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Abstract In this paper, the Newton-type splitting iterative method for a class of

coupled Sylvester-like absolute value equation is proposed. Some sufficient condi-

tions for the existence of the unique solution of the coupled Sylvester-like absolute

value equation are given and sufficient conditions for the nonexistence of solution

is discussed. The Newton-base bimatrix splitting iteration method, the Newton-

base generalized Gauss-Seidel bimatrix splitting iteration method and the inexact

relaxed generalized Newton bimatrix splitting method are proposed to solve the

coupled Sylvester-like absolute value equation. Numerical experiments confirm the

conclusions proposed in this paper.
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1 Introduction

In this paper, we consider a class of coupled Sylvester-like absolute value equation:{
A1XB1 + C1|Y |D1 = E1,

A2Y B2 + C2|X|D2 = E2,
(1.1)

where A1, A2, C1, C2 ∈ Rm×n, B1, B2, D1, D2 ∈ Rp×q, E1, E2 ∈ Rm×q are known, X,Y ∈ Rn×p

are unknown. Here, |X| = (x̂ij), x̂ij = |xij |, i = 1, · · · , n, j = 1, · · · , p. When A2, B2, D2 are

identity matrix with appropriate sizes, E2 = 0m×q and −C2 is a n × n identity matrix, then

(1.1) reduces to Sylvester-like absolute value equation

AXB + C|X|D = E (1.2)

∗Supported by the National natural Science Foundation of China (12371378).
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in [18]. Here A,C ∈ Rm×n, B,D ∈ Rp×q, E ∈ Rm×q, X ∈ Rn×p.
When p = q = 1,m = n,B = D = 1, (1.2) reduces to the generalized absolute value

equation (GAVE)

Ax+ C|x| = e (1.3)

in [1]. In particular, when C = −In where In is a n×n identity matrix, (1.3) becomes absolute

value equation (AVE)

Ax− |x| = e (1.4)

in [2].

Recently, in [23], AVE (1.4) is expressed as the nonlinear equation

F (x) = Ax− |x| − e = 0, (1.5)

and using the Newton iterative method x(k+1) = x(k) − F ′(x(k))
−1
F (x(k)), then generalized

Newton method (GN)

x(k+1) = x(k) − (A−D(x(k)))−1(Ax(k) − |x(k)| − e) (1.6)

is obtained, where F
′
(x(k)) denote the Jacobin of F at x(k) and D(x(k)) = diag(sign(x(k))).

Also, the inexact version of the GN method

(A−D(x(k)))x(k+1) = e+ rk with ‖rk‖ 6 θ‖Ax(k) − |x(k)| − e‖ (1.7)

is investigated for solving the AVE (1.4) in [26].

In the calculation, due to the change of matrix A −D(x(k)) in the GN method, the com-

putations of the generalized Newton method may be very expensive. To avoid changing the

Jacobian, Wang, Cao and Chen utilize A + Ω as the approximation of F
′
(x(k)) and then get

the modified Newton method (MN):

x(k+1) = x(k) − (A+ Ω)−1(Ax(k) − |x(k)| − e), (1.8)

Ω is positive semi-definite here.

Absolute value equation may arise in diverse fields, including complementarity problem,

programming problem, and so on, see [3–9]. In recent years, many scholars have studied the

properties of GAVE (1.3) including Mezzadri in [10], Propkeyev in [11], Rohn in [5,12,14], Wu

and Li in [15], and Mangasarian and Meyer in [7]. The theoretical study of GAVE mainly

focuses on its solvability and uniqueness, such as [13], [16] and [19]. See Lemma 2.1 in Section

2 for details. There are also many scholars studying some other forms of AVE, such as [1]

and [18].

If we can convert (1.1) to (1.3), it is easy to obtain some sufficient conditions for the

existence of the unique solution to the coupled Sylvester-like absolute value equation (1.1) and

some theorems that (1.1) has no solution.
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From observation, the theory and practice of (1.1) is interesting and challenging because

it has three characteristics. (i)The most obvious feature is that compared with GAVE (1.3),

the solution is no longer a vector but a matrix solution pair; (ii)There are non-differentiable

terms C1|Y |D1, C2|X|D2 in (1.1); (iii)The coefficient matrices appear on both sides of the

unknown X,Y and |X|, |Y |.
Since there are nonlinear terms C1|Y |D1, C2|X|D2 in (1.1), determining the existence of the

solution of (1.1) is an NP-hard problem. In order to determine the existence of the solution,

we use the properties of the Kronecker product and the appropriate assumptions to convert

(1.1) to (1.3) and then we can give the existence of the solution of (1.1).

The rest of the paper is organized as follows: In section 2, we give some useful lemmas

to help us obtain the results presented in this paper. In section 3, sufficient conditions for

the existence of the unique solution of coupled Sylvester-like absolute value equation (1.1) are

given. A sufficient condition that the solution does not exist is also discussed. In Section 4, we

provide some methods for solving coupled Sylvester-like absolute value equation. In Section 5,

the numerical results is used to verify the theorems presented. In Section 6, we summarize the

work done in this paper.

At the end of this section, we present some notations which will be used throughout this

paper. Let Rm×n be the set of all m × n real matrices and Rn = Rn×1. The transposition of

matrix A is denoted by AT . | · | denotes the absolute value for real scalar. For x ∈ Rn, ‖x‖
denotes its 2-norm and diag(x) indicates a diagonal matrix with xi as its diagonal entries for

every i = 1, 2, · · · , n. In be the identity matrix of order n, zero matrix of order n identified

by 0n, a matrix of order n with all entries α denoted by 1n(α), lower triangular and upper

triangular matrix of order n with all entries α denoted by Ln(α) and Un(α) respectively. Also,

tridiagonal matrix of order n with all elements on the main diagonal, first diagonal below, and

the first diagonal above the main diagonal equal β, α and γ respectively, by Tn(α, β, γ). By

default, ‖A‖ denotes the spectral norm of A and is defined by the formula ‖A‖ := max{‖Ax‖ :

x ∈ Rn, ‖x‖ = 1}.

2 Preliminaries

In this section, we give some useful lemmas to help us reach the conclusions proposed in

this paper.

First we review the definition of the vec operator and Kronecker product.

If A = (aij) ∈ Rm×n, then vec(A) = (a11, · · · , am1, a12, · · · , am2, · · · , a1n, · · · , amn)T .

Let A = (aij) ∈ Rm×n, B = (bij) ∈ Rp×q, we call the block matrix

A⊗B =


a11B · · · a1nB

...
. . .

...

am1B · · · amnB

 ∈ Rmp×nq

the Kronecker product of A and B, and abbreviated as A⊗B = (aijB).
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Lemma 2.1. If any of the following conditions hold, the generalized absolute value equation

(1.3)

Ax+ C|x| = e

has the unique solution for each right-hand side vector e.

(i) σmax(C) < σmin(A), where σmax(C) denotes the largest singular value of C and σmin(A)

denotes the smallest singular value of A. [15]

(ii) A and C are square matrices, A is nonsingular and σmax(A−1C) < 1, where σmax(A−1C)

denotes the largest singular value of A−1C. [16]

(iii) The inequality |Ax| 6 |C||x| has only the trivial solution x = 0 where A and C are real

square matrices. [5]

Lemma 2.2. For any real matrices A, B, C and D with appropriate sizes, the following con-

clusions are valid

(i) vec(ABC) =
(
CT ⊗A

)
vec(B).

(ii) (A⊗B)(C ⊗D) = (AC)⊗ (BD).

(iii) Let A and B be square matrices. The eigenvalues of A⊗B consist of all pairwise products

of the eigenvalues of A and B. In particular, ρ(A⊗B) = ρ(A)ρ(B).

(iv) The singular values of A⊗ B consist of all pairwise products of the singular values of A

and B. In particular, σmax(A⊗B) = σmax(A)σmax(B), σmin(A⊗B) = σmin(A)σmin(B).

(v) If square matrices A and B are nonsingular, then (A⊗B)−1 = A−1 ⊗B−1.

(vi) |A⊗B| = |A| ⊗ |B|.

Lemma 2.3. [17] Let A ∈ Rn×n, B ∈ Rn×n. If |A| 6 B, then ρ(A) 6 ρ(B).

