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Abstract: This article aims to establish a semi-analytical approach based on the homo-
topy perturbation method (HPM) to find the closed form or approximated solutions for the
population balance equations such as Smoluchowski’s coagulation, fragmentation, coupled
coagulation-fragmentation and bivariate coagulation equations. An accelerated form of the
HPM is combined with the Elzaki transformation to improve the accuracy and efficiency of
the method. One of the significant advantages of the technique lies over the classic numerical
methods as it allows solving the linear and non-linear differential equations without discretiza-
tion. Further, it has benefits over the existing semi-analytical techniques such as Adomian
decomposition method (ADM), optimized decomposition method (ODM), and homotopy anal-
ysis method (HAM) in the sense that computation of Adomian polynomials and convergence
parameters are not required. The novelty of the scheme is shown by comparing the numerical
findings with the existing results obtained via ADM, HPM, HAM and ODM for non-linear
coagulation equation. This motivates us to extend the scheme for solving the other models
mentioned above. The supremacy of the proposed scheme is demonstrated by taking several
numerical examples for each problem. The error between exact and series solutions provided
in graphs and tables show the accuracy and applicability of the method. In addition to this,
convergence of the series solution is also the key attraction of the work.
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1. Introduction

Nonlinear differential equations can represent various phenomena across science, engineering, and biology,
including fluid dynamics, heat transfer, chemical reactions, and particulate processes. The methods used to
solve these equations vary based on factors such as the equation’s type and complexity, the desired level of
accuracy and efficiency, and the availability of analytical or numerical techniques. Over the years, numerous
numerical and semi-analytical methods [1–4] have been developed and studied to address these challenges.
The focus of this article is precisely to solve the particulate processes models, particularly aggregation and
breakage equations, using semi-analytical techniques.

Particulate processes have drawn much attention of researchers because of their technological applications
in many engineering and natural science disciplines, including granulation, crystallization, activated sludge
flocculation, and raindrop generation [5–8]. The particle size distribution, which represents the amount of a
specific size within the system, affects the behavior during processing and the final product’s performance.
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(youcef.mammeri@math.cnrs.fr ).

1



2 ARORA, KUMAR AND MAMMERI

During processing, distinct mechanisms like nucleation, breakage (fragmentation), aggregation (coagulation)
or growth may occur. Breakage refers the phenomenon in which a particle divides into two or more particles,
while aggregation refers to two particles merging to form a more extensive particle. Thus, the total number
of particles increases during the breakage process, whereas it decreases in the aggregation phenomenon as
time passes, but the mass remains conserved in both the situations. The scope of the article is limited
to the pure breakage, aggregation in single and multi-dimensions as well as coupled aggregation-breakage
equations. The mathematical formulation of pure fragmentation equation [9] is given by

∂u(x, t)

∂t
=

∫ ∞
x

B(x, y)S(y)u(y, t)dy − S(x)u(x, t), (1.1)

and the non-linear Smoluchowski’s coagulation equation in 1−D is provided by, see [10],

∂u(x, t)

∂t
=

1

2

∫ x

0
K(x− y, y)u(x− y, t)u(y, t)dy −

∫ ∞
0

K(x, y)u(x, t)u(y, t)dy, (1.2)

with the initial condition

u(x, 0) = f(x). (1.3)

Here, u(x, t) for (x, t) ∈ (0,∞) × [0, T ] represents the number of particles of size x at time t, B(x, y) gives
the breakage function, i.e., the rate at which the particles of size y break into particles of size x and the
rate at which a particle size y is chosen to break is shown by the selection function S(y). Further, the
term K(x − y, y) denotes the rate at which particles of sizes x − y and y merge to form a particle of size
x. In equations (1.1) and (1.2), the first integral terms provide the birth of a particle of size x during the
process of breakage and aggregation, respectively, while the second terms in both models indicate the death
of particle size x.

Along with the number density u(x, t), some integral properties, such as moments, grab the attention because
of their physical interpretation. The moments for the number density are defined as

µj(t) =

∫ ∞
0

xju(x, t)dx, j = 0, 1, 2, · · · .

The zeroth moment µ0(t) defines the total number of particles in the system at time t, first moment µ1(t)
gives the total mass in system and µ2(t) gives the energy dissipated by the system.

In solid processing, e.g., in foods and pharmaceuticals, product quality is characterized by multiple particle
properties, for example, the volume and composition of aggregating particles. To model such phenomenon,
more then one dimensional mathematical formulation is required. Therefore, in the following, the bivariate
case is considered, i.e., particles (or individual objects) are characterized by two properties, named x and y.
The two dimensional aggregation process is governed by

∂u(x, y, t)

∂t
=

1

2

∫ x

0

∫ y

0
K(x− x′, y − y′, x′, y′)u(x− x′, y − y′, t)u(x′, y′, t)dx′dy′

−
∫ ∞

0

∫ ∞
0

K(x, x′, y, y′)u(x, y, t)u(x′, y′, t)dx′dy′, (1.4)

with the initial condition

u(x, y, 0) = u0(x, y) ≥ 0. (1.5)

Due to complexity of these models and unavailability of the analytical solutions (except some simple cases),
several numerical [11–16] and semi-analytical [17–21] techniques are applied to solve these problems ap-
proximately. Numerical schemes to solve breakage equation (1.1) and/or coagulation model (1.2) includes
finite element method [11], quadrature method of moments [22], finite volume scheme [13], fixed pivot ele-
ment [14], fast Fourier transformation method [23] and references therein. The drawbacks of the numerical
schemes lie on non-physical assumptions such as discretization, linearization, sets of basis functions, and
many others. Recently, several authors have developed interest in semi-analytical approaches to overcome
these shortcomings. These series solution techniques offer results without making such assumptions. Some
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of the available strategies are Laplace-variational iteration method [24], ADM [25], HPM [18], optimal ho-
motopy asymptotic method (OHAM) [26], HAM [17], Laplace ODM [19] and variational iteration method
[27]. Interestingly, some of the algorithms provided the closed form series solutions of coagulation equation
(1.2) for the aggregation kernels

K(x, y) = 1, x+ y, xy and x
2
3 + y

2
3 ,

with exponential initial condition (u(x, 0) = e−x, e−x/x), see [17, 18, 25] for more detailed computations.
They also dealt with the breakage equation (1.1) with the breakage rate

b(x, y) =
α

y

(
x

y

)α−2

∀ 1 ≤ α ≤ 2 with selection rate S(x) = xα

having the exponential (e−x) and mono disperse (δ(x− a)) being the two different initial conditions. Ham-
mouch and Mekkaoui in [24] developed the Laplace-variational iteration method for solving the coagulation
equation (1.2) only for two cases of aggregation kernels, constant (K(x, y) = 1) and product (K(x, y) = xy).
Moreover, Hasseine et al. in [28] employed ADM and HPM to solve the breakage equation for the kernel

B(x, y) = 12(y−x)
x3

with selection function S(x) = x. In [29,30], ODM is implemented to solve the coagulation
equation using the parameters

K(x, y) = 1, x+ y and xy with u(x, 0) = e−x.

Recently in [31], HPM is combined with the Pade approximates and results are obtained for various physically
relevant kernels such as Shear stress, bilinear, Brownian and Pulvermacher kernels for larger time and spatial
domains.

