THE EXISTENCE OF RESPONSE TORI FOR HAMILTONIAN WITH
NORMAL DEGENERACY

L. XU, W. SI, AND M. WU

ABSTRACT. In this paper, we prove the existence of response tori for a general Hamiltonian with
normal degeneracy, that is,
H=(w,I)+> X zz + 1 T +eP(wt,2),

=1 i=

where I € R%, 2 := (1, yTn, Y1, - ,yn)T € R2" 9 := wt € T and w € R? is the Diophantine
frequency. The order numbers [; > 2 are fixed integers, A; # 0 are fixed constants fori =1,--- | n
and 0 < € < 1 is a sufficiently small parameter. When P is independent of y, it can be seen as
the energy function of several quasi-periodically forced oscillator equations, that is,

Z1 + )\138111_1 +efi(wt,z) =0,

T2 + )\QleZ_l + ef2(wt,z) =0,
(0.1) .

B + Apalpr Tt + efn(wt,z) =0,

where er = % for 1 = 1727... M.

Most of the erevious results focus on a single oscillator equation and prove the existence
of response solutions under certain non-degenerate assumptions. In the present paper, we will
consider high dimensional system (0.1) coupled by oscillator equations in different degenerate
types. We will prove that the response solutions still exist around perturbed equilibria, which
reveals the mechanics of the existence of response solution for a system coupled by degenerate
nonlinear oscillator equations.

For the sake of generality, we will actually consider a general Hamiltonian normal form and
prove the persistence of invariant tori with fixed Diophantine frequency w by the methods of
finding relative equilibria, improving the order of perturbations, KAM iterations, and measure
estimates. The result will then be applied to the problem of the existence of response solutions
of the above system (0.1).

1. INTRODUCTION

In the present paper, we consider a general Hamiltonian normal form as follows

n 1. n 2
_ zy Yi
(1.1) H = <w,I>+;)\Z B +j§::l 5 +eP(0,2),

2000 Mathematics Subject Classification. Primary 37J40, T0HOS8.

Key words and phrases. Normal degeneracy, KAM theory, response solutions.

Corresponding author: W.Si. Email: siwenmath@sdu.edu.cn.

The first author was partially supported by National Natural Science Foundation of China (Grant No.
12271204), and the Department project of Science and Technology of Jilin Province (Grant No. 20200201265JC).
The second author was partially supported by the National Natural Science Foundation of China (Grant No.
12001315,11971261,11571201,12071255), Shandong Provincial Natural Science Foundation, China (Grant No.
ZR2020MAO015).



2 L. XU, W. SI, AND M. WU

where I € RY, 2 := (2,9)" € R?", § € T? and w € R? is the Diophantine frequency. The order
numbers [; > 2 are fixed integers satisfying I; # [; for 1 < 4,5 < n. The constants \;7# 0, i =
1,2,--- ,n, are fixed constants and 0 < ¢ < e, < 1 is a sufficiently small parameter. The function
H is real analytic with respect to (6,1, 2). Moreover, the Hamiltonian system is associated with
standard symplectic form df A dI 4+ dz A dy.

When the perturbation P is independent of y, the Hamiltonian (1.1) can be seen as an energy
function of a system coupled by several oscillator equations forced by small quasi-periodic functions,
that is,

T+ /\1I11171 + Efl (wt, Z‘) =0,

(1.2) :

Fp + Al =t e f (wt, ) = 0,
where f; = 372’ i=1,2,---,n. We mention that a response solution of system (1.2) is a quasi-
periodic solution z(t) = (z1(wt,€), -+ ,z,(wt,€)) " with the same frequency w as in the forcing
functions f;, i =1,2,--- ,n. The existence of response solutions play an important role in studying

the harmonic responses and oscillatory properties. In the present paper, we will obtain the existence
of the response solutions of equation (1.2) by the persistence of invariant tori with fixed Diophantine
frequency w of Hamiltonian (1.1).

Plenty results in the existence of the response solutions have been obtained with respect to a
single oscillator equation with a quasi-periodic forced function, that is,

(1.3) i+ ci+ad®z 4+ Ml = ef(wt, z, 1),

where a, ¢, A are fixed constants, [ > 2 is a fixed integer, f is a real analytic function with respect
to (0,z, &) with 6 := wt, € is a small parameter. When a # 0,¢ = 0, the system can be seen as a
harmonic oscillator with nonlinear term. We say the equation is in non-degenerate case since x = 0
is non-degenerate equilibrium for the unforced equation. As an early application of normal form
reduction, Moser [19] firstly proved the existence of response solutions under the assumption that
f satisfying reversible condition, i.e., f(—wt,x,—2) = f(wt,z,&). The result was generalized to
the case ¢ # 0 but sufficiently small in[12]. Recently, the existence of response solutions for (1.3)
with forced function in Liouvillean type frequency has been proved in [18], [23] in the case that
d = 2 and later generalized to the case d > 2 in [3], [29].

When a = ¢ = 0, x = 0 is a degenerate equilibrium of the unforced equation, the existence of the
response solutions as well as the persistence of invariant tori become challenging. When equation
(1.3) is independent of #, there exists a Hamiltonian function H : T¢ x R? x R? — R which is an
integral of equation (1.3). In the extended phrase space T¢ x R? x R? with standard symplectic
structure, the Hamiltonian H can be written as

l 2
(1.4) HO,Iz,y,e) = (w,I) + A”T + % +eP(0,2).

Hence, the existence of response solutions is equal to the persistence of the invariant tori with fixed
frequency w of Hamiltonian (1.4).

The persistence results of Hamiltonian normal form with different non-degenerate conditions
were demonstrated [7], [8], [20], [31] based on modified KAM iterations. Other results related on
the existence of quasi-periodical solutions were proved via variation method, see [13], [14], [15],
[32] for details. For instance, You [31] firstly considered the case that [ is even and A < 0, it
was proved that Hamiltonian (1.4) admits a family of d-invariant tori with a frequency w, which
slightly shifts from w. Note that the assumption of the perturbation in [31] is only the smallness
and real analyticity, since (z,y) = (0,0) is a saddle-like critical point of the unperturbed system
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(1.4) for A < 0. Otherwise, when (z,y) = (0,0) is a center-like critical point, the persistence results
only hold on certain cantor set due to the existence of small divisors.

As it was formulated in [21], the authors consider the following completely degenerate Hamil-
tonian

l m

(15) H(O.1,2,y.€) = (w.0) + N + * + P(0,2,),

where A\ # 0, m, n > 2 are positive integers, P is real analytic with respect to (6,2,y). Under
certain non-degenerate assumptions, it was proved when A < 0, the systems (1.5) admits a family
of invariant response tori as long as ¢ € (0, ¢,) is sufficiently small, otherwise, there exists a almost
full measure Cantor set O C (0,¢e,) such that the persistence result holds for ¢ € O. Although
adding an assumption to perturbation P, the result proved the existence of response solution for
the motion equation with respect to Hamiltonian (1.5) for fixed Diophantine vector w.

A nature question is what will happen to the existence of response tori (solutions) when several
oscillator equations coupled together. A similar problem was considered by L. Corsi and G. Gentilde
in [6] but for the case that A = 0, that is,

i = ef(wha),
where € T d > 1, f is real analytic and ¢ is sufficiently small. The existence of response
solutions was proved for d > 1 in [6] under the assumption that f is even with respect to wt, that
is, f(—wt,z) = f(wt,x) and for d = 1 in [5] without any further non-degenerate condition but only

smallness on forced function f. As a consequence, we aim to prove the persistence of response tori
for Hamiltonian (1.1), which leads to the existence of response solutions of equation (1.2).

Define the average of a function with respect to 0 as [f(-, z)] := [r. f(0,2)d0 and denote that
OP(-
p; = |:(70):|7 i:l’z’...’n.
(%ci

Then we formulate our main result under the following assumptions:

A1) Assume that w is a Diophantine vector, that is,

.
[(k,w)[ > =
||

where v > 0, 7 > d — 1 are fixed constants.
A2) Fori=1,2,---,n, assume that p; # 0. Moreover, p;/A; < 0 when [; is odd.

As it is classified in [22] and [31], the d-dimensional tori of unperturbed Hamiltonian (1.4) is in
hyperbolic type if A < 0. Hence, we say that the d-dimensional tori of unperturbed Hamiltonian
(1.1) is in hyperbolic type if \; < 0 for i = 1,2,--- ,n. Otherwise, we say the d-dimensional tori of
unperturbed Hamiltonian is in mixed type. Then we formulate our main result as follows.

