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1. Introduction and preliminaries

Ulam [55] gave a talk before the Mathematics Club of the University of Wisconsin in
which he discussed a number of unsolved problems. Among these was the following
question concerning the stability of homomorphisms.

We are given a group G and a metric group G’ with metric p(-,-). Given e > 0,
does there exist a § > 0 such that if f: G — G’ satisfies p(f(zy), f(x)f(y)) < I for
all x,y € G, then a homomorphism h : G — G’ exists with p(f(x), h(z)) < € for all
zeG?

By now an affirmative answer has been given in several cases, and some inter-
esting variations of the problem have also been investigated. We shall call such an
f: G — G an approzimate homomorphism.

Hyers [21] considered the case of approximately additive mappings f : E — F’,
where E and E’ are Banach spaces and f satisfies Hyers inequality

1f(@+y) = flz) = fy)l <e

for all z,y € E. It was shown that the limit

L(z) = lim f(2"z)
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exists for all x € E and that L : E — E’ is the unique additive mapping satisfying

[f(z) = L(z)|| < e

Rassias [43] provided a generalization of Hyers’ Theorem which allows the Cauchy
difference to be unbounded.

Theorem 1.1. [/3] Let f : E — E’ be a mapping from a normed vector space E
into a Banach space E' subject to the inequality

1 (& +y) = fz) = I < elll=]” + llyll”) (L.1)

for all x,y € E, where € and p are constants with € > 0 and p < 1. Then the limit

exists for allx € E and L : E — E’ is the unique additive mapping which satisfies

2¢
2—2p

1f(z) = Lz)|| < [ (1.2)
forallx € E. If p < 0 then inequality (1.1) holds for x,y # 0 and (??) for x # 0.
Also, if for each x € E the function f(tx) is continuous int € R, then L is R-linear.

Rassias [44] during the 27" International Symposium on Functional Equations
asked the question whether such a theorem can also be proved for p > 1. Gajda [1§]
following the same approach as in Rassias [43], gave an affirmative solution to this
question for p > 1. It was shown by Gajda [18], as well as by Rassias and Semrl [47]
that one cannot prove a Rassias’ type theorem when p = 1. The counterexamples of
Gajda [18], as well as of Rassias and Semrl [47] have stimulated several mathemati-
cians to invent new definitions of approximately additive or approzimately linear
mappings, cf. Gavruta [19], Jung [26], who among others studied the Hyers-Ulam
stability of functional equations.

Beginning around the year 1980 the topic of approximate homomorphisms and
their stability theory in the field of functional equations and inequalities was taken
up by several mathematicians (cf. Hyers and Rassias [23], Rassias [45] and the
references therein). Several mathematician have contributed works on these subjects
(see [1-3,5-10,12,13,17,22,25,27-32,34, 35, 38,40,41,46, 48,49, 52-54,57]).

A functional equation & is superstable if every approximately solution of < is an
exact solution of it. For more information on superstability of functional equations
and applications, see [15,16].

A non-Archimedean field is a field K equipped with a function (valuation) | - |
from K into [0, 00) such that |r| = 0 if and only if r = 0, |rs| = |r||s], and |r + s| <
max{|r|,|s|} for all r,s € K (see [4]).

In 1897, Hensel [20] discovered the p-adic numbers as a number theoretical
analogue of power series in complex analysis. During the last three decades p-adic
numbers have gained the interest of physicists for their research, in particular in
problems coming from quantum physics, p-adic strings and superstrings (cf. [33,506]).

Let X be a vector space over a scalar field IC with a non-Archimedean non-trivial
valuation | - |. A function || - || : X — R is a non-Archimedean norm (valuation)
if it satisfies the following conditions:
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(¢) ||z|]| = 0 if and only if z = 0;
(7) ||rz|| = |r|||z|| for all r € K and = € X;

(7350) ||z + y|| < max{|z|,|ly||} for all z,y € X (the strong triangle
inequality).

A sequence {z,,} in a non-Archimedean space is Cauchy if and only if {z;+1 — 2m }
converges to zero. By a complete non-Archimedean space we mean one in which
every Cauchy sequence is convergent.

We recall some definitions and results which will be used later in the article.

A triangular norm (shorter t-norm) is a binary operation on the unit interval
[0,1], i.e., a function T : [0,1] x [0,1] — [0, 1] such that for all a,b,c € [0,1] the
following four axioms hold:

(1) T(a,b) = T(b,a) (commutativity);

(17) T(a, (T(b,c))) = T(T(a,b),c) (associativity);
(113) T(a,1) = a (boundary condition);

(iv) T(a,b) < T(a,c) whenever b < ¢ (monotonicity).