Proposition 2.1. Let A ∈ Rm×n, B ∈ Rm×n. If |A| 6 B, then ‖A‖2 6 ‖B‖2.

Proof. From |A| 6 B, it is following that |ATA| 6 |AT ||A| 6 BTB. By the Lemma 2.3,

ρ(ATA) 6 ρ(BTB). Therefore, ‖A‖2 6 ‖B‖2. �

Lemma 2.4. [25] Let λ be any root of the quadratic equation x2− bx+ c = 0 where b, c ∈ R.

Then |λ| < 1 if and only if |c| < 1 and |b| < 1 + c.

Lemma 2.5. [20] Let x, y ∈ Rn, then ||x| − |y|| 6 |x− y|.
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3 Existence of solutions for the coupled Sylvester-like absolute
value equation

Using the vec operator, (1.1) is equivalent to{
S1x+ T1|y| = e1,

S2y + T2|x| = e2,
(3.1)

where S1 = B1
T ⊗ A1, S2 = B2

T ⊗ A2, T1 = D1
T ⊗ C1, T2 = D2

T ⊗ C2, e1 = vec(E1), e2 =

vec(E2), x = vec(X), y = vec(Y ). Then (3.1) can be expressed as the following generalized

absolute value equation form

Az + B|z| = E , (3.2)

where

A =

(
S1 0

0 S2

)
,B =

(
0 T1

T2 0

)
, z =

(
x

y

)
, E =

(
e1

e2

)
. (3.3)

In the following content, let λmax represents the maximum eigenvalue of the correspond-

ing matrix and λmin represents the minimum eigenvalue of the corresponding matrix. σmax

represents the maximum singular value of the corresponding matrix and σmin represents the

minimum singular value of the corresponding matrix.

Theorem 3.1. Suppose Ci, Di are invertible, i = 1, 2. (1.1) is uniquely solvable for any right-

hand side matrices E1, E2 if any of the following is true:

(i) max
i
{σmax(Di)σmax(Ci)} < min

i
{σmin(Bi)σmin(Ai)}, i = 1, 2.

(ii) A1, A2, B1, B2 are square nonsingular matrices,{
σmax(D1B1

−1)σmax(A1
−1C1) < 1,

σmax(D2B2
−1)σmax(A2

−1C2) < 1.

(iii) A1, A2, B1, B2, C1, C2, D1, D2 are real square matrice and the inequality{
|A1XB1| 6 |C1||Y ||D1|,
|A2Y B2| 6 |C2||X||D2|,

has only the trivial solution-pair (X,Y ) = (0, 0).

Proof. First, prove the first part. According to the definition of singular value, we can

know that

σmin(A) = σmin

(
B1

T ⊗A1 0

0 B2
T ⊗A2

)

=

√√√√λmin

((
(B1

T ⊗A1)T 0

0 (B2
T ⊗A2)T

)(
B1

T ⊗A1 0

0 B2
T ⊗A2

))

=

√√√√λmin

(
(B1

T ⊗A1)T (B1
T ⊗A1) 0

0 (B2
T ⊗A2)T (B2

T ⊗A2)

)
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It is not difficult to see that for any A,B ∈ Rn×n, the eigenvalues of the matrix

(
A 0

0 B

)
are the eigenvalues of A and the eigenvalues of B. Hence

σmin(A) =

√
min{λmin((B1

T ⊗A1)T (B1
T ⊗A1)), λmin((B2

T ⊗A2)T (B2
T ⊗A2))}

= min{σmin(B1
T ⊗A1), σmin(B2

T ⊗A2)}

= min{σmin(B1)σmin(A1), σmin(B2)σmin(A2)}, (3.4)

where the last equation comes from part (iv) of Lemma 2.2.

Similarly, it can be obtained

σmax(B) = σmax

(
0 D1

T ⊗ C1

D2
T ⊗ C2 0

)
= max{σmax(D1)σmax(C1), σmax(D2)σmax(C2)}.

(3.5)

When max{σmax(D1)σmax(C1), σmax(D2)σmax(C2)} < min{σmin(B1)σmin(A1), σmin(B2)σmin(A2)},
we can obtain

σmax

(
0 D1

T ⊗ C1

D2
T ⊗ C2 0

)
< σmin

(
B1

T ⊗A1 0

0 B2
T ⊗A2

)
.

According to part (i) of Lemma 2.1, (3.2) has the unique solution, that is, (1.1) has the unique

solution-pair.

Next, similar to (3.5), we can see

σmax(A−1B) = σmax

( B1
T ⊗A1 0

0 B2
T ⊗A2

)−1(
0 D1

T ⊗ C1

D2
T ⊗ C2 0

)
= max{σmax(B2

−TD2
T ⊗A−1

2 C2), σmax(B1
−TD1

T ⊗A−1
1 C1)}

= max{σmax(D2B2
−1)σmax(A−1

2 C2), σmax(D1B1
−1)σmax(A−1

1 C1)} < 1,

where the last equation is derived from part (iv) of Lemma 2.2. Thus, applying part (ii) of

Lemma 2.1 to the AVE (3.2) we know that (3.2) has a unique solution. Then (1.1) is uniquely

solvable for any right-hand side matrices E1, E2.

Finally, according to equivalence of (1.1) and (3.2) and part (iii) of Lemma 2.1, if∣∣∣∣∣
(
B1

T ⊗A1 0

0 B2
T ⊗A2

)(
x

y

)∣∣∣∣∣ 6
∣∣∣∣∣
(

0 D1
T ⊗ C1

D2
T ⊗ C2 0

)∣∣∣∣∣
∣∣∣∣∣
(
x

y

)∣∣∣∣∣ (3.6)

has only the trivial solution pair, then (1.1) has a unique solution-pair. And it is easy to find

(3.6) can be converted to(
|(B1

T ⊗A1)x|
|(B2

T ⊗A2)y|

)
6

(
|D1

T ⊗ C1||y|
|D2

T ⊗ C2||x|

)
, (3.7)
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i.e., {
|vec(A1XB1)| 6 vec(|C1||Y ||D1|),
|vec(A2Y B2)| 6 vec(|C2||X||D2|).

That is

{
|A1XB1| 6 |C1||Y ||D1|
|A2Y B2| 6 |C2||X||D2|

has only the trivial solution-pair (X,Y ) = (0, 0), then (1.1)

has the unique solution-pair. �

Remark 3.1. Notice that for any nonsingular matrix A, we have σmin(A) · σmax(A−1) = 1.

Hence, when C1, C2, D1, D2 are nonsingular matrices in (1.1),{
σmin(B1D1

−1)σmin(C1
−1A1) > 1,

σmin(B2D2
−1)σmin(C2

−1A2) > 1,

can be substituted for the condition in (ii) of Theorem 3.2. By the simple computations, we

get σmin
(
B−1A

)
> σmin

(
B−1

)
σmin(A) = σmin(A)

σmax(B) . It can be seen that condition

{
σmin(B1D1

−1)σmin(C1
−1A1) > 1,

σmin(B2D2
−1)σmin(C2

−1A2) > 1,

is slightly weaker than condition max
i=1,2
{σmax(Di)σmax(Ci)} < min

i=1,2
{σmin(Bi)σmin(Ai)}.

The following theorem states that the regularity of the interval matrix can also be used to

guarantee the unique solvability of (1.1) for any right-hand side matrices E1, E2.

First review the definition of interval matrix. Given two matrices T =
(
tij
)

and T =
(
tij
)
,

an interval matrix [T , T ] is defined by [T , T ] := {T : T 6 T 6 T}, where for two matrices

X = (xij) and Y = (yij), matrix inequality X 6 Y refers to xij 6 yij for any i, j.

Theorem 3.2. For any U1 ∈ [−|T1|, |T1|], U2 ∈ [−|T2|, |T2|], if

(
S1 U1

U2 S2

)
is nonsingular

matrix, then (1.1) is uniquely solvable for any right-hand side matrices E1, E2.

Proof. According to Theorem 2.2 in [19], the theorem can be obtained directly. �

Theorem 3.3. Let C1, C2, D1, D2 be square nonsingular matrices and 0 6= C1
−1E1D1

−1, C2
−1E2D2

−1 >

0,
2∏
i=1

σmax(Ai)σmax(Bi) <
2∏
i=1

σmin(Ci)σmin(Di), (3.8)

then {
A1XB1 − C1|Y |D1 = E1,

A2Y B2 − C2|X|D2 = E2,
(3.9)

has no solution.

