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PROPERTIES OF A NEW GENERALIZED
CAPUTO-FABRIZIO FRACTIONAL

DERIVATIVE
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Abstract We investigate properties of a new fractional derivative recently in-
troduced in the literature, which aims at generalizing the well-known Caputo-
Fabrizio operator. We study the null space of the generalized derivative, the
associated fractional integral operator, the null space of this integral, the valid-
ity of a fundamental theorem of calculus, the equivalence of integral problems
with ordinary differential equations, the existence and uniqueness of solution
for integral problems, and the form the nonsingular kernel should have to en-
sure consistency with the fractional order. A complete example with power
input function is analyzed, which gives rise to a novel non-elementary solution
and new dynamics in terms of the famous Lambert function.
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1. Introduction

There exist many fractional operators of real or even complex order, that aim at
extending the traditional derivative and thus give more flexibility when modeling
dynamic processes [1,7,20,30,37]. By modifying the singular kernel of the standard
Caputo fractional derivative, a new fractional operator with nonsingular kernel (of
exponential type) was defined by Caputo and Fabrizio in [10]. There are several
contributions in the literature on finding explicit solutions to Caputo-Fabrizio mod-
els; for example, see [19, 27] for fractional logistic growth, [6] for quadratic-power
input function, and [15] for other equations such as Riccati. There are also works on
modeling and numerical simulation, consult for instance [2,8,18,24,28]. Analogous
articles exist for other fractional derivatives, such as [5,17,26] for theory on explicit
solutions and [3,4, 25] for applications.
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The generalization of previous definitions and results is at the core of mathe-
matics. In this paper, we investigate a general Caputo-Fabrizio operator recently
proposed in the literature [29], which extends the class of nonsingular kernels with an
abstraction of the multiplicative property of the exponential function. Our approach
follows the methodology from [21, 22], which examined the Losada-Nieto integral
operator associated to the standard Caputo-Fabrizio derivative. For the new gener-
alized Caputo-Fabrizio operator, we find for the first time the corresponding integral
operator and investigate its properties, such as null space, a fundamental theorem
for this calculus, and the relationship with ordinary differential equations. The null
space is formed by the functions that are vanished by the operators, and this is
connected with the fundamental theorem of calculus, which gives the compositions
of the derivative and the integral operators and relates differential and Volterra
integral problems. We fully characterize the form of the new kernel function, and a
related integral equation is solved as an example to extend [6].

The article is organized as follows. In Section 2, we present the main con-
cepts and definitions regarding the generalized Caputo-Fabrizio fractional operator.
Then, in Section 3, we introduce the corresponding integral operator. We study the
null space and prove a fundamental theorem of calculus. The equivalence between
generalized Caputo-Fabrizio integral equations and suitable ordinary differential
equations is established, and existence and uniqueness results are shown. A study
on the kernel function is conducted. In Section 4, a concrete example that exhibits
interesting dynamics is given, to illustrate the results. Finally, Section 5 is devoted
to final remarks (summary and extensions of the paper).

2. The generalized Caputo-Fabrizio fractional deriva-
tive

2.1. Definitions

Fix a real number 0 < α < 1. We consider fractional derivatives of functions,
namely operators Dα with non-local behavior such that D1− is the ordinary deriva-
tive.

The well-known Caputo-Fabrizio derivative is recalled in the following defini-
tion [10]. The kernel suggested is nonsingular, as opposed to the Caputo and
Riemann-Liouville fractional derivatives, for example [20]. Hence it does not blow
up at any point, which simplifies the treatment and mathematical analysis of the
operator.

Definition 2.1. The Caputo-Fabrizio derivative of the continuously differentiable
function ϕ : [0, b] → R is

CFDαϕ(x) =
1

1− α

∫ x

0

e−
α

1−α (x−ξ)ϕ′(ξ)dξ, (2.1)

for x ∈ [0, b], where ϕ′ denotes the ordinary derivative.

In [29], the authors recently introduced a generalization of the Caputo-Fabrizio
derivative, by expanding the class of kernels with absence of singularity. Let κα :
[0, b] → R be a positive continuously differentiable function.



Properties of a CF fractional derivative 3

Definition 2.2. The generalized Caputo-Fabrizio derivative of the continuously
differentiable function ϕ : [0, b] → R with respect to κα is

GDαϕ(x) =
1

1− α

∫ x

0

κα(ξ)

κα(x)
ϕ′(ξ)dξ, (2.2)

for x ∈ [0, b].