Main Theorem. Consider Hamiltonian systems (1.1) and assume A1), A2) hold. Then the
followings hold.

(1) If \; <0 for i =1,2,--- ,n, then there exists a sufficiently small parameter 0 < e, < 1
such that, as 0 < € < &, the Hamiltonian systems admit a CN smooth family of real
analytic, hyperbolic response tori around a family of hyperbolic type relative equilibria,
where N > 1 is a fixed integer.
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(2) If there exits at least one \; > 0 for certain 1 <1i < mn, then there exists a sufficiently small
parameter 0 < e, < 1 and a Cantor set Os C (0,€,) with measure estimate [meas Oco] _

1— O(el=9) such that, as € € Oy, the Hamiltonian systems admit a CN Whitney smooth
family of real analytic response tori around a family of mized type of relative equilibria,
where o := min{ll%l, o, 75} and N > 2n* —n.

As it is mentioned above, the Main Theorem can be applied to prove the existence of response
solutions for a couple of nonlinear oscillator equations. Hence we consider equations (1.2) and
assume the following conditions hold.

A3) There exists a real analytic function P : T? x R™ — R such that
oP
fi - 3%’

i=1,2-,n.

A4) Fori=1,2,---,n, denote f; = [f(-,0)] and assume that f; # 0. Moreover, f;/\; < 0 when I;
is odd.

Corollary 1. Consider equations (1.2) and assume A1), A3), A4) hold. Then the followings
hold.

(1) If \; <0 for i =1,2,--- ,n, then there exists a sufficiently small parameter 0 < e, < 1
such that, as 0 < ¢ < e,, the equations (1.2) admit a CN smooth family of real analytic
response solutions around a family of relative equilibria in hyperbolic type, where N > 1 is
a fixed integer.

(2) If there exits at least one \; > 0 for certain 1 < i < n, then there exists a sufficiently
small parameter 0 < e, < 1 and a Cantor set On C (0,e,) of with measure estimate
% =1—0(el77) such that, as € € O, the equations (1.2) admit a CN Whitney
smooth family of real analytic responsive solutions around a family of relative equilibria in
mized type, where o = min{ll#_17 cee ln%l} and N > 2n? — n.

Remark 1.1. The Main Theorem will be proved via KAM iterations since we deal with the hyper-
bolic type as well as the mized type. We mention that the existence of response tori in hyperbolic
type can be proved simply via the uniform contraction mapping principle, which requires no Dio-
phantine condition on w. See e.g. [2], [30] for general situations.

Remark 1.2. Comparing to the previous results in the persistence of lower dimensional tori for a
multi-scale Hamiltonian system, for instance, we consider the following Hamiltonian normal form
in [26], that is

1
H=(wI)+ §<M(w,£)z,z> +eP(0,1,z,¢),

where w varying in a closed region in R?. We have proved that under certain non-degenerate
assumption, most of the tori T,, = {w} x {I = 0} x {z = 0} persist but the tangent frequency shifts
to @ with the estimate that |0 — w| = O(e). The main difference in the present paper is we prove
the persistence of the tori with fized frequency w, consequently, we take € as a parameter varying
in a small interval.

We also mention that, the difference in measure estimate between hyperbolic type and mized type
is due to the reason that there are no small divisors during the KAM iterations in hyperbolic type.
Hence, we could obtain the persistence of a C™-smooth family of response tori for Hamiltonian
(1.1), as well as a O™ -smooth family of response solutions for coupled equations (1.2) in hyperbolic
type, for any integer N > 1.
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The rest sections are organized as follows. In section 2, we will solve the average equation with
respect to (1.1) to obtain a new Hamiltonian Hy with non-singular normal frequency. In section 3,
we will perform a finite steps of KAM iterations to Hamiltonian Hy to obtain a new normal form
H, with sufficiently small perturbation. The smallness of the perturbation ensures the standard
KAM iteration and the measure estimate can be directly applied on Hamiltonian H,. Hence we
will prove the Main Theorem by applying standard KAM method to H, in section 4 such that we
obtain the persistence of the invariant tori with fixed frequency w. In section 5, we will prove the
measure estimate. It is different from pervious ones since we take the ¢ as a parameter instead of
the frequency w.

2. NORMALIZATION

In this section, we will normalize the Hamiltonian normal form (1.1) based on the conditions A1)
- A2). The normalization procedure includes finding relative equilibria and removing Hamiltonian
(1.1) into the vicinity of relative equilibria. As a result, the transformed Hamiltonian in the vicinity
of relative equilibria is of multi-scale in ¢, their order of perturbations also need to be improved in
order to perform infinite steps of KAM iterations.

2.1. Notations and weighted norms. We first introduce some notations and norms which will
be used in the following proof.

For each r,s > 0, we denote
D(r,s) = T? x B,
where
B, :={z=(z1, ,Zn,y1, - yn) €C*": |2| < s}
is the ball of radius s in C2" and
T¢ .= {0 = (01,...,04) €CY/(2rZ)": |Im 6| <7, j=1,2,...,d}

is the strip neighborhood of size s of the d-torus T¢ = R?/(27Z)¢ in C¢. For given e, > 0, let
D := (0,e4). We say the function

f(0,z,¢) = Z fr(e)zeV 1RO,

zez?g, kezd

is real analytic in (6,z) € D(r,s) and CV-(Whitney) smooth in ¢ € D for certain fixed integer
N > 1, if the norm || - || p(rs)xp defined as follows is finite, that is

02| pirs)xD = Z sup |92 fi.(e)|se ¥l < 400, Vi=0,1,---,N,
kE€Z4 €72 e€D

where 0! fi,(¢) = |fr(e)| + - - +€i|%| and |k| = Zle |ki| for k = (k1,--- ,kq) € Z%. Taking

s = 0 in the above, we can define the || - || » norm for any function f : T¢ — C,
f0,e) = Z Fr(e)eV TR0
kezd

which is analytic in # and CV-(Whitney) smooth in e € D. The Banach algebra of all such
functions under the || - ||,, 5 norm is denoted by

CN(T} x B) = {f(0,¢) : |0.f(8,€) |5 < +00, i=0,1,--- ,N}.
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As mentioned above, for any function f(6, z) in D(r, s), we denote its average with respect to
by

1
1629 = /T J(0,2,2) 0.

Moreover, the notation D7 f(6, z, &) denotes the partial derivatives of function f with respect to z
in the j-th order, that is,
» d7f(0, z,€)
J _ b )
D’ f(0,z,¢) = E a0

s€227,j=)|

Without loose of generality, we will frequently use ¢ or ¢;, i = 0,1,--- ,6 to denote the inter-
mediate constants depending on domain constants r, s, n > 0, Diophantine constants ~, 7 and
the norms of known functions. We also use || - || to denote the weighted norms of (vector-valued)
functions, as well as the norms of matrix operators in the following proof.

2.2. Average equations and relative equilibria. The average equations are referred to the
averaged part of the Hamiltonian vector fields in the normal direction. We will find relative
equilibria by solving such average equations corresponding to (1.1). The result is formulated as
follows.

Lemma 2.1. Consider the average equations corresponding to Hamiltonian (1.1) and assume A2)
holds. Then, there exits a family of nonzero solutions in form of z. = (xz-,y.) ', where

te = (eTTa+O0ETT), o em gl + 0w )T,
Ye = (Eyf + O(EH_G)a e, EYp Tt 0(51+U))T7
where 0 < e K 1, a::min{ll%l,-n ,ln%l} and zf #0 fori=1,2,--- n.

