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Abstract

In this work, we propose a finite element iterative algorithm to solve the stationary fluid-
fluid interaction model. First, we give the finite element discretization for the considered
equations. Due that the finite element discretization system is nonlinear, then we design
an iterative algorithm for solving the nonlinear equations, where error correction strategy
is used to control iterative error at each iteration. Finally, some numerical tests are carried
out to demonstrate theoretical results of the proposed algorithm.
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1. Introduction

Multi-domain and multi-physics coupling of two immiscible fluids often appears in many
fields of production and life. Actually, fluid-fluid interaction model can describe this problem
well and a great deal of effort has been devoted to the development of numerical methods
for approximate solution of this model.

On one hand, for numerical work of the time-dependent fluid-fluid interaction model,
Lions et al. [26] have given numerical analysis of the numerical method. Based on the
operator-splitting and domain decomposition methods, Bresch and Koko [7] have shown a
numerical simulation. In order to decouple multi-domain and multi-physics of the model,
Connors et al. [10] have constructed two decoupled time stepping schemes: the first one
is geometric averaging scheme, which is unconditionally stable; and the other one is im-
plicit/exciplict scheme, which is conditionally stable [33]. Due to the unconditional stability
of the geometric averaging scheme, it has undergone some evolution and been well further
developed [9, 1, 4, 2, 3, 17, 20, 22, 23, 24, 19, 18, 27, 28]. Another unconditional stability
scheme has been considered in [21].
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On other hand, for numerical work of the stationary case, a spectral discretization has
been proposed in [5] where optimal error estimates were shown. A further work concerning
standard Galerkin finite element approximation has been studied [6]. Moreover, two Uzawa-
type domain decomposition algorithms have been established by Koko [16]. Besides, Li and
Xu [25] have proposed a Schwarz domain decomposition algorithm iteratively, which allowed
solving only single-physical model at each iteration. Zhang et al. [36] have considered a two-
grid decoupled algorithm, which can save much computational time. By utilize Nitsche’s
interface conditions, Hussain et al. [15] have designed a stabilized finite element method to
overcome numerical instability. In addition, Rebollo et al. [29] have presented and analyzed
a finite element iterative scheme, which was mainly linear and a monotone nonlinearity being
just kept at the interface between the fluids.

In this paper, we will construct and analyze a finite element iterative algorithm for the
following governing equations of a steady-state fluid-fluid interaction model [36, 34]. For
i, j = 1, 2, and i ̸= j, we consider

−νi∆ui + ui · ∇ui +∇pi = fi in Ωi,

−νini · ∇ui · τ = κ(ui − uj) · τ on I,

ui · ni = 0 on I,

∇ · ui = 0 in Ωi,

ui(0, x) = ui,0(x) in Ωi,

ui = 0 on Γi := ∂Ωi\I,

(1)

where Ω ⊂ R2 is a bounded domain that consists of two sub-domains Ω1 and Ω2 coupled
across their shared interface I. Additionally, in these equations, νi > 0 is the kinematic
viscosity, κ > 0 is the friction coefficient, fi is the body force and ui,0 is the initial value.
ui represents the fluid velocity and pi is the pressure. The vector ni is the unit outward
normals on I, and τ is any vector such that τ · ni = 0.

The rest of the article is organized as follows: in Section 2, we introduce some basic
notations and provide the corresponding variational form for the problem (1). In Section
3, the finite element method of the considered equations is shown and error estimates are
deduced. Next, based on the previous finite element approximation, an iterative algorithm is
proposed. Consequently, some numerical experiments are implemented to demonstrate the
theoretical result of the presented iterative algorithm in the last section.

2. Preliminaries

For i = 1, 2, we use standard notations for the Lebesgue space L2(Ωi) and Sobolev space
Hm(Ωi) = Wm,2(Ωi), 1 ≤ m < ∞. The L2(Ωi) norm is denoted by ∥ · ∥L2(Ωi) = ∥ · ∥0 and
L2-scalar product (·, ·).

