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Abstract In this paper, the Newton-type splitting iterative method for a class of
coupled Sylvester-like absolute value equation is proposed. Some sufficient condi-
tions for the existence of the unique solution of the coupled Sylvester-like absolute
value equation are given and sufficient conditions for the nonexistence of solution
is discussed. The Newton-base bimatrix splitting iteration method, the Newton-
base generalized Gauss-Seidel bimatrix splitting iteration method and the inexact
relaxed generalized Newton bimatrix splitting method are proposed to solve the
coupled Sylvester-like absolute value equation. Numerical experiments confirm the

conclusions proposed in this paper.
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1 Introduction

In this paper, we consider a class of coupled Sylvester-like absolute value equation:

{ A1 XB; + 01’Y|D1 = Fy, (1 1)

AsY By + CQ|X|D2 = Fs,

where Ay, Ay, C1,Cy € R™*", By, By, D1, Dy € RP*Y, Ey, E5 € R™*9 are known, X,Y € R"*P
are unknown. Here, |X| = (245),Zi; = |x4jl,4 = 1,--- ,n,j = 1,--- ,p. When Ay, By, Dy are
identity matrix with appropriate sizes, Eo = 0,,xq and —C> is a n X n identity matrix, then

(1.1) reduces to Sylvester-like absolute value equation

AXB+C|X|D=E (1.2)
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in [18]. Here A,C € R™*" B, D € RP*9, E € R™%4, X € R"¥P,
When p = ¢ = 1,m = n,B = D = 1, (1.2) reduces to the generalized absolute value
equation (GAVE)

Az +Clz| =€ (1.3)
in [1]. In particular, when C' = —1I,, where [, is a n x n identity matrix, (1.3) becomes absolute
value equation (AVE)

Az — |z|=e (1.4)

in [2].
Recently, in [23], AVE (1.4) is expressed as the nonlinear equation

F(z)=Az — |z| —e =0, (1.5)

and using the Newton iterative method z(*+1) = z(*¥) — F/(x(k))_lF(x(k)), then generalized
Newton method (GN)

2D = 20 — (4 — DE®)) "1 (Az®) — |z®)| — ¢) (1.6)

is obtained, where F' (2(®)) denote the Jacobin of F at ) and D(z®) = diag(sign(z®))).

Also, the inexact version of the GN method
(A= D(z®Nz* D) = ¢ 4 rp with ||rg| < 0]|Az®) — 20| — ¢]] (1.7)

is investigated for solving the AVE (1.4) in [26].

In the calculation, due to the change of matrix A — D(z®)) in the GN method, the com-
putations of the generalized Newton method may be very expensive. To avoid changing the
Jacobian, Wang, Cao and Chen utilize A + Q as the approximation of F’ (m(k)) and then get
the modified Newton method (MN):

g*+D) = 20 (A4 Q)71 (Az®) — 2B — e, (1.8)

() is positive semi-definite here.

Absolute value equation may arise in diverse fields, including complementarity problem,
programming problem, and so on, see [3-9]. In recent years, many scholars have studied the
properties of GAVE (1.3) including Mezzadri in [10], Propkeyev in [11], Rohn in [5,12,14], Wu
and Li in [15], and Mangasarian and Meyer in [7]. The theoretical study of GAVE mainly
focuses on its solvability and uniqueness, such as [13], [16] and [19]. See Lemma 2.1 in Section
2 for details. There are also many scholars studying some other forms of AVE, such as [1]
and [18].

If we can convert (1.1) to (1.3), it is easy to obtain some sufficient conditions for the
existence of the unique solution to the coupled Sylvester-like absolute value equation (1.1) and

some theorems that (1.1) has no solution.



From observation, the theory and practice of (1.1) is interesting and challenging because
it has three characteristics. (i)The most obvious feature is that compared with GAVE (1.3),
the solution is no longer a vector but a matrix solution pair; (ii)There are non-differentiable
terms C1|Y|Dy,Co|X|D2 in (1.1); (iii)The coefficient matrices appear on both sides of the
unknown X,Y and | X|,|Y].

Since there are nonlinear terms C1|Y | D1, C2|X| D3 in (1.1), determining the existence of the
solution of (1.1) is an NP-hard problem. In order to determine the existence of the solution,
we use the properties of the Kronecker product and the appropriate assumptions to convert
(1.1) to (1.3) and then we can give the existence of the solution of (1.1).

The rest of the paper is organized as follows: In section 2, we give some useful lemmas
to help us obtain the results presented in this paper. In section 3, sufficient conditions for
the existence of the unique solution of coupled Sylvester-like absolute value equation (1.1) are
given. A sufficient condition that the solution does not exist is also discussed. In Section 4, we
provide some methods for solving coupled Sylvester-like absolute value equation. In Section 5,
the numerical results is used to verify the theorems presented. In Section 6, we summarize the
work done in this paper.

At the end of this section, we present some notations which will be used throughout this
paper. Let R™*™ be the set of all m x n real matrices and R” = R™*!. The transposition of
matrix A is denoted by A”. |- | denotes the absolute value for real scalar. For x € R", ||z||
denotes its 2-norm and diag(x) indicates a diagonal matrix with z; as its diagonal entries for
every i = 1,2,--- ,n. I, be the identity matrix of order n, zero matrix of order n identified
by 0,, a matrix of order n with all entries o denoted by 1,(«), lower triangular and upper
triangular matrix of order n with all entries @ denoted by L, (a) and U, («) respectively. Also,
tridiagonal matrix of order n with all elements on the main diagonal, first diagonal below, and
the first diagonal above the main diagonal equal §,« and ~ respectively, by T,,(«, 3,7). By
default, ||A|| denotes the spectral norm of A and is defined by the formula ||A| := max{||Az|| :
x € R™, ||z|| = 1}.

2 Preliminaries

In this section, we give some useful lemmas to help us reach the conclusions proposed in
this paper.
First we review the definition of the vec operator and Kronecker product.
If A= (a;j) € R™" then vec(A) = (@11, ", Gm1, @12, 5 Am2y*** A1y 5 Q) L -

Let A = (ai;) € R™*", B = (b;;) € RP*4, we call the block matrix
allB ce CLlnB

AR B= : : € RMPxnq
amB - apnB

the Kronecker product of A and B, and abbreviated as A ® B = (a;; B).



Lemma 2.1. If any of the following conditions hold, the generalized absolute value equation
(1.3)
Az +Clz| =e

has the unique solution for each right-hand side vector e.