7



Proof. It is assumed that (3.9) has a non-zero solution. Since C1, C2, D1, D2 are square

nonsingular matrices, we have{
C1
−1A1XB1D1

−1 − |Y | = C1
−1E1D1

−1 > 0,

C2
−1A2Y B2D2

−1 − |X| = C2
−1E2D2

−1 > 0,
i.e.,

{
C1
−1A1XB1D1

−1 > |Y |,
C2
−1A2Y B2D2

−1 > |X|.

According to Proposition 2.1 and norm inequality, we get

‖Y ‖ 6 ‖C1
−1A1XB1D1

−1‖
6 ‖C1

−1‖‖A1‖‖X‖‖B1‖‖D1
−1‖,

‖X‖ 6 ‖C2
−1A2Y B2D2

−1‖
6 ‖C2

−1‖‖A2‖‖Y ‖‖B2‖‖D2
−1‖

6 ‖C2
−1‖‖A2‖‖C1

−1‖‖A1‖‖X‖‖B1‖‖D1
−1‖‖B2‖‖D2

−1‖.

(3.10)

And (3.8) can be written as ‖A1‖‖B1‖‖A2‖‖B2‖ < 1
‖C1
−1‖‖D1

−1‖‖C2
−1‖‖D2

−1‖ . Combining (3.10),we

get the contradiction ‖X‖ < ‖X‖. �

Remark 3.2. A special case of Theorem 3.3 concerns the coupled Sylvester-like AVE{
A1XB1 − |Y | = E1,

A2Y B2 − |X| = E2.
(3.11)

A sufficient condition for the non-solvability of this equation is that 0 6= E1, E2 > 0 and

2∏
i=1

σmax(Ai)σmax(Bi) < 1. (3.12)

4 Solve the coupled Sylvester-like absolute value equation

4.1 The Newton-base bimatrix splitting iteration method for solving the
coupled Sylvester-like absolute value equation

In this section, the Newton-base bimatrix splitting iteration method is established to solve

the (1.1). In the rest of this paper, we assume that A1, A2, C1, C2 ∈ Rm×m, B1, B2, D1, D2 ∈
Rn×n, E1, E2 ∈ Rm×n and X,Y ∈ Rm×n.

From the above, (1.1) is equivalent to

F(z) = 0, with F(z) = Az + B|z| − E , (4.1)

where

A =

(
S1 0

0 S2

)
,B =

(
0 T1

T2 0

)
, z =

(
x

y

)
, E =

(
e1

e2

)
.

Thus, the Newton iteration method can be written as

z(k+1) = z(k) −F ′
(
z(k)
)−1
F
(
z(k)
)
, k = 0, 1, 2, . . . . (4.2)
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Then generalized Newton method (GN) [23] can be expressed as

z(k+1) = z(k) − (A+ BD(z(k)))−1(Az(k) + B|z(k)| − E), (4.3)

where D(z(k)) = diag(sign(z(k))). The modified Newton method (MN) [24] is proposed accord-

ingly to

z(k+1) = z(k) − (A+ Ω)−1(Az(k) +B|z(k)| − E), (4.4)

Ω is positive semi-definite here. But if A + Ω is ill-conditioned, the MN method may be

expensive in practical calculations. Furthermore, in [6], the author proposes a Newton-based

matrix splitting method (NM)

z(k+1) = z(k) − (M+ Ω)−1(Az(k) + B|z(k)| − E), (4.5)

where A =M−N and Ω is positive semi-definite.

In order to improve iteration efficiency, based on the MN method and the NM method,

we propose the Newton-base bimatrix splitting iteration method combining the characteristics

of the coupled Sylvester-like absolute value equation. The matrices A1, A2 split into A1 =

m1 − n1, A2 = m2 − n2, where Ω1,Ω2 ∈ Rn×n satisfy m1 + Ω1,m2 + Ω2 are invertible. Set

M1 = m1 + Ω1,M2 = m2 + Ω2, N1 = n1 + Ω1, N2 = n2 + Ω2. The split of the matrices B1, B2

are B1 = P1 − Q1, B2 = P2 − Q2, respectively. Then we can get the Newton-base bimatrix

splitting iteration method{
X = M−1

1 (E1 − C1|Y |D1 +N1XB1 +M1XQ1)P−1
1 ,

Y = M−1
2 (E2 − C2|X|D2 +N2Y B2 +M2Y Q2)P−1

2 .
(4.6)

Algorithm 4.1. (The Newton-base bimatrix splitting iteration method)

Step 1 Given initial point X(0), Y (0) ∈ Rm×n and the parameter ε > 0. Assume the split

of the matrices A1, A2, B1, B2 are A1 = m1 − n1, A2 = m2 − n2, B1 = P1 −Q1, B2 = P2 −Q2,

respectively. Given Ω1,Ω2 ∈ Rm×m which satisfies M1 = m1 + Ω1,M2 = m2 + Ω2 are invertible

and N1 = n1 + Ω1, N2 = n2 + Ω2.

Step 2
√
‖A1X(k)B1 + C1|Y (k)|D1 − E1‖2 + ‖A2Y (k)B2 + C2|X(k)|D2 − E2‖2/

√
‖E1‖2 + ‖E2‖2 <

ε, stop.

Step 3 Compute x(k+1) and y(k+1) by{
X(k+1) = M−1

1 (E1 − C1|Y (k)|D1 +N1X
(k)B1 +M1X

(k)Q1)P−1
1 ,

Y (k+1) = M−1
2 (E2 − C2|X(k+1)|D2 +N2Y

(k)B2 +M2Y
(k)Q2)P−1

2 .
(4.7)

Step 4 Set k := k + 1 and go to Step 2.

Let (X∗, Y ∗) are the solution-pair of the coupled Sylvester-like absolute value equation

(1.1). The iteration errors eXk = X∗ −X(k), eYk = Y ∗ − Y (k) where X(k), Y (k) are generated by

(4.7).

9



Theorem 4.1. Let A1, A2, C1, C2 ∈ Rm×m, B1, B2, D1, D2 ∈ Rn×n, E1, E2 ∈ Rm×n. Given the

split of the matrices A1, A2, B1, B2 are A1 = m1−n1, A2 = m2−n2, B1 = P1−Q1, B2 = P2−Q2,

and N1 = n1 +Ω1, N2 = n2 +Ω2 ∈ Rm×m,M1 = m1 +Ω1,M2 = m2 +Ω2 ∈ Rm×m are nonsingu-

lar. Denote ‖M−1
1 ‖‖N1‖‖B1‖‖P−1

1 ‖+‖M
−1
1 ‖‖M1‖‖Q1‖‖P−1

1 ‖ = s1, ‖M−1
2 ‖‖N2‖‖B2‖‖P−1

2 ‖+
‖M−1

2 ‖‖M2‖‖Q2‖‖P−1
2 ‖ = s2, ‖M−1

1 ‖‖C1‖‖D1‖‖P−1
1 ‖ = t1, ‖M−1

2 ‖‖C2‖‖D2‖‖P−1
2 ‖ = t2. If s1+

t1t2 + s2 < 1, then the Algorithm 4.1 is convergent.

Proof. From (1.1), we have{
A1X

∗B1 + C1|Y ∗|D1 = E1,

A2Y
∗B2 + C2|X∗|D2 = E2.

