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1 Introduction

One significant class of boundary value problems that plays a vital role in technology and
science is the nonlinear SBVPs. These problems appear in the modeling of nuclear physics, gas
dynamics, chemical reactions, electrohydrodynamics, and many engineering applications (see
[1, 2, 3] and references therein). In this work, we consider the following SBVP with nonlinear
source function g(x, ν(x)) [4, 5, 6]:

ν ′′(x) +
λ

x
ν ′(x) = g(x, ν(x)), x ∈ (0, 1], λ ≥ 1, (1)

with Neumann and Robin boundary conditions (NBCs/RBCs):

ν ′(0) = 0, γν(1) + ζν ′(1) = ρ, (2)

where γ > 0, ζ ≥ 0 and ρ is a real constant. It is assumed that ∂g
∂ν ≥ 0 for each of x ∈ (0, 1], and

g(x, ν), ∂g
∂ν are continuous on (0, 1]. The existence and uniqueness of the solutions to problem

(1)-(2) are discussed by Pandey and Verma [7]. Problem (1)-(2) for different λ appears in many
chemical, physical and biological models. For instance, below is a brief introduction to some
types.

(i) Eq. (1) with λ = 2 and g(x, ν) =
σν

ν + ϱ
, σ > 0, ϱ > 0, occurs during modeling of

steady-state oxygen diffusion uptake kinetics [3].
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(ii) Eq. (1) with λ = 2 and g(x, ν) = −σe−µν , σ > 0, µ > 0, occurs during modeling of
the distribution of heat source in the human head [2].

(iii) Eq. (1) with λ = 1, 2 and g(x, ν) = θeν , (θ is a physical parameter), occurs in studying
the electric double layer in a salt-free solution and the theory of thermal explosions [8].

(iv) Eq. (1) with λ = 0, 1, 2 and g(x, ν) = φ2νm, (φ > 0 and m ∈ R), occurs in studying the
reaction-diffusion process in a porous catalyst [9].

(v) Eq. (1) with λ = 2 and g(x, ν) = −ν5, appears from the study of equilibrium of the
isothermal gas sphere [10].

The existence of a singularity at x = 0 is one of the difficulties that researchers face when
solving problem (1)-(2). There are two classes of methods for solving SBVPs: numerical and
analytical. Although most of the analytical techniques provide detailed information about the
existence and uniqueness of the solutions, however, some criticisms are inflicted on these tech-
niques. Some advantages and disadvantages of analytical techniques for solving SBVPs can
be seen in [11]. Due to existing difficulties in analytical techniques, researchers have explored
numerical approaches to solve SBVPs. For instance, an approach based on the Adomian de-
composition method and Green’s function [12], Sinc-Galerkin method [9], variational iteration
method involving Adomian polynomials [13], Quasi-Newton’s method and the simplified repro-
ducing kernel method (SRKM) [5], SRKM and least squares method [4], advanced Adomian
decomposition method [6], improved differential transform method [14], a technique based on
the operational matrix of the derivative of the orthonormal Bernoulli polynomials [15], Cubic
spline method [16], modified homotopy analysis method [10], modified homotopy perturbation
algorithm [17], domain decomposition optimal homotopy analysis method [18], discrete op-
timized homotopy analysis method [19], iterative approach based on an improved homotopy
analysis method [20], and B-spline collocation method [21], are presented for solving problem
(1)-(2). Also, in [22], Liu et al. developed a boundary shape function iterative method, and
in [23] Roul et al. employed a finite difference method for solving problem (1)-(2) with source
function g(x, ν, ν ′). Among other available numerical methods for solving SBVPs, the spectral
poly-sinc collocation technique [24], combination of the differential transform method and the
Padé approximations and Chebyshev finite difference method [25], Legendre reproducing ker-
nel method [11], compact finite difference method [26], modified Lucas polynomials derivative
operational matrix method [27], a hybrid stochastic numerical solver [1], DE sinc-collocation
method [28], a method based on sextic B-spline collocation approach [29], two methods based
on quintic B-spline collocation approach [30], and a non-uniform mesh optimal cubic B-spline
collocation method [31], can be mentioned. Also, the authors of [32] deal with the spectral
problems associated with SBVPs and, Pandey et al. [33] described an analytical method based
on the combination of Newton’s quasi-linearization method and the Picard iteration method for
solving a class of doubly SBVPs. Moreover, for some other useful techniques on this subject we
refer the interested reader to a method based on the linear B-spline functions [34], variational
iteration method [35], local radial basis functions [36], homotopy analysis method [37], and the
Adomian decomposition method [38].
Historically, the idea of reproducing kernels is not new. In 1908, Zaremba introduced this concept
while considering harmonic functions [39]. In recent years, there have been many publications
on solving different types of problems, including SBVPs, using RKM (see say [4, 5, 11, 40] and
references therein). Using the traditional RKM, a lot of time is needed in the Gram-Schmidt or-
thogonalization process [4]. Furthermore, classical RKM requires selecting a dense set of points
to obtain a highly accurate solution [11]. To overcome these disadvantages, some researchers
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have applied different techniques to traditional RKM (see for example [11, 41, 42, 43]).
In the present research, we improve the traditional RKM for solving problem (1)-(2). We use the
idea of traditional RKM and the properties of Bernoulli polynomials to present a new Bernoulli-
RKM. We use the idea of traditional RKM and the properties of Bernoulli polynomials to present
a new Bernoulli-RKM. The novelties of this research include:

(i) The new technique introduced in this paper removes the necessity for an orthogonalization
procedure, a step that is essential in the traditional RKM.