(1) omax(C) < omin(A), where omax(C) denotes the largest singular value of C and omin(A)
denotes the smallest singular value of A. [15]

(ii) A and C are square matrices, A is nonsingular and oy (A~1C) < 1, where opma(A10)
denotes the largest singular value of A~1C. [16]

(11i) The inequality |Ax| < |C||x| has only the trivial solution © = 0 where A and C are real
square matrices. [5]

Lemma 2.2. For any real matrices A, B, C and D with appropriate sizes, the following con-

clusions are valid
(i) vec(ABC) = (CT @ A) vec(B).
(ii) (A® B)(C ® D)= (AC)® (BD).

(iii) Let A and B be square matrices. The eigenvalues of A® B consist of all pairwise products

of the eigenvalues of A and B. In particular, p(A ® B) = p(A)p(B).

(iv) The singular values of A ® B consist of all pairwise products of the singular values of A
and B. In particular, 0maz(A ® B) = 0maz(A)0maz(B), Omin(A ® B) = 0min(A)omin(B).

(v) If square matrices A and B are nonsingular, then (A® B)™1 = A=t @ B~L.
(vi) |A® B| = |A| ® |B].
Lemma 2.3. [17] Let A € R™", B € R™". If |A| < B, then p(A) < p(B).
Proposition 2.1. Let A € R™*" B € R™*". If |A| < B, then [|A||2 < ||B||2-

Proof. From |A| < B, it is following that |AT A| < |AT||A| < BT B. By the Lemma 2.3,
p(ATA) < p(BT B). Therefore, ||All2 <||Bl2. O

Lemma 2.4. [25] Let \ be any root of the quadratic equation x> —bx +c = 0 where b,c € R.
Then |A| < 1 if and only if |c| <1 and |b| <1+ c.

Lemma 2.5. [20] Let x, y € R", then ||z| — |y|| < |z —y|.



3 Existence of solutions for the coupled Sylvester-like absolute
value equation

Using the vec operator, (1.1) is equivalent to

Soy + To|x| = e,

where S} = B1T ® A1,Sy = BT @ Ay, 11 = D17 @ C1, Ty = DT @ Cy,e1 = vec(Ey),eq =
vec(Eq),x = vec(X),y = vec(Y). Then (3.1) can be expressed as the following generalized
absolute value equation form

Az + Blz| =€, (3.2)

(5 e () () ()
0 Sy T 0 Yy €2

In the following content, let A4, represents the maximum eigenvalue of the correspond-

where

ing matrix and A,,;, represents the minimum eigenvalue of the corresponding matrix. o,z
represents the maximum singular value of the corresponding matrix and o,,;, represents the

minimum singular value of the corresponding matrix.

Theorem 3.1. Suppose C;, D; are invertible, i = 1,2. (1.1) is uniquely solvable for any right-

hand side matrices E1, Eo if any of the following is true:
(Z) ml,ax{amaz(Di)Umaz(Ci)} < Hl’Lln{Umzn<Bz)Umzn(Az)}a7f =1,2.
(ii) Ay, Ag, B1, Bs are square nonsingular matrices,

O'maa:(DlBlil)Umaa:(Alilcl) <1,
Umax(DQBQ_l)Jmaw(A2_1CQ) <1
(iii) A1, Aa, By, Ba,C1,Co, D1, Dy are real square matrice and the inequality

| A1 X B1| < |C1][Y|| D],
|A2Y Ba| < |Co|| X || D2,

has only the trivial solution-pair (X,Y) = (0,0).

Proof. First, prove the first part. According to the definition of singular value, we can
know that

BIT ® Aq 0
min A = min
Tmin(A) 7 ( 0 Byl ® Ay )
B \ (BT ® AT 0 BT ® A 0
e 0 (BQT ® AQ)T 0 BQT ® Ao
_ | (B," @ A)T(B," @ Ay) 0
e 0 (BT @ A3)T (BoT @ As)




A 0
It is not difficult to see that for any A, B € R™*" the eigenvalues of the matrix ( 0 B )

are the eigenvalues of A and the eigenvalues of B. Hence

Omin(A) = \/min{)\min((BlT ® A1)T(B1" ® A1), Amin((B2T ® A2)T (BT ® A))}
= min{amm(BlT &® Al), Umin(BQT & AQ)}
= min{amin(Bl)Umin(A1)7 Umin(BQ)Umin(A2)}7 (34)

where the last equation comes from part (iv) of Lemma 2.2.

Similarly, it can be obtained

0 DT o

mamB = Omax
omas(B) = o <D2T®02 0

) = maX{O'ma:v(Dl)O'max(Cl)a Umax(D2)Umax(02)}-
(3.5)
When maX{Umax(Dl)Jmax(Cl)a Umax(DZ)Umax(CQ)} < min{amin(Bl)Umin(Al)a Umin(B2)Jmin(A2)}a

we can obtain

0 DlT ® Cq B1T ® A 0
Omax T < Omin T .
Dy' ® Cs 0 0 By ® Ay

According to part (i) of Lemma 2.1, (3.2) has the unique solution, that is, (1.1) has the unique
solution-pair.

Next, similar to (3.5), we can see

-1
BiToA 0 0 D\TwcC
Omar(AB) = Oimas 17 ®A; . . 1 ®01
0 By' ® Ag Dy ® Cy 0

= max{omar(B2 ' Do’ @ A51CY), 0mar(B1 T D17 @ ATTCH)}

= maX{Umax(D23271)0'max(A2_102)’O'max(DlBlil)o'max(Al_lcl)} <1,
where the last equation is derived from part (iv) of Lemma 2.2. Thus, applying part (ii) of
Lemma 2.1 to the AVE (3.2) we know that (3.2) has a unique solution. Then (1.1) is uniquely

solvable for any right-hand side matrices F1, Fs.

Finally, according to equivalence of (1.1) and (3.2) and part (iii) of Lemma 2.1, if

BiTo A DT
17 ® A TO T < TO 17 ®C, T (3.6)
0 By" ® A Yy Dy @ Cy 0 y

has only the trivial solution pair, then (1.1) has a unique solution-pair. And it is easy to find

BiTg A DiTgC
I¢ 1T® 1) < \ 1T® 1y , (37)
[(B2" @ A2)y |Dy" @ Col||

(3.6) can be converted to

6



ie.,
vec(|C1|[Y|[Dal),

|V€C(A1XBl)|
vec(|Cof | X||Daf).

|V6C(A2YBQ)’

NN

A1 X By < |Ch]]Y||D
That is { ALX B < YD has only the trivial solution-pair (X,Y) = (0,0), then (1.1)

|A2Y Ba| < |Ca[ X || Dy
has the unique solution-pair. [J

Remark 3.1. Notice that for any nonsingular matriz A, we have omin(A) - Omaz(A™Y) = 1.