For the mathematical setting of the coupled fluid-fluid interaction model (1), we introduce
the following function spaces:

Xi = {vi ∈ H1(Ωi)
2 : vi|Γi

= 0; vi · ni = 0, on I}, Mi = {qi ∈ L2(Ωi) : (qi, 1) = 0}.
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For fi an element in the dual space of Xi, denoted by X′
i, its norm is defined by ∥fi∥−1 =

sup
vi∈Xi

|(fi,vi)|
∥∇vi∥0 . Besides, we denote norm ∥|v|∥20 = ∥v1∥20 + ∥v2∥20 for all vi ∈ Xi.

Next, we define the bilinear forms

a(ui,vi) = νi(∇ui,∇vi), d(vi, qi) = (∇ · vi, qi), ui,vi ∈ Xi, qi ∈Mi

and the trilinear forms

b(ui,vi,wi)= ((ui · ∇)vi,wi) + 0.5((∇ · ui)vi,wi)

= 0.5((ui · ∇)vi,wi)− 0.5((ui · ∇)wi,vi), ∀ui,vi,wi ∈ Xi,

with the following properties [30]:

b(ui,vi,wi) = −b(ui,wi,vi),

|b(ui,vi,wi)| ≤ N∥∇ui∥0∥∇vi∥0∥∇wi∥0,
(2)

where N = supui,vi,wi∈Xi

|b(ui,vi,wi)|
∥∇ui∥0∥∇vi∥0∥∇wi∥0 .

Now, we recall the trace inequality and the Poincaré inequality [30, 8], which are useful
in the following analysis. There exist some positive constants Cp and Ctr, which depend on
Ωi, such that

∥vi∥0 ≤ Cp∥∇vi∥0, ∥vi∥L2(I) ≤ Ctr∥vi∥
1
2
0 ∥∇vi∥

1
2
0 . (3)

Based on the above definitions, the corresponding variational formulation of the problem
(1) is given as follows: find (ui, pi) ∈ Xi ×Mi such that for i, j = 1, 2, i ̸= j, all (vi, qi) ∈
Xi ×Mi,

a(ui,vi)− d(vi, pi) + d(ui, qi) + b(ui,ui,vi) +

∫
I

κ(ui − uj) · vids = (fi,vi). (4)

Further, we show the following result concerning the variational formulation (4).

Theorem 2.1. Assume that (ui, pi) is the solution of the variational formulation (4). If νi
and fi satisfy the uniqueness condition:

0 < σ =
N

ν2

2∑
i=1

∥fi∥−1 < 1, (5)

where ν = min{νi, νj}, then the solution pair (ui, pi) of (4) is unique. Furthermore, we have

ν∥∇ui∥0 ≤
2∑

i=1

∥fi∥−1. (6)
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Proof. Set (vi, qi) = (ui, pi) in (4) and use (2) to obtain

a(ui,ui) +

∫
I

κ(ui − uj) · uids = (fi,ui). (7)

By summing (7) from i = 1 to 2, we have

ν∥|∇u|∥20 +
∫
I

κ|u1 − u2|2ds ≤
2∑

i=1

∥fi∥−1∥|∇u|∥0,

which applies (6).
Next, suppose that ui,1,uj,1, pi,1, pj,1 and ui,2,uj,2, pi,2, pj,2 are two solution pairs of (4),

it follows that

a(ui,1,vi)− d(vi, pi,1) + d(ui,1, qi) + b(ui,1,ui,1,vi) +

∫
I

κ(ui,1 − uj,1) · vids = (fi,vi), (8)

a(ui,2,vi)− d(vi, pi,2) + d(ui,2, qi) + b(ui,2,ui,2,vi) +

∫
I

κ(ui,2 − uj,2) · vids = (fi,vi). (9)

Next, let ei = ui,1−ui,2, ej = uj,1−uj,2, ei = pi,1−pi,2 and ej = pj,1−pj,2. Then, subtracting
(9) from (8), we have

a(ei,vi)− d(vi, ei) + d(ei, qi) + b(ei,ui,1,vi) + b(ui,2, ei,vi) +

∫
I

κ(ei − ej) · vids = 0. (10)

Moreover, taking (vi, qi) = (ei, ei) in (10) and using (2), we give

νi∥∇ei∥20 + b(ei,ui,1, ei) +

∫
I

κ(ei − ej) · eids = 0. (11)

Sum (11) from i = 1 to 2, and apply (2) again and (6).