(ii) The Bernoulli-RKM does not depend on a dense set of points; rather, it employs collocation
points. Consequently, we expect the speed and accuracy of Bernoulli-RKM to be improved
compared to traditional RKM.

(iii) Other SBVPs can be solved using this approach with certain adjustments.

The remainder of this paper is organized as follows. Section 2 introduces Bernoulli poly-
nomials and shows how to create reproduction kernels in polynomial form. In Section 3, we
describe Bernoulli-RKM in full detail to solve problem (1)-(2). Also in this section, we discuss
the convergence analysis of the Bernoulli-RKM. In Section 4, several numerical examples are
presented and compared with the results of other methods in the literature. Section 5 is related
to our conclusion about the Bernoulli-RKM.

2 Orthonormal Bernoulli polynomials and corresponding repro-
ducing kernel space

Here we describe some of the preparations used in this study.

2.1 Orthonormal Bernoulli polynomials

The well-known Bernoulli polynomials Bi(x), i = 0, 1, . . . of order i are defined on the unit
interval [0, 1] as [44]:

Bi(x) =

i∑
τ=0

(
i

τ

)
ϕτx

i−τ ,

where ϕτ , (τ = 0, 1, . . . , i) are Bernoulli numbers, which can be defined by

ϕ0 = 1, ϕi = −
i−1∑
τ=0

(
i

τ

)
ϕτ

i+ 1− τ
, i ≥ 1.

Some properties of these polynomials can be seen in [45]. It is noteworthy that Bernoulli
polynomials are not orthogonal. However, the orthonormal Bernoulli polynomials (OBPs) can
be obtained using the Gram-Schmidt orthogonalization process. As stated in [45], the analytical
form of OBPs on [0, 1] is as follows:

ψi(x) =
i∑

τ=0

βτi x
i−τ , i = 0, 1, . . . ,

where βτi is given as

βτi =
√
2i+ 1(−1)τ

(
i

τ

)(
2i− τ

i− τ

)
.
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These polynomials create an orthonormal basis for L2[0, 1]. Note that there are several advan-
tages to approximating functions using Bernoulli polynomials instead of Legendre polynomi-
als [44].

2.2 Using OBPs to create a new reproducing kernel space

We start by introducing some concepts. For a given set X, we consider

W = {ν(ξ)| ν(ξ) is a real-valued or complex function, ξ ∈ X} ,

as a Hilbert space with an inner product

⟨ν(ξ),w(ξ)⟩W , ν(ξ),w(ξ) ∈ W .

Definition 2.1. ( [40, page 3]). If for each fixed x ∈ X there exists a function K(ξ, x), such
that K(ξ, x) ∈ W and also ∀ν(ξ) ∈ W we have

⟨ν(ξ),K(ξ, x)⟩W = ν(x),

then K(ξ, x) is known as the reproducing kernel of W and W is known as the reproducing kernel
space.

Also, we use Wp(n) [0, 1] to represent the inner product space of polynomials of degree ≤ n
on [0, 1]. For any ν,w ∈ Wp(n) [0, 1], we define the inner product and the norm as:

⟨ν,w⟩Wp(n) [0,1] =

∫ 1

0
ν(x)w(x) dx, ∥ν∥Wp(n) =

√
⟨ν, ν⟩Wp(n) ,

respectively. Since Wp(n) [0, 1] is a closed finite-dimensional subspace of L2[0, 1], we know that
Wp(n) [0, 1] is a (n+1)-dimensional Hilbert space [46]. Therefore, we have ⟨ν,w⟩Wp(n) = ⟨ν,w⟩L2

and ∥ν∥Wp(n) = ∥ν∥L2 . Also, it is clear that {ψi(x)}ni=0 is an orthonormal basis for Wp(n) [0, 1].

Theorem 2.2. Wp(n) [0, 1] is a reproducing kernel space and its polynomial reproducing kernel
function is

K(ξ, x) =
n∑

i=0

ψi(x)ψi(ξ). (3)

Proof. See [40, Example 1.1.2].

