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ABSTRACT

Ordinary differential equations (ODEs) describe diverse phenomena in engineering and physics, such as electrical
networks, oscillating systems, satellite orbits, and chemical reactions. Solving these equations, particularly the
non-linear ones, is often challenging due to their complexity. This study aims to innovate by integrating the Laplace
transform with the reproducing kernel Hilbert space method (RKHSM), introducing an enhanced approach that
surpasses classical RKHSM. The combined Laplace-RKHSM method simplifies the original non-linear ODEs,
allowing for the construction of novel numerical solutions. These solutions are systematically obtained in series
form, providing both analytic and approximate results. The effectiveness and efficacy of the Laplace-RKHSM
are demonstrated through three applications, each showcasing the method’s superior performance in terms of
accuracy and computational efficiency. This new approach not only enhances the existing RKHSM but also
broadens its applicability to a wider range of non-linear problems in physics and engineering.
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INTRODUCTION

The ordinary differential equations are of great importance because of their ability to describe numerous phenomena
in physics such as electrical networks, oscillating and vibrating systems, satellite orbits, chemical reactions, and so
on [1–5]. Finding the ODEs’ solutions is the key to understanding nature, but it is hard and sometimes impossible to
get the exact solutions of most real-life ODEs, especially the non-linear ones. And for such a case, one resorts to
numerical methods. That’s why developing numerical methods to solve complex non-linear problems has become a
crucial task for researchers.

The RKHSM is a widely used numerical method for solving non-linear ODEs (NODEs). This method that was
proposed in 1908 [6] is an effective numerical method for complex nonlinear problems without discretization. Many
researchers applied it to solve several types of equations [7–28]. Its principal advantages are the feature that is it is
easy to be applied, especially because it is meshfree, and its capability to deal with diverse complex differential
equations.

The question behind this research is: ”What will this efficient method be if we combine it with an operator that
makes the differential equations simpler to handle?”. This question pushed us to suggest a new numerical method
for the NODEs. This research aims to provide a new convenient method using the reproducing kernel (RK) theory
and the Laplace transform operator for obtaining the non-linear ODEs’ solutions.

In this paper and for the first time, the Laplace-RKHSM (L-RKHSM) is used for constructing numerical solutions



for the non-linear ODEs. Its general methodology is: First, we need to obtain a simpler non-linear ODE than the
original one using the Laplace transform. Then, we apply the RKHSM. One of the powerful advantages of this new
method is we can obtain better results than the classical RKHSM with a minute number of iterations.

The next section shows some basic definitions and theorems concerning RK theory and Laplace transform
operator. The description of the L-RKHSM and its application to the proposed problem are presented in the third
section. The L-RKHSM’s effectiveness and the solutions’ accuracy are validated through three applications in the
fourth section. Finally, the conclusion is given.

PRELIMINARIES
To use the Laplace-RKHSM, we should present some definitions and theorems from RK theory and calculus.

Definition 1. The Laplace transform of a function f (ς), ς ≥ 0 is the integral [29] :

L [ f (ς)] = F(s) =
∫

∞

0
exp(−sς) f (ς)dς .

Definition 2. A function N : ß×ß→ C is called a reproducing kernel of H if [31]

1. N(·,ς) ∈ H, ∀ς ∈ ß.

2. (Reproducing property.) 〈 f ,N(·,ς)〉= f (ς), ∀ f ∈ H and ∀ς ∈ ß.

Where H is a Hilbert space over ß 6=∅.

Definition 3. A function space W 2
2 [0,T ] is [31]

W 2
2 [0,T ] = { f (ς)|The functions f and f ′ are absolutely continuous in [0,T ], f ′′ ∈ L2[0,T ],and f (0) = 0}.

with the inner product:

〈 f ,g〉W 2
2
=

1

∑
j=0

f (j)(0)g(j)(0)+
∫ T

0
f ′′(ς)g′′(ς)dς ,

and norm:

‖ f‖W 2
2
=
√
〈 f , f 〉W 2

2
,

for all f ,g ∈W 2
2 [0,T ].

Theorem 1. The reproducing kernel function Sτ(ς) of W 2
2 [0,T ], given by [30]

Sτ(ς) =

{
ςτ + 1

2 ς2τ− 1
6 ς3 ,ς ≤ τ,

τς + 1
2 τ2ς − 1

6 τ3 ,ς > τ.

