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Abstract: In this paper, an inverse source problem for the Sobolev equation with fractional Lapla-

cian is investigated. We prove that this kind of problem is ill-posed and apply the Quasi-boundary

regularization method and fractional Landweber iterative regularization method to solve this inverse

problem. Based on the result of conditional stability, the error estimates between the exact solution

and the regularization solution are given under the priori and posteriori regularization parameter se-

lection rules. Finally, three examples are given to illustrate the effectiveness and feasibility of these

methods.

keywords: Sobolev equation; Inverse problem; Identifying source term; Regularization method

1 Introduction

Let Ω be a bounded domain in RN (N ≥ 1) with sufficiently smooth boundary ∂Ω. In this paper, we

consider the following initial-boundary value problem for Sobolev equation with fractional Laplacian [1]


ut(x, t)− a∆ut(x, t) + (−∆)βu(x, t) = F (x), x ∈ Ω, t ∈ (0, T ],

u(x, t) = 0, x ∈ ∂Ω, t ∈ (0, T ],

u(x, 0) = 0, x ∈ Ω,

(1.1)

where a > 0 is the diffusion coefficient, F (x) is the source function and u(x, t) describes the distribution

of the temperature at position x and time t. The parameter β is the fractional order of Laplacian

operator with 1 ≤ β < 2.

∗The project is supported by the National Natural Science Foundation of China (No. 11961044), the Doctor

Fund of Lan Zhou University of Technology.
†Corresponding author, E-mail: yfggd114@163.com.

1



Problem (1.1) is a forward problem when the function F (x) is given appropriately. If the source

term F (x) is unknown, use the additional condition

u(x, T ) = g(x), x ∈ Ω, (1.2)

to identify the unknown source F (x). This is an inverse problem. In practical applications, the input

data g(x) is given by measurement and the measured data gδ(x) satisfies

‖g(·)− gδ(·)‖ 6 δ, (1.3)

where ‖ · ‖ is the L2(Ω) norm and δ > 0 is the measurement error.

Fractional order Sobolev equations have been the subject of extensive research in recent years [2–9].

The researches in this field have focused on various aspects, including nonlinear problems [10,11], appli-

cations [12], and the properties of the fractional Laplacian operator [13]. The study of these equations

have numerous applications in various fields, including physics, biology, and finance. The fraction-

al Laplacian operator, an important operator that arises in fractional order Sobolev equations, has

been the subject of recent research, with a focus on understanding its spectral properties, relationship

to other fractional operators, and applications in various fields. The direct problem of fractional-

order Sobolev equations has garnered substantial attention from a host of researchers in recent times.

In [14], the authors tackled the initial-boundary value problem of Sobolev-type equation. In [15], the

authors set forth foundational criteria for the approximate controllability of nonlinear impulsive delay

integro-differential systems of Sobolev type, specifically within the fractional order range of 1 < q < 2.

Notably, their exploration extends to showcase the exact null controllability of identical systems under

the stipulated conditions. However, research on the inverse problems of fractional-order Sobolev e-

quations have been scarce. Therefore, this study will employ two regularization techniques for solving

this equation and validating the effectiveness of the methods through corresponding numerical exper-

iments.

The inverse problem is solved by the regularization method, such as the Tikhonov regularization

method [16], the modified Tikhonov regularization method [17], the Landweber iterative regularization

method [18], the fractional Landweber iterative regularization method, the Quasi-boundary regular-

ization method, the Quasi-inverse regularization method and so on. In [19, 20], X.T. Xiong et al.

used a modified Tikhonov method to solve a cauchy problem of the fractional diffusion equation.

In [21, 22], T. Wei et al used the boundary element method combined with generalized Tikhonov

regularization method to identify the unknown source and diffusion coefficient of fractional diffusion

equation. In [18], Y.X. Gao et al. used the the fractional Landweber iterative regularization method

to study the inverse problem of the time-fractional Schrödinger equation. In [23, 24], F Yang, et al.

used three regularization methods(Landweber iterative regularization method, fractional Landweber

iterative regularization method, Quasi-boundary regularization method) to identify the initial value

of homogeneous anomalous secondary diffusion equation. In [25], Jian-Ming Xu et al. used the modi-

fied Quasi-boundary regularization method to identify the initial value of fractional pseudo-parabolic

equation.

This paper is divided into six sections. In Section 2, we give the solution of the problem (1.1) and
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the result of conditional stability. In section 3, we use the Quasi-boundary regularization method to

obtain the regularized solution of the problem (1.1). In Section 4, we give the fractional Landweber

iteration regularization method, Landweber iteration regularization method and their convergent es-

timations. Several numerical examples are given in Section 5. In the final Section, we give a brief

conclusion.

2 The solution of the problem (1.1) and the result of

conditional stability

In this section, we mainly give the uncertainty analysis, the solution of the problem and the result of

conditional stability (1.1). Let λn and χn be the Dirichlet eigenvalues and eigenfunctions of −∆ on

the domain Ω, satisfy [26]{
∆χn(x) = −λnχn(x), x ∈ Ω,

χn(x) = 0, x ∈ ∂Ω,
(2.1)

where 0 < λ1 6 λ2 6 · · · 6 λn 6 · · · , limn→∞ λn = +∞ and χn(x) ∈ H2(Ω) ∩H1
0 (Ω), then {χn}∞n=1

can be normalized as the orthonormal basis in space L2(Ω).

For any p > 0, we define the space

Hp(Ω) =
{
φ ∈ L2(Ω)

∣∣∣ ∞∑
n=1

λβpn |(φ, χn)|2 <∞
}
, (2.2)

where (·, ·) is the inner product in L2(Ω), then Hp(Ω) is a Hilbert space with the norm

‖φ‖Hp(Ω) :=
( ∞∑
n=1

λβpn |(φ, χn)|2
) 1

2
. (2.3)

The solution of problem (1.1) is obtained by using characteristic functions, variable separation method

and Laplace transformation

u(x, t) =
∞∑
n=1

Fn(1− e−
λ
β
n

1+aλn
t)

λβn
, (2.4)

where Fn = (F (x), χn(x)) is the Fourier coefficient. Using u(x, T ) = g(x), according to (2.4)

g(x) =

∞∑
n=1

Fn(1− e−
λ
β
n

1+aλn
T )

λβn
. (2.5)

So

gn =
Fn(1− e−

λ
β
n

1+aλn
T )

λβn
, (2.6)
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where gn = (g(x), χn(x)) is the Fourier coefficient. So we get the exact solution of the problem from

(2.6)

F (x) =

∞∑
n=1

λβngn

1− e−
λ
β
n

1+aλn
T

χn(x). (2.7)

Lemma 2.1. If 0 < λ1 ≤ λ2 ≤ · · · ≤ λn ≤ · · · , then the following inequality holds:

C1

λβn
≤ 1

λβn
(1− e−

λ
β
n

1+aλn
T ), (2.8)

where C1 = 1− e−
λ
β
1

1+aλ1
T

.

Proof: Consider the following function

Φ(z) =
zβ

1 + az
, z > 0.

We take the derivative of the function Φ(z)

Φ′(z) =
βzβ−1 + azβ(β − 1)

(1 + az)2
, z > 0.

So the function Φ(z) is strictly monotonically increasing, so we have

λβ1
1 + aλ1

<
λβn

1 + aλn
, n > 1.