3 Solution of problem (1)-(2) by Bernoulli-RKM

Since Eq. (1) is nonlinear, we first need to linearize this equation. We use the quasi-linearization
method (QLM) [33, 47, 48] to change the nonlinear Eq. (1) into a sequence of linear equations.
Then we use the Bernoulli-RKM to solve these linear equations at each iteration. Utilizing the
QLM to problem (1)-(2) determines the (k+1)th iterative approximation νk+1, (k = 0, 1, 2, · · · )
as a solution of the following linear SBVP:

ν ′′k+1(x) +
λ

x
ν ′k+1(x) + dk(x)νk+1(x) = bk(x), (4)

ν ′k+1(0) = 0, γνk+1(1) + ζν ′k+1(1) = ρ, (5)

where dk(x) = −gν
(
x, νk

)
and bk(x) = g

(
x, νk

)
−νkgν

(
x, νk

)
. Here, gν = ∂g/∂ν is the functional

derivative of g (x, ν).
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Remark 3.1. Mandelzweig et al. [47] formulated and explained the general conditions under
which second-order and uniform convergence can be proved in the QLM for solving nth-order
nonlinear ordinary differential equations. The predicted trend is that this method produces rapid
convergence. In other words, if ∆νk+1(x) = ν(x)− νk+1(x) be the difference between the exact
solution of problem (1)-(2) and the (k+1)-th iteration in Eq. (4), then ∥∆νk+1∥ ≤ µ∥∆νk∥2, for
some constant µ. However, in order to have a fast convergence, a suitable initial guess should
be chosen. See [47] for more details.

Since Eq. (4) exhibits a singularity at x = 0, we will first apply L’Hospital’s rule to the
second term of Eq. (4) to address the singularity at the origin [16]. We obtain

ν ′′k+1(x) + lk(x)ν
′
k+1(x) + wk(x)νk+1(x) = hk(x), k = 0, 1, 2, · · · , (6)

where

lk(x) =


0, (x = 0),

λ

x
, (x ̸= 0),

, wk(x) =


dk(0)

λ+ 1
, (x = 0),

dk(x), (x ̸= 0),

and

hk(x) =


bk(0)

λ+ 1
, (x = 0),

bk(x), (x ̸= 0).

Now, let us rewrite Eq. (6) along with boundary conditions given in (5), in the following
operator form: Lνk+1 = hk(x), k = 0, 1, 2, · · · ,

ν ′k+1(0) = 0, γνk+1(1) + ζν ′k+1(1) = ρ.
(7)

In Eq. (7), the linear operator L : Wp(n) [0, 1] → L2[0, 1] is defined as:

Lνk+1 = ν ′′k+1(x) + lk(x)ν
′
k+1(x) + wk(x)νk+1(x). (8)

Lemma 3.2. Let wk(x) be a continuous function on the interval [0, 1]. Then L is a bounded
linear operator.

Proof. The proof is similar to Lemma 2.1 in [4].

3.1 Construction of a new basis for Wp(n) [0, 1]

Let L∗ be the conjugate operator of L, and let κ(ξ, x) be the kernel function of L2[0, 1]. Also,
assume that {xi}n−1

i=1 are any n− 1 distinct nodes in (0, 1). We define

Φi(x) = L∗
ξκ(ξ, x)|ξ=xi

, i = 1, 2, · · · , n− 1.

In this equation, L∗
ξ means that L∗ applies to the function of ξ. Using the properties of repro-

ducing kernel space [4, 40], we obtain the following lemma.

Lemma 3.3. Φi(x) = LξK(ξ, x)|ξ=xi
, i = 1, 2, · · · , n− 1.
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Proof.

Φi(x) = ⟨L∗
ξκ(ξ, ϑ)|ξ=xi

,K(ϑ, x)⟩Wp(n) = ⟨κ(ξ, ϑ),LϑK(ϑ, x)|ϑ=xi
⟩L2 = LξK(ξ, x)|ξ=xi

.

Also, according to the NBCs and RBCs given in Eq. (2), we define the following two bases
Θ1(x) and Θ2(x).

Θ1(x) =
∂

∂ξ
K(ξ, x)|ξ=0, Θ2(x) = γK(ξ, x)|ξ=1 + ζ

∂

∂ξ
K(ξ, x)|ξ=1.

Through a process similar to Theorem 2.1 in [4], we obtain the following result.

Theorem 3.4. {Φ1(x), Φ2(x), · · · , Φn−1(x), Θ1(x), Θ2(x)} are linearly independent inWp(n) [0, 1].

Since dim(Wp(n) [0, 1]) = n+1, Theorem 3.4 ensures that a set {Φ1, · · · , Φn−1, Θ1, Θ2} is the
new basis of Wp(n) [0, 1].

3.2 Applying the Bernoulli-RKM on Eq. (7)

In this part, we use the Bernoulli-RKM along with the spectral collocation method to solve the
linear differential equations in Eq. (7). For this purpose, we use the following collocation points:

xi =
1

2

(
cos

(
iπ

n

)
+ 1

)
, i = 1, · · · , n− 1.