In the particular case
κα(x) = e

α
1−αx (2.3)

in (2.2), one has GDα = CFDα. The authors in [29] did not pose more conditions
on the kernel

GKα(x, ξ) =
κα(ξ)

κα(x)
(2.4)

in (2.2). Among other results, we will characterize the generalized Caputo-Fabrizio
fractional derivative by imposing specific constraints on the nonsingular kernel (2.4).

2.2. Null space of the generalized Caputo-Fabrizio operator

Consider the equation
GDαϕ(x) = 0.

We will see that ϕ is constant. That is, the null space or kernel of the Caputo-
Fabrizio fractional derivative operator is the one-dimensional subspace of constant
functions. The same occurs for the ordinary and Caputo derivatives. The Riemann-
Liouville derivative, by contrast, possesses a null space generated by tα−1 ̸= constant,
which is often seen as a disadvantage.

Theorem 2.1. The null space of the generalized Caputo-Fabrizio operator is

Ker(GDα) = {c : c ∈ R}.

Proof. If ϕ ∈ Ker(GDα) and GDαϕ = 0, then∫ x

0

κα(ξ)ϕ
′(ξ)dξ = 0.

If we differentiate,
κα(x)ϕ

′(x) = 0.

Since κα is positive,
ϕ′(x) = 0

and ϕ is constant, as wanted.

3. Fractional integral operator associated to the gen-
eralized Caputo-Fabrizio operator

3.1. Definition

We start with the specific definition. Later we will prove that it is indeed valid,
similarly to [21].
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Definition 3.1. The integral operator associated to the generalized Caputo-Fabrizio
derivative is

GIαϕ(x) = (1− α)[ϕ(x)− ϕ(0)] + (1− α)

∫ x

0

κ′
α(ξ)

κα(ξ)
ϕ(ξ)dξ, (3.1)

where ϕ : [0, b] → R is a continuous function and x ∈ [0, b].

In (3.1), we have a combination of an increment of ϕ,

∆ϕ(x) = ϕ(x)− ϕ(0),

which is related to the mean value of ϕ′,∫ x

0

ϕ′(ξ)dξ,

and a weighted integral of ϕ,∫ x

0

κ′
α(ξ)

κα(ξ)
ϕ(ξ)dξ =

∫ x

0

ϕ(ξ)d(log κα(ξ)).

For the standard Caputo-Fabrizio integral (Losada-Nieto integral), the combination
is convex and the weight for the resulting integral is 1.

3.2. Null space of the associated integral operator

For the classical Riemann integral, the kernel is trivial. The same happens with
the Riemann-Liouville fractional integral, with null space {0}. We will see that this
is not the case for the generalized Caputo-Fabrizio operator, as it occurs with the
standard Caputo-Fabrizio operator [22].

Theorem 3.1. The null space of the integral operator associated to the generalized
Caputo-Fabrizio derivative is

Ker(GIα) = ⟨ 1

κα
⟩. (3.2)

Proof. If ϕ ∈ Ker(GIα), then we take derivatives in (3.1):

(1− α)ϕ′(x) + (1− α)
κ′
α(x)

κα(x)
ϕ(x) = 0. (3.3)

We obtain the differential equation

ϕ′(x) = −κ′
α(x)

κα(x)
ϕ(x), (3.4)

whose solution is, by the method of separation of variables,

ϕ(x) = Ce−
∫ κ′

α(x)

κα(x)
dx = Ce− log κα(x) =

C

κα(x)
,

for C ∈ R.
Reciprocally, if

ϕ(x) =
C

κα(x)
,

then (3.4) holds by differentiation. That is, (3.3). By integration on [0, x] and
Barrow’s rule, one concludes that GIαϕ = 0.
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3.3. A fundamental theorem of calculus

We present and prove the relationship between the derivative operator (2.2) and the
integral operator (3.1). This is a necessary step when dealing with a new fractional
derivative, to generalize standard calculus and understand and characterize the
associated differintegral equations. The first identity, (3.5), is analogous to Barrow’s
rule in standard calculus. However, the second identity, (3.6), contains an extra
term; this fact is related to the non-triviality of the null space of GIα, see (3.2).
This aspect of the theory that the derivative of the integral is not the same function
has to be considered in applications of differential equations, and it is applicable
for the broad class of fractional operators with nonsingular kernels. For Caputo
and Riemann-Liouville operators, of singular kernels, the fundamental theorem of
calculus holds.