In the sequel, we adopt the usual terminology, notations, and conventions of
the theory of random normed spaces as in [11,36,50,51]. Throughout this paper,
AT is the space of distribution functions, that is, the space of all mappings F :
R U {—00,00} — [0,1] such that F is left-continuous and nondecreasing on R,
F(0) =0 and F(4+00) = 1. DT is a subset of AT consisting of all functions F € A
for which I~ F(400) = 1, where I~ f(z) denotes the left limit of the function f at
the point , that is, I= f(z) = lim,_,,— f(t). The space AT is partially ordered by
the usual point-wise ordering of functions, i.e., F' < G if and only if F(t) < G(¢) for
all t € R.

Definition 1.1. (cf. [11,36,50,51]) A non-Archimedean RN-space is a triple (X, u, T),
where X is a linear space over a non-Archimedean field IC, T is a continuous ¢-norm,
and p is a mapping from X into DT such that the following conditions hold:

(NA— RN1) py(t) = eo(t) for all t > 0 if and only if x = 0;

(NA— RN2) pio:(t) = pa(:5) for all z € X, t > 0, and « # 0;

]

(NA—RN3) piaty(max(t,s)) > T(ug(t), py(s)) for all z,y, z € X and
t,s > 0.

It is easy to show that if (NA — RN3) holds, then

(RN3) oy (t 4 8) > T (t), 1, (5))-

Definition 1.2. Let (X, u,T) be a non-Archimedean RN-space and {z,} be a
sequence in X. Then {x,} is said to be convergent if there exists € X such that

lim g, . (t) =1

n— oo

for all ¢ > 0. Then x is called the limit of the sequence {x,,}.
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A sequence {z,} in X is called Cauchy if for each ¢ > 0 and ¢ > 0, there exists
ng such that for all n > ng and all p > 0, we have

Hzpip—z0 (t) >1-—e

If each Cauchy sequence is convergent, then the random norm is said to be complete,
and the non-Archimedean RN-space is called a non-Archimedean random Banach
space.

Definition 1.3. [37] A non-Archimedean random normed algebra (X, u, T, T") is a
non-Archimedean random normed space (X, u, T') with an algebraic structure such
that

Mmy(t) > TI(Nz(t>7My(t))
for all z,y € X and all ¢ > 0, in which 7" is a continuous ¢-norm.

Note that a complete non-Archimedean random normed algebra is called a non-
Archimedean random Banach algebra.

We recall a fundamental result in fixed point theory. Let £ be a set. A function
d:ExE— [0,00) is called a generalized metric on & if d satisfies:

(1) d(z,y) = 0 if and only if x = y;

(i1) d(z,y) = d(y,z) for all z,y € &;

(#i1) d(z,z) < d(z,y) + d(y, 2) for all z,y,z € &.
Definition 1.4. Let A be a Banach algebra. An additive mapping D : A — A is
said to be a ring derivation if D(xy) = D(x)y + D(y) for all x,y € A. An additive

mapping H : A — A is said to be a generalized ring derivation if there exists a ring
derivation D : A — A such that

H(zy) = 2H(y) + D(x)y
for all z,y € A.

Theorem 1.2. [14, /2] Suppose that a complete generalized metric space (€,d)
(i.e. one for which d may assume infinite values) and a strictly contractive mapping
J & = & with the Lipschitz constant 0 < L < 1 is given. Then for each given
x € &, exactly one of the following assertions is true: either

(i) d(J™x, J"* x) = oo for allm >0 or
(ii) there exists k such that d(J™z, J™ z) < oo for all m > k.

Actually, if (ii) holds, then the sequence {J™x} is convergent to a fized point w of
J and

(i) w is the unique fized point of J inY = {y € £ : d(J*x,y) < 0o};
(iv) d(y,w) < $27d(y, Jy) for ally € .

In 1996, Isac and Rassias [24] were the first to provide applications of stability
theory of functional equations for the proof of new fixed point theorems with appli-
cations. By using fixed point methods, the stability problems of several functional
equations have been extensively investigated by a number of authors (see [15,39,42]).
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2. Non-Archimedean random superstability of gen-
eralized derivations

Hereafter, we will assume that (A, u,T) is a non-Archimedean random Banach
algebra with unit e over a non- Archimedean field K and assume that 1, are
two distribution functions on A x A x [0,00) such that ¥ (a,b, ) and ¢(a,b, ) are
nondecreasing, ¥ (az, ax,t) > ¥ (z, z, ﬁ) and p(azx, azx,t) > p(z,x, ﬁ) forallz € A
and a # 0.