To solve Eq. (7), let νn,k+1 ∈ Wp(n) [0, 1] be the approximation of νk+1 in (k+1)-iteration. Using
Theorem 3.4, νn,k+1 can be presented as:

νn,k+1(x) =
n−1∑
j=1

zj,k+1Φj(x) + s1,k+1Θ1(x) + s2,k+1Θ2(x), (9)

where z1,k+1, z2,k+1, · · · , zn−1,k+1, s1,k+1, s2,k+1 are unknown coefficients. We find νn,k+1, (k =
0, 1, · · · ,Max− 1) such that:{

Lνn,k+1(xi) = hn,k(xi), i = 1, · · · , n− 1,

ν ′n,k+1(0) = 0, γνn,k+1(1) + ζν ′n,k+1(1) = ρ.
(10)

Here,

hn,k(x) =


g
(
0, νn,k

)
− νn,kgνn,k

(
0, νn,k

)
λ+ 1

, (x = 0),

g
(
x, νn,k

)
− νn,kgνn,k

(
x, νn,k

)
, (x ̸= 0),

is a known function, and Max is the maximum number of iterations.

Lemma 3.5. The linear system of equations given in Eq. (10), is equivalent to:
⟨νn,k+1, Φi⟩Wp(n) = hn,k(xi), i = 1, · · · , n− 1, k = 0, 1, · · · ,Max− 1,⟨
νn,k+1, Θ1

⟩
Wp(n) = 0,⟨

νn,k+1, Θ2

⟩
Wp(n) = ρ.

(11)
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Proof. Let νn,k+1 ∈ Wp(n) [0, 1] be the exact solution of (10). Using the properties of the repro-
ducing kernel, we have

⟨νn,k+1, Φi⟩Wp(n) =
⟨
νn,k+1,L∗

ξκ(ξ, x)|ξ=xi

⟩
Wp(n) =

⟨
Lνn,k+1, κ(ξ, x)|ξ=xi

⟩
L2

= Lνn,k+1(xi) = hn,k(xi), i = 1, · · · , n− 1,

⟨νn,k+1, Θ1⟩Wp(n) =
⟨
νn,k+1,

∂

∂ξ
K(ξ, x)|ξ=0

⟩
Wp(n) =

∂

∂ξ

⟨
νn,k+1K(ξ, x)

⟩
|ξ=0

=
∂

∂ξ
νn,k+1|ξ=0 = ν ′(0) = 0,⟨

νn,k+1, Θ2

⟩
Wp(n) =

⟨
νn,k+1, γK(ξ, x)|ξ=1 + ζ

∂

∂ξ
K(ξ, x)|ξ=1

⟩
Wp(n)

= γ
⟨
νn,k+1,K(ξ, x)|ξ=1

⟩
Wp(n) +

⟨
νn,k+1, ζ

∂

∂ξ
K(ξ, x)|ξ=1

⟩
Wp(n)

= γνn,k+1(1) + ζ
∂

∂ξ

⟨
νn,k+1,K(ξ, x)

⟩
|ξ=1

= γνn,k+1(1) + ζ
∂

∂ξ
νn,k+1|ξ=1 = ρ.

Theorem 3.6. The Bernoulli-RKM (10) is uniquely solvable.

Proof. Using Lemma 3.5, by substituting (9) into the linear system (11), we obtain

∑n−1
j=1 zj,k+1⟨Φj , Φi⟩+ s1,k+1⟨Θ1, Φi⟩+ s2,k+1⟨Θ2, Φi⟩ = hn,k(xi), i = 1, · · · , n− 1,∑n−1
j=1 zj,k+1⟨Φj , Θ1⟩+ s1,k+1⟨Θ1, Θ1⟩+ s2,k+1⟨Θ2, Θ1⟩ = 0,∑n−1
j=1 zj,k+1⟨Φj , Θ2⟩+ s1,k+1⟨Θ1, Θ2⟩+ s2,k+1⟨Θ2, Θ2⟩ = ρ.

(12)

Let us define an (n + 1)-dimensional vector −→z as −→z T
= [z1,k+1, z2,k+1, ..., zn−1,k+1, s1,k, s2,k]

where T indicates transposition. The matrix form of the linear system (12) may be written as:

G−→z =
−→
h , (13)

where

G =

 ⟨Φi, Φj⟩(n−1)×(n−1) ⟨Θj , Φi⟩(n−1)×2

⟨Φj , Θi⟩2×(n−1) ⟨Θi, Θj⟩2×2


(n+1)×(n+1)

,
−→
h =



hn,k(x1)
hn,k(x2)
...
hn,k(xn−1)
0
ρ


. (14)

As can be seen from Eq. (14), the coefficient matrix G in Eq. (13) is a Gram matrix, so G is
symmetric and positive definite. As a result, the coefficient matrix G is invertible and the linear
system (11) has a unique solution.
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3.3 Convergence analysis and error estimation

This part describes the convergence and error analysis of Bernoulli-RKM. Assume that ν(x) and
νk+1(x) are the exact solutions of problem (1)-(2), and Eq. (7), respectively . Also, we assume
that νn,k+1(x) is the approximation of νk+1(x) obtained by (10). Using triangle inequality, we
get

∥ν(x)− νn,k+1(x)∥ ≤ ∥ν(x)− νk+1(x)∥+ ∥νk+1(x)− νn,k+1(x)∥.