(4.8)

Then (4.8) is equivalent to{
X∗ = M−1

1 (E1 − C1|Y ∗|D1 +N1X
∗B1 +M1X

∗Q1)P−1
1 ,

Y ∗ = M−1
2 (E2 − C2|X∗|D2 +N2Y

∗B2 +M2Y
∗Q2)P−1

2 .
(4.9)

Form (4.7), (4.9), we can get

‖eXk+1‖ = ‖M−1
1 (C1(|Y ∗| − |Y (k)|)D1 +N1(X∗ −X(k))B1 +M1(X∗ −X(k))Q1)P−1

1 ‖
6 ‖M−1

1 ‖(‖C1‖‖|Y ∗| − |Y (k)|‖‖D1‖+ ‖N1‖‖X∗ −X(k)‖‖B1‖+ ‖M1‖‖X∗ −X(k)‖‖Q1‖)‖P−1
1 ‖

6 ‖M−1
1 ‖(‖C1‖‖eYk ‖‖D1‖+ ‖N1‖‖eXk ‖‖B1‖+ ‖M1‖‖eXk ‖‖Q1‖)‖P−1

1 ‖
= (‖M−1

1 ‖‖N1‖‖B1‖‖P−1
1 ‖+ ‖M−1

1 ‖‖M1‖‖Q1‖‖P−1
1 ‖)‖eXk ‖+ ‖M−1

1 ‖‖C1‖‖D1‖‖P−1
1 ‖‖eYk ‖

= s1‖eXk ‖+ t1‖eYk ‖,
(4.10)

and

‖eYk+1‖ = ‖M−1
2 (C2(|X∗| − |X(k+1)|)D2 +N2(Y ∗ − Y (k))B2 +M2(Y ∗ − Y (k))Q2)P−1

2 ‖
6 ‖M−1

2 ‖(‖C2‖‖|X∗| − |X(k+1)|‖‖D2‖+ ‖N2‖‖Y ∗ − Y (k)‖‖B2‖+ ‖M2‖‖Y ∗ − Y (k)‖‖Q2‖)‖P−1
2 ‖

6 ‖M−1
2 ‖(‖C2‖‖eXk+1‖‖D2‖+ ‖N2‖‖eYk ‖‖B2‖+ ‖M2‖‖eYk ‖‖Q2‖)‖P−1

2 ‖
= (‖M−1

2 ‖‖N2‖‖B2‖‖P−1
2 ‖+ ‖M−1

2 ‖‖M2‖‖Q2‖‖P−1
2 ‖)‖eYk ‖+ ‖M−1

2 ‖‖C2‖‖D2‖‖P−1
2 ‖‖eXk+1‖

= t2‖eXk+1‖+ s2‖eYk ‖
6 t2(s1‖eXk ‖+ t1‖eYk ‖) + s2‖eYk ‖
= t2s1‖eXk ‖+ (t2t1 + s2)‖eYk ‖.

(4.11)

Further, (
‖eXk+1‖
‖eYk+1‖

)
6

(
s1 t1

t2s1 t2t1 + s2

)(
‖eXk ‖
‖eYk ‖

)

6

(
s1 t1

t2s1 t2t1 + s2

)2(
‖eXk−1‖
‖eYk−1‖

)
...

6

(
s1 t1

t2s1 t2t1 + s2

)k+1(
‖eX0 ‖
‖eY0 ‖

)
.

(4.12)

10



Let W =

(
s1 t1

t2s1 t2t1 + s2

)
, we know that when ρ(W ) < 1, lim

k→∞
W k = 0. It is shown

that lim
k→∞

‖eXk ‖ = 0, lim
k→∞

‖eYk ‖ = 0. In other words, the Algorithm 4.1 converges to the unique

solution-pair (X∗, Y ∗).

Next, we need to prove ρ(W ) < 1. Let λ be the eigenvalue of the matrix W. Then λ satisfies

λ2 − (s1 + t2t1 + s2)λ+ (s1(t2t1 + s2)− t2s1t1) = 0.

After simple calculations, we have

λ2 − (s1 + t2t1 + s2)λ+ s1s2 = 0. (4.13)

From s1 +t1t2 +s2 < 1, we can get t1t2 +2
√
s1s2 < s1 +t1t2 +s2 < 1 < 1+s1s2. Then 2

√
s1s2 <

1 − t1t2 < 1. It is obviously that s1s2 < (1
2)2 < 1. According to Lemma 2.4, ρ(W ) < 1. This

completes the proof. �

Corollary 4.1. Let A1 be positive definite and A1 = m1 − n1 be its a splitting, where m1 is

positive definite. Assume that the matrix Ω1 ∈ Rm×m is positive diagonal. If

‖m−1
1 ‖ <

1− s2

ω‖P−1
1 ‖+ (1− s1)‖Ω1‖

, (4.14)

where ω = ‖N1‖‖B1‖+ ‖M1‖‖Q1‖+ ‖C1‖‖D1‖‖M−1
2 ‖‖C2‖‖D2‖‖P2

−1‖, then Algorithm 4.1 is

convergent.

Proof. According to the hypothesis, it is see to that matrix m1 + Ω1 is positive definite.

Clearly, matrices m1 + Ω1 and m1 are invertible.

From the Banach perturbation lemma, we have

‖(m1 + Ω1)−1‖ 6 ‖m−1
1 ‖

1−‖m−1
1 ‖‖Ω1‖

<

1−s2

ω‖P−1
1 ‖+(1−s1)‖Ω1‖

1− 1−s2

ω‖P−1
1 ‖+(1−s1)‖Ω1‖

‖Ω1‖

= 1−s2
ω‖P−1

1 ‖
.

Therefore, Algorithm 4.1 is convergent under the condition (4.14). �

Corollary 4.2. Set Ω1 = ω1I. Assume that m1, P1 are symmetric positive definite matri-

ces. If 1
(λmin(m1)+ω1)λmin(P1) <

1−S2
ω where λmin(m1), λmin(P1) are the smallest eigenvalue of

matrix m1 and the smallest eigenvalue of matrix P1, respectively, then the Algorithm 4.1 is

convergent.

Proof. Clearly, we know ‖(m1 + Ω1)−1‖ = 1
λmin(m1)+ω1

and ‖P−1
1 ‖ = 1

λmin(P1) . Therefore,

when 1
(λmin(m1)+ω1)λmin(P1) <

1−s2
ω , we have s1+t1t2+s2 < 1. Thus, Algorithm 4.1 is convergent.

�

11



4.2 The Newton-base generalized Gauss-Seidel bimatrix splitting iteration
method for solving the coupled Sylvester-like absolute value equation

Now we propose another method to obtain the solution of the coupled Sylvester-like ab-

solute value equation.

Recalling that the coupled Sylvester-like absolute value equation has the following form,{
A1XB1 + C1|Y |D1 = E1,

A2Y B2 + C2|X|D2 = E2.

Multiplying λ, then we have {
λA1XB1 + λC1|Y |D1 = λE1,

λA2Y B2 + λC2|X|D2 = λE2.
(4.15)

Let

A1 = DA1 − LA1 + Ω− (UA1 + Ω), A2 = DA2 − UA2 + Ω− (LA1 + Ω), (4.16)

where DA1 = diag(A1), DA2 = diag(A2), UA1 , LA1 are strictly upper and lower triangular parts

of A1 and UA2 , LA2 are strictly upper and lower triangular parts of A2, respectively. Ω satisfies

M1 = DA1−LA1 +Ω, M2 = DA2−UA2 +Ω are invertible. And assume the split of the matrices

B1 and B2 are B1 = P1 − Q1, B2 = P2 − Q2, respectively. According to (4.15), (4.16) can be

suggested as {
λ(DA1 − LA1 + Ω− (UA1 + Ω))X(P1 −Q1) + λC1|Y |D1 = λE1,

λ(DA2 − UA2 + Ω− (LA1 + Ω))Y (P2 −Q2) + λC2|X|D2 = λE2.

After simple calculations, the above formula is transformed into{
λ(DA1 − LA1 + Ω)X + (UA1 + Ω)X = λE1P

−1
1 − λC1|Y |D1P1

−1 + λA1XQ1P1
−1 + (λ+ 1)(UA1 + Ω)X,

λ(DA2 − UA2 + Ω)Y + (LA2 + Ω)Y = λE2P
−1
2 − λC2|X|D2P2

−1 + λA2Y Q2P2
−1 + (λ+ 1)(LA2 + Ω)Y.

(4.17)

Using the iterative scheme, (4.17) can be written as{
X(k+1) = (λM1)−1(λE1P

−1
1 −N1X

(k+1) − λC1|Y (k)|D1P1
−1 + λA1X

(k)Q1P1
−1 + (λ+ 1)N1X

(k)),

Y (k+1) = (λM2)−1(λE2P
−1
2 −N2Y

(k+1) − λC2|X(k+1)|D2P2
−1 + λA2Y

(k)Q2P2
−1 + (λ+ 1)N2Y

(k)),

(4.18)

where M1 = DA1 − LA1 + Ω,M2 = DA2 − UA2 + Ω, N1 = UA1 + Ω, N2 = LA2 + Ω.