Proof. The corresponding average equations in normal direction with respect to Hamiltonian (1.1)
are as follows,

(2.1) 9 = Nali !+ epi + O(el2]) + O(e2) =0, Vi=1,2-,n,
' O iyt eqi 4 O(el2]) + O(2) =0, Vi=1,2,--,n,
where,
OP(-,0) dP(-,0)
=, ¢i=|—F"|. =1,2,---,
’ [ Oz } o [ yi "
Introduce the re-scale transformations
(2'2) miﬁgh%lxi, Yi — €Yi, 1=1,2,---,n.
By substituting the transformations into (2.1) and dividing the equations by €, we obtain that
(2.3) Hi(m,y,a) = )\ixirl —‘,—pi—l-O(ga‘zD—i—O(g) =0, i=1,2,---,n,
' Hyii(z,y.6) =y +¢; +O(e2)) + O(e) =0, i=1,---,n,
where o := min{ll%l, e ﬁ} Define that
(2.4) T = (—ai/)\i)li%l’ yr=—by, i=1,2,---,n.
Based on A2), xf,i=1,2,--- ,n, are well defined and «} # 0. Denote z, = (27}, --- w;)t e =
(Y7, ,yp), it yields that Hi(z«,y.,0) =0 for i =1,2,---,2n and
OH (24,9:,0) 0 OH1(Z4,94,0)
Oz, Oyn n
DH (%, ys,0) = det _ HAi(li 1) (@) £ 0.
OHan(24,9,0) | OHan(2s,y:,0) i=1

oz Oyn
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By the Implicit Function Theorem, we obtain a family of nonzero solutions for equations (2.3) in
form of

Lje :$f+0(50)7 Yie :y:+0(50) i=1,---,n,
where (z.,y.)" are defined as in (2.4). By tracing back to the re-scaling transformation, the
average equation (2.1) admits a family of solutions in form of
1
e = (€T Tay e, €T T e, YL, ) |-

Since that H; are CV-smoothly depending on ¢, it follows from the Implicit Function Theorem that
the relative equilibria z. forms a CV-smooth family with respect to ¢ € D for any fixed positive
integer N. O

Now we remove Hamiltonian (1.1) in the vicinity of the relative equilibria obtained in the Lemma
2.1, we obtain the new Hamiltonian normal form as follows.

Lemma 2.2. Consider Hamiltonian (1.1) and assume A2) holds. Then, introducing the linear
transformation L : z — z + z, such that the Hamiltonian (1.1) can be reduced into the following
form

(2.5) H=HoL=¢é+ (wI)+ (Mzz)+ h(z,¢) + G0, z,¢) + eE(0, z,¢),

where, € is a constant term depending on €, the normal frequency M is a 2n X 2n non-singular
symmetric matriz in form of

M = A(e) + A(e),

(2.6) A(e) = diag{e®*my(e),- -, e my(e), 1,---, 1}
The order numbers a; = i:f, m; = N(l; — D (@) 2 +0(e%), i = 1,2,--- ,n. The functions
h:=0(z), G :=0(|z) and the perturbation is in the following form
(2.7) E = Y E(0,0)z7, [E(,e)]=0,[s|=012
2] <2

Moreover, the Hamiltonian H is real analytic with respect to (I,0,2z) € D(r —n,s —n) and CN
smoothly depending on € € D := (0,e.), where 0 < n < min{r, s}/8 and e, is sufficiently small.

Proof. Replacing z by z + z., we obtain that the following calculation results:

n—1
~ _ Jf Ze, €
H = HoL=(wy)+> Nlli—Dzi"Z + A —+Z {QQ)]Z,Z»
i=1
n—1 1; ) 2
+ Al Rk b e(P - P(0, 20,e) — (2L 2e00) oy (O PO 2000)
: g e 0z 022
=1 k=3
~ , - OP(-, 2 o\ T
-1 e € €
+;Ax xi+;yj,€yj+s<[8 } ;7 ”+le ZLE 4 eP(0, 22, ¢)
OP(0, z,€) OP(-, 2, ¢) 0?P(0, 2c,¢€) O?P(-, 2,¢€)
e e e = [E el oL R P P

Since z. solves average equations (2.1), we have

~ _ - oP(-, z.,
Z Aimé,slxi + Zijfyj + &( [(821 ,2) =0.
i=1

Jj=1
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The lemma is proved by denoting that a;, m;, ¢ = 1,2,--- ,n as in above, and
A = [P i - ;;?wx
G(0,2,6) = P(0,2+z,¢)— P(0,z,¢) — <%, z) — <%z, 2),
Eo(0,2,6) = P(6,2,¢) = [P(22)],
Bibne) = (TG ([0,
Ey(0,2,6) = <%z,z} — <[82Pg;55’5)} 2, 2),
é = é %xis + j: yz’e +€e[P(-, 2, )]

0

Since the family of relative equilibria z. solves the average equations, it yields that the average
of the perturbation E equals zero. By performing one step of average process, we can improve the
order of the perturbation in (2.5) into at least the order of O(¢2%), where a := max{ay, - ,a,}.

Lemma 2.3. Consider the Hamiltonian (2.5) on domain D(r —n,s —n) x D. As e, is sufficiently
small, then for any e € (0,e.), there exists a CN-smooth family of transformations ®g . : D(r —
2n, s—2n) = D(r —n, s—n), under which the Hamiltonian (2.5) can be transformed into the
following form:

Hy=Ho®. = {(w,I)+ (2, Moz) + ho(z,€) +°Go(0, z,€) + *Py(0, 2, ) + eo(e).
where My is a nonsingular matriz with |My '] = O(6™%) , ho, Go := O(|z|?), and
HaéDjPOHD(7'—27],S—217)><D < 015272(17 1=0,1,--- aNa J=0,1,2,

where c1 is a positive constant depending on n,d, s,r,n and independent of €.

Proof. For fixed € € D, define that
1
(2.8) K = (log 2] +1)?,

where for fixed constant a, [a] > 0 denotes the maximum integer less as a. We will truncate the
Fourier series of £ up to order K-th term, i.e., we write the perturbation into its Fourier series
and the truncated form FE;, i = 0,1, 2 are of the form

Ey= Z EkOe\/ij’a)a I Z <Ek172>em<k’9)> By = Z <Ek2272>€m<k’9>,

0<|k|<K 0<|k|<K 0<k<K
Ey = Z EpoeV 1RO fo — Z (B, 2)eV 1RO Fy = Z (Epaz, z)e¥/"10k:0)
|k|>K |k|>K E>K
It follows from the definition of K that for ¢ =0,1,--- ;N and 5 =0, 1, 2, we have
(2.9) ||8§DjEA‘||D(r75n/4,575n/4)><D <c Z e E < c/ tMH e~ 1dt < ce,
k| > K K
||8§DjE||D(r7'r],sfn)><D <ec



THE EXISTENCE OF RESPONSE TORI FOR HAMILTONIAN WITH NORMAL DEGENERACY 9

where F 1= E‘O + E‘l + EQ, E := Ey+ E;, + E5. Now we seek for a canonical transformation as the
time-1 map ¢k of the flow ¢4 which is generated by the following function,

F = F0(9,€)+F1(9,Z,€)+FQ(0,Z,€)
= > froe¥ TEO) > (fus z)eV 1RO 4 > (frez z)eV/~LkO)
0<|k|<K 0<|k|<K 0<|k|<K

where fr;, 7=0,1,2, 0 < |k| < K, are (vector-valued or matrix-valued) coefficients which will be
determined later. Since that

2 2
Ho¢p = Nogp+hodp+e(G+Y Ej)odp+(eY Ej)odp
j=0 7=0
~ ~ ~ ~ 2 — ~
= N+h+eG+{hzs, i} +{hFo} +({N,F}+c> E;+{h=s, F1})+é

Jj=0

1 2
+€/ {G+> Ej, F}og¢hdt+ (cE) 0 ¢f
0 =0

1
+ [ =00 By, By Py o gt
0

where N := (w,I) 4+ (Mz,z), {-,-} denotes the Poisson bracket, h—z := Y. h;32? denotes the
third order terms in h and h>4 denotes the terms in the fourth order or high than the fourth order.
Firstly, we solve the following quasi-homological equation

(2.10) {N,Fy} +cEy =0,

(2.11) {N,F\} +¢eE; =0,

(2.12) {N,Fy} +eEs + {h—s, F1} = 0.

Substitute N, F, Ej;, j =0,1,2, into equations (2.10)-(2.12), we obtain that
(2.13) V—=1(k,w) fro — €Ero = 0,

(2.14) V=1{k,w)Ion — M(€)J fr1 — €Ex1 =0,

(2.15) V=1{k,w) frz + M()J frz — fraJM(e) — €Era — Egs = 0,
where

Eys = diag{3h1 3fr1.n+1," - »3hn3fk1,20,0,- -+, 0},
fri4, J = 1,---,2n, denotes the j-th components of fi1, J is the 2n x 2n standard symplectic
matrix and M is defined as in (2.6). Denote that

LkO =V _1<k7w>7
Lkl =V —1(k,w>[2n — M(E)J,
Lio = V—=1{k,w) 4> — M()J @ Ipp — Inp, @ M(g)J,

where ® denotes the Tensor product.

