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1 Introduction

It is widely recognized that magnetism can be divided into diamagnetism, paramagnetism, ferromagnetism,
antiferromagnetism, and ferrimagnetism. Notably, ferromagnetism is predominantly observed in metals
such as iron, cobalt, nickel, and various alloys containing these elements. This type of magnetism occurs
due to the spontaneous alignment of magnetic moments, resulting in a strong and persistent magnetic field.
This property makes these metals and alloys invaluable in various electromagnetic applications, such as mo-
tors and generators [1]. The most fundamental characteristic of ferromagnetic materials is the existence of
spontaneous magnetization. The theory of spontaneous magnetization reveals the nature of numerous ferro-
magnetic properties, including the influence of temperature on ferromagnetism. As temperature increases,
the distance between atoms grows, thereby decreasing the atomic exchange interaction. The distance be-
tween atoms increases when the temperature increases, which reduces the exchange action of atoms. Mean-
while, the thermodynamic motion destroys the regular orientation of the spin magnetic moments continu-
ously, thus causing a decrease in spontaneous magnetization. Eventually, when the temperature surpasses
Curie temperature θc, the spontaneous magnetic moment vanishes, and the material transitions from being
ferromagnetic to paramagnetic [2].

In this paper, we are concerned with the theory of the paramagnetic-ferromagnetic transition [3–8]. Our
investigation originates from the paper [6], in which the authors proposed a phase transition model that
describes the paramagnetic-ferromagnetic transition in ferromagnetic materials and established the exis-
tence and uniqueness of weak solutions in dimensions three. The phase transition equations governing the
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evolution of the ferromagnetic material reads

γMt = ν∆M − θc(|M|2 − 1)M − θM +H, in QT , (1.1)

c1(ln θ)t + c2θt = k0∆(ln θ) +M ·Mt + k1∆θ + r̂, in QT , (1.2)

where M denotes the magnetization vector, θ represents the absolute temperature, and QT = Ω× [0,T ] with
T > 0. The constants γ, ν, c1, c2, k0, k1 are strictly positive, while θc is the Curie temperature. Additionally,
r̂ is a known function of x, t. Our focus extends to combining this model with Maxwell’s equations

µHt +Mt = −∇ × E, (1.3)

Et + σE = ∇ ×H, (1.4)

∇ · (µH +M) = 0, ∇ · E = 0, (1.5)

where H is the magnetic field, E is the electric field, µ and σ are respectively the magnetic permeability
and the conductivity. The existence and uniqueness of the global weak solution for (1.1)-(1.5) were proved
in [6] without the displacement current ∂tE. Some limiting problems for this model were explored in [9],
and the fractional version of the model was studied in [10].

In this paper, we will consider the global smooth solution of (1.1)-(1.5) with the inclusion of the current
∂tE in two and three dimensions. We assume that c1 = k0 = 0. This assumption means that the heat
conductivity and specific heat are dependent on the absolute temperature according to the laws: k(θ) = k1θ

and c(θ) = c2
2 θ

2. We consider the phase transition equations

γMt = ν∆M − θc(|M|2 − 1)M − θM +H, (1.6)

cθt =M ·Mt + k∆θ + r̂, (1.7)

µHt +Mt = −∇ × E, (1.8)

Et + σE = ∇ ×H, (1.9)

∇ · (µH +M) = 0, ∇ · E = 0, (1.10)

with the periodic conditions

M(x + 2Dei, t) =M(x, t), θ(x + 2Dei, t) = θ(x, t),

H(x + 2Dei, t) = H(x, t), E(x + 2Dei, t) = E(x, t)
(1.11)

and the initial conditions

M(x, 0) =M0(x), θ(x, 0) = θ0(x), H(x, 0) = H0(x), E(x, 0) = E0(x), x ∈ Ω ∈ Rd, (1.12)

where Ω =
∏d

j=1(−D,D), d = 2, 3.
In view of the equation (1.10), we should impose the following constraints on the initial functions

M0,H0 and E0:
∇ · (µH0 +M0) = 0, ∇ · E0 = 0, (1.13)

Inspired by the ideas presented in [9–16], we aim to study the existence of the global weak solution and
the global smooth solution for the phase transition equations (1.6)–(1.12). Initially, we construct the solu-
tions of the equations (1.6)–(1.9) with (1.11) (1.12). Subsequently, we demonstrate that these constructed
solutions fulfill equation (1.10) when subject to the condition specified in (1.13). As a result, we establish
the existence of solutions for the problem (1.6)–(1.12). To the best of our knowledge, there are currently no
available results on global smooth solutions related to this problem (1.6)–(1.12).

The main results are as follows:
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Theorem 1.1. Assume that (M0, θ0,H0,E0) ∈ (H1(Ω), L2(Ω), L2(Ω), L2(Ω)), r̂(x, t) ∈ L2(0,T ; H1(Ω)),Ω ⊂
Rd, d = 2, 3 and (1.13) is satisfied. The constants µ, σ are positive. Then the problem (1.6)-(1.12) has at
least one global weak solution

(
M(x, t), θ(x, t), H(x, t),E(x, t)

)
such that

M(x, t) ∈ L∞(0,T ; H1(Ω)) ∩ L2(0,T ; H2(Ω)),

θ(x, t) ∈ L∞(0,T ; L2(Ω)) ∩ L2(0,T ; H1(Ω)),

H(x, t) ∈ L∞(0,T ; L2(Ω)),

E(x, t) ∈ L∞(0,T ; L2(Ω)).