Based on this, we get the following algorithm.

Algorithm 4.2. (The Newton-base generalized Gauss-Seidel bimatrix splitting iteration

method I (NGGSBSI I))

Step 1 Given initial point X(0), Y (0) ∈ Rm×n and the parameter ε, λ > 0. Assume the split

of the matrices A1, A2, B1, B2 are A1 = DA1−LA1 +Ω−(UA1 +Ω), A2 = DA2−UA2 +Ω−(LA2 +

Ω), B1 = P1 −Q1, B2 = P2 −Q2, respectively. Here, Ω satisfies M1 = DA1 − LA1 + Ω, M2 =

DA2 − UA2 + Ω are invertible and N1 = UA1 + Ω, N2 = LA2 + Ω.

12



Step 2 If
√
‖A1X(k)B1 + C1|Y (k)|D1 − E1‖2 + ‖A2Y (k)B2 + C2|X(k)|D2 − E2‖2/

√
‖E1‖2 + ‖E2‖2 <

ε, stop.

Step 3 Compute X(k+1) and Y (k+1) by{
X(k+1) = (λM1)−1(λE1P

−1
1 −N1X

(k+1) − λC1|Y (k)|D1P1
−1 + λA1X

(k)Q1P1
−1 + (λ+ 1)N1X

(k)),

Y (k+1) = (λM2)−1(λE2P
−1
2 −N2Y

(k+1) − λC2|X(k+1)|D2P2
−1 + λA2Y

(k)Q2P2
−1 + (λ+ 1)N2Y

(k)).

(4.19)

Step 4 Set k := k + 1 and go to Step 2.

Taking a different split for A1, i.e.,

A1 = DA1 − UA1 + Ω− (LA1 + Ω), (4.20)

the new iteration method is obtained.

Algorithm 4.3. (The Newton-base generalized Gauss-Seidel bimatrix splitting iteration

method II (NGGSBSI II))

Step 1 Given initial point X(0), Y (0) ∈ Rn×p and the parameter ε, λ > 0. Assume the split

of the matrices A1, A2, B1, B2 are A1 = DA1−UA1 +Ω−(LA1 +Ω), A2 = DA2−UA2 +Ω−(LA1 +

Ω), B1 = P1 − Q1, B2 = P2 − Q2, respectively. Here, Ω satisfies M1 = DA1 − UA1 + Ω,M2 =

DA2 − UA2 + Ω are invertible and N1 = LA1 + Ω, N2 = LA2 + Ω.

Step 2 If
√
‖A1X(k)B1 + C1|Y (k)|D1 − E1‖2 + ‖A2Y (k)B2 + C2|X(k)|D2 − E2‖2/

√
‖E1‖2 + ‖E2‖2 <

ε, stop.

Step 3 Compute X(k+1) and Y (k+1) by{
X(k+1) = (λM1)−1(λE1P

−1
1 −N1X

(k+1) − λC1|Y (k)|D1P1
−1 + λA1X

(k)Q1P1
−1 + (λ+ 1)N1X

(k)),

Y (k+1) = (λM2)−1(λE2P
−1
2 −N2Y

(k+1) − λC2|X(k+1)|D2P2
−1 + λA2Y

(k)Q2P2
−1 + (λ+ 1)N2Y

(k)).

(4.21)

Step 4 Set k := k + 1 and go to Step 2.

Theorem 4.2. Let A1, A2, C1, C2 ∈ Rm×m, B1, B2, D1, D2 ∈ Rn×n, E1, E2 ∈ Rm×n. De-

note ‖(λ(DA1−LA1 +Ω))−1‖‖UA1 +Ω‖ = φ1, ‖(λ(DA2−UA2 +Ω))−1‖‖LA2 +Ω‖ = φ2, ‖(DA1−
LA1 + Ω)−1‖‖C1‖‖D1P1

−1‖ = ψ1, ‖(DA2 − UA2 + Ω)−1‖‖C2‖‖D2P2
−1‖ = ψ2, ‖(DA1 − LA1 +

Ω)−1‖‖A1‖‖Q1P1
−1‖ = α1, ‖(DA2−UA2+Ω)−1‖‖A2‖‖Q2P2

−1‖ = α2, ‖(λ(DA1−LA1+Ω))−1‖‖(λ+

1)(UA1 + Ω)‖ = β1, ‖(λ(DA2 − UA2 + Ω))−1‖‖(λ+ 1)(LA2 + Ω)‖ = β2. If α1+β1

1−φ1
+ ψ1

1−φ1

ψ2

1−φ2
+

α2+β2

1−φ2
< 1, then the Algorithm 4.2 is convergent.

Proof. Similar to the proof of theorem 4.1, it can be seen that

‖eXk+1‖ = ‖(λ(DA1 − LA1 + Ω))−1(−(UA1 + Ω)(X(k+1) −X∗)− λC1(|Y (k)| − |Y ∗|)D1P1
−1

+ λA1(X(k) −X∗)Q1P1
−1 + (λ+ 1)(UA1 + Ω)(X(k) −X∗))‖

6 ‖(λ(DA1 − LA1 + Ω))−1‖‖UA1 + Ω‖‖eXk+1‖+ ‖(DA1 − LA1 + Ω)−1‖‖C1‖‖D1P1
−1‖‖eYk ‖

+ ‖(DA1 − LA1 + Ω)−1‖‖A1‖‖Q1P1
−1‖‖eXk ‖

+ ‖(λ(DA1 − LA1 + Ω))−1‖‖(λ+ 1)(UA1 + Ω)‖‖eXk ‖
= φ1‖eXk+1‖+ (α1 + β1)‖eXk ‖+ ψ1‖eYk ‖,

(4.22)

13



‖eYk+1‖ = ‖(λ(DA2 − UA2 + Ω))−1(−(LA2 + Ω)(Y (k+1) − Y ∗)− λC2(|X(k+1)| − |X∗|)D2P2
−1

+ λA2(Y (k) − Y ∗)Q2P2
−1 + (λ+ 1)(LA2 + Ω)(Y (k) − Y ∗))‖

6 ‖(λ(DA2 − UA2 + Ω))−1‖‖LA2 + Ω‖‖eYk+1‖+ ‖(DA2 − UA2 + Ω)−1‖‖C2‖‖D2P2
−1‖‖eXk+1‖

+ ‖(DA2 − UA2 + Ω)−1‖‖A2‖‖Q2P2
−1‖‖eYk ‖

+ ‖(λ(DA2 − UA2 + Ω))−1‖‖(λ+ 1)(LA2 + Ω)‖‖eYk ‖
= φ2‖eYk+1‖+ (α2 + β2)‖eYk ‖+ ψ2‖eXk+1‖,

(4.23)

Further,(
‖eXk+1‖
‖eYk+1‖

)
6

(
α1+β1

1−φ1

ψ1

1−φ1
ψ2

1−φ2

α1+β1

1−φ1

ψ2

1−φ2

ψ1

1−φ1
+ α2+β2

1−φ2

)(
‖eXk ‖
‖eYk ‖

)

6

(
α1+β1

1−φ1

ψ1

1−φ1
ψ2

1−φ2

α1+β1

1−φ1

ψ2

1−φ2

ψ1

1−φ1
+ α2+β2

1−φ2

)2(
‖eXk−1‖
‖eYk−1‖

)
...

6

(
α1+β1

1−φ1

ψ1

1−φ1
ψ2

1−φ2

α1+β1

1−φ1

ψ2

1−φ2

ψ1

1−φ1
+ α2+β2

1−φ2

)k+1(
‖eX0 ‖
‖eY0 ‖

)
.

(4.24)

Let W =

(
α1+β1

1−φ1

ψ1

1−φ1
ψ2

1−φ2

α1+β1

1−φ1

ψ2

1−φ2

ψ1

1−φ1
+ α2+β2

1−φ2

)
, we know that when ρ(W ) < 1, lim

k→∞
W k = 0.

It is shown that lim
k→∞

‖eXk ‖ = 0, lim
k→∞

‖eYk ‖ = 0. In other words, the Algorithm 4.2 converges to

the unique solution-pair (X∗, Y ∗).