Theorem 3.2. The relations

GIα ◦ GDαϕ(x) = ϕ(x)− ϕ(0) (3.5)

and
GDα ◦ GIαϕ(x) = ϕ(x)− κα(0)

κα(x)
ϕ(0) (3.6)

hold.

Proof. For (3.5), let

u(x) = GDαϕ(x). (3.7)

By definition (2.2),

u(x) =
1

1− α

∫ x

0

κα(ξ)

κα(x)
ϕ′(ξ)dξ.

Rewrite the expression as∫ x

0

κα(ξ)ϕ
′(ξ)dξ = (1− α)κα(x)u(x).

Now differentiate:

κα(x)ϕ
′(x) = (1− α)κ′

α(x)u(x) + (1− α)κα(x)u
′(x).

That is,

ϕ′(x) = (1− α)
κ′
α(x)

κα(x)
u(x) + (1− α)u′(x).

Now integrate, with Barrow’s rule, while recalling (3.1) and (3.7):

ϕ(x)− ϕ(0) = (1− α)[u(x)− u(0)] + (1− α)

∫ x

0

κ′
α(ξ)

κα(ξ)
u(ξ)dξ

= GIαu(x) = GIα ◦ GDαϕ(x).

For (3.6), first notice that

d

dx
GIαϕ(x) = (1− α)ϕ′(x) + (1− α)

κ′
α(x)

κα(x)
ϕ(x).
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Then, by (2.2),

GDα ◦ GIαϕ(x) =
1

1− α

∫ x

0

κα(ξ)

κα(x)

[
d

dξ
GIαϕ(ξ)

]
dξ

=
1

1− α

∫ x

0

κα(ξ)

κα(x)

[
(1− α)ϕ′(ξ) + (1− α)

κ′
α(ξ)

κα(ξ)
ϕ(ξ)

]
dξ

=
1

κα(x)

∫ x

0

κα(ξ)ϕ
′(ξ)dξ +

1

κα(x)

∫ x

0

κ′
α(ξ)ϕ(ξ)dξ

= ϕ(x)− κα(0)

κα(x)
ϕ(0),

where in the last equality we applied integration by parts in the term corresponding
to ϕ′.

3.4. Equivalence with ordinary differential equations

Differential and integral equations model dynamic states. This is why the study
of these problems belongs to the theoretical framework of fractional calculus. It
is necessary to establish results that ensure that fractional models are well-posed,
in terms of existence and uniqueness of solution. In this sense, we establish a
connection between Caputo-Fabrizio equations and ordinary differential equations.
Since GDαϕ(0) = 0 is always true, which may certainly limit the selection of vector
fields in contrast to singular kernels (this fact is also related to (3.6)), we will work
with integral equations based on (3.1), i.e., Volterra integral equations [33, 34].
Such a procedure is analogous to the use of the Losada-Nieto fractional integral
operator when dealing with the standard Caputo-Fabrizio derivative, see [21, 22].
For examples of application, the fractional logistic equation has been analyzed in
terms of the Losada-Nieto operator, which yields an implicit solution [19,27]. Other
fractional equations, such as Riccati, have been studied [15,36].

The following theorem was partially derived in the recent contribution [29].
However, in our proof, we rely on the new integral operator (3.1). The theorem is a
distinctive property of Caputo-Fabrizio derivatives, by the multiplicative property
of the kernel that is not shared by other operators.

Theorem 3.3. Based on (3.1), consider the functional equation

y(x) = y0 +
GIαf(x, y(x)), (3.8)

where y0 ∈ R and f is a continuously differentiable function around (0, y0), with
partial derivatives fx and fy, such that

1− (1− α)fy(0, y0) ̸= 0. (3.9)

Then (3.8) is equivalent to the ordinary differential equation

y′ =
(1− α)

[
fx(x, y) +

κ′
α(x)

κα(x)f(x, y)
]

1− (1− α)fy(x, y)
, (3.10)

with initial state y(0) = y0. Under (3.9), one can guarantee existence and unique-
ness of solution when f is twice continuously differentiable (standard Picard-Lindelöf
theorem).
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If f(x, y) = f(y) is independent of x (fx = 0), then

y′ =
(1− α)

κ′
α(x)

κα(x)f(y)

1− (1− α)f ′(y)
. (3.11)

Moreover, if f(y0) ̸= 0, then the implicit solution is given by

κα(x)|f(y)|
κα(0)|f(y0)|

e
F (y)−F (y0)

1−α = 1, (3.12)

where

F (ξ) =

∫
1

f(ξ)
dξ

is a specific primitive.