For the proof of this theorem, see [30].

Definition 4. A function space W 1
2 [0,T ] is [31]

W 1
2 [0,T ] = { f (ς)|The function f ′ is absolutely continuous in [0,T ], f ′ ∈ L2[0,T ]}.

with the inner product:

〈 f ,g〉W 1
2
= f (0)g(0)+

∫ T

0
f ′(ς)g′(ς)dς ,

and norm:

‖ f‖W 1
2
=
√
〈 f , f 〉W 1

2
,

for all f ,g ∈W 1
2 [0,T ].
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Theorem 2. The reproducing kernel function Rτ(ς) of W 1
2 [0,T ], given by [30]

Rτ(ς) =

{
1+ ς ,ς ≤ τ,
1+ τ ,ς > τ.

For the proof of this theorem, see [30].

SOLUTION METHODOLOGY
We now consider the 1st-order non-linear ordinary differential equation,{

f ′(ς) = H(ς , f (ς)), ς ∈ [0,T ], T ∈ R∗,
f (0) = λ ,

(1)

Where f is the unknown, H is a function of ς and f (ς), and λ is a constant.
The idea of this new method is to take the Laplace transform of both sides of (1) as a first step. Then, we apply

the classical RKHSM. One of the powerful advantages of the Laplace transform operator is that it makes the ordinary
differential equation simpler to be solved and that’s why we propose in this paper to combine the Laplace transform
operator with the RKHSM. So, let us apply the following steps :
The first step is to homogenize the initial condition f (0) = λ by suitable transformation. To do so, the change of
variable has the form:

g(ς) = f (ς)−λ . (2)

Using this transformation, (1) becomes{
g′(ς) = H̄(ς ,g(ς)), ς ∈ [0,T ], T ∈ R∗,
g(0) = 0,

(3)

where H̄ is a function of ς and g(ς). Now, applying the Laplace transform to (3):

L
[
g′(ς)

]
= L [H̄(ς ,g(ς))] .

So, by s-shift,

sL [g(ς)]−g(0) = L [H̄(ς ,g(ς))] .

Some algebra gives

L [g(ς)] =
1
s
L [H̄(ς ,g(ς))] .

Then, taking the Laplace transform of this latter, we reach

g(ς) = L −1
[

1
s

L [H̄(ς ,g(ς))]
]
.

Then, (1) becomes{
g(ς) = Λ(ς ,g(ς)), ς ∈ [0,T ],
g(0) = 0,

where Λ(ς ,g(ς)) = L −1
[1

s L [H̄(ς ,g(ς))]
]
.
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The last step is to apply the classical RKHSM and we start with introducing a linear operator O : W 2
2 [0,T ]→

W 1
2 [0,T ] defined by

Og(ς) = g(ς).

So, using the linear operator we introduced, we get{
Og(ς) = Λ(ς ,g(ς)), ς ∈ [0,T ],
g(0) = 0,

(4)

where Λ(ς ,g(ς)) = L −1
[1

s L [H̄(ς ,g(ς))]
]
.

One of the essential steps for applying the RKHSM is the construction of an orthogonal function system of
W 2

2 [0,T ]. To do so, let

ψi(ς) =O∗κi(ς),

where

• κi(ς) = Rςi
(ς), in which Rςi

(ς) represents the RK function of W 1
2 [0,T ].

• The set {ςi}∞
i=1 is dense in [0,T ].

• O∗ denotes the adjoint of O.

Based on Gram-Schmidt’s process, we find {ψ̄i}∞
i=1 as :

ψ̄i(ς) =
i

∑
k=1

ϖikψk(ς), ϖii > 0, i= 1,2, . . . .

Where {ψi}∞
i=1 denotes the function system in W 2

2 [0,T ] that can be determined in the following way

ψi(ς) =O∗κi(ς) =
〈
O∗κi(η),Sς (η)

〉
W 2

2
=
〈
κi(η),OSς (η)

〉
W 1

2
=
〈
Rηi

(η),OSς (η)
〉

W 1
2
=OηSς (η)|η=ςi

,

the operator Oη is introduced to tell that O is applied to η .
And, the coefficients ϖik are the orthogonalization which take the following values :

ϖij =


1
‖ψ1‖ , for i= j= 1,
1
ei
, for i= j 6= 1,
− 1

ei ∑
i−1
k=jCikϖkj, for i> j,

where ei =
√
‖ψi‖2−∑

i−1
k=1C2

ik,Cik = 〈ψi, ψ̄k〉W 2
2
.