Theorem 1.2. Assume (M0, θ0,H0,E0) ∈ (Hm+1(Ω),Hm(Ω),Hm(Ω), Hm(Ω)), r̂(x, t) ∈ L∞(0,T ; Hm(Ω)),m ≥
1,Ω ⊂ R2, and (1.13) is satisfied. The constants µ, σ are positive. Then there exists a unique global solution
(M(x), θ(x),H(x),E(x)) of the periodic problem (1.6)-(1.12) and for any T > 0, satisfying

M(x, t) ∈ L∞(0,T ; Hm+1(Ω)) ∩ L2(0,T ; Hm+2(Ω)),

θ(x, t) ∈ L∞(0,T ; Hm(Ω)) ∩ L2(0,T ; Hm+1(Ω)),

H(x, t) ∈ L∞(0,T ; Hm(Ω)),

E(x, t) ∈ L∞(0,T ; Hm(Ω)).

Additionally, the above results still hold for d = 3 when ∥M0∥
2
H1 ≤ δ0, δ0 ≪ 1.

This paper is organized as follows. In the next section, we will provide the definition of a weak solution
for the phase transition equations, and establish the existence of the global weak solution by the Galerkin
method. In Section 3, by employing a priori estimates, we obtain the existence of the smooth solution for
the phase transition equations. In the last section, we show that the global solution of problem (1.6)-(1.12)
is unique.

2 The existence of global weak solution

In this section, we will establish the existence of a global weak solution to the phase transition equations.
Firstly, we construct the Galerkin approximate solutions of the problem (1.6)-(1.12), and establish a priori
uniform estimates of these solutions. Then we provide the proof of the existence of the generalized solutions
to the problem (1.6)-(1.12). Thus, Theorem 1.1 holds.

First, we introduce the definition of the weak solution to the problem (1.6)-(1.12).

Definition 2.1. A three-dimensional vector function (M(x, t), θ(x, t),H(x, t),E(x, t)) ∈ (L∞(0,T ; H1(Ω)),
L∞(0,T ; L2(Ω)), L∞(0,T ; L2(Ω)), L∞(0,T ; L2(Ω))) is called a weak solution to (1.6)-(1.12), if for any vector-
valued test function ϕ(x, t) ∈ C1([0,T ]; H2(Ω)) with ϕ(x, t)|t=T = 0, and for any scalar test function ξ(x, t)
∈ C1([0,T ]; C1(Ω)), the following equations hold:

γ

"
QT

M · ϕtdxdt − ν
"

QT

∇M · ∇ϕdxdt −
"

QT

θc(|M|2 − 1)M · ϕdxdt (2.1)

−

"
QT

θM · ϕdxdt +
"

QT

H · ϕdxdt + γ
∫
Ω

M0 · ϕ(x, 0)dx = 0,

c
"

QT

θ · ϕtdxdt +
"

QT

M ·Mt · ϕdxdt − k
"

QT

∇θ · ∇ϕdxdt (2.2)

+

"
QT

r̂ · ϕdxdt + c
∫
Ω

θ0 · ϕ(x, 0)dx = 0,
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"
QT

(µH +M) · ϕtdxdt −
"

QT

(∇ × ϕ) · Edxdt +
∫
Ω

(µH0 +M0) · ϕ(x, 0)dx = 0, (2.3)"
QT

E · ϕt(x, t)eσtdxdt +
"

QT

eσt(∇ × ϕ) ·Hdxdt +
∫
Ω

E0(x)ϕ(x, 0)dx = 0, (2.4)"
QT

∇ξ · (µH +M) dxdt = 0,
"

QT

∇ξ · E dxdt = 0, (2.5)

M(x, 0) =M0(x), θ(x, 0) = θ0(x), H(x, 0) = H0(x), E(x, 0) = E(x), x ∈ Ω. (2.6)

Next, to solve the equations (1.6)-(1.12), we use the Galerkin method. First, we establish a priori
estimates for the approximate solutions of (1.6)-(1.12).

Let ωn(x), n = 1, 2, · · · be the unit eigenfunctions satisfying the equations

∆ωn + λnωn = 0, ωn(x − Dei) = ωn(x + Dei), i = 1, 2, ..., d,

where λn, n = 1, 2, · · · are the corresponding eigenvalues that are different from each other. The set {ωn(x)}
consists of an orthogonal normal basis of L2(Ω).

Denote the approximate solution of the problem (1.6)-(1.9) by MN(x, t), θN(x, t),HN(x, t),EN(x, t) in the
following form

MN(x, t) =
N∑

s=1

αsN(t)ωs(x), θN(x, t) =
N∑

s=1

βsN(t)ωs(x),

HN(x, t) =
N∑

s=1

γsN(t)ωs(x), EN(x, t) =
N∑

s=1

ζsN(t)ωs(x),

where αsN(t), βsN(t), γsN(t), ζsN(t), s = 1, 2, · · ·,N,N = 1, 2, · · · satisfy the following system of ordinary
differential equations∫

Ω

[
γMNtωs(x) + ν∇MN∇ωs(x) + θc(|MN |

2 − 1)MNωs(x) + θNMNωs(x) −HNωs(x)
]
dx = 0, (2.7)∫

Ω

[
cθNtωs(x) −MN ·MNtωs(x) + k∇θN∇ωs(x) − r̂ws(x)

]
dx = 0, (2.8)∫

Ω

[
µHNtωs(x) +MNtωs(x) +

(
∇ × EN

)
ωs(x)

]
dx = 0, (2.9)∫

Ω

[
ENtωs(x) + σENωs(x) − (∇ ×HN

)
ωs(x)

]
dx = 0 (2.10)

and the initial conditions

αsN(0) =
∫
Ω

MN(x, 0)ωs(x)dx =
∫
Ω

M0(x)ωs(x)dx = α0s,

βsN(0) =
∫
Ω

θN(x, 0)ωs(x)dx =
∫
Ω

θ0(x)ωs(x)dx = β0s,

γsN(0) =
∫
Ω

HN(x, 0)ωs(x)dx =
∫
Ω

H0(x)ωs(x)dx = γ0s,

ζsN(0) =
∫
Ω

EN(x, 0)ωs(x)dx =
∫
Ω

E0(x)ωs(x)dx = ζ0s.