In the literature, it was observed that ADM, HPM, and HAM provide the closed form solutions, but some
drawbacks are observed in these techniques. In [32, 33], it was found that a large number of iterations are
required to obtain a more accurate approximation. When dealing with chaotic systems, in [34] authors found
that time, time step, and the number of terms must be handled with extreme caution. Further, Obidat
[4] has drawn attention to various drawbacks of ADM, including its delayed convergence and inability
to handle boundary conditions for solving non-linear PDEs. These shortcoming were avoided by Obidat
in [4]. To overcome these issues for model (1.2), recently, ODM [29] has been implemented to solve it,
but the accuracy is still maintained only for a small period of time. Recently, HPM is accelerated by
approximating the nonlinear term and incorporating the Elzaki transformation for differential equations
[35] in order to improve the accuracy of the truncated solution. Thus, the first aim of this article is to
obtain more accurate solutions to the pure breakage and Smoluchowski’s coagulation equations by applying
the accelerated homotopy perturbation Elzaki transformation method [35].

For the second task of this work, combined aggregation-breakage equation is considered which is an intriguing
issue for academics. The problem was resolved using a class of numerical or stochastic methods. Lee and
Matsoukas [36] employed a stochastic process, namely the constant-N Monte Carlo method, to solve the
aggregation with a binary breakage equation. In 2002, Mahoney et al. used the finite element method for
aggregation, growth, and nucleation equations [37]. Further, number density and moments were computed
with the help of the method of moments by Madras et al. in [38]. The models (1.1) and (1.2) were also
solved by implementing the finite volume method for several test cases. Since, numerical schemes have some
limitations and till date, there is no literature on semi-analytical schemes for coupled aggregation-breakage
model, here we implement the AHPETM for solving the combined equation for two test cases. Moving
further towards the next aim, it is known that the analytical solutions for the bivariate aggregation equation
are available only for limited cases, see [39] and references therein. Several numerical methods, such as
moving sectional [40], finite difference [41], Monte Carlo [42], sectional quadrature [43], dual quadrature
[44], finite volume schemes [45, 46] and references therein, are considered to solve the equation. Therefore,
here we fill this gap of series solution for finding the approximate results for bivariate aggregation PBE.

The article is organized as follows: Section 2 discusses a brief outline of the Elzaki transformation. In Section
3, the general methodology of HPM and AHPETM are presented. In Section 4, AHPETM is developed for
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aforementioned population balance equations. Further, Section 5 gives a detailed convergence analysis of the
proposed iterative scheme. In Section 6, the developed formulations are adopted to demonstrate solutions
for several kernels and the supremacy of the scheme over HPM, ADM, HAM, and ODM solutions are shown
by means of numerical simulations.

2. Elzaki Transformation and Its Properties

Tarig Elzaki developed the Elzaki transformation in 2011 [47, 48], which is the modification of the general
Laplace and Sumudu transformations to solve the differential equation in the time domain. In [47, 48],
authors show the efficiency and accuracy of the Elzaki transformation on a large class of differential and
integral equations. To understand the definition of the transformation, consider a set

A =

{
f(t) : ∃M,k1, k2 > 0, |f(t)| < Me

|t|
kj , if t ∈ (−1)j × [0,∞)

}
then the Elzaki transformation is defined as

E[f(t)] = T [v] = v

∫ ∞
0

f(t)e−
t
v dt, t > 0,

and the inverse of Elzaki transformation [49] is defined as

E−1[T [v]] =
1

2πi

∫ ∞
0

etvT

[
1

v

]
vdv.

3. Methodology

In this section, we review the basics of HPM and AHPETM for solving general differential equations.
Then the schemes are applied to solve multi-dimensional coagulation and coupled coagulation-fragmentation
equations.

3.1. Review of HPM. Let us consider the general differential equation

D(c)− h(x) = 0, x ∈ Ω (3.1)

with the boundary conditions

B

(
c,
∂c

∂n

)
= 0, r ∈ ∂Ω, (3.2)

where D and B are the differential and boundary operators, respectively. One can usually decompose the
differential operator into linear (L) and non-linear (N) operators, implying that equation (3.1) becomes

L(c) +N(c)− h(x) = 0. (3.3)

Now, according to HPM, a homotopy H : Ω× [0, 1]→ R is constructed that satisfies

H[v(x, p)] = (1− p)[L[v(r, p)]− L[(c0)]] + p[D[v(r, p)]− h(x)] = 0, (3.4)

where c0 is the initial guess for the equation (3.1) and p is the embedding parameter that increases mono-
tonically from 0 to 1. According to the HPM, we can write the solution of the equation (3.1) in the form of
series as

v =

∞∑
k=0

pkvk = v0 + pv1 + p2v2 + · · · . (3.5)
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Substituting equation (3.5) in (3.4) and letting p→ 1, the solution is obtained as follows

c = lim
p→1

v =

∞∑
k=0

vk. (3.6)

3.2. Accelerated Homotopy Perturbation Elzaki Transformation Method (AHPETM). Consider
a non-linear differential equation

∂nc

∂tn
+ L[c(x, t)] +N [c(x, t)] = b(x) (3.7)

with the initial conditions ci(x, 0) = gi(x), i = 0, 1, 2, · · · , n − 1, where ci(x, t) denotes the ith order
derivative of c(x, t) with respect to t. Taking Elzaki transformation and using its properties on equation
(3.7) finally provide, by following [35],

E[c(x, t)] =
n−1∑
k=0

vk+2ck(x, 0) + vnE[b(x)− L[c(x, t)]−N [c(x, t)]]. (3.8)

Now, applying the homotopy perturbation method to the equation (3.8), we get

(1− p)(E[c(x, t)]− E[c(x, 0)]) + p

(
E[c(x, t)]−

n−1∑
k=0

vk+2ck(x, 0)− vnE[b(x)− L[c(x, t)]−N [c(x, t)]]

)
= 0.

(3.9)

Let the unknown function c(x, t) and non-linear operator N [c(x, t)] can be written in series form as

c(x, t) =
∞∑
n=0

vnp
n (3.10)

and

N [c(x, t)] =
∞∑
n=0

Hnp
n (3.11)

where Hn represents the accelerated He’s polynomial with

Hn(x, t) = N(

n∑
i=0

vi)−
n−1∑
i=0

Hi, for n ≥ 1 and H0 = N(v0). (3.12)

Substituting the values of c(x, t) and N [c(x, t)] from the equations (3.10) and (3.11) into equation (3.9) give

E[

∞∑
n=0

vnp
n] =

n−1∑
k=0

vk+2ck(x, 0) + p

{
vnE

[
g(x)− L[

∞∑
n=0

vnp
k] +

∞∑
n=0

Hnp
n

]}
.

Applying inverse Elzaki transformation and comparing the coefficients of powers of p, the components of
series solution, i.e., v′is are given in Table 1 and hence the solution of the equation (3.7) is obtained by

Table 1. Components of series solution

v0 c(x, 0)

v1
∑n−1

k=1
tk

k! c
k(x, 0) + E−1{vnE[b(x)− L[v0] +H0]}

v2 −E−1{vnE[L[v1] +H1]}
...