Proof. By differentiation in (3.8), we have that (3.8) is equivalent to

y′ = (1− α)

[
fx(x, y) + fy(x, y)y

′ +
κ′
α(x)

κα(x)
f(x, y)

]
,

that is, (3.10). In particular, if fx = 0, then (3.11) is obtained. With the method
of separation of variables, the following steps are performed:

1− (1− α)f ′(y)

f(y)
y′ = (1− α)

κ′
α(x)

κα(x)
,

F (y)− (1− α) log |f(y)| = (1− α) log κα(x) + C,

C = F (y0)− (1− α) log |f(y0)| − (1− α) log κα(0),

and
F (y)− F (y0)

1− α
− (log |f(y)| − log |f(y0)|) = log κα(x)− log κα(0).

By applying exponential, one gets the solution (3.12).
We notice that the used condition f(y0) ̸= 0 ensures that f(y) ̸= 0 on a neigh-

borhood of y0, hence (3.12) and F make sense in there. In general, the interval of
definition of the solution y is contained in {t ≥ 0 : f(y(t)) ̸= 0}. By continuity,
there is a t1 > 0 such that [0, t1) ⊆ {t ≥ 0 : f(y(t)) ̸= 0}.

Remark 3.1. Theorem 3.2 also holds with the integral operator

ϕ(x) 7→ (1− α)ϕ(x) + (1− α)

∫ x

0

κ′
α(ξ)

κα(ξ)
ϕ(ξ)dξ,

instead of our definition (3.1), because the function u in (3.7) satisfies u(0) = 0 by
definition (2.2). This type of operator was pointed out for the standard Caputo-
Fabrizio derivative in [21,22]. However, in that case, there would be no equivalence
between (3.8) and (3.10) in Theorem 3.3. Only the implication (3.8) ⇒ (3.10) would
be true. The reverse implication would not hold because Barrow’s rule would fail to
meet (3.8). Analogously, the statement (3.2) in Theorem 3.1 about the null space
would no longer be satisfied. Therefore, to sum up and conclude the remark, (3.1)
is the only acceptable definition for the integral operator.



8 M. Jornet & J.J. Nieto

Example 3.1. As (3.8), we consider the integral problem y(x) = y0 +
GIα(λy)(x),

λ ∈ R\{0, 1/(1− α)}. By (3.12), if y0 ̸= 0, then

κα(x)

κα(0)

y

y0
e

log(y/y0)

λ(1−α) = 1.

The solution is

y(x) = y0

(
κα(0)

κα(x)

) 1
1+1/(λ(1−α))

.

If y0 = 0, then y(x) = 0 is the solution, because it is the root of the right-hand side
of (3.11).

Example 3.2. Consider the Riccati integral problem y(x) = y0 +
GIα(y2 + 1)(x).

By (3.12), if y0 ̸= 1/(2(1− α)), then

κα(x)

κα(0)

y2 + 1

y20 + 1
e

arctan y−arctan y0
1−α = 1.

This is the solution, in implicit form, as it often occurs with Caputo-Fabrizio op-
erators [27]. In general, as

∫
1

f(ξ)dξ needs to be computed, solutions may not be

given with simple formulae, and even when a primitive is known, an implicit curve
may be obtained.

In the statement of Theorem 3.3, we commented that, if the input function
f is twice continuously differentiable around (0, y0) and (3.9) holds, then the in-
tegral problem (3.8) has a unique solution. Such a result is due to the relation
between (3.8) and the ordinary differential equation (3.10), involving the partial
derivatives of the nonlinearity. Now, we aim at proving that those two assumptions
on f can be relaxed for existence and uniqueness, by supposing that f is Lipschitz
continuous with respect to y on a vicinity of (0, y0) and that α is sufficiently near 1.
Banach’s fixed-point theorem plays a key role in the proof, as in the standard theory
and other fractional operators, such as Caputo. The disadvantage of this new result
is that it gives no guide on how the form of the concrete solution is.