Theorem 3. Suppose {ςi}∞
i=1 is dense in [0,T ], then {ψi}∞

i=1 is the complete system of W 2
2 [0,T ].

Proof. We know that ψi(ς) ∈W 2
2 [0,T ]. So, for each fixed g(ς) ∈W 2

2 [0,T ], it follows

〈g(ς),ψi(ς)〉W 2
2
= 0, i= 1,2, . . . .

Since

〈g(ς),ψi(ς)〉W 2
2
= 〈g(ς),O∗κi(ς)〉W 2

2
= 〈Og(ς),κi(ς)〉W 1

2
=Og(ςi) = 0,

and {ςi}∞
i=1 is dense on the interval [0,T ], we have

Og(ς) = 0.
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Then,

O−1 (Og(ς)) =O−1 (0)

gives

g(ς) = 0.

Lemma 1. Assume g(ς) ∈W 2
2 [0,T ], then

∥∥∥g(i)(ς)
∥∥∥

C
≤ C‖g(ς)‖W 2

2
, i= 0,1,

where C≥ 0 and ‖g(ς)‖C = max
ς∈[0,T ]

|g(ς)| .

Proof. ∀ς ∈ [0,T ] we have

g(i)(ς) =
〈

g(�),∂ (i)
ς Sς (�)

〉
W 2

2

, i= 0,1.

Using the expression of ∂
(i)
ς Sς (�), we can reach

∥∥∥∂
(i)
ς Sς

∥∥∥
W 2

2

≤ Ci, i= 0,1.

Consequently,

∣∣∣g(i)(ς)∣∣∣= ∣∣∣∣〈g(�),∂ (i)
ς Sς (�)

〉
W 2

2

∣∣∣∣≤ ∥∥∥∂
(i)
ς Sς

∥∥∥
W 2

2

‖g‖W 2
2
≤ Ci ‖g‖W 2

2
, i= 0,1. (5)

Where C= max
i=0,1
{Ci}. Then lemma 1 follows from (5).

Theorem 4. Assume {ςi}∞
i=1 is dense in [0,T ] and problem (4) has a solution that should be unique on W 2

2 [0,T ].
Therefore, the solution of (4) is

g(ς) =
∞

∑
i=1

i

∑
k=1

ϖikΛ(ςk,g(ςk))ψ̄i(ς). (6)

While the solution of (1) is

f (ς) =
∞

∑
i=1

i

∑
k=1

ϖikΛ(ςk,g(ςk))ψ̄i(ς)+λ .

Proof. Firstly, the fact that {ψ̄i(ς)}∞

i=1 is a complete orthonormal basis in W 2
2 [0,T ] allows us to write
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g(ς) =
∞

∑
i=1
〈g(ς), ψ̄i(ς)〉W 2

2
ψ̄i(ς)

=
∞

∑
i=1

〈
g(ς),

i

∑
k=1

ϖikψk(ς)

〉
W 2

2

ψ̄i(ς)

=
∞

∑
i=1

i

∑
k=1

ϖik 〈g(ς),ψk(ς)〉W 2
2

ψ̄i(ς)

=
∞

∑
i=1

i

∑
k=1

ϖik 〈g(ς),O∗κk(ς)〉W 2
2

ψ̄i(ς)

=
∞

∑
i=1

i

∑
k=1

ϖik 〈Og(ς),κk(ς)〉W 1
2

ψ̄i(ς)

=
∞

∑
i=1

i

∑
k=1

ϖik
〈
Og(ς),Rς (ςk)

〉
W 1

2
ψ̄i(ς)

=
∞

∑
i=1

i

∑
k=1

ϖikΛ(ςk,g(ςk))ψ̄i(ς).

with Λ(ςk,g(ςk)) =Og(ςk).
Secondly, by substituting g(ς) with its value (6) in the transformation (2), we get

f (ς) =
∞

∑
i=1

i

∑
k=1

ϖikΛ(ςk,g(ςk))ψ̄i(ς)+λ .