Define a positive constant to simplify the notations in the following estimates, that is
C, = Z efg\ld|k|(N+1)(4n2‘r+4n71) < +oo.
0<|k|<K
Consider homological equation (2.13), we have for any 0 < |k| < K, i=0,1,---, N that

— i % k[
(2.16) ka = ELkOlEkm |8€ka| S 5\86Ek0\ | ~

< 65|k|Te*\kl(T*n).
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It follows that

(2.17) 102 Fo(8, &) I p(r—smyxp < € O |LidllExole!*=51/9
0<|k|<K
< e Z \kITe*w < ecC,.
0<|k|<K
Let
(2.18) <K = of),
where a,, = min{ay, - ,a,}. Now we prove operators Ly, Ly are invertible. Denote that

LY, = V—1{k,w) 5, — A(e)J,
LYy = V—=1{k,w) 42 — A(e)J ® Loy, — Io, @ A(e)J,
where A(e) is defined as in (2.6). It is easy to calculate

|detLY, | H|IC2—5 mi(e)|,

where K = /—1(k,w). Based on (2.18), we have that for any 0 < |k| < K,i=1,---,n

2 i 2 i 12T 2 v
2 = et = 21— e /%] > g
It follows that 2
detL?, | >
) I e 1| C|k_|27—
Since that Ly, = LY, 4+ €A(e), it follows from (2.18) that
2n
Qo T Qm n Y
detLialp > |detLY,|(1— (e /2[k[T/y) = -+ — c(e*/*|k|" /7)) > e
Similarly, we have that
n 4’ﬂ2
det L9, =[] IK?£/=0mi(e) F \/e%m;(e)] > |k|4nQT
i,j=1
It follows that
2
|detLyolp > |detLiy|(1 — ce® /2 [k|™ /g — -+ — c(e* /2 [k[T /7)*")
4n?
Y
Since that .
-1 _ adJqu
ke det Lig’
where adjLy, denotes the adjoint matrix of Li4, ¢ = 1,2. Then we have that
| |2n‘r+2n—1
ILiilp <c DT
| |4n27+4n271
|L |D <c An2
Y

Together with the following formula,

aiLl;ql = Z Cii/(aé_i/L;qlag,Lk(nLl;ql? i=0,1,--- N, ¢=1,2,

/=1
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there exists a positive constant ¢ such that for ¢ =1,2,7i=20,1,--- , N, we have
|| D (@) 7+ (2m)T=1)
D En)e

(2.19) 0iLy) o <c

The estimate (2.19) yields that equations (2.11), (2.12) are uniquely solvable for any ¢ € D,
0 < |k|] < K and there exists a positive constant ¢ such that the following estimates hold:

(2.20) |0:D7 F(6, z,) || p(r—3n/2,5—3n/2)xD < €€o(Cp + C2), i=0,1,--- N, j=0,1,2,

0:D(¢% — id)| p(r—3n/2,5—3n/2)xD < £0(Cy + Cp), t€[0,1], i=0,1,--- ,N.
By taking e, sufficiently small such that

e eo(Cy + C2) <,
it yields from standard arguments in the proof of KAM-type theorems that the transformation
Qoo :=¢p:D(r—2n,5—2n) xD — D(r—n,s—n) xD
is well defined. As a consequence, we obtain the new Hamiltonian as follows
(221) Hy = Ho®,
= (w, 1)+ (Mo(g)z,2) + ho(z,€) +€°Go(z,¢,0) + 2 Py(z,¢,0) + eoe).

where Mo := M, ho := h, ey := e[Fo] + € and

(222) GO = €_a+1é+€_a{h,FQ}+€_a{h24,F1},
1 2
(2.23) Py = g 2ft / {G+> Ej,FYodhdt+ (> Ey) o ¢
0 =0

+s—2“/ {{(1 =t)(N + h), F}, F} o ¢'dt.
0

Based on estimates (2.9), (2.18) and (2.20), we obtain that there exists a positive constant c¢;
depending on constants n, d, v, s, r, n such that for ¢ = 0,1,--- | N, j = 0,1,2, the following
estimates hold:

||62DjGO||D(T—277, s—2n)xD C(Cn + 072,)61701 S Clsliav
||82DJP0||D(T_277, s—2n)xD X C(On -+ 03)25272(1 S 018272(1.

Since that ¢ is sufficiently small, we also have

A A

A e < e
1—e|A-1A] = 1-0(e.) ~

—a

My < [(A+eA(e) Tt <

3. IMPROVE THE ORDER OF PERTURBATION

Consider Hamiltonian (2.21) on a new domain (6,z) € D(ro, s0), € € D, where rq := r — 27,
2—2a—.

So: =€ 3 K s—2nforfixed 0 <t < 2—2a. Let pg := 82732(1, Yo 1= 74"2(N+1)7 where 7y is the
Diophantine constant. The estimate of the perturbation Py can be rewritten as

102D Pol| p(rg,s0)xD < Yosomo,  @=0,1,--+, N, j=0,1,2.
Note that the gap parameter 7 and iterative parameter o are much bigger than . It means that

the perturbation is not small enough for the convergence of measure estimate. As a consequence,
we apply a finite number of averaging process to further improve the order of perturbation till it is
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high enough for usual KAM iteration step can be directly conducted. Since we do not average out
the first degree terms in Py, the perturbation can not be push up to the order of O(*®) directly.
Instead of that, we sharply shrink the domain z to ensure the new perturbation become much
smaller at each iterative step.

3.1. One circle of KAM step. Suppose that we have arrived at the v-th step and obtained the
following real analytic Hamiltonian,
(3.1) H = {(w,I)+ (2, Mz) + h(z,e) + €G(0, z,€) + e**P(, z,¢),

which is defined on a phase domain (6, z) € D(r, s) and depending smoothly on ¢ € D. Since that
the Hamiltonian vector field Xy is corresponding to (6, I, z), we omit the constant term during
the KAM process. In addition, we have that M is nonsingular and symmetry for each ¢ € D and
satisfies
(3:2) |0:(M = Mo)llp < ept,  i=0,1,---,N.
The functions h(z,¢), G(6,z,¢) = O(|z|®) and
1027 Pllp(rsyxp < v08°,  i=0,1,--- N, j=0,1,2
for some 0 < p < 19, 0 < 8 K s9. We try to find a canonical transformation ® : D(ry,sy)xD —
D(r,s) x D, which transforms the Hamiltonian (3.1) into the following form
Hy:=Ho®; = (w,I)+ (2,Myz) + hy(z,6) +°G1 (0, 2,€) + 2Py (0, 2, ¢),
where the matrix M, the functions h; , Gy are in the same forms as M, h, G, respectively. The
new perturbation P, is much smaller than P on some smaller domains, that is,
||8§Djp+||D(r+,s+)><'D < 7051M+v 1= Oa 17 e 7N7 .7 = 07 1a 27

for some r <r, sy < s, pt < . The normal form reduction Proposition states as follows.

Proposition 3.1. Consider the Hamiltonian (2.21) in D(ro, so) X D and assume &, is sufficiently
small. Then there exists a C™ -smooth family of real analytic transformations ®, : D(r., s,)xD —
D(rg, so) X D, where r«, s. are positive constant depending on ro, so that will be specific later.
Under this transformation, Hamiltonian (2.21) can be transformed as follows

(3.3) H,=Hpo®, = (w,I)+ (2, M.2) + hi(2,6) + G4 (0, 2,€) + P.(0, 2,¢),

where M, is a nonsingular symmetric matriz with |M||p = O(e=?), the function h., G, =
O(|z|) and the following estimates hold

_ .
101 (M, — Mo)|lp < e®ud, i=0,1,---,N,
||62Djp*||D(T*7S*)><'D < ’YS(N+1)52#3 7= O, 17 Ce ’N’ ] — 0’ 1, 27

k%)

—n 2a

2
where v, = 2" TN, 1y =€

We mention that, for simplicity, we have omitted the subscript v and use ‘4’ to denote subscript
v+1in (3.1) and in the following proof. We will also use ¢;, ¢ to denote any positive intermediate
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constants which are independent of ¢, p, v during the iteration process. Define

T + To
ry = —+—
+ 2 4,
1 1
S = ZOKS7 o= 3,
pe = u'lo,
1
Ky = (llog=]+1)°
"
i—1 i .
Diw = D(ry+ 1 (r—r+),1as), i=1,2,3,4
D(s) = {ze€C®:|z| <s, s>0},
I(r—ry) = Z |k|(N+1)(4n2T+4n—1)e—|k| rre .
0<|k| <K

Firstly, we write P in the Taylor-Fourier series and let R be the truncation, that is
P= Z p’”zzex/—uk,@),

kezd,zezi“
(34) R= )" (pro+ (pr1,2) + (2, praz))e’ 100,
|k| <K

where K is defined as above.