...
vn −E−1{vnE[L[vn−1] +Hn−1]}

taking p→ 1 in the equation (3.10).
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4. AHPETM for Coagulation Fragmentation Equations

In the below section, AHPETM is extended to solve Smoluchowski’s coagulation, pure fragmentation, cou-
pled coagulation-fragmentation and bivariate coagulation equations.

4.1. Smoluchowski’s Coagulation Equation (SCE). Consider the non-linear aggregation equation (1.2)
with initial condition u(x, 0) = u0(x). Applying Elzaki transformation, an integral form is obtained as

E[u(x, t)] = v2u(x, 0) + vE

[
1

2

∫ x

0
K(x− y, y)u(x− y, t)u(y, t)dy −

∫ ∞
0

K(x, y)u(x, t)u(y, t)dy

]
. (4.1)

In order to apply the scheme, compare equation (4.1) with the transformed equation (3.8), which provides
L[u] = 0, b(x) = 0 and

N [u] = −1

2

∫ x

0
K(x− y, y)u(x− y, t)u(y, t)dy +

∫ ∞
0

K(x, y)u(x, t)u(y, t)dy. (4.2)

Now, applying the HPM on equation (4.1) as defined in equation (3.9), we get

(1− p)(E[u(x, t)]− E[u(x, 0)]) + p

(
E[u(x, t)]− v2u(x, 0)− vE

[
1

2

∫ x

0
K(x− y, y)u(x− y, t)u(y, t)dy

−
∫ ∞

0
K(x, y)u(x, t)u(y, t)dy

])
= 0. (4.3)

According to the methodology defined in Section 3.2, u(x, t) =
∑∞

n=0 vnp
n and the non-linear operator

N [u] =
∑∞

n=0Hnp
n, where Hn for SCE is given by

Hn =
1

2

∫ x

0
K(x− y, y)

n∑
i=0

vi(x− y, t)
n∑
i=0

vi(y, t)dy −
∫ ∞

0
K(x, y)

n∑
i=0

vi(x, t)
n∑
i=0

vi(y, t)dy −
n−1∑
i=0

Hi, n ≥ 1

(4.4)

with H0 = N [v0]. Using the above defined decomposition in equation (4.3) and comparing the powers of p,
the nth component of the series solution is

vn+1(x, t) = E−1

{
vE

(
1

2

∫ x

0
K(x− y, y)

n∑
i=0

vi(x− y, t)
n∑
i=0

vi(y, t)dy

−
∫ ∞

0
K(x, y)

n∑
i=0

vi(x, t)

n∑
i=0

vi(y, t)dy

)
−

n∑
i=0

Hi

}
, n > 0, (4.5)

where v0(x, t) = u(x, 0) and hence, the n term truncated series solution is calculated by

ΨSCE
n (x, t) :=

n∑
j=0

vj(x, t). (4.6)

4.2. Fragmentation Equation (FE). Considering the pure fragmentation equation (1.1) and applying
Elzaki transformation, the following integral operator form is achieved

E[u(x, t)] = v2u(x, 0) + E

(∫ ∞
x

B(x, y)S(y)u(y, t)dy − S(x)u(x, t)

)
. (4.7)

Next, equation (4.7) is compared with the equation (3.8) for the implementation of AHPETM. It is observed
that for the case of pure breakage equation N [u(x, t)] = b(x) = 0 and

L[u(x, t)] = −
∫ ∞
x

B(x, y)S(y)u(y, t)dy + S(x)u(x, t).
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By following the steps discussed in the previous Section 3.2, a homotopy is generated as follows

(1− p){E[u(x, t)]− E[u(x, 0)]}+ p

(
E[u(x, t)]− v2u(x, 0)− vE

[∫ ∞
x

B(x, y)S(y)u(y, t)dy − S(x)u(x, t)

])
.

(4.8)

According to the proposed method, AHPETM introduces the solution of unknown function u(x, t) in the
form of infinite series as u(x, t) =

∑∞
j=0 vj(x, t). Substituting this into equation (4.8) and comparing the

coefficients of the powers of p, provide the iterations for the solution as follows

vn+1(x, t) = E−1

{
vE

[∫ ∞
x

B(x, y)S(y)vn(x, t)dy − S(x)vn(x, t)

]}
, n ≥ 0 (4.9)

where v0(x, t) = u(x, 0) and the n term truncated solution will be provided as

ΨFE
n (x, t) :=

n∑
j=0

vj(x, t). (4.10)

4.3. Coupled Coagulation-fragmentation Equation (CCFE). The CCFE is governed by

∂u(x, t)

∂t
=

1

2

∫ x

0
K(x− y, y)u(x− y, t)u(y, t)dy −

∫ ∞
0

K(x, y)u(x, t)u(y, t)dy

+

∫ ∞
x

B(x, y)S(y)u(y, t)dy − S(x)u(x, t). (4.11)

Applying Elzaki transformation on both sides leads to

E[u(x, t)] = v2u(x, 0) + vE

[
1

2

∫ x

0
K(x− y, y)u(x− y, t)u(y, t)dy −

∫ ∞
0

K(x, y)u(x, t)u(y, t)dy

+

∫ ∞
x

B(x, y)S(y)u(y, t)dy − S(x)u(x, t)

]
. (4.12)

For the implementation of AHPETM, expression (4.12) is compared with (3.8) and the following observations
are made

b(x) = 0, L[u] = −
∫ ∞
x

B(x, y)S(y)u(y, t)dy + S(x)u(x, t),

and

N [u] = −1

2

∫ x

0
K(x− y, y)u(x− y, t)u(y, t) +

∫ ∞
0

K(x, y)u(x, t)u(y, t).

Following the procedure defined in Section 3.2, the iterations to solve the equation (4.11) are as follows

vn+1(x, t) =E−1

{
vE

(
1

2

∫ x

0
K(x− y, y)

n∑
i=0

vi(x− y, t)
n∑
i=0

vi(y, t)dy

−
∫ ∞

0
K(x, y)

n∑
i=0

vi(x, t)

n∑
i=0

vi(y, t)dy −
n∑
i=0

Hi +

∫ ∞
x

B(x, y)S(y)vn(x, t)dy − S(x)vn(x, t)

)}
, for n > 0

(4.13)

where v0(x, t) = u(x, 0). Let us denote the n term approximated series solution for CCFE as

ΨCCFE
n (x, t) :=

n∑
j=0

vj(x, t). (4.14)
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4.4. Bivariate Smoluchowski’s Coagulation Equation (BSCE). Consider 2D aggregation equation
(1.4) with initial condition u(x, y, 0) = u0(x, y) and applying Elzaki transformation, leads to form as

E[u(x, y, t)] =v2u(x, y, 0) + vE

[
1

2

∫ x

0

∫ y

0
K(x− x′, y − y′, x′, y′)u(x− x′, y − y′, t)u(x′, y′, t)dy′dx′

−
∫ ∞

0

∫ ∞
0

K(x, x′, y, y′)u(x, y, t)u(x′, y′, t)dy′dx′
]
. (4.15)

In order to apply the AHPETM, equation (4.15) is compared with the transformed equation (3.8), implying
that L[u] = 0, b(x) = 0 and