2∑
i=1

νi∥∇ei∥20 +
∫
I

κ|e1 − e2|2ds ≤
2∑

i=1

ν−1N∥∇ei∥20(∥fi∥−1 + ∥fj∥−1).

Finally, rewrite the above inequality to get

2∑
i=1

(
ν −Nν−1(∥fi∥−1 + ∥fj∥−1)

)
∥∇ei∥20 +

∫
I

κ|e1 − e2|2ds ≤ 0,

which together with the uniqueness condition (5) finishes the proof.
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3. A finite element discretization

In this section, we will give a finite element method of the considered equations, and
analyse error estimates.

Let h > 0 be a real positive parameter, and Kh = {K : ∪K⊂ΩK = Ω} a quasi-uniform
partition of Ω. Next, we consider the finite element subspace pair Xi,h ×Mi,h ⊂ Xi ×Mi,
for i = 1, 2

Xi,h = {vi,h ∈ Xi ∩ C0(Ω)2 : vi,h|K ∈ P2(K)2,∀K ∈ Kh},
Mi,h = {qi,h ∈Mi ∩ C0(Ω) : qi,h|K ∈ P1(K),∀K ∈ Kh},

where Pl(K), l = 1, 2, is the set of all polynomials on K of degree no more than l. Note that
the considered finite element space pair Xi,h ×Mi,h satisfies the discrete inf-sup condition
[30, 8]

sup
vi,h∈Xi,h,vi,h ̸=0

|d(vi,h, qi,h)|
∥∇vi,h∥0

≥ βi∥qi,h∥0, ∀qi,h ∈Mi,h, (12)

where βi > 0, i = 1, 2 is constant depending on Ωi.
Moreover, the finite element method of the fluid-fluid interaction model (1) is to find

(ui,h, pi,h) ∈ Xi,h ×Mi,h for all (vi,h, qi,h) ∈ Xi,h ×Mi,h, i, j = 1, 2 and i ̸= j such that

a(ui,h,vi,h)− d(vi,h, pi,h) + d(ui,h, qi,h) + b(ui,h,ui,h,vi,h)

+

∫
I

κ(ui,h − uj,h) · vi,hds = (fi,vi,h),
(13)

In order to obtain the error estimates of the presented finite element method, we recall
the Stokes-Stokes projection [35, 11]

(Ri,h, Ti,h) = (Ri,h(ui, pi), Ti,h(ui, pi)) : Xi ×Mi → Xi,h ×Mi,h

by requiring

a(ui −Ri,h(ui, pi),vi,h)− d(vi,h, pi − Ti,h(ui, pi)) + d(ui −Ri,h(ui, pi), qi,h) = 0, (14)

with the following approximate property, for all (ui, pi) ∈ (H3(Ωi)
d ∩Xi)× (H2(Ωi)

d ∩Mi)

∥∇(ui −Ri,h(ui, pi))∥0 + ∥pi − Ti,h(ui, pi)∥0 ≤ csh
2, (15)

where cs > 0 is a constant independent on h.
Next, we denote errors of the velocities and pressures by ui−ui,h = ei, and pi−pi,h = ei,

then, we decompose them as

ei = (ui −Ri,h(ui, pi)) + (Ri,h(ui, pi)− ui,h) =: ηi + ϕh
i ,

ei = (pi − Ti,h(ui, pi)) + (Ti,h(ui, pi)− pi,h) =: ξi + ψh
i .

Now, for the finite element approximation (13), we present some results as follows.
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Theorem 3.1. Under the assumption of Theorem 2.1, the finite element solution (ui,h, pi,h)
of (13) satisfies

ν∥∇ui,h∥0 ≤
2∑

i=1

∥fi∥−1, (16)

and

∥∇(ui − ui,h)∥0 + ∥pi − pi,h∥0 ≤ Ch2, (17)

where the positive constant C is independent on h.