Therefore, we get

C1

λβn
≤ 1

λβn
(1− e−

λ
β
n

1+aλn
T ). (2.9)

Lemma 2.2. For any p > 0, µ > 0, T > 0, and 0 < λ1 6 s, the following inequality holds:

A(s) =
µs1− p

2

C1 + µs
6

{
C2µ

p
2 , 0 < p < 2,

C3µ, p > 2,
(2.10)

where C2 =
(
(2−p)C1

P
)1−

p
2

( 2−p
p

)C1+C1
, C3 = 1

C1λ
p
2
1

.

Proof: When 0 < p < 2, due to lims→0A(s) = 0 and lims→∞A(s) = 0, then we obtain

A(s) 6 sup
s>λ1

A(s) 6 A(s∗),
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where s∗ is the root of equation A
′
(s) = 0 and its value is s∗ = (2−p)C1

pµ .

Therefore

A(s) 6 A(s∗) =
µ( (2−p)C1

Pµ )1− p
2

(2−p
p )C1 + C1

=: C2µ
p
2 . (2.11)

When p > 2

A(s) =
µs1− p

2

µs+ C1
=

µ

(µs+ C1)s
p
2
−1

6
µ

C1λ
1− p

2
1

=: C3µ. (2.12)

Lemma 2.3. For any p > 0, µ > 0, T > 0, and 0 < λ1 6 s, the following inequality holds:

B(s) =
µs1− 2−p

4

C1 + µs
6

{
C4µ

p
2 , 0 < p < 2,

C5µ, p > 2,
(2.13)

where C4 :=

(
(2−p)C1
p+2

) 2−p
4

C1+
(2−p)C1
p+2

, C5 :=
λ
p−2
4

1
C1

.

Proof: When 0 < p < 2, due to lims→0B(s) = 0 and lims→∞B(s) = 0, then we obtain

B(s) 6 sup
s>λ1

B(s) 6 B(s∗),

where s∗ is the root of equation B
′
(s) = 0 and its value is s∗ = (2−p)C1

(p+2)µ . Therefore

B(s) 6 B(s∗) =

(
(2−p)C1

p+2

) 2−p
4
µ

2+p
4

C1 + (2−p)C1

p+2

=: C4µ
2+p
4 . (2.14)

When p > 2,

B(s) =
µs

2−p
4

C1 + µs
6

µ

C1s
p−2
4

6
λ

2−p
4

1 µ

C1
=: C5µ. (2.15)

Define operator K : f(·)→ g(·), then problem (1.1) can be transformed into the following operator

equation: Kf(x) = g(x), x ∈ Ω, where K satisfies Kf(x) = g(x) =
∑∞

n=1 λ
−β
n (1− e−

λ
β
n

1+aλn
T )Fnχn(x).

Obviously, K is a linear self adjoint operator, and its singular values are: σn = λ−βn (1 − e−
λ
β
n

1+aλn
T ).

Due to gn = Fn · λ−βn (1− e−
λ
β
n

1+aλn
T ), thus Fn = σ−1

n · gn. Therefore, we have

F (x) =

∞∑
n=1

λβngn

1− e−
λ
β
n

1+aλn
T

χn(x). (2.16)
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From(2.16), we can infer that F (x) → ∞, when n → ∞. Therefore this problem is ill-posed. In

order to discuss the error convergence, the conditional stability of the exact solution f(x) is given.

Here we assume that f(x) satisfies the following priori bound conditions:

‖F (·)‖Hp(Ω) =
( ∞∑
n=1

λβpn |(F, χn)|2
) 1

2
6 E, (2.17)

where E and p are both positive constants.

Theorem 2.1. If f(x) satisfies the priori bound condition ‖f(·)‖Hp(Ω) 6 E, then we obtain

‖F (·)‖ 6 C
1
p+2

4 E
2
p+2 ‖g(·)‖

p
p+2 , p > 0, (2.18)

where C4 = 1
Cp1

.

Proof: According to the formula (2.7), Lemma 2.1, and the Hölder inequality, we have

‖F (·)‖2 = ‖
∞∑
n=1

λβngnχn(x)

(1− e−
λ
β
n

1+aλn
T )

‖2

=

∞∑
n=1

λ2β
n g2

n

(1− e−
λ
β
n

1+aλn
T )2

=

∞∑
n=1

λ2β
n g

2p+4
p+2
n

(1− e−
λ
β
n

1+aλn
T )2

≤ (
∞∑
n=1

(
g

4
p+2
n

(λ−βn (1− e−
λ
β
n

1+aλn
T ))2

)
p+2
2 )

2
p+2 · (

∞∑
n=1

(g
2p
p+2
n )

p+2
p )

p
p+2

= (
∞∑
n=1

g2
n

(λ−βn (1− e−
λ
β
n

1+aλn
T ))p+2

)
2
p+2 (

∞∑
n=1

g2
n)

p
p+2

= (
∞∑
n=1

g2
n

(λ−βn (1− e−
λ
β
n

1+aλn
T ))2

· 1

(λ−βn (1− e−
λ
β
n

1+aλn
T ))p

)
2
p+2 · ‖g(·)‖

p
p+2

L2

= (

∞∑
n=1

F 2
nλ

βp
n ·

1

(1− e−
λ
β
n

1+aλn
T )p

)
2
p+2 · ‖g(·)‖

p
p+2

L2

≤ (

∞∑
n=1

F 2
nλ

βp
n ·

1

(1− e−
λ
β
1

1+aλ1
T

)p

)
2
p+2 · ‖g(·)‖

p
p+2

L2

≤ C
2
p+2

4 E
4
p+2 ‖g(·)‖

2p
p+2

L2 ,

(2.19)
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where C4 = 1
Cp1

. Then we have

‖F (·)‖ ≤ C
2
p+2

4 E
2
p+2 ‖g(·)‖

2p
p+2

L2 .

Therefore, we complete the proof of Theorem 2.1. 2

3 Quasi-boundary regularization method and its conver-

gence estimation

In this section, we will use the Quasi-boundary regularization method to obtain the regularized so-

lution of the problem (1.1). At the same time, we give the Hölder type error estimates between the

exact solution and the regularization solution of the problem. The main idea of the Quasi-boundary

regularization method is to add a penalty to the final data of the original problem to obtain an ap-

proximate solution to the original problem (1.1), i.e., uδµ(x, T ) + µF δµ(x) = gδ(x) is used to instead of

u(x, T ) = g(x) to get the regularization solution of the problem (1.1), that is, to solve the following

equation

∂αuδµ(x,t)

∂t − a∆
∂uδµ(x,t)

∂t + (−∆)βuδµ(x, t) = F δµ(x), x ∈ Ω, t ∈ (0, T ],

uδµ(x, t) = 0, x ∈ ∂Ω, t ∈ (0, T ],

uδµ(x, 0) = 0, x ∈ Ω,

uδµ(x, T ) + µF δµ(x) = g(x), x ∈ Ω,

(3.1)

where µ > 0 is the regularization parameter. Similarly, the separation of variables method and the

Laplace transform can be used to obtain solution uδµ(x, t) of formula (3.1)

uδµ(x, t) =
∞∑
n=1

(F δµ)n

λβn
(1− e−

λ
β
n

1+aλn
T )χn(x). (3.2)