We have already, see Remark 3.1, talked about the first term ∥ν(x) − νk+1(x)∥. It remains to
obtain an upper bound for ∥νk+1(x)− νn,k+1(x)∥.

Lemma 3.7. If Rn+1νk+1 denotes the orthogonal projection of νk+1 onWp(n) [0, 1], then νn,k+1 =
Rn+1νk+1.

Proof. Similar to the proof of Lemma 3.5, we can show that Rn+1νk+1 holds in (11). The unique
solvability of (11) shows that νn,k+1 = Rn+1νk+1.

Theorem 3.8. Suppose νk+1(x) is sufficiently smooth. Then

∥νk+1(x)− νn,k+1(x)∥ ≤ 1

22n+1(n+ 1)!
max
x∈[0,1]

|ν(n+1)
k+1 (x)|. (15)

Proof. Using Lemma 3.7, we can conclude that

⟨νk+1 − Rn+1νn,k+1︸ ︷︷ ︸
νn,k+1

, ωn⟩ = 0, ∀ωn ∈ Wp(n) [0, 1]. (16)

We have from (16) that (see say [49])

∥νk+1 − νn,k+1∥ ≤ inf
ωn∈W

p(n) [0,1]
∥νk+1 − ωn∥.

Let qn(x) ∈ Wp(n) [0, 1] be the interpolation polynomial which interpolates νk+1(x) at distinct
points {x̂i}n+1

i=1 in [0, 1] (i.e., qn(x̂i) = νk+1(x̂i)). If we choose Chebyshev nodes on [0, 1] as:

x̂i =
1

2
+

1

2
cos

(
(2i− 1)π

2n+ 2

)
, i = 1, ..., n+ 1,

then the interpolation error is given by

|νk+1(x)− qn(x)| ≤
1

22n+1(n+ 1)!
max
x∈[0,1]

|ν(n+1)
k+1 (x)|. (17)

This completes the proof.

4 Numerical experiments

This section contains six illustrations that demonstrate the effectiveness and accuracy of our
approach. The Examples 4.1-4.5 directly correspond to Eq. (1) with nonlinear source functions
of types (i), (ii), (iii), (iv), and (v). Furthermore, Example 4.6 represents a derivative-dependent
doubly SBVP as detailed in [20]. For problems for which the exact solution is known, we evaluate
the accuracy of the method by reporting the following maximum absolute error:

MAEn,Max = max
x∈[0,1]

|ν(x)− νn,Max(x)|,
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where, ν(x) represents the exact solution, and νn,Max(x) is an approximate solution obtained
from (10) using n − 1 collocation points. Also, for problems where we don’t know the exact
solution, we assess the efficiency and accuracy of the Bernoulli-RKM by reporting the absolute
residual error function ERn,Max(x) and the maximum absolute residual error MERn,Max, which
are defined respectively as:

ERn,Max(x) =
∣∣∣Lνn,Max(x)− hn,Max−1(x)

∣∣∣,
and

MERn,Max = max
x∈[0,1]

(ERn,Max(x)).

Moreover, as mentioned in Remark 3.1, it is necessary to obtain a good initial guess for the
QLM. It is usually advantageous for ν0(x) to satisfy the boundary conditions. In this paper, for
Examples 4.1, 4.2, 4.4, and 4.5, according to the NBCs and RBCs given in Eq. (2), the initial
guess is taken as:

ν0(x) = −0.01(γ + 2ζ)− ρ

γ
+ 0.01x2, γ ̸= 0. (18)

We performed our computations using Maple 17 on a personal computer equipped with Core i5
processor and 6 GB of memory.

Example 4.1. ([5, 6, 14, 18]). We consider Eq. (1) with a non-linear source function of type (i),
where σ = 0.76129, ϱ = 0.03119. Also, the values of the constants in (2) are ζ = 1, and γ = ρ =
5. There is no analytical solution to this example. In Table 1, the results of the presented method
with Max = 2 and n = 10 are compared with the domain decomposition optimal homotopy
analysis method (DDOHAM) [18], the improved differential transform method (IDTM) [14], the
advanced Adomian decomposition method (AADM) [6], and the SRKM [5]. The comparison
presented in Table 1, shows that these methods agree well with each other. Also, we compare
our method with SRKM [5] in terms of MERn,1 as shown in Table 2. Additionally, this table
includes the CPU time (s) for our method. Table 2 illustrates that Bernoulli-RKM exhibits
higher accuracy than SRKM, and it is noteworthy that the computational time of the current
method is very low. Moreover, absolute residual error functions with n = 14, 15, and Max = 1
are plotted in Figure 1.