Proof. By setting (vi,h, qi,h) = (ui,h, pi,h) in (13) and applying (2), it follows that

νi∥∇ui,h∥20 +
∫
I

κ(ui,h − uj,h) · ui,hds = (fi,ui,h). (18)

Then, summing (18) from i = 1 to 2, we have

ν∥|∇uh|∥20 +
∫
I

κ|u1,h − u2,h|2ds ≤
2∑

i=1

∥fi∥−1∥|∇uh|∥0,

which applies (16).
In the following part, we will establish error estimates for (13). Subtracting (13) from

(4), we obtain the following error equation

a(ei,vi,h) + b(ei,ui,vi,h) + b(ui,h, ei,vi,h)− d(vi,h, ei) + d(ei, qi,h)

+

∫
I

κ(ui − uj) · vi,hds−
∫
I

κ(ui,h − uj,h) · vi,hds = 0,
(19)

which combines (14) to gain

a(ϕh
i ,vi,h) + b(ei,ui,vi,h) + b(ui,h, ei,vi,h)− d(vi,h, ψ

h
i ) + d(ϕh

i , qi,h)

+

∫
I

κ(ui − uj) · vi,hds−
∫
I

κ(ui,h − uj,h) · vi,hds = 0.
(20)

Set (vi,h, qi,h) = (ϕh
i , ψ

h
i ) in (20) and sum the ensuing equation up from 1 to 2.

2∑
i=1

νi∥∇ϕh
i ∥20 +

2∑
i=1

(b(ei,ui,ϕ
h
i ) + b(ui,h, ei,ϕ

h
i ))︸ ︷︷ ︸

I1

+

∫
I

κ(u1 − u2) · (ϕh
1 − ϕh

2)ds︸ ︷︷ ︸
I2

−
∫
I

κ(u1,h − u2,h) · (ϕh
1 − ϕh

2)ds︸ ︷︷ ︸
I3

= 0.

(21)
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For the trilinear terms in (21), by using (2), (6) and (16), we have following estimate

I1 ≤
2∑

i=1

(
N(∥∇ηi∥0 + ∥∇ϕh

i ∥0)∥∇ui∥0∥∇ϕh
i ∥0 +N∥∇ηi∥0∥∇ui,h∥0∥∇ϕh

i ∥0
)

≤ 2csNν
−1h2

2∑
i=1

∥fi∥−1

2∑
i=1

∥∇ϕh
i ∥0 + ν−1N

2∑
i=1

∥fi∥−1

2∑
i=1

∥∇ϕh
i ∥20,

where we have used the approximate property (15). Besides, for the interaction terms in
(21), we rewrite them as

I2 − I3 =

∫
I

κ(η1 − η2) · (ϕh
1 − ϕh

2)ds +

∫
I

κ|ϕh
1 − ϕh

2 |2ds,

and utilizing (3) and (15) again, we arrive at∫
I

κ(η1 − η2) · (ϕh
1 − ϕh

2)ds ≤ 2csh
2κC2

trCp

2∑
i=1

∥∇ϕh
i ∥0.

Moreover, from above estimates, we get the following bound from (21),

ν(1− σ)
2∑

i=1

∥∇ϕh
i ∥0 ≤ Ch2. (22)

Further, select (vi,h, qi,h) = (ϕh
i , 0) in (20) to get

d(ϕh
i , ψ

h
i ) = νi∥∇ϕh

i ∥20 + b(ηi + ϕh
i ,ui,ϕ

h
i ) + b(ui,h,ηi,ϕ

h
i ) +

∫
I

κ(ηi + ϕh
i − ηj − ϕh

j ) · ϕh
i ds,

which together with discrete inf-sup condition (12) and (3), (6) and (16) leads to

βi∥ψh
i ∥0 ≤

(
νi + ν−1N

2∑
i=1

∥fi∥−1 + κC2
trCp

)
∥∇ϕh

i ∥0 + κC2
trCp∥∇ϕh

j ∥0

+

(
2ν−1N

2∑
i=1

∥fi∥−1 + κC2
trCp

)
∥∇ηi∥0 + κC2

trCp∥∇ηj∥0

≤Ch2,

(23)

where we have applied (22) and (15).
Finally, combine (23) with (22), (15) and the triangle inequality to finish the proof.