According to uδµ(x, T ) + µF δµ(x) = g(x), we obtain uδµ(x, T ) =
∑∞

n=1

(
gδn(x) − µ(F δµ(x))n

)
χn(x),

uδµ(x, T ) =
∑∞

n=1

(
gδn(x) − µ(F δµ(x))n

)
χn(x) is derived from the (3.2) formula when t = T . So(

F δµ(x)
)
n
λ−βn (1− e−

λ
β
n

1+aλn
T ) = gδn(x)− µ(F δµ(x))n, thus

(
F δµ(x)

)
n

=
λβngδn(x)

(1− e−
λ
β
n

1+aλn
T ) + µλβn

. (3.3)

Thus, we get the Quasi-boundary regularization solution with error and regularization solutions with-

out error

F δµ(x) =

∞∑
n=1

λβngδn

(1− e−
λ
β
n

1+aλn
T ) + µλβn

χn(x), (3.4)
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Fµ(x) =
∞∑
n=1

λβngn

(1− e−
λ
β
n

1+aλn
T ) + µλβn

χn(x). (3.5)

To recovery the source item F (x), we need to solve the following integral equation:

(KF )(x) :=

∫
Ω
k(x, ξ)F (ξ)dξ = g(x),

where the kernel function is:

k(x, ξ) =

∞∑
n=1

λ−βn (1− e−
λ
β
n

1+aλn
T )χn(x)χn(ξ).

Next, we will give the convergent estimates between the exact and regularization solutions under

the a priori regularization parameter and a posteriori regularization parameter.

3.1 The convergent error estimate with an a priori parameter choice

rule

Theorem 3.1. Assuming a priori bound (2.17) and a noise assumption (1.3) hold, then there are

(1)If 0 < p < 2 and the regularization parameter µ = ( δE )
2
p+2 is selected, then there is

‖F δµ(·)− F (·)‖ 6 (1 + C2)E
2
p+2 δ

p
p+2 ; (3.6)

(2)If p > 2 and the regularization parameter µ = ( δE )
1
2 is selected, then there is

‖F δµ(·)− F (·)‖ 6 (1 + C3)E
1
2 δ

1
2 . (3.7)

Proof: By means of a triangular inequality, we have

‖F δµ(·)− F (·)‖ 6 ‖F δµ(·)− Fµ(·)‖+ ‖Fµ(·)− F (·)‖. (3.8)

Let us first give an estimate of the first term. Through (3.4), (3.5), (1.3) and Lemma 2.1, we

obtain

‖F δµ(·)− Fµ(·)‖2 =
∥∥∥ ∞∑
n=1

λβn(gδn − gn)

(1− e−
λ
β
n

1+aλn
T ) + µλβn

χn(x)
∥∥∥2

=

∞∑
n=1

( λβn(gδn − gn)

(1− e−
λ
β
n

1+aλn
T ) + µλβn

)2

6 (
δ

µ
)2.
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Then

‖F δµ(·)− Fµ(·)‖ 6 δ

µ
. (3.9)

Now let us estimate the second term of equation (3.8). Using (2.13), (2.17), (3.5) and Lemma 2.2,

we can deduce

‖Fµ(·)− F (·)‖2 =
∥∥∥ ∞∑
n=1

λβngn

(1− e−
λ
β
n

1+aλn
T ) + µλβn

χn(x)−
∞∑
n=1

λβngn

(1− e−
λ
β
n

1+aλn
T )

χn(x)
∥∥∥2

=
∥∥∥ ∞∑
n=1

( λβngn

(1− e−
λ
β
n

1+aλn
T ) + µλβn

− λβngn

(1− e−
λ
β
n

1+aλn
T )

)
χn(x)

∥∥∥2

=
∥∥∥ ∞∑
n=1

gnλ
−β
n (1− e−

λ
β
n

1+aλn
T )− gn(λ−βn (1− e−

λ
β
n

1+aλn
T ) + µ)

(λ−βn (1− e−
λ
β
n

1+aλn
T ) + µ)λ−βn (1− e−

λ
β
n

1+aλn
T )

χn(x)
∥∥∥2

=
∥∥∥ ∞∑
n=1

gn

λ−βn (1− e−
λ
β
n

1+aλn
T ) + µ

· −µ

λ−βn (1− e−
λ
β
n

1+aλn
T )

χn(x)
∥∥∥2

=
∥∥∥ ∞∑
n=1

gn

λ−βn (1− e−
λ
β
n

1+aλn
T )

· −µ

λ−βn (1− e−
λ
β
n

1+aλn
T ) + µ

χn(x)
∥∥∥2

=

∞∑
n=1

( gn

λ−βn (1− e−
λ
β
n

1+aλn
T )

)2( µ

λ−βn (1− e−
λ
β
n

1+aλn
T ) + µ

)2

=

∞∑
n=1

( gn

λ−βn (1− e−
λ
β
n

1+aλn
T )

)2
λβpn

( µ

λ−βn (1− e−
λ
β
n

1+aλn
T ) + µ

)2
λ−βpn

6
∞∑
n=1

( gn

λ−βn (1− e−
λ
β
n

1+aλn
T )

)2
λβpn

( µλβ(1− p
2

)
n

C1 + µλβn

)2

6 E2
(

sup
n>1

A(n)
)2
,

where

A(n) =
µλ

β(1− p
2

)
n

C1 + µλβn
.

Applying Lemma 2.2, we obtain

A(n) =
µλ

1− p
2

n

µλn + C1
=

µs1− p
2

µs+ C1
6

{
C2µ

p
2 , 0 < p < 2,

C3µ, p > 2.
(3.10)
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Therefore, we have

‖Fµ(·)− F (·)‖ 6

{
C2Eµ

p
2 , 0 < p < 2,

C3Eµ, p > 2.
(3.11)

Combining (3.9) with (3.11), we obtain

‖F δµ(·)− F (·)‖ 6 δ

µ
+

{
C2Eµ

p
2 , 0 < p < 2,

C3Eµ, p > 2.
(3.12)

By choosing the regularization parameters µ = ( δE )
2
p+2 (0 < p < 2) and µ = ( δE )

1
2 (p > 2), we have the

following results.

‖F δµ(·)− F (·)‖ 6

{
(1 + C2)E

2
p+2 δ

p
p+2 , 0 < p < 2,

(1 + C3)E
1
2 δ

1
2 , p > 2.

(3.13)

The proof of Theorem 3.1 is completed. 2

3.2 The convergent error estimate with an a posteriori parameter

choice rule

In this section, discrepancy principle is used to select a posteriori regularization parameter µ. The

posteriori regularization parameter satisfies the following equation:

‖µ(K + µ)−1(KF δµ(·)− gδ(·))‖ = τδ. (3.14)

Lemma 3.1. Let ρ(µ) := ‖µ(K + µ)−1(KF δµ(·)− gδ(·))‖. If ‖gδ‖ > τδ > 0, we obtain

a) ρ(µ) is a continuous function;

b) limµ→0 ρ(µ) = 0;

c) limµ→+∞ ρ(µ) = ‖gδ(·)‖;
d) ρ(µ) is a strictly monotone increasing function for any µ ∈ (0,+∞).

Proof: The proof of this Lemma is obtained by the expression of

ρ(µ) = (

∞∑
n=1

(
µλβn

(1− e−
λ
β
n

1+aλn
T ) + µλβn

)4(gδn)2)
1
2 .

The following lemmas will be used in the proof of a posteriori convergent estimate.