We now write the RKHSM’s solution gn(ς) as

gn(ς) =
n

∑
i=1

i

∑
k=1

ϖikΛ(ςk,g(ςk))ψ̄i(ς).

The space W 2
2 [0,T ] is a Hilbert space, so this latter implies that

∞

∑
i=1

i

∑
k=1

ϖikΛ(ςk,g(ςk))ψ̄i(ς)< ∞,

we conclude, then, that gn(ς) converges to g(ς) in the norm.

Theorem 5.

1. The approximate solution gn(ς) converges uniformly to g(ς).

2. The approximate solution g′n(ς) converges uniformly to g′(ς).

Proof. For the first result, we need to estimate the term on the left below:
∀ς ∈ [0,T ],

|gn(ς)−g(ς)|=
∣∣∣〈gn(�)−g(�),Sς (�)

〉
W 2

2

∣∣∣
≤
∥∥Sς

∥∥
W 2

2
‖gn−g‖W 2

2

≤ C0 ‖gn−g‖W 2
2
,
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where C0 is a constant.
Following the same way, we get∣∣g′n(ς)−g′(ς)

∣∣≤ ∥∥∂ς Sς

∥∥
W 2

2

∥∥g′n−g′
∥∥

W 2
2
,

due to the uniform boundedness of ∂ς Sς (�), we have∥∥∂ς Sς

∥∥
W 2

2
≤ C1,

where C1 is a positive constant.
Therefore ∣∣g′n(ς)−g′(ς)

∣∣≤ C1
∥∥g′n−g′

∥∥
W 2

2
.

A NUMERICAL EXPERIMENT
This section is the numerical part that assures the efficiency of the new method. The logistic differential equation is
discussed in Example 1, the Riccati differential equation is considered in Example 2, and a NODE is discussed in
Example 3.

Example 1. Taking the non-linear logistic differential equation:
f ′(ς) = 1

2 f (ς)(1− f (ς)) , ς ∈ [0,10],

f (0) = 1
2 ,

(7)

that has the following exact solution :

f (ς) =
e

ς

2

1+ e
ς

2
.

We start with homogenizing the initial condition f (0) = 1
2 and this involves defining the new function: g(ς) =

f (ς)− 1
2 .

Using it, the new problem will be
g′(ς) = 1

2

(1
4 −g2(ς)

)
, ς ∈ [0,10],

g(0) = 0.
(8)

Now, by taking the Laplace transform of the left- and right-hand sides of (8), it becomes

sL [g(ς)] =
1
2

(
1
4s
−L

[
g2(ς)

])
.

Then, we obtain

L [g(ς)] =
1
2s

(
1
4s
−L

[
g2(ς)

])
,

which has the following inverse transform

g(ς) = L −1
[

1
2s

(
1
4s
−L

[
g2(ς)

])]
.
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O : W 2
2 [0,10] −→ W 1

2 [0,10]
g(ς) −→ O(g(ς)) = g(ς).

To carry on, it is necessary to introduce a bounded linear operator O as
Thus, we reach the step of the application of the RKHSM as we said before. Taking n = 25 collocation points in

which ς = i
n , i= 1,2 . . . ,n. The approximate solution for Example 1 is found using the new L-RKHSM and it is

compared with its exact and RKHSM’s solution. Table 1 shows the exact solution, the solutions that are obtained
by using the new L-RKHSM, and the classical RKHSM with their absolute errors in a large domain [0,10]. In this
table, we obtained results by the L-RKHSM and they are much better than those of the classical RKHSM with a
minute number of iterations. In Figure. 11 we compared the exact solution with the L-RKHSM’s solution whereas
in Figure. 12 we compared the exact solution with the classical RKHSM’s solution. Figure. 3 is where the three
solutions are depicted together. We can see from these figures that the graphs’ behavior is very similar. To highlight
more comparisons between the L-RKHSM and the RKHSM, we drew the absolute error of both methods in Figures
4 and 5. What we can observe here is that the L-RKHSM’s solution is very close to the exact solution, unlike the
classical RKHSM. And this confirms that the L-RKHSM is more effective compared with the RKHSM. One of the
powerful advantages of this new method is we can obtain better results than the classical RKHSM with a minute
number of iterations.