N [u] =− 1

2

∫ x

0

∫ y

0
K(x− x′, y − y′, x′, y′)u(x− x′, y − y′, t)u(x′, y′, t)dy′dx′

+

∫ ∞
0

∫ ∞
0

K(x, x′, y, y′)u(x, y, t)u(x′, y′, t)dy′dx′. (4.16)

Thanks to equation (3.9), applying the HPM on equation (4.15) enables us to have

(1− p)(E[u(x, t)]− E[u(x, 0)]) + p

(
E[u(x, y, t)]− v2u(x, y, 0)− vE

[
1

2

∫ x

0

∫ y

0
K(x− x′, y − y′, x′, y′)

u(x− x′, y − y′, t)u(x′, y′, t)dy′dx′ −
∫ ∞

0

∫ ∞
0

K(x, x′, y, y′)u(x, y, t)u(x′, y′, t)dy′dx′
])

= 0. (4.17)

Again, following the idea of Section 3.2, u(x, y, t) =
∑∞

n=0 vnp
n and non-linear operator N [u] =

∑∞
n=0Hnp

n

where Hn is being given by

Hn =
1

2

∫ x

0
K(x− x′, y − y′, x′, y′)

n∑
i=0

vi(x− x′, y − y′, t)
n∑
i=0

vi(x
′, y′, t)dy′dx′

−
∫ ∞

0
K(x, x′, y, y′)

n∑
i=0

vi(x, y, t)
n∑
i=0

vi(x
′, y′, t)dy′dx′ −

n−1∑
i=0

Hi with H0 = N [v0]. (4.18)

Using the above defined decomposition in equation (4.17) and comparing the powers of p, we get the nth

component of the series solution as follows

vn+1(x, y, t) =E−1

{
vE

(
1

2

∫ x

0

∫ y

0
K(x− x′, y − y′, x′, y′)

n∑
i=0

vi(x− x′, y − y′, t)
n∑
i=0

vi(x
′, y′, t)dy′dx′

−
∫ ∞

0

∫ ∞
0

K(x, x′, y, y′)
n∑
i=0

vi(x, y, t)
n∑
i=0

vi(x
′, y′, t)dy′dx′

)}
, for n > 0, (4.19)

where v0(x, y, t) = u(x, y, 0). Let us denote the n term truncated solution by

ΨBSCE
n (x, y, t) :=

n∑
j=0

vj(x, y, t). (4.20)

5. Convergence Analysis

5.1. Smoluchowski’s Coagulation Equation. Consider the Banach space X = C([0, T ] : L1[0,∞), ‖.‖)
over the norm defined as

‖u‖ = sup
s∈[0,t0]

∫ ∞
0
|u(x, s)|dx <∞.

Let us use equation (4.1) in the operator form as

u(x, t) = Ñ [u]
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where

Ñ [u] = u(x, 0) + E−1{vE[N [u]]} (5.1)

and N [u] is given by

N [u] =
1

2

∫ x

0
K(x− y, y)u(x− y, t)u(y, t)dy −

∫ ∞
0

K(x, y)u(x, t)u(y, t)dy.

Theorem 1. Let us consider the coagulation equation (1.2) with kernel K(x, y) = 1 for all x, y ∈ (0,∞).
If vsi are the components of the series solution computed using (4.5) and ΨSCE

n being the n term truncated
solution provided in equation (4.6), then ΨSCE

n converges to the exact solution u with the error bound

‖u−ΨSCE
n ‖ ≤ ∆n

1−∆
‖v1‖

where ∆ = t20e
2t0L(‖u0‖+ 2t0L

2 + 2t0L) < 1 and L = ‖u0‖(T + 1).

Proof. Two separate phases complete the theorem’s proof. The contractive nature of the non-linear operator
Ñ is initially demonstrated. Then convergence of the truncated solution towards the exact one is established.
Step 1: As presented in [25], equation (5.1) can be written in the equivalent form as

∂

∂t
[u(x, t) exp[H[x, t, u]]] =

1

2
exp[H[x, t, u]]

∫ x

0
K(x− y, y)u(x− y, t)u(y, t)dy

where H[x, t, u] =
∫ t

0

∫∞
0 K(x, y)u(y, s)dyds. Thus the equivalent operator Ñ is given by

Ñ [u] = u(x, 0) exp[−H(x, t, u)] +
1

2

∫ t

0
exp[H(x, s, u)−H(x, t, u)]

∫ ∞
0

K(x, y)u(x− y, s)u(y, s)dyds.

Since Ñ is contractive (Singh et al. established in [25]) and equivalent to N [u], the non-linear operator N [u]
is also contractive, i.e.,

‖Nu−Nu∗‖ ≤ δ‖u− u∗‖ (5.2)

where δ := t0e
2t0L(‖u0‖+ 2t0L

2 + 2t0L) < 1 (for suitably chosen t0) and L = ‖u0‖(T + 1).
Now, using the definition and basic properties of Elzaki and Laplace transformations as well as employing
(5.2), we get

‖Ñu− Ñu∗‖ = ‖E−1{vE(N(u))} − E−1{vE(N(u∗))}‖

=

∥∥∥∥ 1

2π

∫ ∞
0

(
1

v2

∫ ∞
0

(Nu−Nu∗)e−tvdt
)
etvvdv

∥∥∥∥
≤ 1

2π

∫ ∞
0

(
1

v

∫ ∞
0

δ‖u− u∗‖e−tvdt
)
etvdv

=
1

2π

∫ ∞
0

1

v
L(δ‖u− u∗‖)etvdv

= L−1

{
1

v2
L(δ‖u− u∗‖)

}
≤ δt0‖u− u∗‖ for a suitable t0.
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Step 2: Now, in this phase, an n term truncated solution is computed using the iterations defined in (4.5)
and then error is estimated. Given that,

ΨSCE
n =

n∑
i=0

vi(x, t)

=u(x, 0) + E−1{vE(N(u0))}+ E−1{vE(N(u0 + u1)−H0)}+ · · ·+ E−1{vE(N(
n−1∑
j=0

uj)−
n−2∑
j=0

Hi)}

=u(x, 0) + E−1{vE(N [v0] +N [v0 + v1] + · · ·+N [v0 + v1 + · · ·+ vn−1]−
(H0 + (H0 +H1) + · · ·+ (H0 +H1 + · · ·+Hn−2)))}

=u(x, 0) + E−1{vE(N(ΨSCE
n−1 ))} = Ñ [ΨSCE

n−1 ].