Theorem 2.1. Suppose that f: A — A and g : A — A are mappings such that

[f (@ty)—f (@)~ () (B) = o2, 9, 1), (2.1)

[if (@y)—af () —g(@)y(t) = (2,9, 1) (2.2)

for all x,y € A and all t > 0. If there exist a natural number k € K, constant
0<L<1and0< B <1 such that

1
ky,t) > —_— 2.
p(kz, ky,t) > w(x,y,L|k|t), (2.3)
blke,y.1) > V(@ y, =)
1‘7 ) — x’ )
g Y Bk
forall x,y € A and allt > 0, then f is a generalized derivation.

Proof. By induction on ), we shall show that for each x € A, t > 0 and j > 2,

5205 () = My, 1) o= T(plw, 2, 1), 020, 2,1), -+ () = D, 2,1)) . (24)
Putting = y in (2.1), we obtain
Bfa)—2f@) () > @(z,2,t)  (x € At >0).
This proves (2.4) for 3 = 2. Let (2.4) hold for some j > 2. Replacing x by jx and y
by z in (2.1), we get
If ((G+1)z) - f () - f o) (B) = 0z, 2,t)  (z € A, 6> 0).
Hence

Jz a)— (541 (t)=n (t)
HorDD =G 1) (f((1+1):c)—f(-t)—f(y-t)+f(ym)—1f(m))

v

T(“f((ﬁl)r)*f(r)*f(ﬂ) (t)s 15 g2y =55 ) (t))
> T(p(a.2.1) My(a.1))
= M1 (z,t)
for all x € A. Thus (2.4) holds for all 7 > 2. In particular,
[f (k) ke f () (1) = M (2,1) (2.5)

for all x € A and all ¢t > 0, where

M(z,t) = T(ple,2,1), 022, 2,8), -+ (k= Dr,2,1)) (z€ At >0).
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Let € be the set of all functions r : A — A. We define d : £ x £ — [0, 00) as follows:
d(r,s) = inf{a>0: fiy(p)—s@)(at) > M(x,t),Voe € AVt > 0}.

It is easy to show that d is a generalized complete metric on €. Define A : £ — &£
by EA’I"))(JC) = @ Then A is strictly contractive on &, in fact, if d(r, s) = ¢, then,
by (2.3),

H(Ar) @) —(As) (@) (L€t) = prrtin _ sty (Let) = fhr(ha)—s(ha) (| K| Let)
> M(ka,[KILt) > M(a,1
for all z € A and all ¢ > 0. So d(r, s) = € implies that d(Ar, As) < Le. From this it

is easy to show that d(Ar,As) < Ld(r,s) for all r,s € &.
Hence A is a strictly contractive mapping with Lipschitz constant L. By (2.5),

t
S _f(x)(m) > M(z,1)

for all z € A and all t > 0. So d(Af, f) < |—i| < 0. By the fixed point alternative,
A has a unique fixed point h: A — A in the set

U={re& d(rAr) < oo}

and for each x € A,
nh_}rréouf( "’”)711(1)(75) =1 (2.6)

k

o
for all x € A and all ¢t > 0, since lim, o d(A™f,h) = 0. Using the fixed point
alternative, we have

1 1
d(f,h) < 7d(f,Af) < m

—1-L

This implies that
fif@)—h(z)(t) = M (2, [k|(1 = L)t) (2.7)

for all z € A and all ¢ > 0. It follows from (2.1) and (2.3) that

t

H ( f(kM (ety))  f(BTx)  f(kTy) >
BT BT BT

for all x,y € A, all t > 0 and all n € N. Hence

Ll

t) > p(k"x, K"y, |k|"t) > et
(1) 2 (K", Ky, []"4) 2 ol y, Tomet)

M(f(k”(w+y)) _ (kN2 f(k”y)>
kT g kT

1
= ¢
o(z,y, n )

for all z,y € A, all t > 0 and all n € N. Since lim, o ¢(z,y, (%)”t) = 1 for all
z,y € A and all t > 0,

Fh(a-+y)—h(e)—h(y) (t) = 1
for all x,y € A and all ¢ > 0. Thus & is additive.
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Assume that A : A2 — A is a mapping defined by

Az, y) = f(zy) —zf(y) — g(x)y
for all z,y € A. Letting « := k"z and t := |k|"s in (2.2), we get