(2.11)

Obviously, there holds ∫
Ω

MNtωs(x)dx = α′sN(t),
∫
Ω

θNtωs(x)dx = β′sN(t),∫
Ω

HNtωs(x)dx = γ′sN(t),
∫
Ω

ENtωs(x)dx = ζ′sN(t).
(2.12)
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For simplicity, we introduce notation as follows

∥ · ∥Lp(Ω) = ∥ · ∥p, p ≥ 2. (2.13)

It follows from the standard theory on nonlinear ordinary differential equations that the problem (2.7)-
(2.11) admits a unique local solution. In order to obtain the existence and uniqueness of the solution of
(2.7)-(2.11), we require additional estimates as follows.

Lemma 2.1. Assume that (M0(x), θ0(x),H0(x),E0(x)) ∈ (H1(Ω), L2(Ω), L2(Ω), L2(Ω)), r̂(x, t) ∈ L2(0,T ;
H1(Ω)). For the solutions to the initial value problem (2.7)-(2.11), we have the following estimates

sup
0≤t≤T

{
∥MN∥H1 + ∥θN∥2 + ∥HN∥2 + ∥EN∥2

}
≤ C, (2.14)∫ T

0
[∥MNt∥

2
2 + ∥∇θN∥

2
2 + ∥EN∥

2
2]dt ≤ C, (2.15)

where C is a constant which is independent of N and D.

Proof. Multiplying equation (2.7) by α′sN(t) for each s from 1 to N, and then summing up all the results, we
obtain

1
2

d
dt

[
ν∥∇MN∥

2
2 +
θc
2
∥MN∥

4
4

]
+ γ∥MNt∥

2
2 +

∫
Ω

θNMNMNtdx − θc

∫
Ω

MNMNtdx −
∫
Ω

HNMNtdx = 0.

(2.16)

By taking the scalar product of βsN(t) with (2.8), and then summing up the outcomes for all s =
1, 2, · · · ,N, we derive

c
2

d
dt
∥θN∥

2
2 + k∥∇θN∥22 −

∫
Ω

θNMNMNtdx −
∫
Ω

r̂θNdx = 0. (2.17)

By taking the scalar product of γsN(t) with (2.9) and the scalar product of ζsN(t) with (2.10) respec-
tively, adding the two resulting equalities together, and subsequently summing up the outcomes for all
s = 1, 2, ...,N, we have

1
2

d
dt

[
µ∥HN∥

2
2 + ∥EN∥

2
2

]
+ σ∥EN∥

2
2 +

∫
Ω

HNMNtdx = 0. (2.18)

Adding (2.16), (2.17) and (2.18), we obtain

1
2

d
dt

[
ν∥∇MN∥

2
2 +
θc
2
∥MN∥

4
4 + c∥θN∥22 + µ∥HN∥

2
2 + ∥EN∥

2
2

]
+ γ∥MNt∥

2
2 + k∥∇θN∥22 + σ∥EN∥

2
2

= θc

∫
Ω

MNMNtdx +
∫
Ω

r̂θNdx

≤
γ

2
∥MNt∥

2
2 +
θ2c
2γ
∥MN∥

2
2 +

k
2
∥θN∥

2
2 +

1
2k
∥r̂∥22, (2.19)

and then

1
2

d
dt

[
ν∥∇MN∥

2
2 +
θc
2
∥MN∥

4
4 + c∥θN∥22 + µ∥HN∥

2
2 + ∥EN∥

2
2

]
+
γ

2
∥MNt∥

2
2 + k∥∇θN∥22 + σ∥EN∥

2
2

≤ C(1 + ∥MN∥
4
4 + ∥θN∥

2
2 + ∥r̂∥

2
2).

(2.20)

By Gronwall inequality, we can obtain the estimates (2.14) and (2.15). This completes the proof of lemma
2.1. □

5



Remark 2.1. In fact, by the equation (2.7) and estimates (2.14) and (2.15), we can derive
∫ T

0 ∥∆MN∥
2
2dx ≤

C easily.

Lemma 2.2. Under the conditions of Lemma 2.1, for the solution (MN , θN ,HN ,EN) of the initial value
problem (2.7)-(2.11), we have the following estimates

∥MNt∥H−1(Ω) + ∥HNt∥H−1(Ω) + ∥ENt∥H−1(Ω) ≤ C, (2.21)∫ T

0
∥θNt∥

2
H−1(Ω)dx ≤ C, (2.22)

where C is independent of N and D, and H−m(Ω) denotes the dual space of the space Hm(Ω).

Proof. For any function φ ∈ H2, φ can be represented as

φ = φN + φN , φN =

N∑
s=1

βsωs(x), φN =

∞∑
s=N+1

βsωs(x).

For s ≥ N + 1, we have
∫
Ω

MNtωs(x)dx = 0. Then by Lemma 2.1, we get∫
Ω

MNtφdx =
∫
Ω

MNtφN(x)dx

= −
ν

γ

∫
Ω

∇MN∇φNdx −
θc
γ

∫
Ω

(|MN |
2 − 1)MNφNdx −

1
γ

∫
Ω

θNMNφNdx +
1
γ

∫
Ω

HNφNdx

≤C
[
∥∇MN∥2∥∇φN∥2 + (∥MN∥

6
6 + ∥MN∥

2
2)∥φN∥2 + ∥MN∥4∥θN∥2∥φN∥4 + ∥HN∥2∥φN∥2

]
≤C∥φN∥H1(Ω) ≤ C∥φ∥H1(Ω).