Using the contractive mapping of Ñ leads to

‖ΨSCE
n+1 −ΨSCE

n ‖ ≤ ∆‖ΨSCE
n −ΨSCE

n−1 ‖.
and thus, we have

‖ΨSCE
n+1 −ΨSCE

n ‖ ≤ ∆n‖ΨSCE
1 −ΨSCE

0 ‖.
Using the triangle inequality for all n,m ∈ N with n > m, we have

‖ΨSCE
n −ΨSCE

m ‖ ≤ ‖ΨSCE
n −ΨSCE

n−1 ‖+ ‖ΨSCE
n−1 −ΨSCE

n−2 ‖+ · · ·+ ‖ΨSCE
m+1 −ΨSCE

m ‖
≤ (∆n−1 + ∆n−2 + · · ·+ ∆m)‖ΨSCE

1 −ΨSCE
0 ‖

=
∆m(1−∆n−m)

1−∆
‖u1‖ ≤

∆m

1−∆
‖u1‖,

which converges to zero as m→∞, implies that there exists a Ψ such that lim
n→∞

ΨSCE
n = Ψ. Therefore,

u(x, t) =

∞∑
i=0

vi = lim
n→∞

ΨSCE
n = Ψ,

which is the exact solution of the coagulation equation (1.2). The theoretical error is obtained by fixing m
and letting n→∞ in the above formulation. �

5.2. Pure Breakage Equation. Let X = C([0, T ] : L1[0,∞), ‖.‖]) be a Banach space with the norm

‖u‖ = sup
t∈[0,t0]

∫ ∞
0

eλx|u(x, t)|dx, where λ > 0. (5.3)

Now, equation (1.1) can be rewritten in the operator form as

u = L̃[u] = u(x, 0) + E−1vE(L[u])

with L[u] being the right-hand side of equation (1.1).

Theorem 2. Let ΨFE
n be the n term truncated series solution of the fragmentation problem defined in

equation (1.1). Then ΨFE
n converges to the exact solution and provides the error estimates

‖u−ΨFE
n ‖ ≤

ϑn

1− ϑ
‖v1‖, (5.4)

where v1 is provided in equation (4.9), if the following conditions hold

B1. B(x, y) = c
xr−1

yr
where r = 1, 2, 3, · · · and c is a positive constant satisfying

∫ y
0 xB(x, y)dx = y,

B2. S(x) ≤ xk, where k = 1, 2, 3, · · · ,
B3. λ is chosen such that eλy − 1 < 1,
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B4. ϑ :=
k!(t0)2

λk+1
< 1 for suitable t0.

Proof. Let us begin with the proof that the operator L̃ is contractive. In order to do so, we use the
fact that the operator L[u] is a contractive operator under the assumptions mentioned in B1-B3, i.e.,

‖L[u] − L[u∗]‖ ≤ ρ‖u − u∗‖ where ρ =
k!t0
λk+1

< 1 by following ([25] Theorem 2.1). Now, thanks to Elzaki

and Laplace transformations, one can write

‖L[u]− L[u∗]‖ = ‖E−1{vE(L[u])} − E−1{vE(L[u∗])}‖

=

∥∥∥∥ 1

2π

∫ ∞
0

(
1

v2

∫ ∞
0

(Lu− Lu∗)e−tvdt
)
etvvdv

∥∥∥∥
≤ 1

2π

∫ ∞
0

(
1

v

∫ ∞
0

ρ‖u− u∗‖e−tvdt
)
etvdv

=
1

2π

∫ ∞
0

1

v
L(ρ‖u− u∗‖)etvdv

= L−1

{
1

v
L(ρ‖u− u∗‖)

}
≤ ϑ‖u− u∗‖ where ϑ = ρt0.

We proceed further to obtain the estimate (5.4). By using the iteration formula (4.9), the n-term truncated
solution is computed as

ΨFE
n =E−1{vE[v0]}+ E−1{vE[v1]}+ · · ·+ E−1{vE[vn−1]}

=E−1{vE[v0 + v1 + · · ·+ vn−1]} = E−1{vE[ΨFE
n−1]}.

Therefore, we have

‖ΨFE
n+1 −ΨFE

n ‖ ≤ ϑ‖ΨFE
n −ΨFE

n−1‖ ≤ ϑn‖ΨFE
1 −ΨFE

0 ‖.
The above can be used to establish the following, for all n,m ∈ N with n > m,

‖ΨFE
n −ΨFE

m ‖ ≤ ‖ΨFE
n −ΨFE

n−1‖+ ‖ΨFE
n−1 −ΨFE

n−2‖+ · · ·+ ‖ΨFE
m+1 −ΨFE

m ‖
≤ (ϑn−1 + ϑn−2 + · · ·+ ϑm)‖ΨFE

1 −ΨFE
0 ‖

=
ϑm(1− ϑn−m)

1− ϑ
‖v1‖ ≤

ϑm

1− ϑ
‖v1‖.

Thanks for Hypothesis B4, the above tends to zero as m→∞ which means that there exists a Ψ such that
lim
n→∞

ΨFE
n = Ψ. Thus, we obtain the exact solution of the breakage equation (1.1) as

u(x, t) =

∞∑
i=0

vi = lim
n→∞

ΨFE
n = Ψ.

�

5.3. Bivariate Smoluchowski’s Coagulation Equation. Consider a Banach space X = C([0, T ] :
L1[0,∞)× L1[0,∞), ‖.‖) with the enduced norm

‖u‖ = sup
s∈[0,t0]

∫ ∞
0

∫ ∞
0
|u(x, y, s)|dxdy <∞.

To demonstrate the convergence analysis, let us write the operator form of the equation (4.15) as

u = Q̃[u], (5.5)

where Q̃ is given by

Q̃[u] = u0(x, y) + E−1[vE[Q[u]]] (5.6)
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and

Q[u] =− 1

2

∫ x

0

∫ y

0
K(x− x′, y − y′, x′, y′)u(x− x′, y − y′, t)u(x′, y′, t)dy′dx′

+

∫ ∞
0

∫ ∞
0

K(x, x′, y, y′)u(x, y, t)u(x′, y′, t)dy′dx′.

The iterative scheme’s convergence concept is splitted into two components, firstly, we establish that the
operator Q̃ is contractive (Theorem 3) and then proceed further to discuss the worst case upper bound for

error (Theorem 4) below. To show the operator Q̃ is contractive, initially we prove that Q is contractive.
To do so, an equivalent form of the equation (1.4) is taken as

∂

∂t
[u(x, y, t) exp[R(x, y, t, u)]] =

1

2
exp[R(x, y, t, u)]

∫ x

0

∫ y

0
K(x− x′, x′, y − y′, y′)u(x− x′, y − y′, t)u(x′, y′, t)dy′dx′,

(5.7)

where R(x, y, t, u) =
∫ t

0

∫∞
0

∫∞
0 K(x, x′, y, y′)u(x′, y′, t)dx′dy′dt. Thus the equivalent operator N is given by

N [u] = u(x, y, 0) exp[−R(x, y, t, u)] +
1

2

∫ t

0
exp[R(x, y, s, u)−R(x, y, t, u)]∫ x

0

∫ y

0
K(x− x′, x′, y − y′, y′)u(x− x′y − y′, s)u(x′, y′, s)dy′dx′ds. (5.8)

Since, N and Q are equivalent, it is sufficient to show that N is contractive.

Theorem 3. The operator Q̃, defined in equation (5.6) is contractive for all u, u∗ ∈ X if the following
conditions

• K(x, x′, y, y′) = 1 ∀x, x′, y, y′ ∈ (0,∞) and
• ∆ = t20e

2t0L(‖u‖+ 2t0L
2 + 2t0L) < 1 where L = ‖u0‖(T + 1) hold.