Hence, when C1,Cy, D1, Dy are nonsingular matrices in (1.1),

Umin(BlDl_l)Umin(Cl_lAl) >1
Omin(B2Da )0 pmin(Ca ™1 Ag) > 1

can be substituted for the condition in (ii) of Theorem 5.2. By the simple computations, we
get Tmin ( lA) Omin (B_l) Omin(A) = Um’”((Ag It can be seen that condition

Omax

Omin(B1D1 ™o min(C171 A7) > 1
Umin(BQD271)0'min(0271A2) >1

is slightly weaker than condition n_lzla%({amaz(Di)amax( )} < mln{amm(Bi)amm(Ai)}.

i=1,2

The following theorem states that the regularity of the interval matrix can also be used to
guarantee the unique solvability of (1.1) for any right-hand side matrices F1, Es.

First review the definition of interval matrix. Given two matrices T' = ( Zj) and T = (7- )
an interval matrix [T, T] is defined by [I,T] := {T : T < T < T}, where for two matrices
X = (z45) and Y = (y45), matrix inequality X <Y refers to x;; < y;; for any ¢, j.

S Uy
Uy 5o
matriz, then (1.1) is uniquely solvable for any right-hand side matrices E1, Es.

Theorem 3.2. For any Uy, € [—|Th|,|T1|],Uz € [—|T2],|T3]], if ( > is monsingular

Proof. According to Theorem 2.2 in [19], the theorem can be obtained directly. [

Theorem 3.3. Let C1,Co, D1, Do be square nonsingular matrices and 0 # C’l_lElDl_l, Cy 'EsDy™ ! >
0,

H Umax Umaa: < H Umm Umzn(Dz) (38)

then

{ A1XBy — C1|Y|Dy = Ex, 59)

A3Y By — Co| X| Dy = B,

has no solution.



Proof. It is assumed that (3.9) has a non-zero solution. Since C1,Cq, D1, Dy are square

nonsingular matrices, we have

{ Cl_lAlXBlDl_l — ‘Y‘ = Cl_lElDl_l >
=

0, . C17 ' A1 XBD; 7 > |Y],
ie.,
02_1A2YB2D2_1 — ’X‘ = 02_1E2D2_1 0 >

CQ_IAQYBQDQ_I ’X‘

)

According to Proposition 2.1 and norm inequality, we get

Y] <[ ' AiXBiDy Y
<G AN B IID
IX[| < [|Co~" Y Bo Dy~ | (3.10)
< G I A=Y 1 B2l D2~
<

Co A2y A HIX T Bl Dy [ B2 D2~ -

And (3.8) can be written as || A1 ||| B1 ||| Az2]||| B2|| <
get the contradiction || X| < || X]|. O

1 ..
GBI, DT Combining (3.10),we

Remark 3.2. A special case of Theorem 3.3 concerns the coupled Sylvester-like AVE

{ AXB, — Y| = Ey, (311)

AY By — | X| = B,

A sufficient condition for the non-solvability of this equation is that 0 # E1, Es > 0 and

2
Hgmam(Ai)Umaa:(Bi) <1 (3.12)
=1

4 Solve the coupled Sylvester-like absolute value equation

4.1 The Newton-base bimatrix splitting iteration method for solving the
coupled Sylvester-like absolute value equation

In this section, the Newton-base bimatrix splitting iteration method is established to solve
the (1.1). In the rest of this paper, we assume that Ay, Ay, C1,Co € R™*"™ By, By, D1, Dsy €
R™" Fq, By € R™*™ and X,Y € R™*",

From the above, (1.1) is equivalent to

F(z) =0, with F(z) = Az + B|z| - &, (4.1)

0 Sy 5 0 Yy €2

Thus, the Newton iteration method can be written as

where

kD) = k) _ (z(k))_l F (z(k)) , k=0,1,2,.... (4.2)

8



Then generalized Newton method (GN) [23] can be expressed as
2 = 20 (A4 BD(zM)) "1 (AP 4 B0 — &), (4.3)

where D(2%)) = diag(sign(z(¥))). The modified Newton method (MN) [24] is proposed accord-
ingly to

2D = 20 (A + Q)71 (AW + BlW| — £ 4.4

( )~ ( 2] =€), (4.4)

Q is positive semi-definite here. But if A + Q is ill-conditioned, the MN method may be
expensive in practical calculations. Furthermore, in [6], the author proposes a Newton-based
matrix splitting method (NM)

LD = R (M 4 Q) H AP 4 BB - &), (4.5)

where A = M — N and  is positive semi-definite.

In order to improve iteration efficiency, based on the MN method and the NM method,
we propose the Newton-base bimatrix splitting iteration method combining the characteristics
of the coupled Sylvester-like absolute value equation. The matrices A, Ay split into A; =
mi1 — ni, Ao = mo — ng, where Qp, Q9 € R™™™ satisfy m1 + Q1, mg + Qs are invertible. Set
My =mq + Q, My = mg + Qo, N1 = nq + Q1, No = no + Qs. The split of the matrices By, B
are B] = P — Q1,By = P> — (9, respectively. Then we can get the Newton-base bimatrix

splitting iteration method

{ X = M Y(E, — C1|Y|Dy + N XBy + My XQ,) P, (4.6)

Y = My (Ey — Co| X |Dy 4+ NoY By + MY Qo) Pyt

Algorithm 4.1.  (The Newton-base bimatriz splitting iteration method)

Step 1 Given initial point X©,Y(©) ¢ R™*" gnd the parameter ¢ > 0. Assume the split
of the matrices A1, Ay, B1,By are Ay = m1 —n1, Ay =mo —ng, By = P — Q1,82 = Py — o,
respectively. Given Qq, Qo € R™*™ which satisfies M1 = mq +Q1, My = may + Qs are invertible
and N1 = nq + 1, No = ng + Qo.

Step 2 \/HAlX(’“)Bl + C1|Y®| Dy — By |2 + | A2Y %) By + Co| X %) | Dy — Es||2//|| 1% + || E2|]? <
€, stop.

Step 3 Compute £+ and y*+D by

{ X&) = MY E — G YWDy + Ny X® By + M Xx® Q) P, )

YD) = M Y(Ey — Co| X*+D Dy + NoY R By 4+ My Y Qo) Pyt
Step 4 Set k:=k+ 1 and go to Step 2.

Let (X*,Y™) are the solution-pair of the coupled Sylvester-like absolute value equation
(1.1). The iteration errors eff = X* — X®) ¥ =v* - V(*) where X(*) Y(¥) are generated by
(4.7).