Theorem 3.2. If expressions (1.3) and (2.17) hold and µ satisfies the regularization parameter selec-

tion rule, then

(1)If 0 < p < 2, then the following convergent estimate is obtained

‖F δµ(·)− F (·)‖ 6 (C6(τ + 1)
p
p+2 + (

(C4)2

τ − 1
)

2
p+2 )E

2
p+2 δ

p
p+2 ; (3.15)
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(2)If p > 2, then the following convergent estimate is obtained

‖F δµ(·)− F (·)‖ 6 (C6(τ + 1)
1
2 + (

(C5)2

τ − 1
)
1
2E

1
2 δ

1
2 , (3.16)

where C6 = 1
C1

.

Proof: By means of a triangular inequality, we have

‖F δµ(·)− F (·)‖ 6 ‖F δµ(·)− Fµ(·)‖+ ‖Fµ(·)− F (·)‖. (3.17)

Let us start by proving the first term of the theorem, which applies (3.9)

‖F δµ(·)− Fµ(·)‖ 6 δ

µ
. (3.18)

Using formulas (3.14) and formulas (1.3), we have

τδ =
∥∥∥ ∞∑
n=1

(
µλβn

(1− e−
λ
β
n

1+aλn
T ) + µλβn

)2gδnχn(x)
∥∥∥

6
∥∥∥ ∞∑
n=1

(
µλβn

(1− e−
λ
β
n

1+aλn
T ) + µλβn

)2(gδn − gn)χn(x)
∥∥∥+

∥∥∥ ∞∑
n=1

(
µλβn

(1− e−
λ
β
n

1+aλn
T ) + µλβn

)2gnχn(x)
∥∥∥

6 δ + J.

A priori boundary condition (2.17) can be used to obtain

J =
∥∥∥ ∞∑
n=1

(
µλβn

(1− e−
λ
β
n

1+aλn
T ) + µλβn

)2gnχn(x)
∥∥∥

=
∥∥∥ ∞∑
n=1

(
µλβn

(1− e−
λ
β
n

1+aλn
T ) + µλβn

)2(
(1− e−

λ
β
n

1+aλn
T )

λβn
)

1

λ
βp
2
n

λβngn

(1− e−
λ
β
n

1+aλn
T )

λ
βp
2
n χn(x)

∥∥∥
6 E sup

n>1
(B(n))2,

where B(n) = µλβn

(1−e−
λ
β
n

1+aλn
T

)+λβn

·
(

(1−e−
λ
β
n

1+aλn
T

)

λβn

) 1
2 · 1

λ
βp
4
n

.

Applying Lemma 2.1, we have

B(n) =
µλβn

(1− e−
λ
β
n

1+aλn
T ) + λβn

·
((1− e−

λ
β
n

1+aλn
T )

λβn

) 1
2 · 1

λ
βp
4
n

6
µλβn

C1 + µλβn
· ( 1

λβn
)
1
2 · 1

λ
βp
4
n

=
µ

µλβn + C1

λ
β( 2−p

4
)

n .

11



Applying Lemma 2.3, we have

B(n) 6

{
C4µ

p+2
4 , 0 < p < 2,

C5µ, p > 2.
(3.19)

So

(τ − 1)δ 6

{
(C4)2Eµ

p+2
2 , 0 < p < 2,

(C5)2Eµ2, p > 2.
(3.20)

Therefore,

1

µ
6

{
( (C4)2

τ−1 )
2
p+2E

2
p+2 δ

−2
p+2 , 0 < p < 2,

( (C5)2

τ−1 )
1
2E

1
2 δ−

1
2 , p > 2.

(3.21)

Substitute (3.21) to (3.18), we have

‖F δµ(·)− Fµ(·)‖ 6 δ

µ
6

{
( (C4)2

τ−1 )
2
p+2E

2
p+2 δ

p
p+2 , 0 < p < 2,

( (C5)2

τ−1 )
1
2E

1
2 δ

1
2 , p > 2.

(3.22)

Now let us estimate the second term of formula (3.17), from (3.5), Lemma 2.1, Lemma 2.3 and the

priori boundary condition of F (x), we obtain

‖Fµ(·)− F (·)‖ =‖
∞∑
n=1

−µFnλβn

(1− e−
λ
β
n

1+aλn
T ) + µλβn

χn(x)‖

=‖
∞∑
n=1

(
µ(1− e−

λ
β
n

1+aλn
T )

(1− e−
λ
β
n

1+aλn
T ) + µλβn

)
p
2 (

µλβn

(1− e−
λ
β
n

1+aλn
T ) + µλβn

)1− p
2

· λ
βp
2
n Fn

(1− e−
λ
β
n

1+aλn
T )

p
2

χn(x)‖

≤‖
∞∑
n=1

(
µλβn

(1− e−
λ
β
n

1+aλn
T ) + µλβn

)2(
(1− e−

λ
β
n

1+aλn
T )

λβn
)Fnχn(x)‖

p
p+2

· ‖
∞∑
n=1

λ
βp
2
n Fn

(1− e−
λ
β
n

1+aλn
T )

p
2

χn(x)‖
2
p+2

12



≤‖( µλβn

(1− e−
λ
β
n

1+aλn
T ) + µλβn

)2gnχnχ(x)‖
p
p+2 ‖

∞∑
n=1

λ
βp
2
n Fnχn(x)‖

2
p+2C

−p
p+2

1

≤(‖
∞∑
n=1

(
µλβn

(1− e−
λ
β
n

1+aλn
T ) + µλβn

)2(gn − gδn)χn(x)‖

+ ‖
∞∑
n=1

(
µλβn

(1− e−
λ
β
n

1+aλn
T ) + µλβn

)2gδnχn(x)‖)
p
p+2E

2
p+2C

−p
p+2

1

≤(
τ + 1

C1
)

p
p+2E

2
p+2 δ

p
p+2 .

Therefore, we have

‖Fµ(·)− F (·)‖ 6 (
1

C1
)

p
p+2 (τ + 1)

p
p+2E

2
p+2 δ

p
p+2 . (3.23)

Combining (3.17), (3.22) and (3.23) formulas, we obtain

‖F δµ(·)− F (·)‖ 6 C6(τ + 1)
p
p+2E

2
p+2 δ

p
p+2 +

{
( (C4)2

τ−1 )
2
p+2E

2
p+2 δ

2
p+2 , 0 < p < 2,

( (C5)2

τ−1 )
1
2E

1
2 δ

1
2 , p > 2.

(3.24)

where C6 = 1
C1

, the proof of Theorem 3.2 is completed. 2

In the Quasi-boundary regularization method, we can find the saturation effect by using the formula

(3.7) and (3.16), so in the next section, we use the fractional Landweber iterative regularization method

and Landweber iterative regularization method to effectively avoid this problem.

4 Fractional Landweber iteration regularization method,

Landweber iteration regularization method and their

convergent estimations

In this section, we first give the regularization solution of the problem, then give the rules for selecting

the priori regularization parameters and the posteriori regularization parameters, and discuss the

Hölder type error estimation rules for exact solutions and regularization solutions under these rules.

To identify the source term F (x), we need to solve the following integral equation:

(KF )(x) :=

∫
Ω
k(x, ξ)F (ξ)dξ = g(x), (4.1)

where the kernel function is:

k(x, ξ) =

∞∑
n=1

λ−βn (1− e−
λ
β
n

1+aλn
T )χn(x)χn(ξ).

13



Because k(x, ξ) = k(ξ, x), so K is a self-adjoint operator. According to Theorem 2.4 in Ref. [23], if

F ∈ L2(Ω), then g ∈ H2(Ω). It is easy to know that K : L2(Ω) −→ L2(Ω) is a compact operator.