We fix some notation. For ϵ1, ϵ2 > 0, consider a neighborhood

E = [0, ϵ1]× [y0 − ϵ2, y0 + ϵ2]

of (0, y0). Let
∥f∥∞ = sup

(x,ϕ)∈E
|f(x, ϕ)| < ∞ (3.13)

and

N = sup
ξ∈[0,τ∗]

|κ′
α(ξ)|

κα(ξ)
< ∞. (3.14)

Theorem 3.4. Based on (3.1), consider the functional equation (3.8), where y0 ∈
R. Suppose that f is continuous and there exists M > 0 such that

|f(x, ϕ1)− f(x, ϕ2)| ≤ M |ϕ1 − ϕ2| (3.15)

on E, with
M <

1

1− α
, ∥f∥∞ <

ϵ2
2(1− α)

. (3.16)
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Then, there exists a unique continuous solution for (3.8) on a local interval of 0,
given by

[0, τ∗) =

[
0,min

{
ϵ1,

1

N

(
ϵ2

(1− α)∥f∥∞
− 2

)
,
1

N

(
1

(1− α)M
− 1

)})
. (3.17)

Proof. Let C[0, τ ], for τ < τ∗, be the set of continuous functions on [0, τ ], endowed
with the supremum norm ∥ · ∥∞:

∥ϕ∥∞ = sup
x∈[0,τ ]

|ϕ(x)|,

for ϕ ∈ C[0, τ ]. We work in the subspace

B[0, τ ] = {ϕ ∈ C[0, τ ] : ϕ(0) = y0, ∥ϕ− y0∥∞ ≤ ϵ2}, (3.18)

which is Banach because it is closed.
Consider the operator

Λ : B[0, τ ] → B[0, τ ],

Λϕ(x) = y0 + (1− α)[f(x, ϕ(x))− f(0, ϕ(0))] + (1− α)

∫ x

0

κ′
α(ξ)

κα(ξ)
f(ξ, ϕ(ξ))dξ.

Let us see that it is well defined. If ϕ ∈ B[0, τ ], then it is clear that Λϕ ∈ C[0, τ ] by
the continuity of f on the region E . Also, Λϕ(0) = y0. On the other hand,

∥Λϕ− y0∥∞ ≤ (1− α)[|f(x, ϕ(x))|+ |f(0, ϕ(0))|]

+ (1− α)

∫ x

0

|κ′
α(ξ)|

κα(ξ)
|f(ξ, ϕ(ξ))|dξ

≤ 2(1− α)∥f∥∞ + (1− α)Nτ∥f∥∞ (3.19)

= (1− α)∥f∥∞(2 +Nτ)

≤ ϵ2. (3.20)

In (3.19), we use the supremum (3.13) and the valueN in (3.14). It is clear thatN <
∞, because κα is positive and continuously differentiable. In the last step (3.20),
we employ τ < τ∗ and (3.17). Thus, considering (3.18), Λϕ ∈ B[0, τ ].

Equation (3.8) is equivalent to the fixed-point problem y = Λy. For ϕ1, ϕ2 ∈
B[0, τ ] and x ∈ [0, τ ], we have:

|Λϕ1(x)− Λϕ2(x)| ≤ (1− α)|f(x, ϕ1(x))− f(x, ϕ2(x))|

+ (1− α)

∫ x

0

|κ′
α(ξ)|

κα(ξ)
|f(ξ, ϕ1(ξ))− f(ξ, ϕ2(ξ))|dξ

≤ (1− α)M |ϕ1(x)− ϕ2(x)|+ (1− α)M

∫ x

0

|κ′
α(ξ)|

κα(ξ)
|ϕ1(ξ)− ϕ2(ξ)|dξ (3.21)

≤ (1− α)M |ϕ1(x)− ϕ2(x)|+ (1− α)MN

∫ x

0

|ϕ1(ξ)− ϕ2(ξ)|dξ (3.22)

≤ (1− α)M∥ϕ1 − ϕ2∥∞ + (1− α)MNx∥ϕ1 − ϕ2∥∞
≤ (1− α)M(1 +Nτ)∥ϕ1 − ϕ2∥∞. (3.23)

For (3.21), the Lipschitz condition (3.15) has been used. For (3.22), the value N
in (3.14) has been employed. The term (1 − α)M(1 + Nτ) in (3.23) is strictly
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less than 1, by τ < τ∗ and (3.17). Notice that the interval (3.17) is well defined
by (3.16). The conclusion is that the operator Λ is a contraction. By Banach’s
fixed-point theorem [16, Chapter 1], there exists a unique y ∈ B[0, τ ] such that
y = Λy. As τ < τ∗ is arbitrary, we have the solution y on [0, τ∗).