Similarly, for s ≥ N + 1, we have
∫
Ω

HNt · ωs(x)dx = 0,
∫
Ω

ENt · ωs(x)dx = 0. Then by Lemma 2.1, we
deduce that

µ

∫
Ω

HNtϕdx = µ
∫
Ω

HNtϕNdx = µ
∫
Ω

(∇ × EN · φN −MNtφN)dx

≤ C(∥EN∥2∥∇φN∥2 + ∥φ∥H1(Ω))

≤ C(∥∇ϕN∥2 + ∥φ∥H1(Ω)) ≤ C1∥φ∥H1(Ω).∫
Ω

ENtϕdx =
∫
Ω

ENtϕNdx ≤ C(∥HN∥2 + ∥EN∥2)(∥∇φN∥2 + ∥φN∥2)

≤ C(∥∇ϕN∥2 + ∥φN∥2) ≤ C2∥φ∥H1(Ω).

The above inequalities indicate that (2.21) holds true.
Let Φ ∈ L2(0,T ; H1(Ω)), by (2.8) and Lemma 2.1, we have∫ T

0

∫
Ω

θNtΦdxdt ≤
1
c

∫ T

0
∥MN∥4∥MNt∥2∥Φ∥4 + k∥∇θN∥2∥∇Φ∥2 + ∥r̂∥2∥Φ∥2dt

≤ C
∫ T

0
∥Φ∥2H1(Ω)dt,

where C is a constant independent of N. The lemma is proved. □
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Lemma 2.3. Assume that the conditions presented in Lemma 2.1 are satisfied. For the solution (MN(x, t), θN(x, t),
HN(x, t),EN(x, t)) of the initial value problem (2.7)-(2.11), there are the following estimates

∥MN(·, t1) −MN(·, t2)∥2 ≤ C|t1 − t2|
1
2 , ∀t1, t2 ≥ 0,

∥θN(·, t1) − θN(·, t2)∥H−1 + ∥HN(·, t1) −HN(·, t2)∥H−1 + ∥EN(·, t1) − EN(·, t2)∥H−1 ≤ C|t1 − t2|
1
2 ,

∀t1, t2 ≥ 0,

where the constant C is independent of N and D.

Proof. By Lemma 2.2 and Hölder inequality, we have

∥MN(·, t1) −MN(·, t2)∥2 =
∥∥∥∥∥ ∫ t2

t1
MNtdt

∥∥∥∥∥
2
≤

∫ t2

t1
∥MNt∥2dt

≤|t2 − t1|
1
2

( ∫ T

0

∫
Ω

|MNt|
2dxdt

) 1
2

≤C|t2 − t1|
1
2

and

∥θN(·, t1) − θN(·, t2)∥H−1 =

∥∥∥∥∥ ∫ t2

t1
θ̇Ndt

∥∥∥∥∥
H−1
≤

∫ t2

t1
∥θ̇N∥H−1dt

≤|t2 − t1|
1
2

( ∫ T

0
∥θ̇N∥

2
H−1dt

) 1
2

≤C|t2 − t1|
1
2 .

Similarly, we have

∥HN(·, t1) − HN(·, t2)∥H−1 ≤ C|t2 − t1|
1
2 , ∥EN(·, t1) − EN(·, t2)∥H−1 ≤ C|t2 − t1|

1
2 .

This lemma is proved. □

From ODE theory, Lemma 2.1- Lemma 2.3, we have the following lemma:

Lemma 2.4. Under the conditions of Lemma 2.1, there exists a unique global solution (αsN(t), βsN(t), γsN(t),
ζsN(t)) (s = 1, 2, ...,N, t ∈ [0,T ], ∀T > 0) of the initial value problem for the ordinary differential equations
(2.7)-(2.11). Moreover, this solution is continuously differentiable.

In the following, we will prove the existence of a global weak solution for (1.6)-(1.12).
The Proof of Theorem 1.1
From the uniform estimates of the approximate solution {MN(x, t), θN(x, t),HN(x, t),EN(x, t)} in Lemma

2.1 and Lemma 2.2, then by the Sobolev imbedding theorem and Lions-Aubin lemma, there is a subsequence
which is still denoted by {MN(x, t), θN(x, t),HN(x, t),EN(x, t)} such that

MN(x, t)⇀M(x, t) weak ∗ in L∞(0,T ; H1(Ω)) ∩ L2(0,T ; H2(Ω)), (2.23)

MNt(x, t)⇀Mt(x, t) weak ∗ in L∞(0,T ; H−1(Ω)), (2.24)

MN(x, t)→M(x, t) strongly in Lq(0,T ; Lp(Ω)), 2 ≤ q < ∞, 2 ≤ p ≤ ∞, (2.25)

θN(x, t)⇀ θ(x, t) weak ∗ in L∞(0,T ; L2(Ω)) ∩ L2(0,T ; H1(Ω)), (2.26)

θNt(x, t)⇀ θt(x, t) weak ∗ in L2(0,T ; H−1(Ω)), (2.27)

θN(x, t)→ θ(x, t) strongly in L2(0,T ; L2(Ω)), (2.28)

HN(x, t)⇀ H(x, t) weak∗ in L∞(0,T ; L2(Ω)), (2.29)

EN(x, t)⇀ E(x, t) weak∗ in L∞(0,T ; L2(Ω)). (2.30)
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For any vector-valued test function ϕ(x, t) ∈ C1([0,T ]; H1(Ω)) with ϕ(x, t)|t=T = 0, we define an approx-
imate sequence as follows

ϕN(x, t) =
N∑

n=1

an(t)ωn(x), an(t) =
∫
Ω

ϕ(x, t)ωn(x)dx.