Theorem 4.1. Let Ay, Ay, C1,Co € R™*™ By, By, D1, Dy € R"*" E4, Ey € R™*", Given the
split of the matrices A1, As, B1, By are Ay = m1—n1,As = mo—ng, B1 = PL—Q1,By = Po—(Q)o,
and N1 = n1+Q1, No = no+8Qy € R™*™ My = mq+Q1, My = ma+ Qo € R™*™ are nonsingu-
lar. Denote || My [Ny [[[| B[Py |+ M M QNPT = s, [l M5 N2 Ball1P5 I+
1My I Ml |Q2 [ P3| = s2, M7 HIIICIID P = o (1M HIIC [ D[Py | = t2. If 51+
tity + s9 < 1, then the Algorithm 4.1 is convergent.

Proof. From (1.1), we have

AlX*Bl + C1|Y*’D1 = El, (4 8)
AsY*By + CQ|X*’D2 = F». '
Then (4.8) is equivalent to
X*=M;{YEy — C1|Y*|Dy + N1 X*By + M1 X*Q1) P, (4.9)
Y* = My (Ey — Co| X*| Dy + NoY* By + MaY* Q) Py L. '

Form (4.7), (4.9), we can get

eyl = 1IM (Cr([Y* = [Y®)Dy + Ny (X* = XEN By + My(X* — XE)Qp) P!
< MHIAICNY | = Y ODL| + [N 12X = XO B[] + (Mo X* = XE QI I1P ]
< [ MYIAIC e TID+ INHle 1Bl + 1M e HQq NP
= (M INUBLHEP A+ M M QP D e I+ 185 I Ca DA P e |
= sillex | +taller |,
(4.10)
and
lexqll = 1My (Co(|X*| — [ XEFD) Dy + No(Y* = YR By + Ma(YV* — Y B)Qq) Py !
< M IC X = [ XEEDY[De|| + | Na|[[[Y* = Y E[|| Bo|| + [ Ma|[[|Y* = Y E Q2] )1 P5 |
< 1M [ (ICo ey D2+ 1Nl leX 1Bzl + [ M2l llex [1Q2IN 1P ]
= (IIM5 N2 B2 Py |+ 185 Ml Q1P D ler || + 185 I Col | D2l Py ek
= tollepy 1 [l + sallef |
< to(sillep |+ tallel |) + sallef |
= tasflex || + (tat1 + s2)le) |-
(4.11)
Further,

el 51 ty e ]|
Y < Y
el tas1 tat1 + s2 llex |
2

[ = ty ez,
tos1  tot1 + S92 Heky_lH (4.12)

k+1
[ = ty e |
N Y .
tos1  tot1 + So lleg ||

10



tosy tat1 + S2
that lim [le; || =0, lim |le} || = 0. In other words, the Algorithm 4.1 converges to the unique
k—o0 k—oo
solution-pair (X*,Y™).
Next, we need to prove p(WW) < 1. Let A be the eigenvalue of the matrix W. Then \ satisfies

t
Let W = ( 51 ! ) , we know that when p(W) < 1, klim Wk = 0. It is shown
—00

A% — (51 + taty + s2)X\ + (s1(tat1 + s2) — tasity) = 0.
After simple calculations, we have
A2 — (81 + tot1 + 82))\ + 5150 = 0. (413)

From s;+t1to+s9 < 1, we can get t1to+2,/5155 < s1+t1ta+53 <1 < 1+5152. Then 2,/s159 <
1 — t1ty < 1. It is obviously that s1s9 < (%)2 < 1. According to Lemma 2.4, p(W) < 1. This
completes the proof. [

Corollary 4.1. Let A1 be positive definite and A1 = m1 — ny be its a splitting, where my is

positive definite. Assume that the matriz Q1 € R™*™ s positive diagonal. If

o L=

[[my ] < ——= ; (4.14)
WP+ (1= s1) |1

where w = | N1|[[| Byl + | Mil[[|Qu | + ICL [ Dl M5 IIC2 | Dall| Py~ I, then Algorithm 4.1 is

convergent.

Proof. According to the hypothesis, it is see to that matrix m; + €y is positive definite.
Clearly, matrices m1 + €21 and m are invertible.
From the Banach perturbation lemma, we have

-1
|’(m1+91)—1|’ < llmq |l

—1
L=[lmy |21l
1—s9

=1
wlPy T+ —s) 2l

< =
e 2 12|
Wl Py i+ (sl
_ _1-s9
= 52,
w|| Pyl

Therefore, Algorithm 4.1 is convergent under the condition (4.14). O

Corollary 4.2. Set 1 = wil. Assume that mq, Py are symmetric positive definite matri-

. (m1)+1wl))\ — < I_WS2 where Apmin(m1), Amin(P1) are the smallest eigenvalue of

matriz m1 and the smallest eigenvalue of matriz Py, respectively, then the Algorithm j.1 is

ces. If o>

convergent.

Proof. Clearly, we know ||(m; + Q)71 = m and | P = m. Therefore,
1

when o ) o o (P < 1;32, we have s1+t1to+52 < 1. Thus, Algorithm 4.1 is convergent.

11



4.2 The Newton-base generalized Gauss-Seidel bimatrix splitting iteration
method for solving the coupled Sylvester-like absolute value equation

Now we propose another method to obtain the solution of the coupled Sylvester-like ab-
solute value equation.

Recalling that the coupled Sylvester-like absolute value equation has the following form,

A1 X By + C1|Y|D1 = F,
AsY By + CQ‘X|D2 = Fs.

Multiplying A, then we have

N1 X By + )\01|Y‘D1 = \Fjq, (4 15)
AA2Y By + \Cs| X | Dy = \Ex. '
Let
Ay =Dy, —La, +Q—(Uag, +Q),A2 =Dy, —Unp, + Q— (L4, +9Q), (4.16)

where D4, = diag(A1), Da, = diag(As2), Ua,, L4, are strictly upper and lower triangular parts
of Ay and Ug,, L4, are strictly upper and lower triangular parts of A, respectively. (2 satisfies
My =D, —La,+Q, My = Dy,—Upyg,+€ are invertible. And assume the split of the matrices
B; and By are By = P — Q1, Bo = P — (Q2, respectively. According to (4.15), (4.16) can be

suggested as

)\(DAI — LA1 + Q- (UA1 + Q))X(Pl — Ql) + )\C'l’Y’Dl = A\Eq,
ANDay, —Upy +Q— (La, + Q)Y (Py — Qo) + ACo| X | Dy = \Es.

After simple calculations, the above formula is transformed into

MDa, —La, + D)X + (Ua, + QX = AE P = XC1|Y|D1 P+ M X Q1P+ (A + 1) (Ua, +Q)X,
ANDa, —Usy + Q)Y + (La, + Q)Y = AE Pyt — ACo| X |DaPe ™t + MY QaPy ™t + (A + 1) (L, + Q)Y.
(4.17)

Using the iterative scheme, (4.17) can be written as

XD = AMy) Y AE Pyt — Ny XD A Y RO D P+ ANA X Q P+ (A + )N X R,
{ YD) = (AMy) "M (AEo Pyt — NV D) ACo| X*HD | Dy Pyt 4 A A Y Qo Py 4 (A 4 1) No Y (R)),
(4.18)
where My = DAI _LAl + Q, My = DA2 — UA2 +Q, Ny = UAl +Q, Ny = LA2 + Q.
Based on this, we get the following algorithm.