According to the proof of Theorem 4.1, we know that when α1+β1

1−φ1
+ ψ1

1−φ1

ψ2

1−φ2
+ α2+β2

1−φ2
< 1,

ρ(W ) < 1. This completes the proof. �

Theorem 4.3. Let A1, A2, C1, C2 ∈ Rm×m, B1, B2, D1, D2 ∈ Rn×n, E1, E2 ∈ Rm×n. De-

note ‖(λ(DA1−UA1 +Ω))−1‖‖LA1 +Ω‖ = φ1, ‖(λ(DA2−UA2 +Ω))−1‖‖LA2 +Ω‖ = φ2, ‖(DA1−
UA1 + Ω)−1‖‖C1‖‖D1P1

−1‖ = ψ1, ‖(DA2 − UA2 + Ω)−1‖‖C2‖‖D2P2
−1‖ = ψ2, ‖(DA1 − UA1 +

Ω)−1‖‖A1‖‖Q1P1
−1‖ = α1, ‖(DA2−UA2+Ω)−1‖‖A2‖‖Q2P2

−1‖ = α2, ‖(λ(DA1−UA1+Ω))−1‖‖(λ+

1)(LA1 + Ω)‖ = β1, ‖(λ(DA2 − UA2 + Ω))−1‖‖(λ+ 1)(LA2 + Ω)‖ = β2. If α1+β1

1−φ1
+ ψ1

1−φ1

ψ2

1−φ2
+

α2+β2

1−φ2
< 1, then the Algorithm 4.2 is convergent.

4.3 The inexact relaxed generalized Newton bimatrix splitting method for
solving the coupled Sylvester-like absolute value equation

In order to overcome the problem that the above two methods cannot solve, we propose

an inexact method for solving the coupled Sylvester-like absolute value equation based on the

equivalence of (1.1) and (3.2).

Algorithm 4.4. (The inexact relaxed generalized Newton bimatrix splitting method)

Step 1 Given initial point X(0), Y (0) ∈ Rm×n and the parameter ε > 0, 0 6 θ < 1. Assume

the split of the matrices A1, A2, B1, B2 are A1 = m1 − n1, A2 = m2 − n2, B1 = P1 −Q1, B2 =
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P2 −Q2, respectively. Given Ω1,Ω2 ∈ Rm×m which satisfy M1 = m1 + Ω1,M2 = m2 + Ω2 are

invertible and N1 = n1 + Ω1, N2 = n2 + Ω2. k = 0.

Step 2 If
√
‖A1X(k)B1 + C1|Y (k)|D1 − E1‖2 + ‖A2Y (k)B2 + C2|X(k)|D2 − E2‖2/

√
‖E1‖2 + ‖E2‖2 <

ε, stop;

Step 3.1 Set i = 0, z(k) = (vec(X(k))T , vec(Y (k))T )T . Given X
(0)
k , Y

(0)
k .

Step 3.2 Compute X
(i+1)
k and Y

(i+1)
k by{

M1X
(i+1)
k = (E1 − C1|Y (i)

k |D1 +N1X
(k)B1 +M1X

(k)Q1)P−1
1 ,

M2Y
(i+1)
k = (E2 − C2|X(i+1)

k |D2 +N2Y
(k)B2 +M2Y

(k)Q2)P−1
2 .

(4.25)

Step 3.3 If ‖(M+ Ω +BD(z(k)))z(k+1)− ((N + Ω)z(k) +E)‖ 6 θ‖F(z(k))‖, then X(k+1) =

X
(i+1)
k , Y (k+1) = Y

(i+1)
k , k := k + 1, go to Step 2. Here, A = (M + Ω) − (N + Ω), A,B, E ,F

are given by (4.1) and z(k+1) = (vec(X
(i+1)
k )T , vec(Y

(i+1)
k )T )T , D(z(k)) = diag(sign(z(k))).

Step 4 Set i := i+ 1 and go to Step 3.2.

Theorem 4.4. Suppose that M + Ω + BD(z) is invertible for each z ∈ Rmn. Let 0 6 θ < 1.

Let z∗ is the solution of (4.1), then for z(k+1) ∈ Rmn generated by Algorithm 4.4 satisfying

‖z(k+1) − z∗‖ 6‖(M+ Ω + BD(zk))−1‖(θ(‖M+ Ω + BD(zk)‖

+ 2‖B‖+ ‖N + Ω‖) + 2‖B‖+ ‖N + Ω‖)‖z(k) − z∗‖.
(4.26)

Then when

‖(M+ Ω)−1‖ < 1

θ‖M+ Ω‖+ (θ + 1)(3‖B‖+ ‖N + Ω‖)
, (4.27)

Algorithm 4.4 is convergent.

Proof. In the light of F(z∗) = 0 and the fact that

(M+ Ω + BD(z(k)))z(k) = F(z(k)) + (N + Ω)z(k) + E , (4.28)

we obtain

z(k+1) − z∗ = z(k+1) − z(k) + z(k) − z∗

= z(k+1) − (M+ Ω + BD(z(k)))−1(F(z(k)) + (N + Ω)z(k) + E) + z(k) − z∗

= (M+ Ω + BD(z(k)))−1((M+ Ω + BD(z(k)))z(k+1) − ((N + Ω)z(k) + E)

+ F(z∗)−F(z(k)) + (M+ Ω + BD(z(k)))(z(k) − z∗)).

(4.29)

Taking norms on both sides and utilizing the triangle inequality, one can obtain

‖z(k+1) − z∗‖ 6 ‖(M+ Ω + BD(z(k)))−1‖(‖(M+ Ω + BD(z(k)))z(k+1) − ((N + Ω)z(k) + E)‖

+ ‖F(z∗)−F(z(k)) + (M+ Ω + BD(z(k)))(z(k) − z∗)‖)

6 ‖(M+ Ω + BD(z(k)))−1‖(θ‖F(z(k))‖

+ ‖F(z∗)−F(z(k)) + (M+ Ω + BD(z(k)))(z(k) − z∗)‖).
(4.30)
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On the other hand,

F(z(k)) = (M+ Ω +BD(z(k)))(z(k)− z∗)− (F(z∗)−F(z(k))− (M+ Ω +BD(z(k)))(z∗− z(k))).

(4.31)

Similarly, if the norm is taken for both sides of the above equation, then

‖F(z(k))‖ = ‖(M+ Ω + BD(z(k)))(z(k) − z∗)− (F(z∗)−F(z(k))− (M+ Ω + BD(z(k)))(z∗ − z(k)))‖

6 ‖M+ Ω + BD(z(k))‖‖z(k) − z∗‖+ ‖F(z∗)−F(z(k))− (M+ Ω + BD(z(k)))(z∗ − z(k))‖.
(4.32)

Furthermore, by some calculations, it holds that

F(z∗)−F(z(k))− (M+ Ω + BD(z(k)))(z∗ − z(k))

= (Az∗ + B|z∗| − E)− (Az(k) + B|z(k)| − E)− (M+ Ω + BD(z(k)))(z∗ − z(k))

= B(|z∗| − |z(k)|)− (N + Ω)(z∗ − z(k))− BD(z(k))(z∗ − z(k)).

(4.33)

Then

‖F(z∗)−F(z(k))− (M+ Ω + BD(z(k)))(z∗ − z(k))‖ 6 (2‖B‖+ ‖N + Ω‖)‖z∗ − z(k)‖. (4.34)

Combining (4.32) and (4.34), we get

‖F(z(k))‖ 6 (‖M+ Ω + BD(z(k))‖+ 2‖B‖+ ‖N + Ω‖)‖z∗ − z(k)‖. (4.35)

Substitute (4.34) and (4.35) into (4.30), one obtains

‖z(k+1) − z∗‖ 6 ‖(M+ Ω + BD(z(k)))−1‖(θ(‖M+ Ω + BD(z(k))‖+ 2‖B‖+ ‖N + Ω‖)

+ 2‖B‖+ ‖N + Ω‖)‖z(k) − z∗‖.
(4.36)

It’s clear that

(M+ Ω + BD(z(k)))−1 = (I + (M+ Ω)−1BD(z(k)))−1(M+ Ω)−1.