Proof. Consider u, u∗ ∈ X, then

N [u]−N [u∗] =u(x, y, 0) exp[−R(x, y, t, u)]− u∗(x, y, 0) exp[−R(x, y, t, u∗)]

+
1

2

∫ t

0
exp[R(x, y, s, u)−R(x, y, t, u)]

∫ x

0

∫ y

0
u(x− x′, y − y′, s)u(x′, y′, s)dy′dx′ds

− 1

2

∫ t

0
exp[R(x, y, s, u∗)−R(x, y, t, u∗)]

∫ x

0

∫ y

0
u∗(x− x′y − y′, s)u∗(x′, y′, s)dy′dx′ds.

Let us define an another operator

H[x, y, s, t] = exp{R[x, y, s, u]−R[x, y, t, u]} − exp{R[x, y, s, u∗]−R[x, y, t, u∗]}.

It can be easily proven that

|H[x, y, s, t]| ≤ (t− s) exp{(t− s)B}‖u− u∗‖ ≤ B1‖u− u∗‖,

where B1 = tetB and B = max{‖u‖, ‖u∗‖}. Further,

N [u]−N [u∗] =u0(x, y)H(x, y, 0, t) +
1

2

∫ t

0
H(x, y, s, t)

∫ x

0

∫ y

0
u(x− x′, y − y′, s)u(x′, y′, s)dy′dx′ds

+
1

2

∫ t

0
exp[R(x, y, s, u∗)−R(x, y, t, u∗)][ ∫ x

0

∫ y

0
u∗(x− x′y − y′, s){u(x′, y′, s)− u∗(x′, y′, s)}dy′dx′

+

∫ x

0

∫ y

0
u(x′, y′, s){u(x− x′, y − y′, s)− u∗(x− x′, y − y′, s)}dx′dy′

]
ds. (5.9)
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To show the non-linear operator N is contractive, a set D is defined such as D = {u ∈ X : ‖u‖ ≤ 2L}.
Taking norm on both sides of (5.9) provides

‖N [u]−N [u∗]‖ ≤ B1‖u− u∗‖‖u0‖+B1‖u− u∗‖
∫ t

0

[
1

2
‖u‖2

]
ds+

∫ t

0
B1

[
1

2
(‖u‖+ ‖u∗‖)‖u− u∗‖

]
ds

≤ B1

[
‖u0‖+

1

2
t‖u‖2 +

1

2
t(‖u‖+ ‖u∗‖)

]
‖u− u∗‖

≤ t0e2t0L

[
‖u0‖+ 2t0L

2 +
1

2
t0(2L+ 2L)

]
‖u− u∗‖

= δ‖u− u∗‖,

for a suitable choice of t0. So, the operator N is contractive if δ = t0e
2t0L

[
‖u0‖+ 2t0L

2 + 2t0L
]
< 1, hence

Q is contractive. Now we are in position to demonstrate that Q̃ is contractive. Consider,

‖Q̃u− Q̃u∗‖ = ‖E−1(vE [Qu])− E−1(vE [Qu∗])‖

= ‖ 1

2π

∫ ∞
0

(
1

v2

∫ ∞
0

(Qv −Qv∗)e−vtdt
)
evtvdv‖

≤ 1

2π

∫ ∞
0

(
1

v

∫ ∞
0
‖Qu−Qu∗‖e−vtdt

)
evtdp

≤ 1

2π

∫ ∞
0

(
1

v

∫ ∞
0

δ‖u− u∗‖e−vtdt
)
evtdv

=
1

2π

∫ ∞
0

1

v
L(δ‖u− u∗‖)evtdv

= L−1

{
1

v
L(δ‖u− u∗‖)

}
= δt0‖u− u∗‖ = ∆‖u− u∗‖.

Hence, the above accomplishes the contractive nature of Q̃. �

Theorem 4. Assuming that the criteria of Theorem 3 holds and v′is are the elements of the series solution
calculated by equation (4.19). Then the series solution converges to the exact solution with the error bound

‖u−ΨBCSE
n ‖ =

∆n

1−∆
‖v1‖,

whenever ∆ < 1 and ‖v1‖ <∞.

Proof. The proof is similar to the Theorem 1, hence it is omitted here. �

Remark 5.1. It is worth mentioning that the iterations and hence the finite term series solutions, com-
puted using the HAM [17], HPM [18], ADM [25] and ODM [29] are identical to the iterations obtained
using the AHPETM for the breakage equation which is linear. As a result, we have omitted the numerical
implementations for pure breakage equation. So, the main focus of all the approaches is on approximating
the non-linearity, which has no bearing on the linearity in the equations.

6. Numerical Results and Discussion

This section verifies numerically the effectiveness of the suggested approach for coagulation, combined
fragmentation-coagulation, and bivariate aggregation equations. Three physical test cases are considered
and results for the number density and moments are compared with the precise solution as well as established
and recently developed methods (ADM, HPM, HAM, ODM) for SCE. Due to the improved and significant
results noticed in SCE, the numerical implementation is made for solving the coupled CFE and BSCE. Two
test cases of CFE and one example of BSCE are taken into account to justify the effectiveness of our scheme.
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6.1. Smoluchowski’s Coagulation Equation.

Example 6.1. Consider the case of constant aggregation kernel K(x, y) = 1 with the exponential initial
data u(x, 0) = e−x and for this the exact solution

u(x, t) =
4

(2 + t)2
e−

2x
2+t ,

is discussed in [25].

Employing the equations (4.5) and (4.6), first three components of the series solutions are given as follows

v0(x, t) = e−x, v1(x, t) =
1

2
te−x(x− 2),

v2(x, t) = t3
(
x3

144
− x2

12
+
x

4
− 1

6

)
e−x + t2

(
x2

8
− 3x

4
+

3

4

)
e−x,

v3(x, t) =
1

40642560
t3e−x

(
t4x7 + 14t3(7− 4t)x6 + 588(t− 2)t2(2t− 3)x5 − 2940t(t(t(4t− 21) + 36)− 24)x4

+ 11760(5(t− 4)t((t− 3)t+ 6) + 48)x3 − 35280(t(t(t(4t− 35) + 120)− 240) + 192)x2

+ 70560(t(t(t(2t− 21) + 90)− 240) + 288)x− 10080(t(t(t(4t− 49) + 252)− 840) + 1344)

)
.

It is essential to mention here that the components vi are quite complicated and due to the complexity of
the terms, it is hard to find a closed-form solution. Therefore, a three-term truncated solution is considered.
However, thanks to MATHEMATICA, one can compute the higher order terms using equation (4.5). To see

(a) AHPETM (n = 3) (b) Exact Solution

Figure 1. Number density for AHPETM and exact solutions for Example 6.1

the accuracy of proposed method, the approximated three-term and exact solutions are plotted in Figures
1(a) and 1(b). One can scrutinize that the AHPETM solution shows a remarkable agreement with the exact
one. Table 2 depicts the numerical errors of AHPETM at different time levels for n = 3, 4, 5 and 6 using
the formula

Error = ∆m =
m∑
i=1

|un(xi, t)− u(xi, t)|hi, (6.1)

where m defines the number of subintervals, hi the length of the interval and u(x, t) is the exact solution
provided in [25]. As one can notice, the inaccuracy grows as time increases for a fixed number of terms
and error decreases when more terms in the approximated solutions are taken into account. Further, to see
the beauty of our algorithm, errors between exact and AHPETM solutions are compared with the errors
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Table 2. Numerical errors at t = 0.5, 1, 1.5 and 2 for n = 3, 4, 5, 6.