Lemma 3.1. Assume that

o0 rT—r
H1) et 4t < pu.
Ky

Then, there is a constant c; depending on n, d, r such that
[02(P = R)|psuxp < a1Cyos’p?,
|0LR|DauxD < CHos°p.

Proof. See [16] for the proof.

Now we rewrite R := Ry + Ry + Ro, where

Ro = Z pkoe\/jl<k’0>7 Ry = Z <Pk1az>e\/jl<k’9>, Ry = Z <Z,Pk22>eﬁ<k’9>.

|k|<K k|<K |k|<K

13

We aim to eliminate R by introducing a canonical transformation ¢} which is the time-1 map of

the Hamiltonian flow generated by a function F' := Fj + F} + F5 of the following form,

o = Z froeY 1RO
0<|k|<K,4

P = Z (frr, 2)eV~1RO),
0<|k| <K+

F = Z (z, fk2z>e‘/jl<k’9>.

0<|k|<K 4
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Since that
Ho¢p = NHe*[Ro]+h+eG+q+e*[Ro]+ {N,F}+&* (R~ [Ro] — [R2))

+{h,F1 + F»} + /1(1 —t){{N +h,F}, F}oobdt

1
+/ {e"G + ** R, F} o ¢hdt + £2*(P — R) 0 ¢F,
0
where N := (w,I) + (z, M z). We determine F' by solving homological equation
(3.5) {N,F} +&**(R — [Ro] — [Rz]) = 0.

Substitute N, F, R into equation (3.5), we obtain the following equations by comparing the
coefficients

(3.6) V—=1(k,w) fro = pro, 0 <kl <Ky,
(3.7) (V=Lk,w) oy = MJ) fr1 = pra, 0 < [k < K,
(3.8) V—=1{k,w) fro + MJ fra — frad M = pja, 0 <[kl <Ky,
(3.9) M fo1 = —po1-
Denote that
Ly = V—1{k,w)la, — MJ,
Liy = V—1{k,w)\p2 — MJ ® Iy — L2, @ MJ,

we have the following lemma.

Lemma 3.2. Assume that
H2) = /2K7 = o(7),

where a,, = min{ay, -+ ,an}, v is the Diophantine constant. Then for 0 < |k] < K4, ¢ € (0,&4),
the operators Li1, Lis and matriz M are invertible. Moreover, there exists a positive constant co
such that following estimate holds,

|k|(i+1)((2n)"+(2n)"—1)

NESV L ’

i=0,1,---,N, ¢g=1,2.

)

(3.10) 0L L) 1D < 2

Proof. The proof of estimates (3.10) are the same as the proof of (2.19). Moreover, we have that

that

(3.11) 1M~ o 11+ (M — My +eA) " A p
A~

§ 1 -~ =
L= Ag " lIM = Mo + A

—a

O

It follows from Lemma 3.2 that equations (3.7)-(3.9) are uniquely solvable for |k| < K4 and
€ € D and there exists a positive constant c3 such that

(3.12) |02 forlp < cseosp,
0 fislp < ese®iyg TV 2 e k£ 0
102D [F][| Dy xp < €38%905 7 1y
102D (Fo + Fy — [Fi] + F2)|| Dy xD < 03€2a’y()_(i+1)4"282*ju1“(r -7r4),
|ODI || by xp < cale®y08> 1 + 209y TV 270 4D (r — 1),
where i =0,--- N, j=0,1,2and 0 < |k| < K.
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Lemma 3.3. Suppose that the following assumptions hold,

H3) c3ul’(r —ry) +esp < 3(r —ry);
H4) cyspl'(r —ry) + ezsp < sS4

Let ¢% be the flow generated by F. We have that

1) For all0 <t <1, ¢4 : Dy — Dyqo are well defined for e € D.
2) Let & = ¢}.. Then for alle € D,

@_}r : D+ — D.
3) There is a constant c3 such that
|6 — id| D, D < c3(e™yosp + e spl(r — 1)),
DO, — Id|p, xp < e3(e™yop + ' (r —14)),
forall0 <t <1.

Omitting the constant term, we arrived at the new Hamiltonian in the following form

Hy = Ho¢p = (w,I) + (2, My2) + hy + Gy + Py,

where
0*{h_s, F,
(3.13) M, = M+ % + £29[Ry),
hy = h+4{h>s,[F1]},
G+ = G,
1
(3.14) P, = e (h F —[F)]+ By} +/ (1= ){{N + h, F}, F} o ¢t
0
1
+e | {e°G+ R, F}o¢tdt 4+ &**(P — R) o ¢,
0
where h—3 is the three degree term in h and h>4 := h — h3. It is obvious that there exists c4
depending on c¢1, c3 such that
(3.15) |0L(My — M)|p < cac®yosp < ept, i=0,1,--- N,

Haé(h"r_h’)H'D SC4€G’YOSHS€M%7 ZZO,I, aNa

by assuming that p is sufficiently small. For the new perturbation P,, we have the following
estimate.

Lemma 3.4. There exists a constant cs such that
(3.16)  [|0:D? Pillp, xp < es(s°ul(r — ) + s p®T2(r — ry) + 708 1°T(r — 14) + 705" 1),
fori=0,1,--- /N, j=0,1,2. Consequently, if

H5) c5(s°ul(r —ry) + 2P0 (r — r4) + 208> 1’ (r — 74) +705°1%) < Y057 ot

then
(3.17) 10207 Py [, w0 < 7087 1+

Proof. The proof follows easily from the expression of P} as (3.14) and the estimates of F' as in
(3.12). Moreover, Lemma 3.1-Lemma 3.4 complete one cycle of KAM iteration. g
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3.2. Proof of Theorem 3.1. Recursively applying the definitions of quantities at the very be-
ginning of subsection 3.1, we have the following iterative sequences

v

1
re o= ro(l=)_ o),
i=1
! 3
Sy = TQu_1Sp—1, Qp = Uy,
1 1 1 o
7
/’(‘V = /’65—17
1
K, = ([log(—)]+1)
,uufl
forv=1,2,---. It is easy to deduce that
7y l1—a—b v 1— v
(3.18) rlj_’rl/+]. = 2:‘%’ uy:uéfi) :5( 3 b)(%) SETI)(%) y:1’2,... s

from which the hypotheses H1), H3)-H5) can be verified for all v = 1,2,--- as p is sufficiently
small. However, H2) only holds for a finite number of ©’s. More precisely, we define

~ [In(9(2n* — n)(N +1) 4 18a) — In(2 — 2a)

3.19 Y = 1
(8.19) v n7/6 *
where [-] denotes the maximum integer less than z. As long as
1,7
¢[(log g)(g)u* +1° <,
the assumption H2) holds for all v = 1,2,--- ,v,. By repeating the iterative process inductively,

we have obtained a sequence of Hamiltonian
HY = H" ' o ®” = (w,I) + (2, M,,(w)z) + h, +£°G,, +**P,(0, z,¢)

defined on D(r,,s,) x D for all v =1,2,--- ,v,. Define that &, := ®gpo0---0 P, _1, we obtain the
following Hamiltonian

H.=Ho®, = (w,I)+ (z,M.z) + hi(z,6) + G.(0, z,¢) + P.(0, z,¢)
hy,

g,
defined on D(ry, s,) XD, where r, =1, , 85 = s,,, M. = M, h, = h,_, G, =°G,,, P, = %*P,_.
Based on (3.15), we have that for ¢ =0,1,--- , N

182(M, — Mo)|[p < o (ttn—1 + fron—2 + -+ + o) < e,

which guarantees that ||M.|~! = O(~%). Moreover, it follows form (3.18) and (3.19) that

(5)" ~ £3(2n”—n) (N+1)+6a

Hv, = Mo
It yields for i = 0,1,--- | N, that
(820) [P (. s.)xD < € 08h, p, < 527 TINEDTON < HE 2,0,

2n%—n

by denoting 7, := & )y = €20 8, 1= 5, .