And ‖(M + Ω)−1BD(z(k))‖ 6 ‖(M + Ω)−1‖‖B‖ < 1, based on the Banach perturbation, we

have

‖(I + (M+ Ω)−1BD(z(k)))−1‖ 6 1

1− ‖(M+ Ω)−1BD(z(k))‖

6
1

1− ‖(M+ Ω)−1‖‖B‖
.

(4.37)

Then

‖(M+ Ω + BD(z(k)))−1‖ 6 ‖(I + (M+ Ω)−1BD(z(k)))−1‖‖(M+ Ω)−1‖ 6 ‖(M+ Ω)−1‖
1− ‖(M+ Ω)−1‖‖B‖

.

(4.38)
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Substitute (4.38) into (4.36), there is

‖z(k+1) − z∗‖ 6 ‖(M+ Ω)−1‖
1− ‖(M+ Ω)−1‖‖B‖

(θ(‖M+ Ω + BD(z(k))‖+ 2‖B‖+ ‖N + Ω‖)

+ 2‖B‖+ ‖N + Ω‖)‖z(k) − z∗‖

6
‖(M+ Ω)−1‖

1− ‖(M+ Ω)−1‖‖B‖
(θ(‖M+ Ω‖+ 3‖B‖+ ‖N + Ω‖)

+ 2‖B‖+ ‖N + Ω‖)‖z(k) − z∗‖

(4.39)

Thus, according to assumption, we have ‖z(k+1)− z∗‖ < ‖z(k)− z∗‖. This completes the proof.

�

5 Numerical results

We give the following three examples to verify the conclusions obtained in this paper and

test the algorithms. And we intuitively analyze the effect of the algorithm from the iteration

count (indicated as IT), the relative residual error (indicated as RES) and the elapsed CPU

time (indicated as CPU) where RES is defined as

RES =
‖F(z)‖
‖E‖

=

√
‖A1X(k)B1 + C1|Y (k)|D1 − E1‖2 + ‖A2Y (k)B2 + C2|X(k)|D2 − E2‖2√

‖E1‖2 + ‖E2‖2
,

where F , E , z are given by (4.1). While RES < 10−6 or the prescribed iteration count kmax =

1000 is surpassed, all iterations are terminated. The programming language used was MATLAB

R2018a.
Example 5.1. In order to be more intuitive, we first consider a small problem for (1.1), though
our conclusions can be used for much larger problems in practice. Let

A1 =

 2 −4 0

0 2 2

−2 1 0

 , B1 =

 −5 2 9

7 3 3

−6 −12 0

 , C1 =

 1 −1 0

0 1 1

−1 0 0

 , D1 =

 1 −2 0

0 1 1

−1 1 0

 ,

A2 =

 2 4 0

0 2 2

2 1 0

 , B2 =

 −5 2 9

7 3 2

−6 6 0

 , C2 =

 1 1 0

0 1 −1

1 0 0

 , D2 =

 1 2 0

0 1 −1

1 1 0

 ,
and

E1 =

 −154 56 −23

30 −72 145

101 −106 −68

 , E2 =

 33 75 29

−40 38 19

28 40 27

 .
By the simple computations, we have

max{σmax(D1)σmax(C1), σmax(D2)σmax(C2)} = 5.01 < 6.20 = min{σmin(B1)σmin(A1), σmin(B2)σmin(A2)}

and {
σmax(D1B1

−1)σmax(A1
−1C1) = 0.11 < 1

σmax(D2B2
−1)σmax(A2

−1C2) = 0.26 < 1
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which satisfy part (i) and part (ii) of Theorem 3.1, respectively. Indeed, the unique solution is

as follows:

X =

 5 1 4

2 4 0

5 −1 −5

 , Y =

 1 2 0

0 1 1

1 0 2

 .
In this example, with the help of the Theorem 3.1, we do not need to calculate 9×9 matricesA,B
and A−1B, but only need to calculate some 3×3 matrices to judge the solution of the equation.

Of course, it was not difficult to form A and B explicitly in the above example, but this cannot

be done if the matrices are very large. For instance, if the size of double precision input matrix

is about 200, then just storing S1 may require more than 12 GB of memory! Then calculating A
requires more memory.

Then, we give the following experiment to compare the convergence effect of the Newton-

base bimatrix splitting iteration method and the Newton-base generalized Gauss-Seidel bima-

trix splitting iteration method.

Initially, Algorithm 4.1 produces different iterative forms for different ways of splitting.

(1)When M1 = A1,M2 = A2, N1 = 0m, N2 = 0m, P1 = B1, P2 = B2, Q1 = 0n, Q2 = 0n, the

algorithm is simply iterative method without matrix splitting, i.e.,{
X(k+1) = A1

−1(E1 − C1|Y (k)|D1)B1
−1,

Y (k+1) = A2
−1(E2 − C2|X(k+1)|D2)B2

−1,
(5.1)

which can be called a simply iterative method (SI).

(2)When M1 = DA1 − LA1 + Ω1,M2 = DA2 − UA2 + Ω2, N1 = UA2 + Ω1, N2 = LA2 +

Ω2, P1 = DB1 − LB1 , Q1 = UB1 , P2 = DB2 − UB2 , Q2 = LB2 , where DAi = diag(Ai), DBi =

diag(Bi), −LAi ,−UAi ,−LBi ,−UBi represent the strictly lower-triangular and upper-triangular

part of Ai and Bi, i = 1, 2, respectively, Algorithm 4.1 will be expressed as
X(k+1) = (DA1 − LA1 + Ω1)−1(E1 − C1|Y (k)|D1 + (UA2 + Ω1)X(k)B1

+ (DA1 − LA1 + Ω1)X(k)UB1)(DB1 − LB1)−1,

Y (k+1) = (DA2 − UA2 + Ω2)−1(E2 − C2|X(k+1)|D2 + (LA2 + Ω2)Y (k)B2

+ (DA2 − UA2 + Ω2)Y (k)LB2)(DB1 − UB1)−1,

(5.2)

which can be called a Newton-base Gauss-Seidel bimatrix splitting iteration method I (NGS-

BSI I).

(3)When M1 = DA1 − UA1 + Ω1,M2 = DA2 − UA2 + Ω2, N1 = LA1 + Ω1, N2 = LA2 +

Ω2, P1 = DB1 − LB1 , Q1 = UB1 , P2 = DB2 − UB2 , Q2 = LB2 , where DAi = diag(Ai), DBi =

diag(Bi), −LAi ,−UAi ,−LBi ,−UBi represent the strictly lower-triangular and upper-triangular

part of AiandBi, i = 1, 2, respectively, Algorithm 4.1 will be expressed as
X(k+1) = (DA1 − UA1 + Ω1)−1(E1 − C1|Y (k)|D1 + (LA1 + Ω1)X(k)B1

+ (DA1 − UA1 + Ω1)X(k)UB1)(DB1 − LB1)−1,

Y (k+1) = (DA2 − UA2 + Ω2)−1(E2 − C2|X(k+1)|D2 + (LA2 + Ω2)Y (k)B2

+ (DA2 − UA2 + Ω2)Y (k)LB2)(DB1 − UB1)−1,

(5.3)
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which can be called a Newton-base Gauss-Seidel bimatrix splitting iteration method II (NGS-

BSI II).

(4)When M1 = 1
2(A1 +A1

T ) + Ω1,M2 = 1
2(A2 +A2

T ) + Ω2, N1 = −1
2(A1−A1

T ) + Ω1, N2 =

−1
2(A2−A2

T ) + Ω2, P1 = 1
2(B1 +BT

1 ), Q1 = −1
2(B1−B1

T ), P2 = 1
2(B2 +B2

T ), Q2 = −1
2(B2−

B2
T ), Algorithm 4.1 will be expressed as
X(k+1) = (1

2(A1 +A1
T ) + Ω1)−1(E1 − C1|Y (k)|D1 + (−1

2(A1 −A1
T ) + Ω1)X(k)B1

+ (1
2(A1 +A1

T ) + Ω1)X(k)(−1
2(B1 −B1

T )))(1
2(B1 +BT

1 ))−1,

Y (k+1) = (1
2(A2 +A2

T ) + Ω2)−1(E2 − C2|X(k+1)|D2 + (−1
2(A1 −A1

T ) + Ω2)Y (k)B2

+ (1
2(A2 +A2

T ) + Ω2)Y (k)(−1
2(B2 −B2

T )))(1
2(B2 +B2

T ))−1,

(5.4)

which can be called a Newton-base Hermitian and Skew-Hermitian bimatrix splitting iteration

method (NHSBSI).