Example 4.2. ([4, 5, 9, 10, 14, 18]). In this example, we consider Eq. (1) with a non-linear
source function of type (ii), where σ = 1 and ρ = 0. We report the results for the following four
cases:

Case 1: µ = γ = ζ = 1,

Case 2: µ = 1, γ = 2 and ζ = 1,

Case 3: µ = 1, γ = 0.1 and ζ = 1.

Case 4: µ = 10, γ = 4 and ζ = 1.

We do not have any analytic solution to this example. For Case 1, in Table 3, the numerical
results of the Bernoulli-RKM with Max = 3, and n = 10 are compared with the DDOHAM [18],
the IDTM [14], the SRKM [5], and the Sinc-Galerkin method (SGM) [9]. Also, Table 4 shows the
comparison of the absolute residual error function of the Bernoulli-RKM with Max = 1 and the
SRKM [4] for Case 2. Table 4 shows that Bernoulli-RKM has much better accuracy compared
to SRKM, and the accuracy of this method increases as the number of basis functions increases.
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DDOHAM [18] IDTM [14] AADM [6] SRKM [5] Present method

x N = 5, n = 4 n = 12 n = 12 n = 10, k = 4 n = 10

0.0 0.8284830967 0.8284832870 0.8284832870 0.8284833754 0.8284832903

0.1 0.8297058988 0.8297060890 0.8297060890 0.8297061155 0.8297060924

0.2 0.8333745399 0.8333747303 0.8333747302 0.8333747353 0.8333747336

0.3 0.8395089283 0.8394899106 0.8394899106 0.8394899068 0.8394899139

0.4 0.8480654950 0.8480527816 0.8480527816 0.8480527759 0.8480527850

0.5 0.8591864005 0.8590649239 0.8590649238 0.8590649167 0.8590649271

0.6 0.8726159876 0.8725283166 0.8725283166 0.8725283100 0.8725283199

0.7 0.8887789925 0.8884453023 0.8884453022 0.8884452975 0.8884453056

0.8 0.9070573450 0.9068185448 0.9068185447 0.9068185422 0.9068185480

0.9 0.9282044565 0.9276509853 0.9276509852 0.9276509849 0.9276509883

1.0 0.9513015634 0.9509457960 0.9509457960 0.9509457969 0.9509457984

Table 1: Comparison of the numerical results for Example 4.1.

SRKM [5] Present method
n k = 4 Max = 1 CPU time

4 4.25E-05 7.60E-6 0.531
6 6.14E-06 1.35E-8 0.578
8 1.38E-06 1.74E-11 0.594
10 8.39E-07 1.89E-14 0.625

Table 2: Comparison of the maximum absolute residual error for Example 4.1.
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Figure 1: Graph of ERn,1(x), with n = 14 (left) and n = 18 (right), for Example 4.1.

Figure 2: Graph of ERn,3(x) for Case 1 (left) and Case 3 (right), for Example 4.2.

Additionally, the ERn,3(x) for both Cases 1 and 3 are illustrated in Figure 2. For Case 4, in
Table 5, the maximum absolute residual error and the CPU time of the Bernoulli-RKM with
Max = 1, and different values of n = 4, 6, 8, 10 are compared with the results obtained by a
method based on a modified homotopy analysis method [10]. Table 5 shows that the current
method has significantly higher accuracy than the method presented in [10]. Additionally, it
demonstrates that the computational time of the current method is very low. We also plot
the logarithmic graph of MERn,3, (log10(MERn,3)) of Bernoulli-RKM with different values of
n = 4, 8, 12, 16, 20 for Case 1, Case 2, Case 3 and Case 4 in Figure 3. From Figure 3, we can
see that the log10(MERn,3) decreases rapidly as n increases.

Example 4.3. ([22]). Let us consider Eq. (1) with a non-linear source function of type (iii)
where λ = 1, and θ = 1. Also, the values of the constants in (2) are γ = 0, ζ = 1, and ρ = 4/7.
The exact solution is:

ν(x) = ln

(
64

x4 − 16x2 + 64

)
.
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DDOHAM [18] IDTM [14] SRKM [5] SGM [9] Present
method

x N = 5, n = 4 n = 12 n = 10, k = 3 M = 40 n = 10

0.0 0.3675135205 0.3675167997 0.3675166189 0.3675168124 0.3675168150

0.1 0.3663590308 0.3663623137 0.3663622527 0.3663623265 0.3663623291

0.2 0.3628907562 0.3628940507 0.3628940189 0.3628940634 0.3628940660

0.3 0.3571336159 0.3570975301 0.3570975087 0.3570975430 0.3570975456

0.4 0.3489737609 0.3489484049 0.3489483815 0.3489484178 0.3489484205

0.5 0.3387004028 0.3384121330 0.3384121172 0.3384121459 0.3384121486

0.6 0.3256760709 0.3254435063 0.3254434945 0.3254435196 0.3254435223

0.7 0.3110427573 0.3099860240 0.3099860196 0.3099860373 0.3099860401

0.8 0.2928786338 0.2919710864 0.2919711009 0.2919711001 0.2919711029

0.9 0.2742437526 0.2713169936 0.2713170010 0.2713170072 0.2713170101

1.0 0.2505516417 0.2479277073 0.2479277424 0.2479277203 0.2479277232

Table 3: Comparison of the numerical results for Example 4.2 (Case 1).