Absolute Error of
ς Exact solution L-RKHSM RKHSM L-RKHSM RKHSM

0.0 0.5000000000 0.5000000000 0.5000000000 0.00000 0.00000
1.0 0.6224593312 0.6223461978 0.6158563195 1.13133×10−4 6.60301×10−3

2.0 0.7310585786 0.7309895126 0.7251869079 6.90660×10−5 5.87167×10−3

3.0 0.8175744762 0.8174733093 0.8126519688 1.01167×10−4 4.92250×10−3

4.0 0.8807970780 0.8807161835 0.8768334171 8.08945×10−5 3.96366×10−3

5.0 0.9241418200 0.9241052546 0.9210617450 3.65654×10−5 3.08008×10−3

6.0 0.9525741268 0.9525763640 0.9502585348 2.23720×10−6 2.31559×10−3

7.0 0.9706877692 0.9707129324 0.9689970890 2.51632×10−5 1.69068×10−3

8.0 0.9820137900 0.9820472917 0.9808099544 3.35017×10−5 1.20384×10−3

9.0 0.9890130574 0.9890454610 0.9881728305 3.24036×10−5 8.40227×10−4

10 0.9933071491 0.9933356208 0.9927303315 2.84717×10−5 5.76818×10−4

Table 1. Numerical results of Example 1.
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Figure 1. Exact and L-RKHSM’s solutions for Example 1.

Figure 2. Exact and RKHSM’s solutions for Example 1.
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Figure 3. Comparison between the three solutions: the Exact, L-RKHSM, and RKHSM solutions for Example 1.

Figure 4. Absolute error of the L-RKHSM for Example 1.
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Figure 5. Absolute error of the RKHSM for Example 1.
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Example 2. Taking the Riccati differential equation:
f ′(ς) = t3 f 2(ς)−2ς4 f (ς)+ ς5 +1, ς ∈ [0,1],

f (0) = 0,
(9)

that has the following exact solution :

f (ς) = ς .

We start with taking the Laplace transform of the left- and right-hand sides of (9) directly because the initial
condition of this problem is already homogeneous.
So, the equation (9) becomes

sL [ f (ς)] = L
[
ς

3 f 2(ς)
]
−L

[
2ς

4 f (ς)
]
+

120
s6 +

1
s
.

Then, we obtain

L [ f (ς)] =
1
s

(
L
[
ς

3 f 2(ς)
]
−L

[
2ς

4 f (ς)
]
+

120
s6 +

1
s

)
,

which has the following inverse transform

f (ς) = L −1
[

1
s

(
L
[
ς

3 f 2(ς)
]
−L

[
2ς

4 f (ς)
]
+

120
s6 +

1
s

)]
.

To carry on, it is necessary to introduce a bounded linear operator O as

O : W 2
2 [0,1] −→ W 1

2 [0,1]
f (ς) −→ O( f (ς)) = f (ς).

Thus, we reach the step of the application of the RKHSM as we said before. Taking n = 25 collocation points in
which ς = i

n , i= 1,2 . . . ,n. The approximate solution for Example 2 is found using the new L-RKHSM and it is
compared with its exact and RKHSM’s solution. Table 2 shows the exact solution, the solutions that are obtained
by using the new L-RKHSM, and the classical RKHSM with their absolute errors when ς ∈ [0,1]. In this table,
we obtained results by the L-RKHSM and they are much better than those of the classical RKHSM with a minute
number of iterations. In Figure. 6 we compared the exact solution with the L-RKHSM’s solution whereas in Figure. 7
we compared the exact solution with the classical RKHSM’s solution. Figure. 8 is where the three solutions are
depicted together. We can see from these figures that the graphs’ behavior is very similar. To highlight more
comparisons between the L-RKHSM and the RKHSM, we drew the absolute error of both methods in Figures 9 and
10. What we can observe here is that the L-RKHSM’s solution is very close to the exact solution, unlike the classical
RKHSM. And this confirms that the L-RKHSM is more effective compared with the RKHSM.
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Absolute Error of
ς Exact solution L-RKHSM RKHSM L-RKHSM RKHSM