Example 5.2. Let

S =



6 1 0 0 0

0 6 1 0 0

0
. . .

. . .
. . . 0

0 0 0 6 1

0 0 0 0 6


∈ Rm×m,M1 =



S I0 0 0 0

−I0 S I0 0 0

0
. . .

. . .
. . . 0

0 0 −I0 S I0

0 0 0 −I0 S


∈ Rn×n,

where I0 ∈ Rm×m is an identity matrix. Set I ∈ Rn×n is an identity matrices with n dimensions,

n = m2. M = M1 + µI.

Consider the coupled Sylvester-like absolute value equation{
A1XB1 + C1|Y |D1 = E1,

A2Y B2 + C2|X|D2 = E2,

where A1 = M + I,B1 = I, C1 = 0.5I,D1 = Un(−0.5), A2 = M − I,B2 = 0.5I, C2 =

1n(0.1), D2 = Un(3), E1 = A1X
∗B1 + C1|Y ∗|D1, E2 = A2Y

∗B2 + C2|Y ∗|D2. Here, X∗ =

1n(1.2), Y ∗ = 1n(−0.8).

For Example 5.2, to improve the convergence speed of all the tested methods, the choice

of Ω1,Ω2,Ω are Ω1 = Ω2 = Ω = M1. we take the parameter µ = 2. The initial iteration

points X(0), Y (0) are X(0) = Y (0) = 0n.

According to the numerical results given in Table 1 and Figure 1, the SI method, the

NGSBSI I method, the NGSBSI II method, the NHSBSI method, the NGGSBSI I method and

the NGGSBSI II method can converge to the solution pair (X∗, Y ∗) quickly for different problem

sizes. Moreover, the performance of the NGSBSI II method and the NGGSBSI II method in

Example 5.2 are relatively stable. It can be seen intuitively from Table 1 that CPU time of the

NGSBSI II method are obviously better than the other methods in higher dimensions and the

SI method is preformed well in lower dimensions.
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Table 1. Numerical comparisons about the mentioned algorithms for Example 5.2

Algorithm n 16 25 36 49 64

IT 8 13 21 34 54

SI RES 4.6088e-07 4.6371e-07 6.3739e-07 5.7206e-07 3.6369e-07

CPU 0.012429 0.014717 0.023083 0.038384 0.071760

IT 18 15 15 16 28

NGSBSI I RES 4.5384e-07 7.2077e-07 7.7814e-07 4.3937e-07 8.3616e-07

CPU 0.015742 0.018567 0.022242 0.030712 0.055818

IT 19 18 17 18 18

NGSBSI II RES 6.4256e-07 5.8163e-07 7.4857e-07 5.2393e-07 7.2404e-07

CPU 0.014980 0.017993 0.021840 0.027290 0.035258

IT 34 50 75 117 178

NHSBSI RES 7.6282e-07 7.0507e-07 7.5756e-07 7.5040e-07 8.2014e-07

CPU 0.015344 0.025279 0.044035 0.093088 0.192427

IT 22 20 20 19 28

NGGSBSI I RES 7.9421e-07 7.5295e-07 5.8553e-07 8.4232e-07 8.2923e-07

(λ = 5) CPU 0.019237 0.023603 0.027311 0.036835 0.060738

IT 24 21 20 20 20

NGGSBSI II RES 7.1782e-07 6.4080e-07 9.8325e-07 8.5439e-07 7.8258e-07

(λ = 5) CPU 0.018224 0.022863 0.026513 0.034405 0.046650
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Figure 1. Convergence effect for Example 5.2. When n=49 and n=64, the iteration counts of
the SI method and the NHSBSI method are so high that they are not reflected in the figure.

Last example shows a comparison between the inexact relaxed generalized Newton bimatrix

splitting method presented in this paper and the IGN method in [26] for solving absolute value

equations.
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We know Algorithm 4.4 produces different iterative forms for different ways of splitting.

(1)When M = A, N = 02mn, the Algorithm 4.4 can be called the IRGN method.

(2)When M = D−L+ Ω, N = U + Ω, which D is the diagonal of A, U and L are strictly

upper and lower triangular parts of A, then the Algorithm 4.4 can be called the IRGNS method.

Example 5.3. Let

S =



20 1 0 0 0

−1 20 1 0 0

0
. . .

. . .
. . . 0

0 0 −1 20 1

0 0 0 −1 20


∈ Rn×n,

and M = S + µI0, where I0 ∈ Rn×n is an identity matrix.

Consider the coupled Sylvester-like absolute value equation{
A1XB1 + C1|Y |D1 = E1,

A2Y B2 + C2|X|D2 = E2,

where A1 = M + I0, B1 = I0, C1 = 0.5I0, D1 = Un(−0.1), A2 = M−I0
3 , B2 = 0.5I0, C2 =

1n(0.1), D2 = Un(0.3), E1 = A1X
∗B1 + C1|Y ∗|D1, E2 = A2Y

∗B2 + C2|Y ∗|D2. Here, X∗ =

1n(1.2), Y ∗ = 1n(−0.8).

For Example 5.3, to improve the convergence speed of all the tested methods, the choice

of Ω1,Ω2 are Ω1 = Ω2 = 0.1I0,Ω = 2.8I, which I ∈ R2n2×2n2
. we take the parameter µ = 1.5.

The initial iteration points X(0), Y (0) are X(0) = Y (0) = 0n.
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Figure 2. Convergence effect for Example 5.3

According to the numerical results given in Table 2 and Figure 2, the IGN method, the

IRGN method and the IRGNS method can converge to the solution-pair (X∗, Y ∗) quickly for

different problem sizes. Moreover, the performance of the IGN method, the IRGN method and
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Table 2. Numerical comparisons about the mentioned algorithms for Example 5.2

Algorithm n 10 20 30 40 50 60 70

IT 6 8 8 9 45 9 11

IGN θ 0.6 0.6 0.6 0.6 0.6 0.6 0.6

RES 9.2052e-07 2.0986e-07 6.6419e-07 3.4388e-07 2.0956e-07 9.3097e-07 7.2030e-07

CPU 0.028328 0.441325 2.691583 12.977646 45.788947 116.424993 322.777565

IT 5 6 5 5 5 5 5

IRGN θ 0.6 0.6 0.6 0.6 0.6 0.6 0.6

RES 4.2194e-07 5.1432e-08 6.1042e-07 2.1069e-07 7.3521e-08 5.7298e-07 2.3224e-07

CPU 0.026210 0.197793 1.205960 9.118140 28.179983 72.085520 170.321264

IT 5 4 5 5 5 4 4

IRGNS θ 0.5 0.5 0.5 0.5 0.5 0.5 0.5

RES 4.2194e-07 2.3082e-07 6.0263e-07 2.1751e-07 8.5426e-08 7.8050e-07 5.7053e-07

CPU 0.023765 0.195116 2.539173 12.601875 38.056623 92.537365 204.321974

the IRGNS method in Example 5.3 are relatively stable. However, when the dimension of the

problem is relatively large, the CPU time of the three methods is relatively high. It can be seen

intuitively from Table 2 that the iteration counts of the IRGNS method are less than the other

two methods. The CPU time of the IRGN method performs slightly better than the other two

methods in higher dimensions and the IRGNS method performs slightly better than the other

two methods in lower dimensions.

6 Conclusions

In this paper, sufficient conditions for the existence of the unique solution of the coupled

Sylvester-like absolute value equation (1.1) are given. Moreover, we discuss the sufficient con-

dition that the solution does not exist. Numerical experiments confirm these conclusions. In

addition, we propose the Newton-base bimatrix splitting iteration method, the Newton-base

generalized Gauss-Seidel bimatrix splitting iteration method and the inexact relaxed gener-

alized Newton bimatrix splitting method to solve the coupled Sylvester-like absolute value

equation. These methods avoid the problem of converting the coupled Sylvester-like absolute

value equation into the generalized absolute value equation, which leads to huge computa-

tion. Convergence properties of the new iteration schemes are analyzed in detail. Numerical

experiments are reported to demonstrate the efficiency of these new iteration methods.
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