Note that the finite element discretization (13) is nonlinear. Hence, in the rest of this
section, as the work in [12, 13, 14] for nonlinear problems, we design an iterative algorithm
for solving the considered equations. We also apply the error correction strategy [32, 31]
to control the error at each iterative step for solving the nonlinear problem. Moreover, we
deduce the bound of iterative solution.

Now, we give the iterative algorithm for solving the fluid-fluid interaction model.
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Algorithm 3.1. For i, j = 1, 2 and i ̸= j, we run the following steps.
Step I. Let the initial guess (u0

i,h, p
0
i,h) ∈ Xi,h ×Mi,h be the solution by solving the following

equations

a(u0
i,h,vi,h)− d(vi,h, p

0
i,h) + d(u0

i,h, qi,h) = (fi,vi,h), ∀(vi,h, qi,h) ∈ Xi,h ×Mi,h. (24)

Set ũ0
i,h ≡ u0

i,h and p̃0i,h ≡ p0i,h.
Step II. Find (ũn

i,h, p̃
n
i,h) ∈ Xi,h ×Mi,h by solving the following iteration

a(ũn
i,h,vi,h)− d(vi,h, p̃

n
i,h) + b(un−1

i,h , ũn
i,h,vi,h) +

∫
I

κ(ũn
i,h − ũn

j,h) · vi,hds = (fi,vi,h),

d(ũn
i,h, qi,h) = 0, ∀(vi,h, qi,h) ∈ Xi,h ×Mi,h.

(25)

Step III. Find (ϵ̃ni,h, θ̃
n
i,h) ∈ Xi,h ×Mi,h by solving the error correction equations

a(ϵ̃ni,h,v
n
i,h)− d(vn

i,n, θ̃
n
i,h) + b(ϵ̃n−1

i,h , ϵ̃ni,h,vi,h) + b(ũn
i,h, ϵ̃

n
i,h,vi,h) + b(ϵ̃ni,h, ũ

n
i,h,vi,h)

+ b(ũn
i,h, ũ

n
i,h,vi,h)− b(un−1

i,h , ũn
i,h,vi,h) +

∫
I

κ(ϵ̃ni,h − ϵ̃nj,h) · vi,hds = 0,

d(ϵ̃ni,h, qi,h) = 0, ∀(vi,h, qi,h) ∈ Xi,h ×Mi,h.

(26)

Step IV. Set un
i,h ≡ ũn

i,h + ϵ̃ni,h and pni,h ≡ p̃ni,h + θ̃ni,h. If it satisfies the stopping criterion

∥un
i,h − un−1

i,h ∥0 ≤ 10−6 or the iteration step n ≥ 1000, then stop; else set n = n + 1, and
return to Step II.

Now, we will establish the bound of iterative solution for Algorithm 3.1

Theorem 3.2. Under the assumption of Theorem 3.1, if 2σ < 1, then we obtain

ν∥∇ũn
i,h∥0 ≤

2∑
i=1

∥fi∥−1, (27)

ν∥∇un
i,h∥0 ≤

ν1 + ν2 + ν + 2κC2
trCp

ν(1− 2σ)

2∑
i=1

∥fi∥−1. (28)

Proof. Firstly, choose (vi,h, qi,h) = (ũn
i,h, p̃

n
i,h) in (25) and sum the ensuing the equation from

i = 1 to 2. Then, use (2) to get

ν∥|∇ũn
h|∥0 ≤

2∑
i=1

∥fi∥−1. (29)

Secondly, taking (vi,h, qi,h) = (ϵ̃ni,h, θ̃
n
i,h) in (26) gives

νi∥∇ϵ̃ni,h∥20 + b(ϵ̃ni,h, ũ
n
i,h, ϵ̃

n
i,h) + b(ũn

i,h, ũ
n
i,h, ϵ̃

n
i,h)− b(un−1

i,h , ũn
i,h, ϵ̃

n
i,h)