4. INFINITE STEPS OF KAM ITERATION

Since we have pushed the perturbation to a sufficiently high order such that we can take ¢ € D
as a normal parameter and directly apply an infinite steps of classical KAM theorem to prove the
persistence of the d-tori for most of ¢ € D. In order to make the iteration processes simpler, we

consider the following re-scale transformation,
H
I —=2u2l, 2 = Yupiaz, Hy = 72;2
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to the normal form (3.3). Then the re-scaled Hamiltonian reads
H,

(4.1) HY = 5 = (w,[) + (z, M°(g)z) + P°(0, 2,¢)
Ry
defined on new region D(r, s0) X D, where 7q := 1, 89 := 84, Og = D = (0,¢,), M" := M, being

non-singular matrix on D with [(M%)~!] = O(¢~%). Moreover,

PO _ P* + h* + G*
ar
It follows from (3.20) that
i 102 P || . xD
02 P°| D(rg,59)xD < 554772'”; <AV s2p0,

where v 1= 7. = €2V g =y = €29, i =0,1,--- , N.

Remark 4.1. Without great loose of generality, we still use ro, sg to denote the domain parameter-
S, Yo, Mo to denote the gap parameter and iterative parameter, respectively. These four parameters
and the corresponding sequences are not related to the ones in Section 3. We also mention that,
after re-normalization by finite steps of averaging process, the gap parameter -y becomes much
smaller that the constant v in Diophantine condition A1).

4.1. Tteration and convergence. Consider the following sequences

v

1
ro=ro(1=_ 57,

i=1
1
gauflsuflv

Qy = W

Sy =

R wl=

)
6

Hy = Coﬂg_p
"1
Tw=r(l=) 21‘+1)’
i=1
1

K, = ([log(

Ligy—1=v-1
Log,1=v-1
0, = {5 €0,_1: |det le,v—l‘ >

>12n_M1/—1J7 0< |k" SKW
>I4n2 _(MV71J)®I2n_IQn®(MV71J); 0< |k| SKuv

7v—1 '71/—1
T2 i 0 <[kl < Ky},

k,w
k,w
R ‘ det L2k,v—1| >

_ . log 2
v=1,2, , where n > Tog6-Tog5

gence result are special cases of those iteration lemma in [4], [28].

is a fixed constant. The following iteration lemma and conver-

Lemma 4.1. Let pg be sufficiently small. Then the followings hold for allv =1,2,---.

1) There is a sequence of Whitney smooth family of symplectic, real analytic, near identity
transformations
@ : D(ry,s,) = D(ry_1,8,-1), e € O,
such that

HY = H" 'o® = (w,I)+ (2, M"2) + P"(0, 2,¢),
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where
) ) 1
(4.2) [02M" = LMo, <7 g
|0:D7PY || p,x0, <40 T shi
foralli=0,1,--- /N.

2) Ou = {w (S Oufl : |det le,l,71| > |Z;I|j2_n17" |det Lgk)l,,1| > |]Z‘1:L;T7 K,,,l < |k“ < KV}.

3) The Whitney extensions of
g = ‘bi)oq)imuoéz)

converge C1 uniformly to a smooth family of symplectic maps, that is, U, on D(%, %) x

Ooso, where
Ooo = ﬂ Ol/7

v>0
such that

H" =H o0 ! 5 H® = HO o U™ = (w,I) 4 (2, M>®2) + P>(0, z,¢)
with M =lim,_,.o M"Y, P> =lim,_,, P¥, and

P>l pma 0ywo., =0, |l <2
D’ P o o

Now we suppose that O« is not empty. Remind the transformations ®¢ . and ®, in Lemma 2.3
and Proposition 3.1, respectively. Define &> := ®( . o ®, o ®°°, it follows that

2}1 © (i)oo|’ﬂ‘d><R2" =00 d’}lw |Td><R2”

where ¢}, and ¢} . are the flow of H defined in (3.1) and H™ is defined as above. Define
T40 = {w} x {I = 0} x {z = 0}, for any e, it yields that

Bl 0 B2 (T) = B o (6 (T0)) = B(T0),
which means the embedding tori ®>°(7T%") is invariant under the flow @Yy raxree with the fixed

frequency w, that is, for € € Oy, ®°(T%9) forms a CV (Whitney) smooth family of invariant tori
with fixed frequency w for Hamiltonian normal form (1.1).

Remark 4.2. Based on assumption A3), there exists an energy function in form of Hamiltonian
(1.1) such that the lower-dimensional, response invariant tori of Hamiltonian (1.1) also form the
quasi-periodic response solutions of the motion equation (1.2), which prove the Main Theorem as
well as Corollary 1.

5. MEASURE ESTIMATE

For each v =0,1,--- and k € Z™\ {0}, denote
v+1 v+1 v+1
Ry =R Ry

where
RN = {e€0,: |detLig,| < —‘kT;nT7 K, < |k| < Kyi1},
RyEY = {e€0,: |det Loy, | < WIZ% K, < |k| < K,i1).

By Lemma 4.1, we obtain that

(5.1) 00\ Oss = | J U mit

v=0 K, <|k|<Ky4+1
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In the following, we will prove that the O is almost full with respect to Op in the mixed type
and it is equal to Oq in the hyperbolic type. Before measure estimate, we introduce the following
lemmas.

Lemma 5.1. ([28, Lemma 2.1]) Suppose that g(x) is a differentiable function on the closure I C I,
where I is a finite open interval. Let I, = {x : |g(z)| < h, x € I}, h > 0. Ifz €1, |d€1—(xw)| >D >0,
where D is a constant, then |I| < 2hD~L.
Lemma 5.2. Assume that M is a 2n X 2n symmetric matriz, then

det(Aoy — MJ) = Py,

det( M2 — Io @ (MJ) — (MJ) @ Inp) = A" P2 o,

where P; is a j-degree, even polynomial function with respect to variable .

Proof. Since that M is a symmetric matrix and J is a standard symplectic matrix, it yields that
det(\a, — MJ) = det[J(Aa, — (M J))J '] = det(\a,, — JM)
and
det(=Alo, — MJ) = (—1)** det(Alo, + MJ) = det(Alo,, — MJ ")
= det[( Mo — MJ )] = det(My, — JMT) = det( Mo, — JM ).
It shows that det(Alo, — MJ) = det(—Als, — MJ), that is, det(Alz, — M J) is a 2n-degree even

polynomial function with respect to A. By the following properties of Kronecker product of matrices
A, B, C, D in the same size and constant c,

(cAy@ B=c¢(A®B), (A®B)=A"®@B'", (AB)®(CD)=(A®C)(B® D),

it is easy to prove det(Aly,2 — Io, @ (MJ) — (MJ) ® I5,) is an even polynomial function with
respect to variable .

Moreover, the eigenvalues of matrix A ® I +1 ® A can be formulated as p;; = A\; + Aj, where \;
are eigenvalues of A. Since det(Ala, — M J) is an even function with respect to A, the eigenvalues
of MJ can be expressed as £, ---,+\,. It follows that matrix Iz, ® (MJ) + (MJ) ® I3, has
at least 2n zero eigenvalues, hence we have that

det(Myp2 — Iz @ (MJ) — (MJ) @ Iy) = A" Pz _op,.

O
Remark 5.1. Denote K = /—1(k,w). Since that M" is a symmetric matriz for v =1,2,--- , it
directly implies that
(5.2) det L1y, := Pap,  det Loy, = K" P2 _gp,

where Pj denotes a j-degree polynomial function with respect to IC.

5.1. Measure estimate for mixed type.

Lemma 5.3. In the mized type, the remaining set Oy is almost full Lebesgue measure satisfying

that
|meas O 1 0@E ),
Ex

where 0 < e, < 1 is defined as in Lemma 2.3 and Proposition 3.1 and o := min{ll%l, ,ln%l}
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Proof. Remind the estimates (3.15) and (4.2), it follows that
1Y = Allo, < [[Mo = Allo, + |M. = Mollo, + [|M” = M°|lo, <,

where
A(e) = diag{e®*mq(g), -+, e*my, 1,--+, 1},
and a;, m;, i =1,2,--- ,n, are defined as in (2.6).

For fixed v and K, < |k| < K, 11, we obtain that
det L1, = Poy, = K2+ oz(l)lcz’%2 + agICQ”74 4+t oz%_llC2 + 049”

where
) = E e¥m; + O(e),
i
ay = E et mm; + O(eTom),
,J
ag = § EaiJrajJrakmimjmk 4 O(El+a"L’1+a’L),
(N
(5.3) :
042 = 5a1+"'+anm1 ceemy, + O<51+a2+"'+an).