SRKM [4] Present method
x n = 8 n = 10 n = 8 n = 10

0.2 9.17614E-06 5.59474E-06 7.65385E-13 2.91047E-15
0.4 4.37089E-07 7.15070E-07 1.58178E-12 2.96101E-14
0.6 4.37001E-07 1.37600E-06 2.73729E-12 4.62095E-14
0.8 1.50857E-05 6.88321E-06 4.69236E-12 1.31123E-14
1.0 6.19418E-05 2.53189E-05 4.79590E-11 8.98164E-13

Table 4: Comparison of the absolute residual error function, for Example 4.2 (Case 2).
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Figure 3: Graph of log10(MERn,3) for different values of n = 4, 8, 12, 16, 20, for Example 4.2.

Figure 4: Graph of absolute error function |ν(x)− νn,4(x)| with n = 25, for Example 4.3.

In this example, we put ν0(x) = 0.01 + 2/7 x2. It can be seen that ν0(x) satisfies the boundary
conditions in Eq. (2). The absolute error function |ν(x)− νn,4(x)| is plotted in Figure 4. Also,
Table 6 shows the obtained values of MAEn,4 for n = 5, 10, 15, 20 and CPU time in seconds.
It is obvious from Table 6 that with the increase of n, the maximum absolute error decreases
rapidly. Also, in Table 6, we can see that the computational time of the current method is
significantly low.
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n 4 6 8 10

MERn,1

Method of [10] 0.0758 0.0307 0.0131 0.0057

Bernoulli-RKM 3.50E-02 6.30E-04 1.10E-06 3.22E-08

CPU time

Method of [10] 1.40 3.28 8.53

Bernoulli-RKM 0.578 0.578 0.610 0.828

Table 5: Comparison of the maximum absolute residual error and the CPU time in seconds for
Example 4.2 (Case 4).

n 5 10 15 20

MAEn,4 8.80E-05 1.08E-09 1.60E-14 2.37E-19

CPU time 0.609 0.985 2.000 4.328

Table 6: The values of MAEn,4 and CPU time in seconds for Example 4.3.

Example 4.4. ([9, 50, 51]). Consider Eq. (1) with a non-linear source function of type (iv)
where λ = 2, γ = 1, ζ = 0, and ρ = 1. This example represents the reaction-diffusion process in
a porous spherical catalyst (e.g., see [9, 50] and references therein). In this example, the values
of two parameters φ (utilized to describe a dimensionless group called the Thiele modulus) and
η (effectiveness factor) are very important. For a spherical catalyst pellet, η is defined as [9]:

η =
3

φ2

dν

dx

∣∣∣∣∣
x=1

. (19)

To make a comparison, in Table 7, we compare the results for effectiveness factor η of Bernoulli-
RKM with Max = 4 together with the results obtained by SGM [9], optimal homotopy analysis
method (OHAM) [50], and the numerical solution obtained by shooting method [51] for different
values of φ and m. Also, in Table 8, the numerical results of the Bernoulli-RKM with Max =
4, φ = 5, andm = 1.5 are compared with the SGM [9] and the shooting method [51]. We observe
from Tables 7 and 8, that our numerical results are in excellent agreement with the numerical
results given in [51]. Furthermore, to show the efficiency of the Bernoulli-RKM, the absolute
residual error function ER15,1(x) is plotted in Figure 5. We end this example by plotting a
logarithmic graph of MERn,1, (log10(MERn,1)) for Bernoulli-RKM. We use different values of
n = 7, 11, 15, 19, 23 with φ = 5, m = 1.5 and φ = 5, m = 1 in Figure 6. This figure illustrates
that the distribution of points is nearly linear, indicating the rapid convergence of an exponential
rate.
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m φ Method n = 9 n = 14

Numerical [51] 0.879262

SGM [9] 0.879260

OHAM [50] 0.879249

0.5 2 Bernoulli-RKM 0.879261 0.879262

Numerical [51] 0.480054

SGM [9] 0.480040

OHAM [50] 0.480056

1 5 Bernoulli-RKM 0.480053 0.480054

Numerical [51] 0.431958

SGM [9] 0.431941

OHAM [50] 0.432001

1.5 5 Bernoulli-RKM 0.431926 0.431958

Numerical [51] 0.397233

SGM [9] 0.397214

OHAM [50] 0.397192

2 5 Bernoulli-RKM 0.397124 0.397233

Table 7: Comparison of the values of η, for Example 4.4.
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Numerical [51] SGM [9] Bernoulli-RKM

x M = 10 n = 11

0.0 0.177518 0.177518 0.177518

0.1 0.180659 0.180659 0.180659

0.2 0.190386 0.190383 0.190386

0.3 0.207669 0.207663 0.207669

0.4 0.234322 0.234338 0.234322

0.5 0.273373 0.273373 0.273373

0.6 0.329732 0.329715 0.329732

0.7 0.411406 0.411414 0.411406

0.8 0.531770 0.531774 0.531769

0.9 0.713974 0.713974 0.713974

1.0 1.000000 1.000000 1.000000

Table 8: Comparison of ν(x) for φ = 5, m = 1.5, for Example 4.4.