+

∫
I

κ(ϵ̃ni,h − ϵ̃nj,h) · ϵ̃ni,hds = 0.
(30)
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Next, set vi,h = ϵ̃ni,h in (25) and notice that d(ϵ̃ni,h, qi,h) = 0 for all qi,h ∈ Mi,h. Then, adding
the ensuing equation with (30), we have

a(ũn
i,h, ϵ̃

n
i,h) + νi∥∇ϵ̃ni,h∥20 + b(ϵ̃ni,h, ũ

n
i,h, ϵ̃

n
i,h) + b(ũn

i,h, ũ
n
i,h, ϵ̃

n
i,h) +

∫
I

κ(ũn
i,h − ũn

j,h) · ϵ̃ni,hds

+

∫
I

κ(ϵ̃ni,h − ϵ̃nj,h) · ϵ̃ni,hds = 0.

Now, sum the above equation from i = 1 to 2, and apply (2) and (3) to the ensuing
equation.

2∑
i=1

νi∥∇ϵ̃ni,h∥20 +
∫
I

κ|ϵ̃n1,h − ϵ̃n2,h|2ds

≤
2∑

i=1

νi∥∇ũn
i,h∥0

2∑
i=1

∥∇ϵ̃ni,h∥0 +
2∑

i=1

N∥∇ϵ̃ni,h∥20
2∑

i=1

∥∇ũn
i,h∥0

+
2∑

i=1

N∥∇ũn
i,h∥20

2∑
i=1

∥∇ϵ̃ni,h∥0 + κC2
trCp

2∑
i=1

∥∇ũn
i,h∥0

2∑
i=1

∥∇ϵ̃ni,h∥0.

(31)

Rewrite (31) and apply (27) to gain

ν(1− 2σ)
2∑

i=1

∥∇ϵ̃ni,h∥0 ≤
2∑

i=1

νi∥∇ũn
i,h∥0 +

2∑
i=1

N∥∇ũn
i,h∥20 + κC2

trCp

2∑
i=1

∥∇ũn
i,h∥0

≤ ν1 + ν2 + 2σν + 2κC2
trCp

ν

2∑
i=1

∥fi∥−1,

(32)

which leads to

ν∥∇ϵ̃ni,h∥0 ≤
ν1 + ν2 + 2σν + 2κC2

trCp

ν(1− 2σ)

2∑
i=1

∥fi∥−1. (33)

Finally, combining (27) with (29) and the definitions of un
h in Step IV, and applying the

triangle inequality, we finish the proof.

4. Numerical experiments

In this section, we will test the performance and effectiveness of the proposed iterative
algorithm.

In the first experiment, we access to the convergence performance of Algorithm 3.1.
Consider the problem (1) on the domain Ω = Ω1 ∪ Ω2, where Ω1 = [0, 1] × [0, 1] and
Ω2 = [0, 1]× [−1, 0]. Suppose the right-hand sides of functions fi(x, y), i = 1, 2 are

f1,1 = exp(x2 + y2) cos(x) sin(y), f1,2 = exp(x2 + y2) sin(x+ y)(x2 + y2),

f2,1 = exp(x2 + y2) sin(x) cos(y), f2,2 = exp(x2 + y2)(y3 + x2).
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For i = 1, 2, ui,h
2
and pi,h

2
are the numerical solutions of the fluid velocity and pressure

when the mesh size is h
2
. Then we display the errors and convergence orders for velocities

and pressure in Table 1 and 2 with different values of the parameters. From these tables,
we can see that as h decreases, it is easy to see that the convergence rates of the velocity
approximate to 3 and the pressure to 2.