Since χn(x) is a set of orthonormal bases in L2(Ω), it is easy to know

σn = λ−βn (1− e−
λ
β
n

1+aλn
T ), n = 1, 2, · · · (4.2)

is the singular value of compact operator K. Next, we use the fractional Landweber iterative regular-

ization method to obtain the regularized solution of the problem (1.1), which is denoted as Fm,δ(x).

Replacing KF = g with F = (I − a(K∗K)
γ+1
2 )f + a(K∗K)

γ−1
2 K∗g has the following iteration format:

F 0,δ(x) = 0, Fm,δ(x) = (I−a(K∗K)
γ+1
2 )Fm−1,δ(x)+a(K∗K)

γ−1
2 K∗gδ(x), m = 1, 2, 3, · · · , (4.3)

where I is a unit operator, m is the iterative step number and is also selected as the regularization

parameter, a is called the relaxation factor and satisfies 0 < a < 1
‖K‖2 . Since K is a self-adjoint

operator, we denote operator Rm : L2(Ω)→ L2(Ω) as follows

Rm = a
m−1∑
n=0

(I − a(K∗K)
γ+1
2 )n(K∗K)

γ−1
2 K∗, 0 < γ 6 1, m = 1, 2, 3, · · · .

Remark: When γ = 1, Rm is defined as follows:

Rm = a
m−1∑
n=0

(I − a(K∗K))nK∗, m = 1, 2, 3, · · · . (4.4)

As can be seen from the literature [23], formula (4.4) is a Landweber iteration regularization operator,

which is recorded as

Rm1 = a

m1−1∑
n=0

(I − a(K∗K))nK∗, m1 = 1, 2, 3, · · · . (4.5)

Through calculating, we get

Fm,δ(x) = Rmgδn = a

m−1∑
n=0

(I − a(K∗K)
γ+1
2 )n(K∗K)

γ−1
2 K∗gδn(x). (4.6)

Using (4.3) and the singular value σn of operator K, we get the fractional Landweber iteration regu-

larization solution

Fm,δ(x) =

∞∑
n=1

1− (1− a(λ−βn (1− e−
λ
β
n

1+aλn
T ))γ+1)m

λ−βn (1− e−
λ
β
n

1+aλn
T )

gδnχn(x), (4.7)

where gδn = (gδ(x), χn(x)). Because σn = λ−βn (1− e−
λ
β
n

1+aλn
T ) is the singular value of operator K and

0 < a < 1
‖K‖γ+1 , we can get 0 < a(λ−βn (1− e−

λ
β
n

1+aλn
T ))γ+1 < 1.
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4.1 The convergent error estimate with an a priori parameter choice

rule

Theorem 4.1 Suppose (1.3) and (2.17) hold. The exact solution of problem (1.1) is formula (2.7) and

the corresponding fractional Landweber regularization solution is given by (4.7). The regularization

parameter is chosen by m = [b], where b =
(
E
δ

) 2(γ+1)
p+2

. Then we obtain the following convergent error

estimate:

‖Fm,δ(·)− F (·)‖ 6 C7E
2
p+2 δ

p
p+2 , (4.8)

where [b] denotes the largest integer less than or equal to b and C7 := 1
aγ+1 + C6 is positive constant.

Proof: By applying the triangular inequality, we can get

‖Fm,δ(·)− F (·)‖ 6 ‖Fm,δ(·)− Fm(·)‖+ ‖Fm(·)− F (·)‖. (4.9)

For the first part on the right side of equation (4.9), using equation (1.3) and Bernoulli inequality, we

have

‖Fm,δ(·)− Fm(·)‖2 =
∥∥∥ ∞∑
n=1

1− (1− a(λ−βn (1− e−
λ
β
n

1+aλn
T ))γ+1)m

λ−βn (1− e−
λ
β
n

1+aλn
T )

gδnχn(x)

−
∞∑
n=1

1− (1− a(λ−βn (1− e−
λ
β
n

1+aλn
T ))γ+1)m

λ−βn (1− e−
λ
β
n

1+aλn
T )

gnχn(x)
∥∥∥2

=
∥∥∥ ∞∑
n=1

1− (1− a(λ−βn (1− e−
λ
β
n

1+aλn
T ))γ+1)m

λ−βn (1− e−
λ
β
n

1+aλn
T )

(gδn − gn)χn(x)
∥∥∥2

=
∞∑
n=1

(1− (1− a(λ−βn (1− e−
λ
β
n

1+aλn
T ))γ+1)m)2

(λ−βn (1− e−
λ
β
n

1+aλn
T ))2

(gδn − gn)2

=

∞∑
n=1

(1− (1− a(λ−βn (1− e−
λ
β
n

1+aλn
T ))γ+1)m)

2
γ+1

(γ+1)

(λ−βn (1− e−
λ
β
n

1+aλn
T ))

2
γ+1

(γ+1)

(gδn − gn)2

<

∞∑
n=1

(1− (1− a(λ−βn (1− e−
λ
β
n

1+aλn
T ))γ+1)m)

2
γ+1

(λ−βn (1− e−
λ
β
n

1+aλn
T ))

2
γ+1

(γ+1)

(gδn − gn)2

6
∞∑
n=1

(am(λ−βn (1− e−
λ
β
n

1+aλn
T ))γ+1)

2
γ+1

(λ−βn (1− e−
λ
β
n

1+aλn
T ))

(γ+1) 2
γ+1

(gδn − gn)2
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=a
2

γ+1m
2

γ+1

∞∑
n=1

(gδn − gn)2

6a
2

γ+1m
2

γ+1 δ2.

So, we obtain

‖Fm,δ(·)− Fm(·)‖ 6 a
1

γ+1m
1

γ+1 δ. (4.10)

On the other hand, using (2.17), we obtain

‖Fm(·)− F (·)‖2 = ‖
∞∑
n=1

1− (1− a(λ−βn (1− e−
λ
β
n

1+aλn
T ))γ+1)m

λ−βn (1− e−
λ
β
n

1+aλn
T )

gnχn(x)− 1

λ−βn (1− e−
λ
β
n

1+aλn
T )

gnχn(x)‖2

= ‖
∞∑
n=1

[1− (1− a(λ−βn (1− e−
λ
β
n

1+aλn
T ))γ+1)m]− 1

λ−βn (1− e−
λ
β
n

1+aλn
T )

gnχn(x)‖2

= ‖
∞∑
n=1

−(1− a(λ−βn (1− e−
λ
β
n

1+aλn
T ))γ+1)m

λ−βn (1− e−
λ
β
n

1+aλn
T )

gnχn(x)‖2

=
∞∑
n=1

(1− a(λ−βn (1− e−
λ
β
n

1+aλn
T ))γ+1)2m

(λ−βn (1− e−
λ
β
n

1+aλn
T ))2

g2
n

=

∞∑
n=1

(1− a(λ−βn (1− e−
λ
β
n

1+aλn
T ))γ+1)2mF 2

n(λn)−βp(λn)βp

≤
∞∑
n=1

((1− a(1−e−
λn

λn+aλn
T

λβn
))γ+1)2m

λβpn

)
· F 2

nλ
βp
n

≤ sup
n>N

(D(λn))2 ·
∞∑
n=1

F 2
nλ

βp
n

≤ sup
n>N

(D(λn))2E2,

where C7 = 1− e−
T

1+a , D(λn) :=
(1−a(

C7

λ
β
n

))γ+1)m

λ
βp
2
n

.