n t = 0.5 t = 1 t = 1.5 t = 2

3 0.0014 0.0153 0.0543 0.1239

4 1.366×10−4 2.656×10−3 1.294×10−2 3.632×10−2

5 1.072× 10−5 3.7972×10−4 2.5718×10−3 9.0682×10−3

6 7.154× 10−7 4.6146×10−5 4.3241×10−4 1.8931×10−3
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(c) Error at t = 2

Figure 2. Number density and error

between exact and other well-established approximated solutions obtained via HPM/ADM/HAM and ODM
in Figure 2. It is important to point out here that the HAM [17]/ADM [25]/HPM [18] provide the same
iterations and hence the identical finite term series solution for the considered model. It is noticed that
HPM is very badly approximated in comparison to ODM while AHPETM further improves the error of
ODM very significantly. Figure 2(a) represents the concentration of particles at time t = 2 and the solutions
obtained using HPM and ODM blow up where the AHPETM solution matches well with the exact solution.
Results for error from Figure 2(b) indicate that all the schemes are quite efficient for a short time where as
for a significant time, the errors due to HPM and ODM are relatively very high compared to AHPETM.
Further, Figure 2(c) depicts the error plots of approximated solutions with precise solution for a fixed time
t = 2 and it is observed that the AHPETM performs well over HPM and ODM for large space domain.
In addition to this, integral properties associated with number density are plotted in Figure 3. The zeroth
(total number of particles), first (total mass) and second (energy dispersed by the system) moments are
displayed and comparison are made with the precise moments. In Figure 3(a), AHPETM offers superior
approximations in the zeroth moment while HPM under predicts the result and deviates almost exponen-
tially from the exact one. ODM shows much better approximation than HAM but still suffers fluctuations.
In Figure 3(b), the first moments of AHPETM and HPM exhibit close correspondence with the precise
moments, whereas ODM demonstrates a decline in precision. Notably, AHPETM and HPM yield solutions
that conserve mass effectively, contrasting with ODM’s inability to replicate the model’s dynamics accu-
rately. As shown in Figure 3(c), AHPETM continues to be the best option as the second moment produced
by AHPETM and HPM coincides with the exact ones but ODM does not offer a decent estimate.
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Figure 3. Zeroth, first and second moments

Example 6.2. Let us take aggregation kernel K(x, y) = x+y with the exponential initial condition u(x, 0) =
e−x. The exact number density is provided in [50] as

u(x, t) =
e(e
−t−2)x−tI1

(
2
√

1− e−tx
)

√
1− e−tx

,

where I1 is the Bessel function of the first kind.

Using the equations (4.5) and (4.6), first few components of the series solution are determined as

v0(x, t) = e−x, v1(x, t) =
1

2
te−x

(
x2 − 2x− 2

)
,

v2(x, t) =
1

720
t2e−x

(
tx(x5 − 10x4 − 20x3 + 240x2 − 120x− 240) + 60x4 − 360x3 − 180x2 + 1080x+ 360

)
.

Continuing in a similar fashion, it is easy to compute the higher order components to find better-approximated
results. A four-term truncated solution is considered here and the results are compared with the HPM and
ODM solutions using the same number of terms.

HPM ODM
AHPETM Exact

0 5 10 15 20
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Size

C
o
n
c
e
n
tr
a
ti
o
n

(a) Number density at t = 2

HPM
ODM
AHPETM

0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

Time

E
rr
o
r

(b) Error at x = 5

HPM
ODM
AHPETM

10-4 0.01 1 100

0.0

0.5

1.0

1.5

Time

E
rr
o
r

(c) Error at t = 1.5

Figure 4. Number density and error

As observed in the previous case, AHPETM is again found to be more accurate than HPM and ODM, see
Figure 4. This is clear from Figure 4(a) which displays the number density at t = 2 for all the schemes.
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Table 3. Absolute error for x = 5 at different time levels

t Exact AHPETM ODM HPM AHPETM error ODM error HPM error

0.2 0.0129 0.0129 0.0118 0.0131 2.71288×10−5 1.0352×10−3 1.4248×10−4

0.4 0.0146 0.0151 0.0053 0.0184 5.3035×10−4 9.2238×10−3 3.8424×10−3

0.6 0.0138 0.0162 -0.0177 0.03868 2.3932×10−3 3.1524×10−2 2.4873×10−2

0.8 0.0121 0.0179 -0.0601 0.1026 5.8862×10−3 7.223×10−2 9.060 ×10−2

1.0 0.0101 0.0203 -0.1226 0.2523 0.0102 0.1327 0.2422
1.2 0.0082 0.0220 -0.2034 0.5428 0.0137 0.2117 0.5345
1.4 0.0067 0.0197 -0.2989 1.042 0.0131 0.3057 1.0357
1.6 0.00545 0.00506 -0.4031 1.8325 0.038 0.4085 1.8271

Further, Figure 4(b) and Table 3 demonstrate that for a fixed x and at different values of time t, AHPETM
provide the best results over both HPM and ODM. In fact, the errors due to HPM and ODM grow almost
exponentially as the time increases, while AHPETM performs consistently. Finally, Figure 4(c) depicts that
the error due to AHPETM is not only significantly smaller than the existing approximated solutions of
HPM and ODM but also close to zero for large spatial domain. Moving further, approximated and exact
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Figure 5. Zeroth, first and second moments

moments are compared for AHPETM in Figure 5. Surprisingly, ODM under predicts the zeroth moment
and over predicts the first and second moments, respectively, while HPM and AHPETM gave almost iden-
tical findings and provided an excellent approximations to the exact zeroth, first and second moments. One
important point to note here is that the AHPETM four term series solution can approximate the moments
accurately up to time t = 1.5, while the ODM with 7 terms can only achieve the same level of accuracy up
to time t = 0.4. This shows the superiority of the proposed scheme.

Example 6.3. Consider the case of product aggregation kernel K(x, y) = xy with the exponential initial
condition u(x, 0) = e−x and the precise solution is provided in [51] as

u(x, t) =

∞∑
k=0

tkx3k exp(−(t+ 1)x)

(k + 1)!Γ(2k + 2)
.

Using the recursive scheme defined in equation (4.5), a five term truncated solution is considered. Due to
complexity of the terms, only few given here as

v0(x, t) = e−x, v1(x, t) =
1

12
te−xx

(
x2 − 12

)
,
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v2(x, t) =
1

544320

(
t2e−xx2

(
tx7 − 144tx5 + 3024tx3 + 756x4 − 45360x2 + 272160

))
.

Figure 6 contrasts the error between the exact and truncated solutions obtained via HAM/HPM/ADM,

(a) AHPETM error (n = 5) (b) HPM error (n = 5) (c) ODM error (n = 5)

Figure 6. AHPETM, HPM/ADM/HAM & ODM errors
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Figure 7. Number density and error

ODM, and AHPETM. The figure demonstrates that the AHPETM outperforms both HPM and ODM
results. Figure 7 further indicates the scheme’s superiority as the unexpected behavior of the HPM and
ODM solutions are noticed, where as the AHPETM offers better estimates of the exact solution. Figure 8
continues by contrasting the analytical moments with the approximated moments. In situations where the
HPM and AHPETM moments are almost identical and closer to the exact moments, as seen in the prior
occurrences, ODM moments explode.