Algorithm 4.2. (The Newton-base generalized Gauss-Seidel bimatriz splitting iteration
method I (NGGSBSI 1))

Step 1 Given initial point X(© Y0 € R™*" gnd the parameter e, A > 0. Assume the split
of the matrices Ay, Ay, B1, By are Ay = Dy, — LA, +Q—(Ua,+9Q), 42 = Da,—Upy +Q—(La, +
2),By = P — Q1,Bs = Py — Q2, respectively. Here, Q0 satisfies My = Da, — La, +Q, My =
Dy, —Ua, + Q0 are invertible and Ny = Ua, + €, No = Ly, + Q.
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Step 2 If /[ AiX® By + C1[Y WDy — By |2 + [|[A2Y W) By + Co| XW[ Dy — Bo|2//[[E1[? + [ E2[? <
€, stop.
Step 3 Compute X+t and Y+ py

XD = AMy) Y AE Pyt — Ny XD A Y D P+ MA X Q P+ (A + )N X R,
VD) = (AMy) Y (AE2 Py — NV D) - ACo| X*HD | Dy Pyt 4 AAY Qo Py 4 (A 4 1) No Y (R)),

(4.19)
Step 4 Set k:=k+ 1 and go to Step 2.
Taking a different split for Ay, i.e.,
A= DA1 - UA1 + Q- (LAl + Q)a (4'20)

the new iteration method is obtained.

Algorithm 4.3. (The Newton-base generalized Gauss-Seidel bimatriz splitting iteration
method II (NGGSBSI I1))

Step 1 Given initial point X© Y (©) € R™*P gnd the parameter e, A > 0. Assume the split
of the matrices Ay, Ag, B1,Bs are Ay = Da, — U, +Q—(La,+Q), A2 = Da, — U, +Q—(La, +
Q),Bl = P, — Q1, By = Py — Q2, respectively. Here, Q satisfies My = Dy, —Uga, +Q, My =

—Ua, +Q are invertible and Ny = La, + §2, Ny = Ly, + €.

Step 2 If VI[A1X®) By + C1[Y B[ Dy — Bq |2 + [|A2Y B By + Co| X[ Dy — E[12/\/||E1[|? + [ E2|? <
€, stop.

Step 3 Compute X*+D gnd Yy *+1D) py

XEHD) = AMy) Y AE Py — Ny XEHD A YWDy Pt XA XBQ P+ (A + )N X)),
YEFD) = (AMy) "L (AE2 Pyt — No VD) — \Co| X *+D | Dy Py~ 4 A AgY FIQa Py ™t 4 (A + 1) No Y (R)).
(4.21)

Step 4 Set k:=k+ 1 and go to Step 2.

Theorem 4.2. Let A1, Ay, C1,Cy € R™™ By, By, D1,Dy € R"™ E1,Ey € R™™,  De-
note [|(A(Da, = La, +Q) 7 M[[|Ua, +Q = 61, [[(M(Day = Ua, +92)) " |1 La, + 2 = 2, [(Da, —
La, + Q7 ICHIDr P = 91, [[(Day = Uay + Q) MIICo | DeP2 ™| = w2, [[(Day — La, +
O AP = a1, [(Day=Uay +Q) | A2 [ Q2P| = ozg, IAMD 4, —La, +Q)HI[[(A+
D(Ua, + Q)| = B, [[(A(Day = Uay + Q) HIIA+1)(La, + Q)| = B If T + 728722 +

1—¢1 —$1 1—¢2
0412_72522 < 1, then the Algorithm /.2 is convergent.

Proof. Similar to the proof of theorem 4.1, it can be seen that

lewiqll = IA(Da, = La, + Q) 7H(=(Ua, + QXEFD — X*) = AC (Y B — |Y*[) Dy P!
+ XA (XE) — X)Q P+ (A + 1) (Ug, + Q)(XE — X))
<[|(AM(Da, — La, + ) H1U4, + Qlllef i | + 1(Da, — La, + Q) HICLI[| DLP[]le) |
+ 1(Da, = La, + QI AL Q1P ][]
+ [[(AMDa, = La, + )X+ 1)(Ua, + )l |

= oullep iyl + (a + Bo)llel || + wller |,
(4.22)

13



led il = ANDa; — Uy + Q)= (Lag + QY = Y*) = ACo(|XFHD| — |X*[) Do~
+ A (YW —Y*)Q2 P! + (A +1)(La, + Q) (Y® —Y))|
<NOADa, = Uay + Q) 1L a, + Qllleg [l + 1(Day — Uay + Q)7 HIC2 I D2Po~ [zl
+1(Da, = Uay + 7| A2 [Q2 P~ e |
+ I (ADa, = Uay + )X+ 1)(La, + Qe |
= dollerall + (a2 + Bo)lley | + v2lleial,

(4.23)
Further,
+
leall \ o T et
el ) S\ pamd e ) ey
k+1 1—¢2 1—¢1 1—¢2 1—91 1—-¢2 k
a1+ ) HeX H
S| vo s e i anes v
« o
1*?252 11*¢11 1*252 1*;1 + 12*<2522 Hekfln (4‘24)
a1+61 V1 k+1 HeX ”
< =61 T—61 0
= Y2 a1+pPi Y2 + s+ HeYH :
1—¢2 1-¢1  1—¢21—¢1 1—¢2 0
a1+p1 Y1
Let W = w21_0?11+61 " me ootfs | > We know that when p(W) <1, lim Wk =o.
+ k—o0
1—¢2 1-¢1 1—¢2 1-¢1 1—¢o

It is shown that lim [le; || =0, lim |le} || = 0. In other words, the Algorithm 4.2 converges to
k—o0 k—ro0

the unique solution-pair (X*,Y™).

: a1+ 1t as+532
According to the proof of Theorem 4.1, we know that when =g, T TogrTods T 16y < 1,

p(W) < 1. This completes the proof. [

Theorem 4.3. Let Ay, Ay, C1,Cy € R™<™ By By Dy,Dy € R™" E FEy € R™*", De-
note [|(MDa, —Ua, +Q) " 1 La, +Qll = ¢1, [(A(Day = Uy + Q) "Ml Lay + Q| = o2, [[(Da, —
Ua, + Q7 CUIID1 P = 1, [(Day = Uay + QI Coll | DaPe 1| = o, [[(Da, — Uay +
Q)M ANQ1P | = an, [(Da—Ua, +Q) 7 H[[|A2][[| Q2P| = ag, [[(AM(Da, =Ua, +Q)) I (A+
D(La, + Q) = B1, [(A(Day = Uay + )M IIA+1)(La, + Q)| = Bo. IF =2 + 8- 722 +
a2

l%diz < 1, then the Algorithm 4.2 is convergent.