We know that ϕN is uniformly convergent to ϕ(x, t) in C1([0,T ]; H1(Ω)), namely

∥ϕN − ϕ∥C1([0,T ];H1(Ω)) → 0, as N → ∞. (2.31)

Taking the scaler product of as(t) with (2.7),(2.8),(2.9), respectively, and the scaler product of eσtas(t)
with (2.10), summing up the products for all s = 1, 2, · · · ,N and then integrating by parts, we get

γ

"
QT

MN · ϕNtdxdt − ν
"

QT

∇MN · ∇ϕNdxdt −
"

QT

θc(|MN |
2 − 1)MN · ϕNdxdt

−

"
QT

θNMN · ϕNdxdt +
"

QT

HN · ϕNdxdt + γ
∫
Ω

MN(x, 0) · ϕN(x, 0)dx = 0, (2.32)

c
"

QT

θN · ϕNtdxdt +
"

QT

MNMNt · ϕNdxdt − k
"

QT

∇θN · ∇ϕNdxdt

+

"
QT

r̂(x, t) · ϕNdxdt + c
∫
Ω

θN(x, 0) · ϕN(x, 0)dx = 0, (2.33)

µ

"
QT

HN · ϕNt(x, t)dxdt +
"

QT

MN · ϕNt(x, t)dxdt −
"

QT

(∇ × ϕN) · EN(x)dxdt (2.34)

+

∫
Ω

(
µHN(x, 0) +MN(x, 0)

)
· ϕN(x, 0)dx = 0,"

QT

EN · (ϕNteσt)dxdt +
"

QT

eσt(∇ × ϕN) ·HN(x, t)dxdt +
∫
Ω

EN(·, 0) · ϕN(·, 0)dx = 0. (2.35)

From (2.23)-(2.31), it suffices to deal with the nonlinear terms in (2.32)-(2.35). From (2.23) and (2.31)
we have "

QT

(∇MN · ∇ϕN − ∇M · ∇ϕ)dxdt

=

"
QT

(∇MN − ∇M) · ∇ϕN + ∇M(∇ϕN − ∇ϕ)dxdt

≤

∫ T

0
∥∇MN − ∇M∥2∥∇ϕN∥2dt +

∫ T

0
∥∇M∥2∥∇ϕN − ∇ϕ∥2dt → 0, N → ∞.

From (2.23)-(2.25) and (2.31), we derive"
QT

(|MN |
2 − 1)MN · ϕNdxdt →

"
QT

(|M|2 − 1)M · ϕdxdt, as N → ∞.

By (2.25), (2.28) and (2.31) we obtain"
QT

θNMN · ϕNdxdt →
"

QT

θM · ϕdxdt, as N → ∞.

It follows from (2.23)-(2.25) and (2.31) that"
QT

MNMNt · ϕNdxdt →
"

QT

MMt · ϕdxdt, as N → ∞.
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So by (2.30) and (2.31), we derive"
QT

(∇ × ϕN) · ENdxdt −
"

QT

(∇ × ϕ) · Edxdt

=

"
QT

∇ × (ϕN − ϕ) · ENdxdt +
"

QT

∇ × ϕ · ENdxdt −
"

QT

(∇ × ϕ) · Edxdt

=

"
QT

∇ × (ϕN − ϕ) · ENdxdt +
"

QT

(∇ × ϕ) · (EN − E)dxdt

≤

("
QT

|∇(ϕN − ϕ)|2dxdt
) 1

2
∥EN∥L2(QT ) +

∣∣∣∣∣"
QT

(∇ × ϕ) · (EN − E)dxdt
∣∣∣∣∣

→ 0, as N → ∞.

Similarly, we can prove that"
QT

HN · ϕNtdxdt →
"

QT

H · ϕtdxdt, as N → ∞,"
QT

EN · (ϕNteσt)dxdt →
"

QT

E · (ϕteσt)dxdt, as N → ∞,"
QT

eσt(∇ × ϕN) ·HNdxdt →
"

QT

eσt(∇ × ϕ) ·Hdxdt, as N → ∞,"
QT

MN · ϕNtdxdt →
"

QT

M · ϕtdxdt, as N → ∞,"
QT

θN · ϕNtdxdt →
"

QT

θ · ϕtdxdt, as N → ∞,"
QT

∇θN · ∇ϕNdxdt →
"

QT

∇θ · ∇ϕdxdt, as N → ∞.

Thus, taking N → ∞ in (2.32), (2.33), (2.34) and (2.35), we obtain that the limit functions M(x, t), θ(x, t),
H(x, t) and E(x, t) satisfy the integral equalities (2.1), (2.2), (2.3) and (2.4). Furthermore, if the initial vector
functions M0,H0,E0 satisfy the conditions

∫
Ω
∇ξ ·(µH0+M0) dx = 0,

∫
Ω
∇ξ ·E0 dx = 0 for all ξ(x) ∈ C1(Ω),

we can easily deduce that for any ξ(x, t) ∈ C1([0,T ]; C1(Ω)) with ξ(x,T ) = 0 and ξ0 = ξ(x, 0), we have from
(2.3) and (2.4) that "

QT

∇ξ · (µH +M) dxdt = 0,
"

QT

∇ξ · E dxdt = 0.

Therefore, through the above analysis and calculations, the global weak solution of the problem (1.6)-(1.12)
is obtained.

3 The existence of global smooth solution

To demonstrate the existence of a global smooth solution (M, θ,H,E) for problem (1.6)-(1.12), it is neces-
sary to establish a priori estimates. In this section, we first consider the special case d = 2 and x ∈ Ω ⊂ R2.
Then we also find the estimates hold for d = 3 when the initial data is small.