Hereafter, we use d. f(¢) to denote %(;) for simplicity, where f(e) is a function only depending on

€. Then we define the polynomial functions with respect to K as follows:

d.Ps _ _ _
Pop—o = 5 aon =K L oK el
ey
de Py
Py = % = K2 L 2P0 L 2K a2 K402,
e
de Pop—2(j—1) 2n—2j j 2n—2j—2 j
P2’n72j = T{_l:,cn ]+aJ1’CTL J +'”+Oéib—j’
de Pop_2(n—2)
Py = /T 24t
? d.af ™2 !
where, for fixed j = 1,2,---,n — 1, the coeflicients of polynomial function Ps,_o; satisfy the
following inductive formula
. d aj.-_l
of == ;tll, i=1,2,--,n—j.
deoy
Based on the discussion in Appendix, for any ¢ € (0,e,], there exists a positive constant c,
depending on a; and the norm of |m;|, i =1,2,--- ,n, such that
(5.4) |dead| > e =i m, ;| > et j=0,1,---,n—1.
Define that -
RQ = {5€Oy: |P2|SW, Ky<|k|SKV+1},
based on Lemma 5.1, we have that
2—0o 1

|meas Rg| <

2

*
KU<|k|§KV+1
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where | - | denote the measure of the set. Now we define the following sets for j =1,2,--- ;n—1

joZ{EEO |P23|< Ky<|k"§Ku+1}-

|k|2‘l’j
Assume that for fixed 1 < jo < n — 1, we have obtained the measure estimate of R;,, that is
2—aq 2—a; 2—0o
€ + g5 %0 1 Jo€ 1
|meas Rj,| < . Z k|27 < . Z ks
K,,<|k|§K,,+1 KV<|M§KL/+1
Then we define a new set
. glot+1
Rajov2 ={e € Oy \ Rjy 1 |Pjoua| < T[T Ky <|k| < Ky}
Since that for € € O, \ R;,, we have
(jo+1) 4 1
o sa] = a0 Py | 2 exctiont =0 e
it follows from Lemma 5.1 that
Imeas Rojora| < |meas Raj o] + |meas Rajp|
2 a. 2—a 2—a;
£2-ajo 11 1 g2mar 4 ... 4 g2-ay 1
< — + —
= s Z k|2 . Z k|2

KV<‘]€ISKV+1

(jo + 1)e2—° 1
< = .
< - >

K, <|k|<Ky 41

KV<VCISKV+1

By the Mathematical inductive method, we have that
(’fl - 1)5270 Z 1

c k2
K, <|k|<Ky41

|Rop—2| <

where
n—1

g
Rop—2 = {6 €0,: |P2n—2| < W7

K, <kl <Ky41}.

Since that for € € O, \ Ra,—2, we have

1
_ 0 ap—14+4n—1
|de Pon | = |deaf|[Pan—2| > cig @D
Remind y
1

RV ={e€Op: [Pl < |k‘2VnT’ Ky < |k| < Ky},
where 7, < 79 < 2" ’”72”, v is the Diophantlne constant. It follows that
(55) |meas USO:O UKU<U€|§KV+1Rkt < Z < 0*152 7,

G kezd

— 1
where Cy1 '\ — % ZkEZd W > 0.

Based on the same discussion for Py,,2_s,,, we obtain that
U U < Cuge?”
|meas —0 YK, <\k|<Kl,+1 k 2 | Cx2E,

where c,o depending on a;, n . As all above, we prove that

|meas Ou| 1 Imeas ;2 UKV<\k|§KV+1 RZ+1|

e* €
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5.2. Measure estimate for hyperbolic type.

Lemma 5.4. In the hyperbolic type, the remaining set Ooo = (0,€4), where 0 < e, <K 1 is defined
as i Lemma 2.3 and Proposition 3.1.

Proof. Remind that
det L1y, == K2 4 a2 4 aglC2n_4 +---4+a2 K2+ oz?l,

n—1
where o are defined as in (5.3) and
A(E) = diag{€a1m17 Ty EaanH 17 ) 1}7
mi = MN(li—D ()i 24+0(E%), i=1,2,--,n.

Firstly, A; < 0 guarantees m; < 0. Actually, when [; is even, [; — 2 is even so that m; and \; are
in the same sign. When [; is odd, [; — 1 is even, which implies (—ai/)\i)li%l > 0. Since that ¢ is
sufficiently small so that x; . > 0 and m; < 0. Now we prove that RZT = RZ:El = () for fixed
v=12,---and \; <0,i=1,2,--- ,n. For the case that n is even, it is easy to see that K" > 0
and aglCQ"_zk >0, k= 1,2,---,n. More specifically, a9 > 0, K?7=2k > (0 when k is even and
a? <0, K27=2k < (0 when k is odd. Otherwise, n is odd, it follow that K** < 0 and aglCQ”_Ql€ <0,
k=1,2,---,n. As all above, we obtain that for all € € O,,

2n

2 v v
|det Lig, | > [K*"]| > k2 > |k|2nT

since 7, < 79 < 7¥?". Based on the same discussion, we also have that for all € € O,,,

4n?

an2 Yy Tv
|det Law | > K> ogems > T

It follows that for all v = 1,2,---, O, = O = (0,e4) holds. We mention that, for hyperbolic
case, one can directly apply classical KAM iterations to Hamiltonian (2.21) to prove the Main
theorem. Furthermore, it is obvious that measure estimate for hyperbolic type does not involve
any derivatives of det L;j .., ¢ = 1,2, with respect to ¢, hence one can choose any integer N > 1 in
all of the KAM iterations mentioned above which leads that the persisted tori form a C'V-smoothly
family for any integer N > 1. O

6. APPENDIX

In this subsection, we prove estimate (5.4), which is the key point for measure estimate. Here-
after, we also use ¢ to denote the constant independent of parameter €. Based on Lemma 5.2. we
obtain that det L, is a 2n-th degree polynomial function with respect to K in the following form

(6.1) det Ly, i= Pop = K"+ afK* 2 4 adK? 4 4o+ a1 K%2+ a0,
where
) = g e%m; + O(e),
i
oy = E et hmum; + O(e' ),
i,j
a03 = § :Eai+aj+akmimjmk + O(€1+an71+an)7
.5,k
ag = 5a1+---+anml cemy, + O(€1+a2+"'+an).
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Denote ¢ := min{|a; — a;, |a;|: 1 <¢,j < n} and rewrite the coefficients of P, as follows:

d = e%my, + e T0RI(e),
Wy = e g o)
a03 = gan—2+an—1+anmn_2mn_1mn + ean—2+an—1+an+5mg(€)7
(6.2)
aOk = gan_k+1+-..+anmn_k+1 ceemy, an,_k+1+...+an+5m2(€)’
ag — 5a1+"'+“"m1 g, + €a1+a2+...+a"+5m2(€),
where
Th% = § : %1 +-tai, 7an—k+17~».7anmii ey, + O(€1+an_k+27an_k+1),
(31,1 )ET

and I :={(i1, - ,ix): 1 <ip <mn, (i1, ,ix) Z(n—k+1,---,n)}. Based on Lemma 2.2, we
obtain the following estimates for p=1,2,--- N, k =

1,2,--- ,n, that is
k— ~
1AL =oma—p)ll < c, 173 ()] < e,
lePd2 (T —gmp—p)| < 2, lePdZms (e)|| < e.
As above, we define the polynomial functions with respect to K as follows:
d. P
P2n—2 — £ 20n — ]C2"_2 +Oé}K:2n_4 +a%’C2n—6 N +O"}L—1a
d.aj
. dePon—2 . 2n—4 24~2n—6 24-2n—8 2 2 2
P2n—4 = W = ’C + Oé]_IC =+ OJQIC + - anng: + an72?
el
de Py _o(i— , . , ,
Pgn_zj — el 2n 2_(] 1) — ICQn—Q] _~_a%’c2n—23—2 4o +0431,j7
deor]
Py ngQn—Q(an) — /C2 + Oz?il,

n—2
d.of

where, for fixed j = 1,2,--- ,n — 1, the coefficients

;. deali)
(6.3) O =T =12 ,n—j
e
Now we calculate the coefficients. Firstly, we have
(6.4) || = |ane® " tmy, + % domy, + 2P0 (e) + e Fod ml (o)

ledema| _slmi(e)] s ledemmi(e)

B

> 4™ my| 1 -
ap|my| A | | A | M |

ane® " tim,|
2
Denote m° := (edemy,)/a, and m° := (Y + edi.m?)/a,, we simply rewrite d.af as
d.a? == a,e "t (m, +m°(e) + £2m°(¢e)).
It follows that for p=0,1--- ,N — 1,

(6.5) |ePd,m®|| < c£°, |ePd,m|| < e.