4.3 The inexact relaxed generalized Newton bimatrix splitting method for
solving the coupled Sylvester-like absolute value equation

In order to overcome the problem that the above two methods cannot solve, we propose
an inexact method for solving the coupled Sylvester-like absolute value equation based on the

equivalence of (1.1) and (3.2).

Algorithm 4.4.  (The inexact relazed generalized Newton bimatrixz splitting method)
Step 1 Given initial point X(©,Y©) ¢ R™*" qnd the parameter e > 0,0 < 0 < 1. Assume
the split of the matrices Ay, As, B1,By are Ay = my —ny,As = mo —n9, By = P — Q1,By =
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Py — Q2, respectively. Given Qq,Q9 € R™*™ which satisfy My = mq + Q1, Mo = mo + Qo are
tnvertible and N1 = nq + Q1, No = ng + Qs. k=0.

Step 2 If \/”AlX Bl + Clyy ’Dl E1||2 + ||A2Y(k Bz + CQ|X |D2 — E2||2/\/”E1”2 + ”E2”2

€, stop;
Step 3.1 Set i = 0,2 = (vec(XNT vec(YFNTYT, Given X,io), Yk(o).
Step 3.2 Compute X,glﬂ) and Y,C(Hl) by

{ M xY = (B, — [y, |Dy + M X W By + My XWQy) P (4.25)

M, y<z+1> (By — Co| XDy + NpY W By + Moy ®)Qy) Py

Step 3.3 If [|(M+Q+BD(2*))) 21 — (W + Q)2 1 €)|| < )| F (=), then X*HD =
XIEHI),Y(I“H) = Yk(iH), k:=k+1, go to Step 2. Here, A= (M+Q)—(N+Q), ABEF
are given by (4.1) and 2(k+1) — (vec(X,ng))T, vec(Yk,(Hl))T)T,D(z(k)) = dz’ag(sign(z(’“))).

Step 4 Seti:=i+ 1 and go to Step 3.2.

Theorem 4.4. Suppose that M + Q + BD(z) is invertible for each z € R™". Let 0 < 0 < 1.
Let z* is the solution of (/.1), then for 1) e R™™ generated by Algorithm 4.J satisfying

255D — 2| (M +Q + BDE) T (B(IM + @ + BD()|

*) i} (4.26)
+2[IB[ + IV + Q) + 2118 + [V + QD[ — 2"
Then when .
M) < , 127
(M= < G ol + @+ VGBI + TV + ) 427
Algorithm ./ is convergent.
Proof. In the light of F(z*) = 0 and the fact that
(M +Q+BD(z0))20) = FW) + (W + Q)0 4 ¢, (4.28)
we obtain
= 200D (M +Q+BDEF) N FE®) + W+ )2 + &) + 20 — (429)

= (M +Q+BD(0) (M + Q+ BD(®)) 20D — (W + Q)W 4 &)
+ F(2*) = F(z®) + (M + Q + BD(z0)) (2B — 2*)).

Taking norms on both sides and utilizing the triangle inequality, one can obtain

204D — 27 < M+ €+ BDE) (| (M + Q4+ BD(P))z) — (W + )2 + )]
FIFE) = FEW) + (M + 2+ BDED)) ) = 2)])
<M + 9+ BDE) 017 (=)

+ | F(z*) = FH®)) + (M + Q + BD(zR)) (20 — 24)|)).
(4.30)
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On the other hand,

F() = (M+0+BD(W)) (s — =) — (F(*) = F(z) = (M+ 9+ BD() (2" — ),

(4.31)
Similarly, if the norm is taken for both sides of the above equation, then
IFCI)) = [(M+Q+BD(EM)) (2" - ) — (F() = F(zW) = (M + 0+ BD(zW)) (=" — 20)))]

<M+ Q + BDEE) |20 — 24| + | F(2*) = F(z®) — (M + Q + BD(z))(z* — 20))].
(4.32)

Furthermore, by some calculations, it holds that

F(z*) = F(z®) = M+ Q + BD(z0))(z* — z(0)
= (Az* + B|z*| — &) — (AP + Bz — &) — (M + Q4+ BD(M)) (2" — ) (4.33)
= B(|z*| — |z2W]) — (W + Q) (z* — 2¥)) — BD(zF))(z* — 20,

Then
IF(z") = F(zW) = (M + Q@+ BD(=W)) (" — 2| < @||B]| + W + Q|))[|2* — 2. (4.34)
Combining (4.32) and (4.34), we get
IFE < (1M + @+ BDES)| + 2118 + |V + Q)= - =®). (4.35)
Substitute (4.34) and (4.35) into (4.30), one obtains

|25 — 2% < (M + Q+ BDEE) Y (O(IM + Q + BD(®)| + 2||B| + |V + Q)

+2|Bl| + |V + Q) [|2*) — 27,
(4.36)

It’s clear that

(M+Q+BDEM)N =T+ M+ BDEP)IM+ )

And [((M + Q)'BDEM)|| < [[((M 4+ Q)~1|IB]| < 1, based on the Banach perturbation, we

have

1 (k)1 !
(I + M+ Q)" BD(z\"))7|| < 1—[[(M tQ)—lBD(Z(k))’ (4.37)
ST M+ 18]
Then
(M + Q)Y

I(M +Q + BDEE) Y < [T+ M+ Q) ' BDER) M+ < 1_,(M+(iz?))g)1m3u'
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Substitute (4.38) into (4.36), there is

I(M + )~
L= [|(M+)=HB]
+2[|BI| + IV + )] 2®) — 2|

I(M + )~
D (O R ORI
+2[|BI| + IV + )| 2® — 2|

12+ — 2% < (O(IM + 2+ BD(®)|| + 2(|BI| + IV + )

(4.39)

(O(IM + QI+ 3]1B]| + |V + Q)

Thus, according to assumption, we have ||zt — 2*|| < ||2(*) — 2*||. This completes the proof.
U

5 Numerical results

We give the following three examples to verify the conclusions obtained in this paper and
test the algorithms. And we intuitively analyze the effect of the algorithm from the iteration
count (indicated as IT), the relative residual error (indicated as RES) and the elapsed CPU
time (indicated as CPU) where RES is defined as