Remark 3.2. Under the conditions of Theorem 3.4, the solution of (3.8) is given
as the limit of the sequence {ϕk}∞k=0, where

ϕ0 = y0

and

ϕk+1(x) = y0 + (1− α)[f(x, ϕk(x))− f(0, ϕk(0))]

+ (1− α)

∫ x

0

κ′
α(ξ)

κα(ξ)
f(ξ, ϕk(ξ))dξ,

for k ≥ 0. This is a Picard’s iteration. It converges on [0, τ∗). Nevertheless, the
solution cannot be obtained in explicit form.

3.5. Characterization of the nonsingular kernel

The definition (2.2) is quite broad with respect to the integration kernel (2.4).
Should we impose more conditions on it? At the end of [29], the authors suggested
the following line of research: “It’s worth noting that further research could poten-
tially lead to characterizing the generalized Caputo-Fabrizio fractional derivative by
imposing specific constraints on the nonsingular kernel”. This is the problem that
we solve in this part of the paper. We find that the consistency of the operators
with respect to the fractional order α characterizes the form of the kernel. The spe-
cific criteria in determining the form of the nonsingular kernel rely on obtaining the
ordinary derivative when α tends to 1, and the translated identity operator when
α tends to 0. These are not actually restrictions, because any suitable fractional
derivative should satisfy such requirements (Caputo, Riemann-Liouville, etc.).

Theorem 3.5. To ensure that

lim
α→1−

GDαϕ(x) = ϕ′(x)

and
lim

α→0+

GDαϕ(x) = ϕ(x)− ϕ(0)

for b ≥ x > 0, one must have

κα(x) = Ce
1

1−α

∫ x
0

θα(ξ)dξ, (3.24)

where C = κα(0) > 0 is a constant and θα : [0, b] → R is a continuous function
such that

lim
α→1−

θα(ξ) = 1 (3.25)

and
lim

α→0+
θα(ξ) = 0 (3.26)

for all ξ ∈ [0, b].
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Proof. Indeed, to ensure that (3.1) becomes
∫ x

0
ϕ(ξ)dξ when α → 1−, one must

have

lim
α→1−

(1− α)
κ′
α(ξ)

κα(ξ)
= 1. (3.27)

Analogously, (3.1) is ϕ(x)− ϕ(0) when α → 0+ if

lim
α→0+

(1− α)
κ′
α(ξ)

κα(ξ)
= 0. (3.28)

If we define

θα(ξ) = (1− α)
κ′
α(ξ)

κα(ξ)
, (3.29)

we obtain (3.24) by the method of separation of variables. The properties (3.27)
and (3.28) are equivalent to (3.25) and (3.26), respectively.

Notice that, for the standard Caputo-Fabrizio operator (2.1), the function (3.29)
is simply α for every argument ξ, and it satisfies the restrictions (3.25) and (3.26).
In this sense, the conventional kernel (2.3) seems to be a natural choice, which
additionally endows the operator with a convolution structure.

For example, the kernel employed in [29, Example 4.2],

κα(x) = (x+ 1)e
α

1−αx,

is not totally valid in the sense of Theorem 3.5. By (3.29), we compute

θα(ξ) =
1− α

ξ + 1
+ α. (3.30)

When α → 1−, there is convergence of (3.30) towards 1, which agrees with (3.25).
Nonetheless, (3.26) is not fulfilled, because (3.30) goes to 1/(ξ + 1) when α → 0+.
In summary, one does not have absolute freedom when selecting the integration
kernel (2.4).

An example of valid kernel (2.4) can be obtained from a constant θα,

θα(ξ) = c = e1−
1
α ∈ (0, 1),

α =
1

1− log c
,

which satisfies (3.25) and (3.26),

κα(x) = Cexp

(
x

1− α
e1−

1
α

)
= e

c(log c−1)
log c x (3.31)

(see (3.24)), and

GKα(x, ξ) = exp

(
−x− ξ

1− α
e1−

1
α

)
= e−

c(log c−1)
log c (x−ξ), (3.32)

for C > 0 and 0 < c < 1.
Similarly, other admissible kernels (2.4) may be built. For example, with

θα(ξ) = sin
(π
2
(α+ (1− α)ξ)

)
− (1− α) sin

(π
2
ξ
)
,

which meets (3.25) and (3.26).
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4. Lambert-function example

In [29], there are some examples of differintegral equations with the generalized
Caputo-Fabrizio operator, for example, a logistic model. The fractional logistic
solution exhibits dynamics that are similar to the S-shaped forms of the ordinary
case α = 1, although with higher flexibility.

