induction is done. By plugging this result into (14) we get,

en+1 =
pk(α)

p′k(τn)
=
pk−1(α)

p′k(τn)
+
f [xn, xn−1, xn−2, ..., xn−k+1, xn−k]enen−1en−2 · · · en−k+1

p′k(τn)
(15)

= enen−1en−2 · · · en−k+1 ·
−f [xn, ..., xn−k+1, α]

p′k(τn)
+
f [xn, xn−1, xn−2, ..., xn−k+1, xn−k]enen−1en−2 · · · en−k+1

p′k(τn)

=
enen−1en−2 · · · en−k+1

p′k(τn)
(−f [xn, ..., xn−k+1, α] + f [xn, xn−1, xn−2, ..., xn−k+1, xn−k]) .

By using the property of symmetry of the divided differences and their definition we reach from (15)
to,

en+1 =
enen−1en−2 · · · en−k+1

p′k(τn)
(α− xn−k)(−f [xn−k, xn, xn−1, xn−2, ..., xn−k+1, α])

=
enen−1en−2 · · · en−k+1en−k

p′k(τn)
(−f [xn−k, xn, xn−1, xn−2, ..., xn−k+1, α]) =Mk,nenen−1en−2 · · · en−k+1en−k,

with

Mk,n =
−f [xn−k, xn, xn−1, xn−2, ..., xn−k+1, α]

p′k(τn)
.

By using again the properties of the divided differences, we get,

Mk,n =
−f [xn−k, xn, xn−1, xn−2, ..., xn−k+1, α]

p′k(τn)
=

−f (k+1)(ψn)

p′k(τn)(k + 1)!
,

where ψn is an intermediate point among {xn−k, xn, xn−1, xn−2, ..., xn−k+1, α}.
Since pk(x) = f(xn) + f [xn, xn−1](x− xn) + . . .+ f [xn, xn−1, . . . , xn−k](x− xn) . . . (x− xn−k−1), then,

p′k(x) = f [xn, xn−1] + f [xn, xn−1, xn−2](x− xn)(x− xn−1) + . . .+ . (16)

Since τn is an intermediate point among xn, xn−1, xn−2, ..., xn−k+1, xn−k, α, taking limits,

limn→∞p
′
k(τn) = f [α, α]=f ′(α) ̸= 0.

Thus, there exists the limit,

mk = limn→∞Mk =
−f (k+1)(α)

f ′(α)(k + 1)!
.

Before addressing the main theorem proving the order of convergence of a secant polynomial
method of degree k, we introduced also the following lemma.

Lemma 5. Let us consider for each polynomial gk(x) = xk − xk−1 − . . .− x− 1 the unique real root
αk in the interval (1, 2). Then, the sequence (αk)

∞
k=1 is strictly increasing and it has limit equal to 2.

Proof. Evaluating gk+1(x) at αk we get,

gk+1(αk) = αk+1
k − αk

k − αk−1
k − . . .− αk − 1 = αk+1

k − 2αk
k + (αk

k − αk−1
k − . . .− αk − 1).

11



Since αk is a root of gk(x) we have αk
k − αk−1

k − ...− αk − 1 = 0. Thus, pk+1(αk) = αk+1
k − 2αk

k =
αk
k(αk − 2). Taking into account that αk ∈ (1, 2), then pk+1(αk) = αk

k(αk − 2) < 0.

We already know because of Lemma 1 that αk+1 is the unique positive root of gk+1, and it is
placed in (1, 2). Moreover, lim

k→+∞
pk+1(x) = +∞ and αk > 0 with pk+1(αk) < 0. Then, in order not to

contradict Bolzano’s theorem, it must be αk < αk+1.

Let us now see that lim
k→+∞

αk = 2. We have just proven that,

α1 < α2 < ... < αk < αk+1 < . . . ,

and therefore we deal with a strictly increasing sequence contained in the interval [1, 2], and conse-
quently upper bounded by 2. This means that there exists L = lim

k→+∞
αk ≤ 2. Let us suppose by

reduction to absurdity that L = lim
k→+∞

αk < 2.

We compute lim
k→+∞

gk(L) where,

gk(L) = Lk −
k−1∑
j=0

Lj = Lk − 1− Lk

1− L
= Lk − Lk − 1

L− 1
=
Lk+1 − Lk − Lk + 1

L− 1
=
Lk+1 − 2Lk + 1

L− 1
,

and thus,

lim
k→+∞

gk(L) = lim
k→+∞

Lk+1 − 2Lk + 1

L− 1
= lim

k→+∞

Lk(L− 2) + 1

L− 1
=−∞ < 0.

It follows that ∃k0 ≥ 2 : pk0(L) < 0. By Lemma 1 gk0 has a unique positive root αk0 located in
(1, 2). As pk0(L) < 0, it must be L < αk0 , what gives a contradiction since the sequence of αk is
strictly increasing and αk ≤ L ∀k. Thus, L = lim

k→+∞
αk = 2.

Theorem 2. Let us suppose that the secant polynomial method with polynomials of degree k is con-
vergent for a given set of initial points towards a simple root α of a k + 1 differentiable function f,
that is, f(α) = 0, f ′(α) ̸= 0. Then, the order of convergence of the method is at least αk.

Proof. From Proposition 1, we obtain

en+1(mk)
1
k = en(mk)

1
k · en−1(mk)

1
k · en−2(mk)

1
k · · · en−k(mk)

1
k · Mk

mk
.