Let G(s) :=
(1−a(

C7
s

))γ+1)m

s
p
2

, s := λβn.

Suppose s0 satisfies G
′
(s0) = 0, we have

s0 = (
p

aC1+γ
7 (p+ 2m(1 + γ))

)
− 1

1+γ .
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Then

G(s) 6 G(s0) =
(1− a(C7

s0
)γ+1)m

s
p
2
0

6 s
− p

2
0

= (
p

aC1+γ
7 (p+ 2m(1 + γ))

)
p

2(1+γ)

= (
p

aC1+γ
7

)
p

2(1+γ) · ( 1

p+ 2mγ + 2m
)

p
2(1+γ)

6 C8 · (
1

γ +m
)

p
2(1+γ) ,

where C8 = ( p

aC1+γ
7

)
p

2(1+γ) .

Therefore, we have

‖Fm(·)− F (·)‖ 6 D(λn)E 6 G(S)E 6 C8(
1

γ +m
)

p
2(1+γ)E. (4.11)

Combining (4.10), (4.11) and (4.12), if the regularization parameter m = [
(
E
δ

) 2(1+γ)
p+2

] is selected, then

‖Fm,δ(·)− F (·)‖ 6 a
1

γ+1E
2
p+2 δ

p
p+2 + C8E

2
p+2 δ

p
p+2 = C9E

2
p+2 δ

p
p+2 , (4.12)

where C9 = a
1

γ+1 + C8.

The proof of Theorem 4.1 is completed. 2

4.2 The convergent error estimate with an a posteriori parameter

choice rule

In this section, we give the posteriori error estimation and the selection criteria of posteriori regular-

ization parameters should be satisfied:

‖KFm,δ(·)− gδ(·)‖ 6 τδ, (4.13)

when m = m(δ) first appears, the iteration stops, where ‖gδ‖ > τδ.

Lemma 4.1. Let ρ(m) = ‖KFm,δ(·)− gδ(·)‖, then we have the following conclusions

a) ρ(m) is a continuous function;

b) limm→0 ρ(m) = 0;

c) limm→+∞ ρ(m) = ‖gδ‖;
d) ρ(m) is a strictly increasing function for any m ∈ (0,+∞).

Proof: The proof of this lemma is obtained by the following expression:

ρ(m) =
( ∞∑
n=1

(1− a(
1− e−

λ
β
n

1+aλn
T

λβn
)γ+1)2m(gδn)2

) 1
2
.
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Remark 4.1. According to the Lemma 4.1, the uniqueness of m is selected by the method of formula

(4.13).

Lemma 4.2. Assume the priori condition (2.17) and the noise assumption (1.3) hold. For fixed τ > 1,

if we choose the regularization parameter by using Morozov’s discrepancy principle (4.13), then the

regularization parameter m = m(δ) satisfies

m 6 (
1

τ − 1
)
2(γ+1)
p+2

p+ 2

2aγCγ+1
1

(
E

δ
)
2(γ+1)
p+2 . (4.14)

Proof: Due to (4.7), we obtain

Rmg =
∞∑
n=1

1−
(

1− a
(

1−e−
λ
β
n

1+aλn
T

λβn

)γ+1)m
1−e−

λ
β
n

1+aλn
T

λβn

gnχn(x) (4.15)

and

‖KRmg − g‖2 =
∞∑
n=1

(1− a(
1− e−

λ
β
n

1+aλn
T

λβn
)γ+1)2mg2

n. (4.16)

Due to |1− a( λβn

1−e−
λ
β
n

1+aλn
T

)γ+1| < 1, we obtain ‖KRm−1 − I‖ 6 1. On the one hand, it is not difficult

to find that m is the minimum satisfying ‖KRmgδ − gδ‖ = ‖Kfm,δ − gδ‖ 6 τδ. Therefore,

‖KRm−1g − g‖ = ‖KRm−1g −KRm−1g
δ +KRm−1g

δ − gδ + gδ − g‖
> ‖KRm−1g

δ − gδ‖ − ‖(KRm−1 − I)(gδ − g)‖
> τδ − ‖KRm−1 − I‖δ
> τδ − δ = (τ − 1)δ.

(4.17)

On the other hand, by using (2.17) formula, we obtain

‖KRm−1g − g‖2 = ‖
∞∑
n=1

(
1−

(
1− a

(1− e−
λ
β
n

1+aλn
T

λβn

)γ+1)m−1)
gnχn(x)−

∞∑
n=1

gnχn(x)‖2

= ‖
∞∑
n=1

(
1− a

(1− e−
λ
β
n

1+aλn
T

λβn

))γ+1)m−1)
gnχn(x)‖2

=

∞∑
n=1

((
1− a

(1− e−
λ
β
n

1+aλn
T

λβn

)γ+1)m−1)2(1− e−
λ
β
n

1+aλn
T

λβn

)2
F 2
nλ

βp
n λ
−βp
n

6 sup
n>1

H2(λn)E2,
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where H(λn) =
(

1− a
(

1−e−
λ
β
n

1+aλn
T

λβn

)γ+1)m−1)(
1−e−

λ
β
n

1+aλn
T

λβn

)
λ
−βp
2

n .

From Lemma 2.1, we can obtain

H(λn) 6
(

1− a
(C1

λβn

)γ+1)m−1
λ
−β( p

2
+1)

n .

Set L(s) :=
(

1− a
(
C1s

)γ+1)m−1
s( p

2
+1), s := λ−βn .

Suppose s0 satisfies L
′
(s0) = 0, we obtain

s0 =
( p+ 2

(2(m− 1)(γ + 1) + p+ 2)aCγ+1
1

) 1
γ+1

.

Then we have

L(s) 6L(s0)

=
(

1− a
(
C1

( p+ 2

(2(m− 1)(γ + 1) + p+ 2)aCγ+1
1

) 1
γ+1
)γ+1)m−1

·
(( p+ 2

(2(m− 1)(γ + 1) + p+ 2)aCγ+1
1

) 1
γ+1
)( p

2
+1)

≤
(( p+ 2

(2(m− 1)(γ + 1) + p+ 2)aCγ+1
1

) 1
γ+1
)( p

2
+1)

≤(
p+ 2

2amγ(C1)γ+1
)

p+2
2(γ+1) .

That is

(τ − 1)δ 6 (
p+ 2

2aγ(C1)γ+1
)

p+2
2(γ+1)m

− p+2
2(γ+1)E. (4.18)

From the formula (4.18), we can get

m 6 (
1

τ − 1
)
2(γ+1)
p+2

p+ 2

2aγ(C1)γ+1
(
E

δ
)
2(γ+1)
p+2 .

The proof of Lemma 4.2 is completed. 2

Theorem 4.2 The exact solution of the problem (1.1) is given by (2.4), the fractional Landweber

iterative regularization solution Fm,δ(x) is given by (4.7). The regularization parameter m = m(δ) is

obtained by the iteration stop criterion (4.13), then we obtain

‖Fm,δ(·)− F (·)‖ 6 C10E
2
p+2 δ

p
p+2 , (4.19)

where C10 := (( 1
τ−1)

2(γ+1)
p+2 p+2

2γ(C1)γ+1 )
1

γ+1 + (C1)
−p
p+2 (τ + 1)

p
p+2 is positive constant.