0.0 0.0 0.0 0.0 0.0 0.0
0.1 0.1 0.0999948043 0.0992307635 5.2×10−6 7.69237×10−4

0.2 0.2 0.2000000002 0.1992307639 2.0×10−10 7.69236×10−4

0.3 0.3 0.3000000067 0.2992307647 6.7×10−9 7.69235×10−4

0.4 0.4 0.3999999998 0.3992307675 2.0×10−10 7.69233×10−4

0.5 0.5 0.4999999972 0.4992307730 2.8×10−9 7.69227×10−4

0.6 0.6 0.6000000009 0.5992307823 9.0×10−10 7.69218×10−4

0.7 0.7 0.7000000008 0.6992307992 8.0×10−10 7.69201×10−4

0.8 0.8 0.7999999868 0.7992308244 1.3×10−8 7.69176×10−4

0.9 0.9 0.8999999893 0.8992308608 1.1×10−8 7.69139×10−4

1.0 1.0 0.9999999839 0.9992309114 1.6×10−8 7.69089×10−4

Table 2. Numerical results of Example 2.

Figure 6. Exact and L-RKHSM’s solutions for Example 2.
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Figure 7. Exact and RKHSM’s solutions for Example 2.

Figure 8. Comparison between the three solutions: the Exact, L-RKHSM, and RKHSM solutions for Example 2.
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Figure 9. Absolute error of the L-RKHSM for Example 2.

Figure 10. Absolute error of the RKHSM for Example 2.
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Example 3. Taking the non-linear ODE:
f ′(ς)−1 = f 2(ς), ς ∈ [0,1],

f (0) = 0,
(10)

that has the following exact solution :

f (ς) = tan(ς).

We start with taking the Laplace transform of the left- and right-hand sides of (10) directly because the initial
condition of this problem is already homogeneous.
So, the equation (10) becomes

sL [ f (ς)] = L
[

f 2(ς)
]
+

1
s
.

Then, we obtain

L [ f (ς)] =
1
s

(
L
[

f 2(ς)
]
+

1
s

)
,

which has the following inverse transform

f (ς) = L −1
[

1
s

(
L
[

f 2(ς)
]
+

1
s

)]
.

To carry on, it is necessary to introduce a bounded linear operator O as

O : W 2
2 [0,1] −→ W 1

2 [0,1]
f (ς) −→ O( f (ς)) = f (ς).

Thus, we reach the step of the application of the RKHSM as we said before. Taking n = 25 collocation points in
which ς = i

n , i= 1,2 . . . ,n. The approximate solution for Example 3 is found using the new L-RKHSM and it is
compared with its exact and RKHSM’s solution. Table 3 shows the exact solution, the solutions that are obtained
by using the new L-RKHSM, and the classical RKHSM with their absolute errors when ς ∈ [0,1]. In this table,
we obtained results by the L-RKHSM and they are much better than those of the classical RKHSM with a minute
number of iterations. In Figure. 11 we compared the exact solution with the L-RKHSM’s solution whereas in
Figure. 12 we compared the exact solution with the classical RKHSM’s solution. Figure. 13 is where the three
solutions are depicted together. We can see from these figures that the graphs’ behavior is very similar. To highlight
more comparisons between the L-RKHSM and the RKHSM, we drew the absolute error of both methods in Figures
14 and 15. What we can observe here is that the L-RKHSM’s solution is very close to the exact solution, unlike the
classical RKHSM. And this confirms that the L-RKHSM is more effective compared with the RKHSM.
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Absolute Error of
ς Exact solution L-RKHSM RKHSM L-RKHSM RKHSM

0.0 0.0 0.0 0.0 0.0 0.0
0.1 0.1003346721 0.1003315842 0.0995220122 3.08790×10−6 8.12660×10−4

0.2 0.2027100355 0.2027072115 0.2018952901 2.82400×10−6 8.14745×10−4

0.3 0.3093362496 0.3093290983 0.3084928946 7.15130×10−6 8.43355×10−4

0.4 0.4227932187 0.4227787500 0.4218831247 1.44687×10−5 9.10094×10−4

0.5 0.5463024898 0.5462744286 0.5452686924 2.80612×10−5 1.03380×10−3

0.6 0.6841368083 0.6840852256 0.6828861202 5.15827×10−5 1.25069×10−3

0.7 0.8422883805 0.8421937224 0.8406636025 9.46581×10−5 1.62478×10−3

0.8 1.0296385570 1.0294591450 1.0273488640 1.79412×10−4 2.28970×10−3

0.9 1.2601582180 1.2598541310 1.2566416090 3.04087×10−4 3.51661×10−3

1.0 1.5574077250 1.5566408810 1.5514464480 7.66844×10−4 5.96128×10−3

Table 3. Numerical results of Example 3.