FE)) VIIAIX® By + C1 YR Dy — E1||2 + ||A2Y B By 4 Co| X®) | Dy — Ey||2
RES = = ,
€] 12112 + || E2||?

where F, &, z are given by (4.1). While RES < 107% or the prescribed iteration count k,u. =
1000 is surpassed, all iterations are terminated. The programming language used was MATLAB

R2018a.
Example 5.1. In order to be more intuitive, we first consider a small problem for (1.1), though
our conclusions can be used for much larger problems in practice. Let

2 -4 0 -5 2 9 1 -1 0 1 -2 0
Al = 0 2 2|, Bi= 7 3 31, Ci= 0 1|, D= 0 1 1],
—2 0 —6 —12 0 -1 0 0 -1 1 0
2 4 0 -5 2 9 1 0 0
Ay=10 2 2|, By= 7 3 2|, Cy=10 -1, D= 1 -1,
2 1 0 —6 6 0 0 0
and
—154 56 —23 33 75 29
FE = 30 —-72 145 |, FEy=| —40 38 19
101 —106 —68 28 40 27

By the simple computations, we have
max{amax(Dl)Umam(Cl)a Umaw<D2)Umax(02)} =5.01 <6.20= min{gmin(Bl)Umin(A1)7 Umin(B2)Umin(A2)}

and
{ Omaz(D1B1™ Y0 mar(A171C1) = 0.11 < 1

Omaz(D2B ™) 0 maz (A2 7102) = 0.26 < 1

17



which satisfy part (i) and part (ii) of Theorem 3.1, respectively. Indeed, the unique solution is

as follows:
5 1 4 1 2 0
X=12 4 0 , Y=1011
5 —1 -5 1 0 2

In this example, with the help of the Theorem 3.1, we do not need to calculate 9x9 matrices A, B
and A~'B, but only need to calculate some 3 x 3 matrices to judge the solution of the equation.
Of course, it was not difficult to form A and B explicitly in the above example, but this cannot
be done if the matrices are very large. For instance, if the size of double precision input matrix
is about 200, then just storing S; may require more than 12 GB of memory! Then calculating A
requires more memory.

Then, we give the following experiment to compare the convergence effect of the Newton-
base bimatrix splitting iteration method and the Newton-base generalized Gauss-Seidel bima-
trix splitting iteration method.

Initially, Algorithm 4.1 produces different iterative forms for different ways of splitting.

(1)When My = Ay, My = Ag, Ny = 0y, No = 0,,, P, = By, P, = By,@Q1 = 0,,Q2 = 0, the

algorithm is simply iterative method without matrix splitting, i.e.,

(5.1)

X0+ = A7V (B — 0 |[Y®|Dy) B,
YERD = Ay Y (By — Cy| XD Dy) By,

which can be called a simply iterative method (SI).

(2)When M, = DAl — LAl + Qq, My = DA2 — UA2 + Q9, N1 = UA2 + Q1, Ny = LA2 +
QQ,Pl = D31 — LBlan = UBl,PQ = D32 — UBQ,QQ = LBQ, where DAi = diag(Ai),DBi =
diag(B;), —La,,—Ua,, —Lp,,—Up, represent the strictly lower-triangular and upper-triangular
part of A; and B;,i = 1,2, respectively, Algorithm 4.1 will be expressed as

XD = (Dy, — La, + Q) N (B — CLIY® Dy + (Up, + Q)X B By
+ (Da, — La, + ) XWUp, ) (Dp, — Lp,) ™",

YD = (Dg, — Uay + Qo) H(Ey — Co| XFTD|Dy + (La, + Q)Y F) By
+ (DA2 — UA2 + QQ)Y(k)LB2)(DBl — UBI)_l,

(5.2)

which can be called a Newton-base Gauss-Seidel bimatrix splitting iteration method I (NGS-
BSII).

(3)When My = Da, —Ua, + Q, My = D, — Uy, + Qa, N1 = La, + Q1,No = La, +
9, Py = Dp, — Lp,,Q1 = Up,, P, = Dp, — Up,,Q2 = Lp,, where Dy, = diag(4;), Dp, =
diag(B;), —La,,—Ua,, —Lp,,—Up, represent the strictly lower-triangular and upper-triangular
part of A;andB;, i = 1,2, respectively, Algorithm 4.1 will be expressed as

XED = (Da, = Uay + ) (B = CL YWDy + (La, + ) XP By
+ (DAl - UA1 + QI)X(k)UB1)(DB1 - LBl)_l?

YD = (Dy, — Uay + Qo) (Ey — Co| XD Dy + (La, + Q)Y P By
+ (DA2 - UA2 + QQ)Y(k)LBQ)(DBl - UBl)_lv

(5.3)
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which can be called a Newton-base Gauss-Seidel bimatrix splitting iteration method IT (NGS-
BSI 1II).

(4)When M; = %(Al +A1T)+Q1,M2 = %(AQ +A2T) +Qo, Ny = —%(Al —AlT)+Q1,N2 =
—2(As— AT+ o, P = 3(B1+BY),Q1 = —3(Bi — B1"), Py = £(Bo+ By"), Q2 = —4(Ba —

»T), Algorithm 4.1 will be expressed as

XD = (LA + A7)+ Q) HEB - i Y |D1 + (=34 - A + o) XP B
+(%(A1+A1T)+91)X(k)(—*(31 B1"))(5(B1 + B )™,
= (3(A2 + A5") + Qo)1 (By — o X WD yDg +(—3(A = A7) + Q)Y P B
+ (3(A2 4+ A7) + Q)Y B (—3(By — B1)))(3(B2 + B21)) 7,

y (k+1)

(5.4)
which can be called a Newton-base Hermitian and Skew-Hermitian bimatrix splitting iteration
method (NHSBSI).

Example 5.2. Let

6 1 0 0 O S Iy 0 0 0
0 6 1 0 Iy S Iy 0 0
S=1 o0 0o | ER™™ My = 0o . . . 0 |eRY"
0 0 0 6 1 0 0 —-Iy S Iy
0 0 6 0 0 0 —-Iy S

where Iy € R™*™ is an identity matrix. Set I € R"*™ is an identity matrices with n dimensions,
n=m? M= M, + ul.

Consider the coupled Sylvester-like absolute value equation

A1 XB; + Cl|Y|D1 = F,
A2Y By + Co| X | Dy = Es,

where Ay = M +1,By = [,C; = 0.5I,D1 = U,(—0.5),43 = M — I,By = 0.51,Cy =
1,(0.1),D9 = Un(3), E1 = A1 X*B; + C1|Y*|D1,Ey = AY*By + Co|Y*|Dy. Here, X* =
1,(1.2),Y* = 1,(—0.8).