>
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By the inductive formula (6.3), we obtain the coefficients of Pa,_o as follows:

L dead  clerimy,_ymy, + e tind + e 1o

a7 = = = =
' da? My, + 1m0 + e9m0 ’
al B dgag B céa““*ﬁ“"*mn,gmn,lmn + €a7172+an71m% + Ean72+anfl+6m%
27 dad my, + MmO + e5m0 ’
0
ol = dgozk_H
k— 0
deaf

k—1 k—1 k—1
1 Z0 Gn—1— k—1 0 Gn—1-p,1 Z08n—1-ptd,51
ckezpfo (2o mn—1-p)min + g2p=0 9n-1 Py 4 gXp=0 On-1-p my,)

my, + 1m0 4 £9m0

)

where
U+ +a )
(6.6) = %, my = ede (Mg -+ - my).
n
Since that |m,, + ed.m,, + e’m{(e)| > 0, the coefficients a; are well defined. Moreover, we have
that for p=0,1,--- ,N — 1,
lePdZring || < e2°, [ePd2ing ()| < e
Then, we calculate the derivative of o}, that is
(6.7) Lot = A%nae™ " myami + 1l () + %! (2))
‘ =t (my, + MmO + e9m0)?

b

where
mt = my_1mea® 4 (edemp_1mp)ma /an 1 + (edmy,_1mp)m°/a,
g’ fep + (e(demn—1mn) + e2(dZmy—1my,)) (my, +m°) /ey
—Mp—1my(edemy)/an—1 + m%mn/c% — Mp—1my(edemy,) /(an—1ay)
—mn,lmn(gdgmn)/(an,lan) — m%sdsmn — m%(edsfno),

= Mmy_1muym® +edemy,_1mpm®/a, 1 +mim®/cl
—ri(m° 4+ edom®) + (edern} + (an_1 + 8))(my, +m° 4+ 2m%) /cla,_y
—1y_ 1y (M0 + (€der®)) fan_1 — 3 (€D, + eden® + 90 4 £2HLdm0).

It is obvious that for p=0,1,--- ;N — 2, we have

lerdzint| < b, [lrdzinl (o)) < e
It follows that

(6.8) |deai| > cfan_16%* " m,_1]/2 > 0.
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Based on (6.7) and inductive formula (6.3), we obtain the following calculation results:

o dead e rmy,_omg,_ym2 + e 2 (e) + e 2 T0mi (e)

al - -
d.ad My_1m2 + ml + 9ml ’
o dead  cetn—stan—2(my, am,_om,_1m2 + M3 + e%m3)
Qy = 1= 2 311 61 J
d-og Mp—1M;5 + M +€°m
e k—
2 dsa}ﬁl G 23,0 an—2- P(H Omn 9 pMp_1M2 + M3 + € mk)
% T Tl m 2 Ll 4 el ’
ety n—11y, m +e°m
n— k— ~
2 deogiy _ Cho pe = 0 an-2- » (I, oMn—2—pMp_1m2 +mm2_; +%ml_y)
Q. _o = =
n—2 dead My_1m2 + Ml + &dml ’
where, for kK =1,2,--- ,n — 2, we have
lePdPn2| < ce?, |ePdPmi| <¢, p=0,1,--- ,N —2,
and
1 k
2 Ck1 Qap—0On-1-p
Ck = 1 > 0.
C10n—1
Now assume that we have calculated out the coefficients of P»,_»; for j = 1,2,--- ,v and obtain
the estimate
(6.9) dead| > an_je® " mp,_j|/2 > e,

. Jj—1 1 .
where ¢ == 2 ?_”1;%7”17;' for j =1,2,--- ,v—1, ¢} is defined in (6.6). Write the coefficients
Ca n—j+1

of polynomial function P, _5(,_1) as follows

—1—

cfetn—vm, VH” " gtnvinY (g) 4 gtn-vHomYy

au _ P
1 - )
Hp:O -P + Y 1 + Eému 1
5 cZa““*"*”‘“”*V(mn,y,lmn,yﬂp ém% » bk + 9mY)
a2 =
v—1,_ ov—1-p v—1 Spr—1 ’
o —omy—, +m’~t+e'm
n—v— k— -
v Cp. 82 @ p(H Omn v— pH n P i +€6mZ)
Q= ou—1-— )
Hp:O +m1/ 1 +€5mu 1
v Zﬂ_y An—v—p Hn u 1 -1 gv—1-p ~v S v
o o Cp—v€ ( Mp—v—p p=0""n—p + Mp—v +e mn—u)
n—v H %"*pl P + my—1 4 66ﬁll’_l ’
where, the terms 7”1, m¥~1, mY, my satisfy that
~v—1 ) ~v—1 _
lePdemn” ™ || < e,  |lePden” ™ || <¢, p=0,1,2,--- N —v,
AU ) ~
lePdomi] < e, |lePdemi]| <e¢, p=0,1,2,--- ,N—v, k=1,2,--- n—uv,
and
cufl k a 41
k+1 2up=0 dn—v+1—p
cp = = , k=1,2,--- n—uw.

v—1
€1 OGp—v+1
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Since that \H;;émiu__pl_p + P+ e9mr L > 0, the coefficients oY, k =1,2,--- ,n — v, are well

defined. For the next step, we calculate the derivative of oY as follows:
F iy en (mn JTZim27 ) 4+ () + e5m (e))

(HV 2” 1- p+mu 1+€5mu 1)2

i

(6.10) deal =

_ v—1—p
where, A := H;zém27 and

n—p

m’ = edemy_ Aty (At e+ edoml (A + it e
—my_y Aedc A + edon” ™) — ¥ (edo A + eden” 1Y) /¥,

m’ = (Y +edom) (A + 4+ 0mr ) Y

—mY (ede A + eden? ™t 4 2mr L 4 10 mr ) fel
It is obvious that for p=0,1,--- ,n—v —1

lePd2rin”|| < ce’, [ePdZm” || < c.
It follows that
(6.11) |dea| > K an_pe®™ " m,_|/2 > cue” 1,
where ¢, depends on a; and the norm of m;, i = 1,2,--- ,n. When v = n — 1, the process ends;

when v < n— 1, by the inductive formula (6.3), the coefficients for polynomial function Ps,,_5(,11)
are as follows

v+l _ap,_ ~ u+1 v+1
ay+1 Cy e® 1mn—u—1(Hp Qm + ( )+€ m )
1 - v )
Iy _ym2” pp+m”+55m”
v+l _ap_ptan 0 A V+1 v+1
vl cyTign—vta (M My T om2_ + +e%myth)
(8 prg
2 v—
Iy _ ma”,) 4+ + e mV ’
v+1 Zk;la vl k— ~ 1/+1 v+1
ot = g gdp=o on P(H Omn,, 1-pll— Omnp+ —i—sm )
k = )

Iy _om2”,) +mY + em”

where

>0

o Han_,
fork=1,2,--- ,n—v—landv =1,2,--- ,n—2. Together with (6.4) and (6.8), by the Mathematical
Inductive method, we obtain that estimate (6.11) holds for v =0,1,2,--- ,n — 1.

Remind that
det Loy, := K> Pyp2_on,

where

_ p4n?—2n 04-4n?—2n—2 04-4n?—2n—4 0 2 0
P4n272n = ’C + O[]_’C —+ OK2K: —+ -4 a2n2—n—l’C + a2n2—n
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By simple calculation, we obtain the coefficients of Py,2_o,, as follows:

= gm0,
a) = g2nm? g g2ty
0 4n—3 4n—3 An—3)an+5,~ 0
af, g = W TRampin=d g Un=Bantonl
0 4n—3 An—T)an_1, An—3_ 4n—7 4n—3 An—T)an_1+6,~ 0
Qgn—10 gltn=Ban+n=Dan-1pyin=Syin T 4 gUn=fantln=DanH05m8 o,
0 S M4n—3—4p)an_p1yn—1,,,4n—3—4p St (4n—3—4p)an_p 50
Oyp2_op = € p=0 pHp:O mnfp + g4p=0 menLn,
where, for fixed k = 1,2,---,2n? — n, the reminder terms satisfy that|e?0.m%| < c. Observing

the main terms in the coefficients, they are nonzero terms and the order of ¢ is increasing. By the
same discussion as above, we prove that there exists a positive constant ¢ depending on a; and the
norm of m;, ¢ = 1,2,--- ,n, that is

ol >ee” j=0,1,---,20% —n— 1.
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