Lemma 3.1. Assume that (M0(x), θ0(x),H0(x),E0(x)) ∈ (H2(Ω),H1(Ω),H1(Ω),H1(Ω)), r̂(x, t) ∈ L2(0,T ;
H1(Ω)), then there exists a smooth solution (M, θ,H,E) for problem (1.6)-(1.12) satisfying the following
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estimates

sup
0≤t≤T

{
∥M∥H2 + ∥θ∥H1 + ∥H∥H1 + ∥E∥H1

}
+

∫ T

0
[∥∇∆M∥22 + ∥∆θ∥

2
2 + ∥∇E∥22]dt ≤ C. (3.1)

Proof. Multiplying (1.6) by ∆2M, and integrating the resulting equality with respect to x ∈ Ω, we obtain

γ

2
d
dt
∥∆M∥22 + ν∥∇∆M∥22

= θc

∫
Ω

∇[(|M|2 − 1)M] · ∇∆Mdx +
∫
Ω

∇(θNM) · ∇∆Mdx −
∫
Ω

∇H · ∇∆Mdx

≤ θc
(
3∥M∥2∞ + 1

)
∥∇M∥2∥∇∆M∥2 +

(
∥M∥∞∥∇θ∥2 + ∥θ∥4∥∇M∥4

)
∥∇∆M∥2

+ ∥∇∆M∥2∥∇H∥2

≤ C
(
∥M∥2∥∆M∥2 + 1

)
∥∇M∥2∥∇∆M∥2 +C

(
∥M∥

1
2
2 ∥∆M∥

1
2
2 ∥∇θ∥2

+ ∥∇θ∥
1
2
2 ∥θ∥

1
2
2 ∥∇M∥

1
2
2 ∥∆M∥

1
2
2

)
∥∇∆M∥2 + ∥∇∆M∥2∥∇H∥2

≤
ν

16
∥∇∆M∥22 +C(1 + ∥∆M∥42) +

ν

16
∥∇∆M∥22 +C(1 + ∥∆M∥22)∥∇θ∥22

+
ν

16
∥∇∆M∥22 +C(∥∇θ∥22 + ∥∆M∥22) +

ν

16
∥∇∆M∥22 +C∥∇H∥22

≤
ν

4
∥∇∆M∥22 +C(∥∆M∥42 + ∥∆M∥22 + ∥∇θ∥

4
2 + ∥∇θ∥

2
2 + ∥∇H∥22 + 1), (3.2)

where we have used Hölder inequality, Gagliardo-Nirenberg inequality and Lemma 2.1.
Multiplying (1.7) by ∆θ, and integrating the resulting equality with respect to x ∈ Ω, we have

c
2

d
dt
∥∇θ∥22 + k∥∆θ∥22

= −

∫
Ω

M ·Mt · ∆θdx −
∫
Ω

r̂ · ∆θdx

= −
ν

γ

∫
Ω

M · ∆M · ∆θdx +
θc
γ

∫
Ω

M · [(|M|2 − 1)M] · ∆θdx

+
1
γ

∫
Ω

M · (θM) · ∆θdx −
1
γ

∫
Ω

M ·H · ∆θdx −
∫
Ω

r̂ · ∆θdx. (3.3)

By Lemma 2.1, Hölder inequality and Gagliardo-Nirenberg inequality, we derive∣∣∣∣∣ − νγ
∫
Ω

M · ∆M · ∆θdx
∣∣∣∣∣ ≤C∥M∥∞∥∆M∥2∥∆θ∥2 ≤ C∥M∥

1
2
2 ∥∆M∥

3
2
2 ∥∆θ∥2

≤
k
8
∥∆θ∥22 +C(∥∆M∥42 + 1). (3.4)

Similarly, we obtain∣∣∣∣∣θcγ
∫
Ω

M · [(|M|2 − 1)M] · ∆θdx
∣∣∣∣∣ ≤θcγ (

∥M∥4∞ + ∥M∥
2
∞

)
∥∆θ∥2

≤C
(
∥M∥22∥∆M∥22 + ∥M∥2∥∆M∥2

)
∥∆θ∥2

≤
k
8
∥∆θ∥22 +C

(
∥∆M∥42 + ∥∆M∥22 + 1

)
, (3.5)
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∣∣∣∣∣1γ
∫
Ω

M · (θM) · ∆θdx
∣∣∣∣∣ ≤C∥M∥2∞∥θ∥2∥∆θ∥2

≤C∥M∥2∥∆M∥2∥θ∥2∥∆θ∥2

≤
k
8
∥∆θ∥22 +C∥∆M∥22 (3.6)

and ∣∣∣∣∣ − 1
γ

∫
Ω

M ·H · ∆θdx
∣∣∣∣∣ ≤ 1
γ
∥M∥∞∥H∥2∥∆θ∥2 ≤

k
8
∥∆θ∥22 +C

(
∥∆M∥22 + 1

)
, (3.7)

∣∣∣∣∣ ∫
Ω

r̂ · ∆θdx
∣∣∣∣∣ ≤ C∥∇r̂∥2∥∇θ∥2 ≤ C(∥∇θ∥22 + 1). (3.8)

Thus, inserting estimates (3.4)-(3.8) into (3.3), we have

c
2

d
dt
∥∇θ∥22 +

k
2
∥∆θ∥22 ≤ C(∥∇θ∥22 + ∥∆M∥22 + ∥∆M∥42 + 1). (3.9)

Now taking the product of ∆H with (1.8) and the product of ∆E with (1.9) respectively, and summing
the two resulting equalities, and then integrating the final equality with respect to x ∈ Ω, we obtain the
following inequality

1
2

d
dt

(
µ∥∇H∥22 + ∥∇E∥22

)
+ σ∥∇E∥22 =

∫
Ω

∇Mt · ∇Hdx ≤ ∥∇Mt∥2∥∇H∥2

≤
1
γ

(ν∥∇∆M∥2 + θc∥∇[(|M|2 − 1)M]∥2 + ∥∇M∥∞∥θ∥2 + ∥M∥∞∥∇θ∥2 + ∥∇H∥2)∥∇H∥2

≤
ν

4
∥∇∆M∥22 +C(∥∇θ∥42 + ∥∆M∥42 + ∥∆M∥22 + ∥∇H∥22 + 1), (3.10)

where we have used Hölder inequality and Sobolev imbedding theorem.
Thus, combining (3.2), (3.9) and (3.10), we derive