Remark 6.1. It has been noted that both AHPETM and HPM offer a more precise approximation for the
moments, whereas ODM does not achieve the same level of accuracy. Conversely, ODM offers a more
accurate approximation than HPM for the number density, and AHPETM enhances the results for number
density even further. Consequently, AHPETM demonstrates greater efficiency compared to both HPM and
ODM.

From the above illustrations, it can be seen that in all contexts, AHPETM performs better than ADM,
HPM, HAM, and ODM. Therefore, due to the novelty of the proposed scheme, we use AHPETM to solve
the more complex models such as coupled aggregation-breakage and bivariate aggregation equations.
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Figure 8. Zeroth, first and second moments

6.2. Coupled Aggregation-Breakage Equation.

Example 6.4. Considering the case of constant aggregation rate (K(x, y) = 1), binary breakage (B(x, y) =
2/y) with the selection rate S(x) = x

2 and for the initial condition u(x, 0) = 4xe−2x, the exact solution for
the problem (4.11) is provided in [52].

Using the iterations defined in equation (4.13), components v′is of the solutions are computed as follows

v0(x, t) = 4xe−2x, v1(x, t) =
1

3
te−2x

(
4x3 − 6x2 − 6x+ 3

)
,

v2(x, t) =
1

3780

(
t2e−2x

(
8tx7 − 56tx6 − 84tx5 + 840tx4 − 420tx3 − 1260tx2 + 630tx+ 504x5

− 2520x4 − 1890x3 + 9450x2 + 945x− 1890

))
.

A four-term truncated solution is computed with the aid of ”MATHEMATICA”. At a specific period t, the
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Figure 9. Number density

number density of particles of size x is shown in Figure 9(a). It is observed from Figures 9(a) and (b) that
smaller particles tend to increase as time goes on, while larger particles start to fragments into smaller ones.
The error between the exact and truncated solutions is presented in Figure 10(a) and is found to be nearly
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Figure 10. Error and moment

insignificant. Further, Figure 10(b) gives the absolute difference between the subsequent components of the
series solution and it is clear that the difference between the second and third terms nearly vanishes, which
serves as the inspiration for the decision to truncate the solution for three terms. As shown in Figure 10(c),
the truncated solution exhibits steady state behavior for the number of particles as the zeroth moment is
constant. This behavior was also analyzed analytically in [52], and thus demonstrating the method’s novelty.

Example 6.5. Consider another example of the coupled aggregation-breakage equation (4.11) with the same
parameters as taken in Example 6.4 but with selection rate S(x) = 2x and initial condition u(x, 0) = 32xe−4x.
Similar to the previous case, here as well, steady state behavior of zeroth moment was studied in [52].

Thanks to the formula (4.13), three terms of the truncated solution are computed as

v0(x, t) = 32xe−4x, v1(x, t) =
8

3
te−4x

(
32x3 − 24x2 − 12x+ 3

)
,

v2(x, t) =
8

945
t2e−4x

(
1024tx7 − 3584tx6 − 2688tx5 + 13440tx4 − 3360tx3 − 5040tx2 + 1260tx

+ 8064x5 − 20160x4 − 7560x3 + 18900x2 + 945x− 945

)
.

Due to the complexity involved in the terms, a four-term truncated solution is considered. The number
density of particle in the system is presented in Figure 11(a). Further, Figure 11(b) presents the concen-
tration of particles at different time levels, and an increment in smaller particles is encountered, where as
larger particles start breaking as time increases. In Figure 12(a), the difference between the consecutive
terms is presented, and the error between the third and fourth terms seems to be vanishing, which leads us
to truncate the solution for three terms. The error between exact and approximated solutions is provided
in Figure 12(b). As expected, in Figure 12(c), AHPETM shows the steady-state nature of zeroth moment
and is exactly matching with the precise total number of particles.

6.3. Bivariate Aggregation Equation.

Example 6.6. Let us take two-dimensional aggregation equation (1.4) with the constant aggregation kernel

K(x, x′, y, y′) = 1 and the initial condition u(x, y, 0) = 16N0xy
m2

1m
2
2

exp{− 2x
m1
− 2y

m2
} for which the parameters and

the exact solution are given in Table 4. For more details, readers may refer to [53].
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Table 4. Parameters and exact solution

N0, p1, p2 1

m1, m2 0.04

u(x, t) (4N0)
(m1m2)(t+2)2

(
(p1 + 1) p1+1 (p1 + 1) p2+1

)
exp

(
− (p1+1)x

m1
− (p2+1)y

m2

)
∑∞

k=0

( t
t+2)

k
(
((p1+1)p1+1)k((p2+1)p2+1)k

(
x

m1

)
(k+1)(p1+1)−1

(
y

m2

)
(k+1)(p2+1)−1

)
Γ((p1+1)(k+1))Γ((p2+1)(k+1))

The first three elements of the series solution are provided below using the iterations specified in equation
(4.19)

v0(x, y, t) = u0(x, y, 0), v1(x, y, t) = 5.42535× 1011txye−50x−50y
(
x2y2 − 0.1152× 10−4

)
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v2(x, y, t) =3.10441× 10−10xye−50x−50y

(
8.06248× 1027t3x6y6 − 9.10222× 1024t3x4y4

+ 8.73813× 1020t3x2y2 − 3.35544× 1015t3 + 1.36533× 1025t2x4y4 − 2.62144× 1021t2x2y2

+ 1.50995× 1016t2 + 6t

)
.

Continuing in a similar pattern, a four-term truncated solution is computed and compared with the exact
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Figure 13. Number density, error and moments

solution. Figure 13(a) gives the number density at time t = 0.4 and it is marked that larger particles almost
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disappear, and microscopic particles dominate the system. A minimal error is seen between the exact and
truncated solutions, according to the error curve shown in Figure 13(b). In addition to this, Figures 13(c)-
13(e) present the contour plots of the errors by taking two, three, and four terms truncated series solutions.
One can observe that as the number of terms increases, the error reduces significantly. Finally, Figure
13(f) shows that the approximated moments, namely µ0,0, µ1,0, µ2,0, provide a great agreement with the
corresponding exact moments.

7. Concluding remarks

This study employed AHPETM to solve the fragmentation, multi-dimensional coagulation, and linked
aggregation-fragmentation equations. Due to the complexity in the models, convergence analysis were
discussed for fragmentation and multi-dimensional aggregation equations considering the constant kernels.
With the help of MATHEMATICA, this article also contained the detailed numerical investigations for each
of the predefined models. It was observed that, for pure fragmentation equation which is linear, all the
schemes offered the same results. However, for non-linear aggregation equation, AHPETM significantly
outperformed the results of ADM, HAM, HPM and ODM even after a lengthy period of time. This justified
the method’s reliability and applicability. AHPETM was also designed to solve non-linear 2-D aggregation
and combined aggregation-fragmentation equations due to the accuracy and efficiency observed in the pure
aggregation equation and remarkable results were obtained in each case. In future, it would be interesting
to implement AHPETM for tackling static beam and other engineering nonlinear problems [54–56]. One
can include a convergence control parameter and Pade approximation to enhance the approach that may
offer a more refined and effective scheme.
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