Here, we solve another problem, with alternative and interesting features,

y(x) = y0 +
GIα(yp)(x), (4.1)

for a strictly increasing function κα. We suppose p > 1 is any real number and
y0 > 0. Problem (4.1) generalizes [6] to power p ̸= 2 and the generalized Caputo-
Fabrizio operator.

Theorem 3.3 applies. By (3.12),

κα(x)y
p

κα(0)y
p
0

e
1

1−α

[
1

(p−1)yp−1 − 1

(p−1)y
p−1
0

]
= 1. (4.2)

The absolute values are omitted by the assumption y0 > 0. This identity (4.2) is
equivalent to

κα(x)
p−1
p yp−1

κα(0)
p−1
p yp−1

0

e
1

p(1−α)

[
1

yp−1 − 1

y
p−1
0

]
= 1.

Rewrite it as

−1

p(1− α)yp−1
e

−1

p(1−α)yp−1 = − κα(x)
p−1
p

p(1− α)κα(0)
p−1
p yp−1

0

e
− 1

p(1−α)y
p−1
0 .

We consider the solution of the equation wew = z, which defines the Lambert or
product-logarithm function W(z) = w [12, 13]. The Lambert function has been
recently applied to study dynamical models [11,23,31]. Here, we have

−1

p(1− α)yp−1
= W

(
− κα(x)

p−1
p

p(1− α)κα(0)
p−1
p yp−1

0

e
− 1

p(1−α)y
p−1
0

)
.

Observe that the real function w ∈ R 7→ wew has a minimum at w = −1 and that
minimum is −e−1 = −0.367879 . . .. In other words, for w, x ∈ R, the equation
wew = x is solvable only for x ≥ −e−1, with a unique solution for x ≥ 0 and two
values for x ∈ (−e−1, 0). Both values become the same for x = −e−1. Later we will
specify the branch of W, since this function may be multivalued. Hence

y(x) =

 −1

p(1− α)W
(
− κα(x)

p−1
p

p(1−α)κα(0)
p−1
p yp−1

0

e
− 1

p(1−α)y
p−1
0

)


1
p−1

. (4.3)

If
1− (1− α)pyp−1

0 < 0,

then one selects the principal branch W = W0 : (−e−1, 0) → (−1, 0) and the
solution (4.3) is decreasing. If, by contrast,

1− (1− α)pyp−1
0 > 0,
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then W = W−1 : (−e−1, 0) → (−∞,−1) and the solution (4.3) is increasing. In
Figure 1, we plot W−1 and W0. Since these branches are considered on the domain
(−e−1, 0), we impose

−e−1 < − κα(x)
p−1
p

p(1− α)κα(0)
p−1
p yp−1

0

e
− 1

p(1−α)y
p−1
0 < 0.

Such a condition holds if and only if

κα(x) <

(
e−1(1− α)pκα(0)

p−1
p yp−1

0 e
1

(1−α)py
p−1
0

) p
p−1

,

that is,

x < κ−1
α

((
e−1(1− α)pκα(0)

p−1
p yp−1

0 e
1

(1−α)py
p−1
0

) p
p−1

)
.

The inverse κ−1
α exists because we assumed that κα is strictly increasing. In conse-

quence, the interval of definition of (4.3) with both branches W0 and W−1 is

[0, x∞) =

[
0, κ−1

α

((
e−1(1− α)pκα(0)

p−1
p yp−1

0 e
1

(1−α)py
p−1
0

) p
p−1

))
.

The two solutions (4.3), corresponding to W0 and W−1, are not simple functions
due to the non-elementary nature of the Lambert function [9]. A function is called
non-elementary if it cannot be written by addition, multiplication, division and
composition from rational, trigonometric, logarithm and exponential functions and
their inverses. Another distinctive property of the two solutions and their dynamics
is that they collide at x∞, from above and below, respectively, with value

y(x−
∞) =

(
1

(1− α)p

) 1
p−1

and infinite derivative. This is a phenomenon that does not appear when α = 1
and y′ = yp, for which the solution is elementary and grows towards infinity.

The development is illustrated in Figures 2–4. Fix α = 0.11, y0 = 2.1 and p = π.
In Figure 2, we plot the fractional solution of (4.1) that starts at y0 = 2.1, with the
generalized kernel defined by (3.31), (3.32).

We also draw the other solution that collapses with it at x∞ = 7203.80. The
asymptotic value is 0.618716.