For Example 5.2, to improve the convergence speed of all the tested methods, the choice
of Q1,09,Q are Q1 = Qo = Q = M;. we take the parameter u = 2. The initial iteration
points X© YO are X =y ©) =9,

According to the numerical results given in Table 1 and Figure 1, the SI method, the
NGSBSI I method, the NGSBSI II method, the NHSBSI method, the NGGSBSI I method and
the NGGSBSI IT method can converge to the solution pair (X*, Y*) quickly for different problem
sizes. Moreover, the performance of the NGSBSI II method and the NGGSBSI II method in
Example 5.2 are relatively stable. It can be seen intuitively from Table 1 that CPU time of the
NGSBSI IT method are obviously better than the other methods in higher dimensions and the

SI method is preformed well in lower dimensions.
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Table 1. Numerical comparisons about the mentioned algorithms for Example 5.2

Algorithm n 16 25 36 49 64
IT 8 13 21 34 54
ST RES 4.6088e-07 4.6371e-07 6.3739e-07 5.7206e-07 3.6369e-07
CPU 0.012429 0.014717 0.023083 0.038384 0.071760
IT 18 15 15 16 28
NGSBSI 1 RES 4.5384e-07 7.2077e-07 7.7814e-07 4.3937e-07 8.3616e-07
CPU 0.015742 0.018567 0.022242 0.030712 0.055818
IT 19 18 17 18 18
NGSBSI II RES 6.4256e-07 5.8163e-07 7.4857e-07 5.2393e-07 7.2404e-07
CPU 0.014980 0.017993 0.021840 0.027290 0.035258
IT 34 50 75 117 178
NHSBSI RES 7.6282e-07 7.0507e-07 7.5756e-07 7.5040e-07 8.2014e-07
CPU 0.015344 0.025279 0.044035 0.093088 0.192427
T 22 20 20 19 28
NGGSBSI I RES 7.9421e-07 7.5295e-07 5.8553e-07 8.4232e-07 8.2923e-07
(A=15) CPU 0.019237 0.023603 0.027311 0.036835 0.060738
IT 24 21 20 20 20
NGGSBSI II RES 7.1782e-07 6.4080e-07 9.8325e-07 8.5439¢-07 7.8258e-07
(A=15) CPU 0.018224 0.022863 0.026513  0.034405 0.046650
.| |
. L\‘

Figure 1. Convergence effect for Example 5.2. When n=49 and n=64, the iteration counts of
the ST method and the NHSBSI method are so high that they are not reflected in the figure.

Last example shows a comparison between the inexact relaxed generalized Newton bimatrix
splitting method presented in this paper and the IGN method in [26] for solving absolute value

equations.
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We know Algorithm 4.4 produces different iterative forms for different ways of splitting.
(1)When M = A, N = 02p,, the Algorithm 4.4 can be called the IRGN method.
(2)When M =D — L+ Q, N =U + ), which D is the diagonal of A, U and L are strictly
upper and lower triangular parts of A, then the Algorithm 4.4 can be called the IRGNS method.
Example 5.3. Let
201 0 0 O
-1 20 1 0 O
5= Lo | eRM
0 0 -1 20 1
0 0 0 -1 20
and M = S + uly, where Iy € R"*" is an identity matrix.

Consider the coupled Sylvester-like absolute value equation

A1 X By + C1|Y|Dy = Ey,
AY By + Co| X | Dy = Es,
where A1 = M + Iy, By = Ip,Cy = 0.51p, D1 = Up(—0.1), 4, = 0 By = 051),C, =
1,(0.1),Dy = U,(0.3), E1 = A1 X*By + C1|Y*|D1, Ey = AY*By + C3|Y*|Dy. Here, X* =
1,(1.2),Y* = 1,(-0.8).
For Example 5.3, to improve the convergence speed of all the tested methods, the choice
of Q1,09 are Q1 = Qs = 0.115,Q2 = 2.81, which I € R27* %20 we take the parameter p = 1.5.
The initial iteration points X (@ V() are X0 =y (© = g,,.

n=10 n=20 n=30
03 06

Figure 2. Convergence effect for Example 5.3

According to the numerical results given in Table 2 and Figure 2, the IGN method, the
IRGN method and the IRGNS method can converge to the solution-pair (X*,Y™*) quickly for
different problem sizes. Moreover, the performance of the IGN method, the IRGN method and
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Table 2. Numerical comparisons about the mentioned algorithms for Example 5.2

Algorithm n 10 20 30 40 50 60 70
IT 6 8 8 9 45 9 11
IGN 0 0.6 0.6 0.6 0.6 0.6 0.6 0.6

RES 9.2052e-07 2.0986e-07 6.6419e-07 3.4388e-07 2.0956e-07 9.3097e-07 7.2030e-07
CPU 0.028328 0.441325 2.691583 12.977646 45.788947 116.424993 322.777565

IT 5 6 5 5 5 5 )

IRGN 0 0.6 0.6 0.6 0.6 0.6 0.6 0.6
RES 4.2194e-07 5.1432e-08 6.1042e-07 2.1069e-07 7.3521e-08 5.7298e-07 2.3224e-07
CPU 0.026210 0.197793 1.205960 9.118140 28.179983 72.085520 170.321264

IT 5 4 5 5 5 4 4
IRGNS 6 0.5 0.5 0.5 0.5 0.5 0.5 0.5

RES 4.2194e-07 2.3082e-07 6.0263e-07 2.1751e-07 8.5426e-08 7.8050e-07 5.7053e-07

CPU 0.023765 0.195116 2.539173 12.601875 38.056623 92.537365 204.321974

the IRGNS method in Example 5.3 are relatively stable. However, when the dimension of the
problem is relatively large, the CPU time of the three methods is relatively high. It can be seen
intuitively from Table 2 that the iteration counts of the IRGNS method are less than the other
two methods. The CPU time of the IRGN method performs slightly better than the other two
methods in higher dimensions and the IRGNS method performs slightly better than the other

two methods in lower dimensions.

6 Conclusions

In this paper, sufficient conditions for the existence of the unique solution of the coupled
Sylvester-like absolute value equation (1.1) are given. Moreover, we discuss the sufficient con-
dition that the solution does not exist. Numerical experiments confirm these conclusions. In
addition, we propose the Newton-base bimatrix splitting iteration method, the Newton-base
generalized Gauss-Seidel bimatrix splitting iteration method and the inexact relaxed gener-
alized Newton bimatrix splitting method to solve the coupled Sylvester-like absolute value
equation. These methods avoid the problem of converting the coupled Sylvester-like absolute
value equation into the generalized absolute value equation, which leads to huge computa-
tion. Convergence properties of the new iteration schemes are analyzed in detail. Numerical

experiments are reported to demonstrate the efficiency of these new iteration methods.
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