Proof: Using the triangle inequality, we have

‖Fm,δ(·)− F (·)‖ 6 ‖Fm,δ(·)− Fm(·)‖+ ‖Fm(·)− F (·)‖. (4.20)
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From Lemma 4.2 and (4.10), we have

‖Fm,δ(·)− Fm(·)‖

6 a
1

γ+1m
1

γ+1 δ

6 a
1

γ+1 ((
1

τ − 1
)
2(γ+1)
p+2

p+ 2

2aγ(C1)γ+1
)

1
γ+1E

2
p+2 δ

p
p+2 .

(4.21)

For (4.20) the second term on the right side has

K(Fm(·)− F (·))

=
∞∑
n=1

−(1− a(
1− e−

λ
β
n

1+aλn
T

λβn
)γ+1)mgnχn(x)

=
∞∑
n=1

−(1− a(
1− e−

λ
β
n

1+aλn
T

λβn
)γ+1)m(gn − gδn)χn(x) +

∞∑
n=1

−(1− a(
1− e−

λ
β
n

1+aλn
T

λβn
)γ+1)mgδnχn(x).

(4.22)

According to (1.3) and (4.13), we can get

‖K(Fm(·)− F (·))‖ 6 (τ + 1)δ. (4.23)

Due to

‖Fm(·)− F (·)‖Hp(Ω) = (
∞∑
n=1

(1− a(
1− e−

λ
β
n

1+aλn
T

λβn
)γ+1)2m λ2β

n g2
n

(1− e−
λ
β
n

1+aλn
T )2

λβpn )
1
2

6 (
∞∑
n=1

λβpn
λ2β
n g2

n

(1− e−
λ
β
n

1+aλn
T )2

)
1
2

= (
∞∑
n=1

λβpn F
2
n)

1
2

6 E.

Using Theorem 2.1, we obtain

‖Fm(·)− F (·)‖ 6 (C1)
−p
p+2 (τ + 1)

p
p+2E

2
p+2 δ

p
p+2 . (4.24)

Combining (4.20), (4.21) and (4.24), we obtain

‖Fm,δ(·)− F (·)‖ 6 C10E
2
p+2 δ

p
p+2 , (4.25)

where C10 := (( 1
τ−1)

2(γ+1)
p+2 p+2

2γ(C1)γ+1 )
1

γ+1 + (C1)
−p
p+2 (τ + 1)

p
p+2 .
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5 Numerical implementation

In this part, we use three numerical examples to prove the effectiveness and feasibility of Quasi-

boundary regularization method and fractional Landweber iterative regularization method. Let Ω =

(0, 1), T = 1, a = 0.5. First of all, we obtain the final data g(x) by solving the following forward

problem
ut(x, t)− a∆ut(x, t) + (−∆)βu(x, t) = F (x), x ∈ Ω, t ∈ (0, T ],

u(x, t) = 0, x ∈ ∂Ω, t ∈ (0, T ],

u(x, 0) = 0, x ∈ Ω,

(5.1)

with the given data F (x). We define

tz = zτ(z = 0, 1, . . . , N), xj = jh(j = 0, 1, · · · ,M), (5.2)

where τ = T
N is the step size of temporal direction and h = 1

M is the step size of spatial direction.

Next we will use the finite element difference method to carry out numerical experiments. First,

the forward Euler scheme for the ut is as follows:

∂uki
∂t

=
uk+1
i − uki
τ

.

The Laplace operator difference scheme of one-dimensional integer order is as follows

∆(uki )t =
uk+1
i+1 − 2uk+1

i + uk+1
i−1 − uki+1 + 2uki − uki−1

h2τ
.

The difference format of a one-dimensional fractional Laplace operator is as follows [28]

(−∆)sU = C1,2sBU,

where C1,s = 4sΓ(1/2+s)

π1/2|Γ(−s)| , B is a strictly diagonally dominant and symmetric positive definite matrix.

B , (h)M−1
i,p=1 , and

hi,p ,


− (Z1(i, p+ 1) + Z2(i, p)) 1

i−p , 1 ≤ p ≤ i− 2,

− h−2s

2−2s − Z2(i, i− 1), p = i− 1,

− h−2s

2−2s − Z3(i, i+ 2), p = i+ 1,

− (Z3(i, p+ 1) + Z4(i, p)) 1
p−i , i+ 2 ≤ p ≤M,

and hi,i satisfies

hi,i +
M∑

p=1,p 6=i
hi,p − Y1(i)− Y2(i) =


h−2s

2−2s + Z4(i,M+1)
M+1−i , i = 1,

Z1(i,1)
i + Z4(i,M+1)

M+1−i , 2 ≤ i ≤M − 1,
h−2s

2−2s + Z1(i,1)
i , i = M,
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where Z1(i, k) = 1
h2

∫ xk
xk−1

(xk − y) (xi − y)−2s dy, Z2(i, k) = 1
h2

∫ xk
xk−1

(y − xk) (xi− y)−2sdy, Z3(i, k) =
1
h2

∫ xk
xk−1

(xk − y) (y − xi)−2s dy, Z4(i, k) = 1
h2

∫ xk
xk−1

(y − xk−1) (y−xi)−2sdy and Y1(i) =
∫ 0
−∞

1
(xi−y)(1+2s)dy

,

Y2(i) =
∫∞

1
1

(y−xi)(1+2s)dy.

Through simple calculation, there are the following results

Z1(i, p+ 1) + Z2(i, p) = Z3(i, p+ 1) + Z4(i, p)

=

{
h−2s

(2s−1)(2−2s)

[
2|i− p|2−2s − (|i− p| − 1)2−2s − (|i− p|+ 1)2−2s

]
, s 6= 0.5,

1
h [−2|i− p| ln(|i− p|) + (|i− p|+ 1) ln(|i− p|+ 1) + (|i− p| − 1) ln(|i− j| − 1)], s = 0.5.

Z2(i, i− 1) = Z3(i, i+ 2) =

{
h−2s

(2s−1)(2−2s)

(
3− 2s− 22−2s

)
, s 6= 0.5,

1
h [2 ln 2− 1], s = 0.5.

Z1(i, 1) =


h−2s

(2s−1)(2−2s)

[
i2−2s − (i− 1)2−2s − (2− 2s)i1−2s

]
, s 6= 0.5,

1
h

[
(1− i) ln

(
i
i−1

)
+ 1
]
, s = 0.5.

Z4(i,M + 1)

=


h−2s

(2s−1)(2−2s)

[
(M + 1− i)2−2s − (M − i)2−2s − (2− 2s)(M + 1− i)1−2s

]
, s 6= 0.5,

1
h [(i−M)] ln

(
M+1−i
M−i

)
+ 1
]
, s = 0.5,

Y1(i) = (xi)
−2s

2s , Y2(i) = (1−xi)−2s

2s .

Arrange the above formulas to get the matrix B.

It is worth noting that the difference format of the fractional order Laplace operator is for the

difference format of order 0-1, but when studying the error estimation, the differential format can

converge to the (3 − 2β) order, so in the later numerical experiments, we give numerical simulation

results of order 1.1, 1.2, 1.3.