Table 1 Errors and convergence rates with respect to h with ν1 = 0.05, ν2 = 0.1, κ = 0.1.

h ∥u1,h − u1,h
2
∥0 Rate ∥u2,h − u2,h

2
∥0 Rate ∥p1,h − p1,h

2
∥0 Rate ∥p2,h − p2,h

2
∥0 Rate

1
8

1.58E−3 — 8.60E−4 — 8.61E−3 — 4.99E−3 —
1
16

1.84E−4 3.10 1.08E−4 2.99 2.12E−3 2.02 1.22E−3 2.03
1
32

2.15E−5 3.10 1.28E−5 3.07 4.64E−4 2.19 2.75E−4 2.15
1
64

2.36E−6 3.19 1.42E−6 3.18 1.04E−4 2.16 6.13E−5 2.17
1

128
2.92E−7 3.01 1.75E−7 3.02 2.83E−5 1.87 1.60E−5 1.94

Table 2 Errors and convergence rates with respect to h with ν1 = 0.005, ν2 = 0.01, κ = 0.01.

h ∥u1,h − u1,h
2
∥0 Rate ∥u2,h − u2,h

2
∥0 Rate ∥p1,h − p1,h

2
∥0 Rate ∥p2,h − p2,h

2
∥0 Rate

1
8

5.76E−2 — 2.35E−2 — 4.25E−2 — 2.03E−2 —
1
16

3.91E−3 3.88 2.05E−3 3.52 3.84E−3 3.47 3.29E−3 2.62
1
32

3.89E−4 3.33 2.22E−4 3.21 8.28E−4 2.21 7.37E−4 2.16
1
64

4.12E−5 3.24 2.39E−5 3.21 1.80E−4 2.20 1.61E−4 2.20
1

128
5.10E−6 3.01 2.84E−6 3.07 4.62E−5 1.95 4.06E−5 1.98

In the second experiment, motivated by previous study in [7], we consider a simple
ocean/atmosphere model on rectangular subdomains Ω1 = [0, 5] × [0, 1] and Ω2 = [0, 5] ×
[0,−1]. Obviously, the interface I = [0, 5] × {0}. Set same boundary conditions, initial
velocities, physical parameter and inflow profile as in [7]. Then, we perform simulation by
using Algorithm 3.1 with mesh size h = 1

10
.

Figure 1 shows the viscous drag force exerted by the velocity difference at the interface
induces circular motion in Ω2.
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Figure 1: The numerical velocity streamlines with ν1 = 5.0E − 4, ν2 = 5.0E − 3, κ = 2.45E − 3.

In the third experiment, we test Algorithm 3.1 with a practical problem, submarine
mountain problem. This problem describes the fluid that flows in a domain including the

10



submarine mountain. Set Ω1 = [0, 1] × [0.05, 0.15] and Ω2 = {(x, y) : 7
40
(sin(7

2
) − (2x −

1) sin(7x− 7
2
)) ≤ y ≤ 0.05, 0 ≤ x ≤ 1}. The body forces f1 and f2 are chosen to ensure that

u1,1(x, y) = x2(1− x)2(0.1− y),

u1,2(x, y) = x(y − 0.05)(−0.2 + y + 0.6x− 3xy − 0.4x2 + 2x2y),

u2,1(x, y) = x2(1− x)2(0.1 + y),

u2,2(x, y) = x(y − 0.05)(−0.2− y + 0.6x+ 3xy − 0.4x2 − 2x2y),

p1(x, y) = p2(x, y) = cos(πx) sin(πy),

Besides, the boundary and initial condition are chosen by the above exact solutions. We take
ν1 = 0.1, ν2 = 0.5, κ = 1.0, h = 1

64
. Then, we apply Algorithm 3.1 to get numerical results.
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Figure 2: Velocity streamlines: Exact solution(a), numerical solution(b).

In Figure 2, we present the velocity streamlines. From the figure, we can see that the
numerical result obtained by the proposed iterative algorithm are in good agreement with
the exact solution. Hence, the iterative algorithm is effective for the submarine mountain
problem.

5. Conclusion

In this work, we introduce a iterative algorithm to solve the stationary fluid-fluid inter-
action model. The new algorithm is consist of the Oseen scheme and the error correction
which can control the error of the iterative step arising for solving the nonlinear problem.
We give the stability analysis in this study. The numerical tests show that the proposed
algorithm is effective for solving the stationary fluid-fluid interaction problem.
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