1
2

d
dt

(
γ∥∆M∥22 + c∥∇θ∥22 + µ∥∇H∥22 + ∥∇E∥22

)
+
ν

2
∥∇∆M∥22 +

k
2
∥∆θ∥22 + σ∥∇E∥22

≤C(∥∆M∥42 + ∥∆M∥22 + ∥∇θ∥
4
2 + ∥∇θ∥

2
2 + ∥∇H∥22 + 1). (3.11)

By employing the estimates (2.15) and (3.11) and the Gronwall inequality, we establish the estimate (3.1).
□

Lemma 3.2. Assume that (M0(x), θ0(x),H0(x),E0(x)) ∈ (Hm+1(Ω),Hm(Ω),Hm(Ω), Hm(Ω)), r̂ ∈ L2(0,T ;
Hm(Ω)), m ≥ 0, then there exists a smooth solution (M, θ,H,E) for problem (1.6)-(1.12) satisfying the
following estimates

sup
0≤t≤T

[
∥M(·, t)∥2Hm+1 + ∥θ(·, t)∥2Hm + ∥H(·, t)∥2Hm + ∥E(·, t)∥2Hm

]
+

∫ T

0
(∥M∥2Hm+2 + ∥θ∥

2
Hm+1 + ∥E∥2Hm)dt ≤ C. (3.12)

Proof. The lemma will be proved by the induction for m. According to Lemma 2.1 and Lemma 3.1, the
estimate (3.12) holds when m = 0, 1.
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Now assume that the estimate (3.12) holds for m = K ≥ 2, that is

sup
0≤t≤T

[
∥M(·, t)∥2HK+1 + ∥θ(·, t)∥2HK + ∥E(·, t)∥2HK + ∥H(·, t)∥2HK

]
+

∫ T

0
(∥M∥2HK+2 + ∥θ∥

2
HK+1 + ∥E∥2HK )dt ≤ C. (3.13)

We aim to prove that (3.12) holds for m = K + 1.
Taking the scalar product of ∆K+2M with (1.6), and integrating the resulting equality with respect to

x ∈ Ω, we derive

γ

2
d
dt
∥∇K+2M∥22dx + ν∥∇K+3M∥22

= θc

∫
Ω

∇K+1[(|M|2 − 1)M] · ∇K+3Mdx +
∫
Ω

∇K+1(θM) · ∇K+3Mdx

−

∫
Ω

∇K+1H · ∇K+3Mdx, (3.14)

where ∫
Ω

∇K+1[(|M|2 − 1)M] · ∇K+3Mdx

≤∥∇K+1(|M|2M)∥2∥∇K+3M∥2 + ∥∇K+1M∥2∥∇K+3M∥2

≤∥

K+1∑
i=0

i∑
j=0

Ci
K+1C j

i∇
jM∇K+1−iM∇i− jM∥2∥∇K+3M∥2 + ∥∇K+1M∥2∥∇K+3M∥2

≤C
∑

i1+i2+ j3=K+1

∥∇i1M∥6∥∇i2M∥6∥∇i3M∥6∥∇K+3M∥2

≤
ν

18
∥∇K+3M∥22 +C(1 + ∥∇K+2M∥22). (3.15)

Similarly, we have ∫
Ω

∇K+1(θM) · ∇K+3Mdx =C
K+1∑
i=0

∥∇iθ∥3∥∥∇
K+1−iM∥6∥∇K+3M∥2

≤
ν

18
∥∇M+3M∥22 +C(1 + ∥∇K+1θ∥22). (3.16)

Hence, combining (3.14)–(3.16), we have

γ

2
d
dt
∥∇K+2M∥22 + ν∥∇

K+2∥22

≤
ν

6
∥∇K+3M∥22 +C(1 + ∥∇K+1θ∥22 + ∥∇

K+2M∥22 + ∥∇
K+1H∥22). (3.17)

Taking the scalar product of ∆K+1θ with (1.7), and integrating the resulting equality with respect to
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x ∈ Ω, we obtain

c
2

d
dt
∥∇K+1θ∥22 + k∥∇K+2θ∥22

≤

∫
Ω

MMt · ∇
K+2θdx +

∫
Ω

r̂ · ∇K+2θdx

≤∥M∥∞∥Mt∥2∥∇
K+2θ∥2 + ∥r̂∥2∥∇K+2θ∥2

≤C∥∆M∥
1
2
2 ∥M∥

1
2
2
(
ν∥∆M∥2 + θc∥(|M|2 − 1)M∥2

+ ∥θ∥4∥M∥4 + ∥H∥2
)
∥∇K+2θ∥2 + ∥∇

K+1r̂∥2∥∇K+2θ∥2

≤
ν

6
∥∇K+3M∥22 +

k1

2
∥∇K+2θ∥22 +C(1 + ∥∇K+2M∥22 + ∥∇

K+1θ∥22 + ∥∇
K+1r̂∥22). (3.18)

Taking the scalar product of ∆K+1E with (1.8) and the scalar product of ∆K+1H with (1.9), summing the
two equalities, and then integrating the resulting equality with respect to x ∈ Ω, we obtain

1
2

d
dt

(
∥∇K+1E∥22 + µ∥∇

K+1H∥22
)
+ σ∥∇K+1E∥22 =

∫
Ω

∇K+1Ṁ · ∇K+1Hdx

≤∥∇K+1Ṁ∥2∥∇K+1H∥2
≤
(
ν∥∇K+3M∥2 + θc∥∇K+1[(|M|2 − 1)M]∥2
+ 2∥∇K+1(Mθ)∥2 + ∥∇K+1H∥2

)
∥∇K+1H∥2

≤
ν

6
∥∇K+3M∥22 +C(1 + ∥∇K+1H∥22 + ∥∇

K+2M∥42 + ∥∇
K+1θ∥22). (3.19)

It follows from (3.17)-(3.19), that

d
dt

(
∥∇K+2M∥22 + ∥∇

K+1θ∥22 + ∥∇
K+1E∥22 + ∥∇

K+1H∥22
)
+ ∥∇K+2∥22 + ∥∇

K+2θ∥22 + ∥∇
K+1E∥22

≤C(1 + ∥∇K+1θ∥22 + ∥∇
K+2M∥22 + ∥∇

K+2M∥42 + ∥∇
K+1H∥22). (3.20)

Therefore, by employing (3.13) and applying Gronwall inequality, we can establish the estimate (3.12). □

Following a similar approach to the proof of Theorem 1.1, we can establish the local existence of the
smooth solution to (1.6)-(1.12). Subsequently, by employing a priori estimates for the smooth solution, we
can deduce the global existence of a smooth solution to the problem (1.6)-(1.12).