Figure 11. Exact and L-RKHSM’s solutions for Example 3.
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Figure 12. Exact and RKHSM’s solutions for Example 3.

Figure 13. Comparison between the three solutions: the Exact, L-RKHSM, and RKHSM solutions for Example 3.
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Figure 14. Absolute error of the L-RKHSM for Example 3.

Figure 15. Absolute error of the RKHSM for Example 3.
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CONCLUSION

In this paper, we successfully introduced an efficient novel method, named the Laplace-Reproducing Kernel Hilbert
Space Method, for solving non-linear ordinary differential equations. By combining the reproducing kernel Hilbert
space method with the Laplace transformation, the L-RKHSM achieves enhanced accuracy and applicability. The
method was validated through three distinct applications, demonstrating its effectiveness in producing accurate
numerical solutions with a minimal number of iterations compared to the classical RKHSM. The results show that
the L-RKHSM is a powerful and versatile tool for addressing a wide variety of non-linear problems that arise in
various physical contexts. This new approach not only offers significant improvements in computational efficiency
but also expands the potential for solving complex non-linear ODEs, making it a valuable addition to the toolbox of
numerical methods in engineering and physics. Future work could explore further applications of the L-RKHSM to
other types of differential equations and investigate potential enhancements to the method.

REFERENCES

[1] F. M. Allehiany, M. H. DarAssi, I. Ahmad, M. A. Khan, and E. M. Tag-eldin, “Mathematical Modeling and
backward bifurcation in monkeypox disease under real observed data,” Results Phys. , vol. 20, pp. 106557,
2023. DOI: https://doi.org/10.1016/j.rinp.2023.106557.

[2] A. MAlqahtani, M. Ould Sidi, M.R. Khan, M.A. Elkotb, E. Tag-Eldin, and A.M. Galal, “Transport properties
of two-dimensional dissipative flow of hybrid nanofluid with Joule heating and thermal radiation,” Sci. Rep.,
vol. 12, no. 1, pp. 19374, 2022. DOI: https://doi.org/10.1038/s41598-022-23337-z.

[3] S. A. A. Shah, N.A. Ahammad, B. Ali, K. Guedri, Aziz Ullah Awan, F. Gamaoun, and E. M. Tag-ElDin,
“Significance of bio-convection, MHD, thermal radiation and activation energy across Prandtl nanofluid
flow: A case of stretching cylinder,” Int. Commun. Heat Mass Transf., vol. 137, pp. 106299, 2022. DOI:
https://doi.org/10.1016/j.icheatmasstransfer.2022.106299.

[4] S. M. E. Ismaeel, Abdul-Majid Wazwaz, E. Tag-Eldin, and S. A. El-Tantawy, “Simulation studies on the
dissipative modified Kawahara solitons in a complex plasma,” Symmetry, vol. 15, no. 1, 57, 2023. DOI:
https://www.mdpi.com/2073-8994/15/1/57.

[5] A., Tassaddiq, S. Qureshi, A. Soomro, O. Abu Arqub, M. Senol, “Comparative analysis of classical and Caputo
models for COVID-19 spread: vaccination and stability assessment,” Fixed Point Theory and Algorithms for
Sciences and Engineering, vol. 2024, 2, 2024. https://doi.org/10.1186/s13663-024-00760-7

[6] S. Zaremba, “Sur le calcul numérique des fonctions demandées dans le problème de Dirichlet et le problème
hydrodynamique,” Bulletin International de l’Académie des Sciences de Cracovie, vol. 68, pp. 125-195, 1908.

[7] A. Ghasemi, A. Saadatmandi, “ A new Bernstein-reproducing kernel method for solving forced Duff-
ing equations with integral boundary conditions,” CMDE, vol. 12, no. 2, pp. 329-337, 2024. DOI:
10.22034/cmde.2023.57413.2401.

[8] L. Shi, S. Tayebi, O. Abu Arqub, M. S. Osman, P. Agarwal, W. Mahamoud, M. Abdel-Aty, and M. Al-
hodaly, “ The novel cubic B-spline method for fractional Painlevé and Bagley-Trovik equations in the Ca-
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