Figure 5: Graph of ER15,1(x) with φ = 2, and m = 0.5, for Example 4.4.
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Figure 6: Graph of log10(MERn,1) for different values of n = 7, 11, 15, 19, 23, for Example 4.4.

Example 4.5. ([17]). Consider Eq. (1) with a non-linear source function of type (v) where

λ = 2, γ = 1, ζ = 0, and ρ =

√
3

4
. The exact solution is:

ν(x) =

√
3

x2 + 3
.

The absolute error function |ν(x)− νn,4(x)| is plotted in Figure 7. We also plot the logarithmic
graph ofMAEn,5, (log10(MAEn,5)) of the presented method with n = 4, 8, 12, 16, 20 in Figure 8.
Moreover, in Table 9, we compare the maximum absolute errors of our method for n = 4, 6, 8 and
Max = 4 with the results from the fourth order domain decomposition homotopy perturbation
method (DDHPM) presented in [17]. Additionally, this table includes the CPU time in seconds
for the presented method.

DDHPM [17] Bernoulli-RKM

n (N = 4) (Max = 4) CPU time

4 2.4000E-04 0.578

6 5.4263E-05 2.2000E-06 0.657

8 3.7898E-06 1.8155E-08 0.766

Table 9: Comparison of the maximum absolute error for Example 4.5.
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Figure 7: Graph of absolute error function |ν(x)− νn,4(x)| with n = 12, for Example 4.5.
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Figure 8: Graph of log10(MAEn,5) for different values of n = 4, 8, 12, 16, 20, for Example 4.5.

Example 4.6. ([20]). As our last example, we consider a linear derivative dependent doubly
singular boundary value problems as follows:(

xαν ′(x)
)′

= βxα+β−2
(
xν ′(x) + (α+ β − 1) ν(x)

)
,

ν(0) = 1, ν(1) = exp(1).

The exact solution of this example is ν(x) = exp(xβ). We solve this problem for α = 0.25 and
β = 1. Since this example is a linear problem, there is no need to use the quasi-linearization
method. It can be easily solved with an approach similar to the method presented in Section 3. In
Figure 9, the logarithmic graph of the maximum absolute errors, denoted as (log10(MAEn)), for
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our method is plotted for different values of n. This graph clearly demonstrates a rapid decrease
in the maximum absolute errors as the value of n increases. Also, in Table 10, we compare the
maximum absolute errors obtained for n = 6, 10, 14 with the results of the improved homotopy
analysis method (IHAM) presented in [20]. Additionally, this table provides the CPU time in
seconds for our approach. As observed in Table 10, our proposed method demonstrates better
accuracy compared to IHAM [20]. It is important to note that the computational time of our
method is significantly low.

IHAM [20] Bernoulli-RKM

n (α = 0.25, β = 1) (α = 0.25, β = 1) CPU time

6 5.5742E-07 9.6997E-08 0.281

10 3.2807E-10 4.5068E-14 0.407

14 5.1975E-21 0.453

Table 10: Comparison of the maximum absolute error for Example 4.6.
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Figure 9: Graph of log10(MAEn) for different values of n for Example 4.6.

5 Conclusion

In the current study, a new Bernoulli-RKM is introduced and successfully applied to solve
a class of SBVPs with Neumann and Robin boundary conditions. To construct this method,
orthonormal Bernoulli polynomials, quasi-linearization techniques, and classical RKM ideas play
a fundamental role. Also, we proved the solvability of a set of linear algebraic equations that
appears in Bernoulli-RKM, and the convergence of our method.
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The method described in this article deals with some of the limitations of classical RKM.
Bernoulli-RKM eliminates the reliance on the Gram-Schmidt orthogonalization process and
the necessity to choose a dense set of points. As a result, Bernoulli-RKM achieves highly
accurate numerical results using far fewer nodes compared to classical RKM and some other
semi-analytical and numerical methods. Indeed, our method effectively reduces CPU time by
eliminating the Gram-Schmidt orthogonalization process.

Moreover, Bernoulli-RKM applies to six examples, and our numerical findings are compared
with exact solutions, as well as existing results. From a computational point of view, the
solutions obtained using Bernoulli-RKM are in excellent agreement with the results of previous
studies. Furthermore, the logarithmic plots of the errors, as depicted in Figures 3, 6, 8, and 9,
exhibit a nearly linear distribution of points. This observation suggests the convergence at an
exponential rate.

Acknowledgments: We express our sincere thanks to the anonymous referees for valuable
suggestions that improved the final manuscript.
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