On the other hand, in Figure 3, we conduct the same experiment with the
standard Caputo-Fabrizio kernel defined through (2.3). The two solutions touch at
x∞ = 20.0601. Observe that the solutions are qualitatively similar, but the scales
are totally different.

Finally, in Figure 4, we plot the ordinary solution, for α = 1; there is only one
solution on [0, 0.0953236) that grows towards infinity and is elementary. For these
computations, the software Mathematica® [35] is used.
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Figure 1. Branches W−1 (orange color) and W0 (blue color) of the Lambert function (real solutions of

wew = z). Both functions collide at z = −e−1 = −0.367879 . . ..
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Figure 2. Collapsing solutions of (4.1) for α = 0.11, y0 = 2.1 and p = π, with the generalized kernel
defined by (3.31), (3.32).
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Figure 3. Collapsing solutions of (4.1) for α = 0.11, y0 = 2.1 and p = π, with the standard kernel
defined through (2.3).
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Figure 4. Ordinary solution of (4.1) for α = 1, y0 = 2.1 and p = π.
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5. Final remarks

5.1. Summary of results

The new fractional derivative (2.2) extends the Caputo-Fabrizio operator (2.1) by
enlarging the class of integration kernels. The null space of the generalized derivative
is formed by the constant functions, as the ordinary derivative. The associated
fractional integral operator (3.1) is a combination of an increment and a weighted
integral (for the standard Caputo-Fabrizio or Losada-Nieto integral, it is a convex
combination with weight equal to one). In contrast to the classical Riemann integral,
the null space of the integral operator is not trivial, but the set spanned by a
function. The fundamental theorem of calculus, concerning the composition of the
derivative and the integral and vice versa, see (3.5) and (3.6), is partially true, due
to the non-triviality of the null space. Generalized Caputo-Fabrizio problems are
equivalent to ordinary differential equations, and for autonomous vector fields the
solution can be obtained in implicit form, by separation of variables. There is an
alternative result on existence and uniqueness of solution, with other hypotheses and
with a determined interval of existence, by using Banach’s fixed-point theorem. The
nonsingular kernel in the definition of the generalized operator has to meet certain
conditions, regarding the boundary values of the fractional index. The example with
power input function is solved with the non-elementary Lambert function, for which
a new collapsing phenomenon of solutions emerges. The numerical computations
support the theoretical findings.

5.2. Comments on extensions

Our paper contributes to advancing in the theoretical aspects of fractional calculus,
by investigating the properties and gaps of a new fractional operator in a complete
manner. Some comments and possible future research directions from the work are
described next.

The new Caputo-Fabrizio operator (2.2) generalizes the exponential kernel of the
standard operator, with (2.4). It does not seem possible to extend these ideas to
Prabhakar operators [5], because the Mittag-Leffler function cannot be decomposed
with products as opposed to the exponential function. This is a key difference
between the new Caputo-Fabrizio operator and the other operators with bounded
kernels, that simplifies its treatment.

Considering (3.6), the fundamental theorem of calculus would be analogous to
standard calculus if κα(0) = 0 and κα(x) > 0 for x > 0. In such a case, however,
the ordinary differential equation (3.10) would not be equivalent. It seems that, if
κα(0) = 0, then the kernel in the operator would be singular and a different theory
would be developed.

Section 4 could be explored when the input function is yp + δ, where p > 1 and
δ ̸= 0 is a constant. We do not know if the Lambert function or some extension of
it would emerge.

The role of the Laplace-transform or power-series methods for this generalized
Caputo-Fabrizio operator shall be investigated [14, 17, 21]. Also, computational
aspects have not been addressed in the study.

The work lies in the theoretical area. Adequate kernels (2.4) satisfying the com-
patibility conditions (3.27) and (3.28) might be found for modeling purposes and
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practitioners, if any, in mathematical physics, engineering, and applied mathemat-
ics.

Despite the simpler treatment, an inherent limitation of fractional operators
with nonsingular kernel is the zero value at t = 0, which is inconsistent with most
of the vector fields in differential equations. This fact is also related to the form of
the fundamental theorem of calculus and the null space. Thus, one needs to work
with the associated Volterra integral equation, which is mathematically admissible.
It appears legitimate to directly treat with Volterra equations, as all types of frac-
tional models are particular cases of these equations with certain kernels [33, 34].
However, in the generalized Caputo-Fabrizio context, further studies are needed to
deal with this issue and explore the appropriateness and utility of the integral form
in applications, beyond pure work, specially considering the equivalence with an
ordinary differential equation, of local behavior [32].
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