Actually, we deduce

ln
(
en+1(mk)

1
k

)
= ln

(
en(mk)

1
k · en−1(mk)

1
k · en−2(mk)

1
k · · · en−k(mk)

1
k · Mk

mk

)
=

aaaaaaaii = ln
(
en(mk)

1
k

)
+ ln

(
en−1(mk)

1
k

)
+ ln

(
en−2(mk)

1
k

)
+ ...+

+ln
(
en−k(mk)

1
k

)
+ ln

(
Mk

mk

)
.aaaaaaaaaaaii (17)

Calling Fi = ln(ei(mk)
1
k ), where i = n, n− 1, n− 2, ..., n− k, the expression (17) can be rewritten

as

Fn+1 = Fn + Fn−1 + Fn−2 + ...+ Fn−k + ln

(
Mk

mk

)
.
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It is a linear and complete difference equation with constant coefficients.

As we are dealing with the order of convergence, we will work with limits, so we calculate

limn→∞ln
(
Mk
M

)
,

limn→∞ln

(
Mk

M

)
= limn→∞[ln(Mk)− ln(mk)] = limn→∞[ln(Mk)]− limn→∞[ln(mk)]

= ln (limn→∞Mk)− ln(mk) = ln(mk)− ln(mk) = 0.

Thus, we can consider the linear and homogeneous difference equation with constant coefficients
Fn+1 = Fn+Fn−1+Fn−2+...+Fn−k. Its characteristic equation is xk+1−xk−xk−1−xk−2−...−x−1 = 0,
whose positive roots provide us the order of convergence.

Using Lemma 1, we know that its unique positive root αk+1 is in the interval (1, 2). In the
meantime, Lemma 4 ensures that any other root verifies that it is strictly smaller than 1 in absolute
value. Therefore, the order of convergence becomes at most 2.

Remark 1. A strategy for increasing the approximation order for higher order polynomials of the
family introduced in this article is to initiate the method by choosing adequately the starting points,
taking profit of the previous methods of lower order of approximation. That is, the first two points are
chosen as close as possible to the existing root, the next iterate is then obtained by applying Secant
method, which gives three starting points, and then Müller method can be considered to give another
point, after this step the cubic method is used, and so on and so forth to reach the desired polynomial
degree, see [17].

5 Numerical experiments

In this section we carry out some simple numerical experiments to reinforce the theoretical results,
and see if the methods perform as expected. Our first experiments deals with the function f1(x) =
x sin (x3 + 7), which presents a simple root at x = 0. We apply the cubic secant method, and the
results can be seen in Table 1. We have used variable precision arithmetic with 200 digits. We give
the initial starting points and the numerical convergence order attained. The iterations were run until
two consecutive iterates were closer than 10−150 in absolute value. For example, for the cubic secant
method the iteration was started with the points −1,−0.5, 0.5, 1 and the attained order of convergence
was 1.929 which corresponds with the root of the polynomial g4(x) = x4 − x3 − x2 − x − 1 in the
interval (1, 2), just as pointed out by Theorem 2.

Method Initial Points Number of iterations Error Order p

Cubic [−1,−0.5, 0.5, 1] 10 4.9553 · 10−187 1.929

Table 1: Results obtained approximating the root x = 0 of the function f1(x) = x sin (x3 + 7) with an
error smaller than 10−150 between successive iterations.
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Since these methods are based on high degree polynomials, it is expected that they work fine
for functions with a chiefly similar polynomial form, and this is what we try to show with our next
experiment. We consider the function f3(x) = x3 − 5x2 − 10x − 30 + 0.02 cos(x), and we run the
generalized secant methods: secant, Müller, cubic, and quartic secant methods respectively. We want
to approximate the root of f2(x) close to x = 7. The results can be observed in Table 2. In order
to compute the convergence order in this experiment we have taken as exact root the previously
approximated root with a much higher precision. Again, the results obtained are consistent with the
developed theory.

Method Initial Points Iterations Error Order p CPU time

Secant [5, 100] 15 1.680 · 10−58 1.618 0.891

Müller [5, 10, 100] 11 2.800 · 10−57 1.833 1.047

Cubic [−5, 5, 8, 12] 6 4.445 · 10−70 1.908 1.203

Quartic [−10,−7,−5, 5, 7] 6 2.196 · 10−92 1.965 2.828

Table 2: Results obtained by approximating the root close to x = 7 of the function f2(x) = x3−5x2−
10x− 30 + 0.02 cos(x) with an error smaller than 10−50 between successive iterations.

Since polynomials of degree 5 or higher are not algebraically solvable, the implementation of the
family of methods in Proposition 1 would require the approximation of roots of such polynomials by
using specialized methods for polynomials, and this in turn would increase significantly the overall
computational cost. This computational cost could be reduced by refining the methods via the strategy
explained in Remark 1.

6 Conclusions

A complete study on the order of convergence of the family of methods that arise from the secant
and Müller methods by considering higher degree polynomials have been carried out. Rigorous proofs
of the main results have been derived, observing that the methods give a sequence of orders of con-
vergence which is strictly increasing and with limit 2. To obtain the theoretical results about the
boundedness of the absolute value of the complex roots of a polynomial we have used an interesting
new approach based on Cardano-Vieta’s formulas and the Cauchy theorem. Finally, some numerical
results have been shown indicating that the numerical results reinforce the proven theoretical results.
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