Therefore, we establish the difference format corresponding to the equation (5.1)

(A+ B)U i+1 = AU i + F,

where U i:= (ui1, u
i
2, u

i
3, · · ·, uiM+1),i = 0, 1, 2, · · ·M , F := (F (x1), F (x2), F (x3), · · ·, F (xM+1)),

A(M+1)×(M+1) =

 0

Â−1
(M−1)×(M−1)

0

 ,

B(M+1)×(M+1) =

 0

B(M−1)×(M−1)

0

 ,

in which

Â(M−1)×(M−1) =



1
τ + 2a

τh2
− a
τh2

− a
τh2

1
τ + 2a

τh2
− a
τh2

− a
τh2

1
τ + 2a

τh2
. . .

. . .
. . . − a

τh2

− a
τh2

1
τ + 2a

τh2

 ,
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By differentiating the function, we can get the numerical solution of the function through the following

iterative format,{
(A+ B)U i = AU i−1 + F, 2 ≤ i ≤ N,
(A+ B)U1 = F.

On the basis of the above iterative format, the numerical solution corresponding to the function and

the value of the g(x) function can be obtained by using Matlab software. For the inverse problem, when

applying the Quasi-boundary regularization method and fractional Landweber iterative regularization,

we need to obtain a matrix K that satisfies Kf = UN = gδ, i.e.,

K1 = (A+ B)−1,

Kn = (A+ B)−1(Kn−1 + I), n = 2, · · · , N,

K = KN ,

Finally, the Quasi-boundary regularization solution is obtained by the following formula:

F δµ(x) =
1

K + µ
gδ,

and the fractional Landweber iteration regularization solution is obtained by the following formula:

Fm,δ = a

m−1∑
n=1

(
I − a (K∗K)

γ+1
2

)n
(K∗K)

γ−1
2 K∗gδ.

By adding random perturbation to noise data g(x) , the data with errors are obtained,

gδ = g + ε · randn(size(g)),

where the function randn() produces a list of random numbers with a mean of 0 and a variance of 1.

The priori regularization parameter is based on the smooth conditions of the exact solution, which

is actually difficult to give in practical problem. The following examples demonstrate the validity of

the the Quasi-boundary regularization method and the fractional Landweber iteration regularization

method based on a posteriori regularization parameter selection rule.

For the selection of parameter µ, we have given it in (3.14) with τ = 1.01. For the parameter

selection corresponding to the fractional order Landweber iterative regularization method, we select

γ = 0.1, and the selection of the iteration step m is also given by formula (4.13). Select M = 100,

N = 50. We give the following three examples.

Example 1. Consider the piecewise smooth functions

F (x) =

{
4x, 0 6 x 6 1

2 ,

−4(x− 1), 1
2 < x 6 1.
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Figure 1. The comparison of the exact solution F (x) and its Quasi-boundary regularization method approximation solution Fm,δ(x) of Example 1

with β = 1.1(a), 1.2(b), 1.3(c) for ε = 0.01, 0.005, 0.001.
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Figure 2. The comparison of the exact solution F (x) and its Quasi-boundary regularization method approximation solution Fm,δ(x) of Example 2

with β = 1.1(a), 1.2(b), 1.3(c) for ε = 0.01, 0.005, 0.001.

Example 2. Consider a non-continuous function

F (x) =


0, 0 6 x 6 1

4 ,

1, 1
4 < x 6 1

2 ,

0, 1
2 < x 6 3

4 ,

−1, 3
4 < x 6 1.
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Figure 3. The comparison of the exact solution F (x) and its Quasi-boundary regularization method approximation solution Fm,δ(x) of Example 3

with β = 1.1, 1.2, 1.3 for ε = 0.01, 0.005, 0.001.
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Figure 4. The comparison of the exact solution F (x) and its fractional Landweber iterative regularization approximation solution Fm,δ(x) of

Example 1 with β = 1.1(a), 1.2(b), 1.3(c) for ε = 0.01, 0.005, 0.001.

Example 3. Consider the smooth function

F (x) = sin(3πx).
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Figure 5. The comparison of the exact solution F (x) and its fractional Landweber iterative regularization approximation solution Fm,δ(x) of

Example 2 with β = 1.1(a), 1.2(b), 1.3(c) for ε = 0.01, 0.005, 0.001.
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Figure 6. The comparison of the exact solution F (x) and its fractional Landweber iterative regularization approximation solution Fm,δ(x) of

Example 3 with β = 1.1(a), 1.2(b), 1.3(c) for ε = 0.1, 0.005, 0.001.

Figures 1 − 3 show the error between the exact solution F (x) and the Quasi-boundary regu-

larization approximation solution F δµ(x). Figure 1 shows the exact solution F (x) and the Quasi-

boundary regularization approximation solution F δµ(x) of Example 1 for the relative error levels

ε = 0.01, 0.005, 0.001 with various values β = 1.1, 1.2, 1.3. Figure 2 shows the exact solution F (x)

and the Quasi-boundary regularization approximation solution F δµ(x) of Example 2 for the relative

error levels ε = 0.01, 0.005, 0.001 with various values β = 1.1, 1.2, 1.3. Figure 3 shows the exact

solution F (x) and the Quasi-boundary regularization approximation solution F δµ(x) of Example 3

for the relative error levels ε = 0.01, 0.005, 0.001 with various values β = 1.1, 1.2, 1.3.

Figures 4 − 6 show the error between the exact solution F (x) and the Fractional Landweber

iterative regularization approximation solution Fm,δ(x). Figure 4 shows the exact solution F (x) and

fractional Landweber iterative regularization approximation solution Fm,δ(x) of Example 1 for the

relative error levels ε = 0.01, 0.005, 0.001 with various values β = 1.1, 1.2, 1.3. Figure 5 shows the ex-

act solution F (x) and the fractional Landweber iterative regularization approximation solution Fm,δ(x)

of Example 2 for the relative error levels ε = 0.01, 0.005, 0.001 with various values β = 1.1, 1.2, 1.3.

Figure 6 shows the exact solution F (x) and the fractional Landweber iterative regularization approx-

imation solution Fm,δ(x) of Example 3 for the relative error levels ε = 0.01, 0.005, 0.001 with various

values β = 1.1, 1.2, 1.3.
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From above six figures, we find that for the same example, the smaller ε and α, the better the

fitting effect between the exact solution f(x) and the regularization solutions. For different examples,

the fitting results of functions with better smoothness are better than those with worse smoothness.

With the same error, fractional Landweber iterative regularization fits better than Quasi-boundary

regularization method for non-smooth functions and piecewise functions, and Quasi-boundary regular-

ization method gets better fitting results than fractional Landweber iterative regularization for smooth

functions.

In addition, limited by the difference format of the fractional order Laplace operator, the smaller

the order of Laplace, the better the numerical fitting effect, and the author will look for a better

differential format of the fractional order Laplace operator in the next study.

6 Conclusion

The problem of inverting the source item of Sobolev equation with fractional Laplacian is studied.

The regularization solutions are obtained by Quasi-boundary regularization method and Fractional

Landweber iteration regularization method. Based on the conditional stability result, the correspond-

ing error estimates are obtained under the rules for selecting a priori regularization parameter and

a posteriori regularization parameter. Three numerical examples are given to demonstrate the ef-

fectiveness, stability and superiority of our proposed regularization method. Moreover, through the

error estimation of the two methods, we find that the Quasi-boundary regularization method has a

saturation effect, while the fractional Landweber iterative regularization method can avoid the sat-

uration effect. In terms of numerical simulation, the Quasi-boundary method can obtain numerical

results more quickly, but the corresponding results are poor, while the Landweber method needs to

be continuously iterated to obtain better simulation results, and the numerical results are better than

the boundary method.
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