Remark 3.2. When the dimension is set to d = 3, Lemma 3.1 and Lemma 3.2 can also be proven, provided
that ∥M0∥

2
H1 is sufficiently small. Subsequently, by replicating the methodologies employed in the proof for

the case d = 2, we can establish the existence of the solution (M, θ,H,E) for the d = 3 dimension.

4 The uniqueness of global smooth solution

In this section, we are devoted to proving uniqueness. Let (M j, θ j,H j,E j) ( j = 1, 2) be the smooth solutions
for the problem (1.6)-(1.12). Denote (M, θ,H,E) = (M1 − M2, θ1 − θ2,H1 − H2,E1 − E2). As a result,
(M, θ,H,E) satisfies the following system:
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γMt = ν∆M − θc
(
(|M1|

2 − 1)M + (M1 +M2)MM2
)
− (θM1 + θ2M) +H, (4.1)

cθt =MM1t +M2Mt + k∆θ, (4.2)

µHt +Mt = −∇ × E, (4.3)

Et + σE = ∇ ×H, (4.4)

∇ · (µH +M) = 0,∇ · E = 0, (4.5)

with periodic conditions

M(x + 2Dei, t) =M(x, t), θ(x + 2Dei, t) = θ(x, t),

H(x + 2Dei, t) = H(x, t), E(x + 2Dei, t) = E(x, t),
(4.6)

and initial conditions

M(x, 0) = 0, θ(x, 0) = 0, H(x, 0) = 0, E(x, 0) = 0. (4.7)

Taking the scalar product of equation (4.1) with M − ∆M, then integrating the equality obtained over Ω, we
derive

γ

2
d
dt
{∥M∥22 + ∥∇M∥22} + ν{∥∇M∥22 + ∥∆M∥22}

= − θc

∫
Ω

(
(|M1|

2 − 1)M + (M1 +M2)MM2
)
(M − ∆M)dx

−

∫
Ω

(θM1 + θ2M)(M − ∆M)dx +
∫
Ω

H(M − ∆M)dx

≤C(∥M1∥
2
∞ + ∥M2∥

2
∞ + 1)∥M∥2(∥M∥2 + ∥∆M∥2)

+ (∥M1∥∞∥θ∥2 + ∥θ2∥2∥M∥∞)(∥M∥2 + ∥∆M∥2) + ∥H∥2(∥M∥2 + ∥∆M∥2)
}
.

By Gagliardo-Nirenberg inequality, we get

∥M∥∞ ≤ C∥M∥1−
d
4

2 ∥∆M∥
d
4
2 . (4.8)

Then it follows from the estimates (3.12) and (4.8) that

γ

2
d
dt
{∥M∥22 + ∥∇M∥22} + ν{∥∇M∥22 + ∥∆M∥22}

≤
ν

6
∥∆M∥22 +C(∥M∥22 + ∥θ∥

2
2 + ∥H∥

2
2).

(4.9)

By taking the scalar product of equation (4.2) with θ, and integrating the equality with respect to x ∈ Ω,
we have

c
2

d
dt
∥θ∥22 + k∥∇θ∥22 =

∫
Ω

(MM1t +M2Mt)θdx

≤C∥M∥∞
(
∥∆M1∥2 + θc∥(|M1|

2 − 1)∥∞∥M1∥2 + ∥M1∥∞∥θ1∥2 + ∥H∥2
)
∥θ∥2

+C∥M2∥∞
(
∥∆M∥2 + θc(∥M1∥

2
∞ + 1)∥M∥2 + ∥M1∥∞∥θ∥2 + ∥θ2∥2∥M∥∞ + ∥H∥2

)
∥θ∥2

≤
ν

6
∥∆M∥22 +C(∥M∥22 + ∥θ∥

2
2 + ∥H∥

2
2), (4.10)
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where we have used the estimates (3.12) and (4.8).
Next, by taking the scalar product of equation (4.3) with H, and the scalar product of equation (4.4) with

E, summing the two equalities, then integrating the resulting equality with respect to x ∈ Ω, and applying
the estimates (3.12) and (4.8), we obtain

1
2

d
dt
{µ∥H∥22 + ∥E∥

2
2} + σ∥E∥

2
2 = −

∫
Ω

MtHdx

≤C
(
∥∆M∥2 + (∥M1∥

2
∞ + 1)∥M∥2 + ∥M1∥∞∥θ∥2 + ∥θ2∥2∥M∥∞ + ∥H∥2

)
∥H∥2

≤
ν

6
∥∆M∥22 +C(∥M∥22 + ∥θ∥

2
2 + ∥H∥

2
2). (4.11)

By adding (4.9), (4.10) and (4.11), then applying the Gronwall inequality, we derive

∥M∥22 + ∥∇M∥22 + ∥θ∥
2
2 + ∥H∥

2
2 + ∥E∥

2
2 = 0. (4.12)

Thus the global solution (M, θ,E,H) is unique for m ≥ 1.
Therefore by the above uniqueness result and existence result established in Section 3, we complete the

proof of Theorem 1.2.
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