1
> il
M(f(k}:;:ly) —acf(y)—g(:zw)y) (3) = w(x, Y, Bn 3)

for all z,y € A and all s > 0, which implies that
nlLH;OMA(k:nz,y) (8) =1 (28)

for all z,y € A and all s > 0. Putting z := k", y := e and ¢ := |k|"s in (2.2), we
have

1
M(gu;jiz) _fGna) Jmf(e)) (s) = (ze, @8)
for all z € A and all s > 0. So we deduce that

lim

n—><>0'u(g“,izm>f"v(ﬁzm’ﬂf(e)) (5) =1 (29)

for all x € A and all s > 0. Note that

S S
s)>T =), — )
M(ﬂ(’;ﬁm),(h(m)fzf(e)o ( ) - <u<g(zzm)‘f(zzm)+xf(e)) (2) u(f(zfzx)*h(w)) (2)

for all x € A and all s > 0. By (2.6) and (2.9), we get
lim p, (s)=1
oo (%f(hmﬂﬂe)))
for all z € A. If we define a mapping § : A — A by 6(z) = h(z) — zf(e) for all

x € A, then, by the additivity of h, J is additive.
Letting x := k"x and y := e in (2.2), we have

1 (s) > Y(k"x,e,s) > (x,e, #5) (2.10)
(g(k”w)—f(k"x)+k"xf(e)) Bkl
1
> Y(x, e, —s

for all x € A and all s > 0, since |k| < 1. Setting = := k™« in (2.7), we obtain
[if (kn) —h(kna) (8) = M (K", |k[(1 — L)t)
= T (k" k", (1 = D)), p(2K" 2, K", [KI(1 = L)t), -,

(k= Dk 2, k"2, |k|(1 = L)1)

1-L 1-L

>T( ) aitv 27 aitf"a
- gO(l‘ z Ln|k|n71 ) %0( z,x Ln|k|n71 )

(2.11)

1-L
R =)

L 1-L
> T((P(JU,ZU, 7t>,§0(2$7l‘, Ft)a T 7¢((k - 1)$,$, 7{;))
1-L
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for all x € A and all ¢ > 0. The conditions (2.10) and (2.11) imply that

lim p (2.12)

(s)=1
n—o0 (gac"x)—f(kw>+mf<e))

and
T gy n(gna) (8) = 1 (2.13)
for all x € A and all s,t > 0. In particular, we show that

J (s)
(g(kna:)ff(k"mknmf(ew(knz%h(k%))

- T@ (g(k"w)ff(k"w)Jrk"wf(e)) (g)’ M(f(k"w)fh(k"w)) (g))

for all z € A and all s > 0. Thus, by virtue of (2.12) and (2.13), we have

lim

s)=1 (2.14)
n—»o0 (g(k"x)—f(k”w)+k”wf(e)+f(k"x)—h(k"x))

for all x € A and all s > 0. It follows from the additivity of h that

By (s)=p/ . (s)
(%—6@))@/ (%fm(z)fmf(e)))y

[ (|&["s)
(g(k"w)ff(k"':r)+k"':rf(6)+f(k"z)fh(k"r)>y

v

)(8)~My(|k\”)

1]
(9(19%)*f(k”wHk”wf(er(k"w)*h(k"w)
for all z,y € A and all s > 0. By (2.14), we have

lim

oy s)=1 (2.15)
n— oo (g(znm)_é(x))y

for all z,y € A and all s > 0. We now note that

S S
Z . . s) =T (u . SV 5 )
(If(y)‘i’g(ﬁnz) y+A(kkﬁr,y) 7a:f(y)75((v)y> ( ) <g(ﬁnm)7(§(aj))y(2) (A(kkﬁ'n,y)) (2)

for all z,y € A and all s > 0. In view of (2.8) and (2.15), we show that

lim . . s)=1 (2.16)
e (wf(y)+%y+w—xf(y)—6(w)y)
for all x,y € A and all s > 0. Now, using (2.6) and (2.16), we get
o) —z () —6(z)y () = lim t
ey =esw=sull) ”ku(—“%w —:v.f(y)—zi(ac)y)( )
(2.17)

= lim k’rt, . A k'”"
n—00 (wf(y)+%y+<k7nw—wf(y)—é(x>y)

for all z,y € A and all t > 0. Hence we get

h(zy) = xf(y) + 6(x)y (2.18)
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for all z,y € A. Applying (2.18) and the additivity of J, we obtain
af(K"y) +0(x) - K"y = h(z - k"y) = h(k"x - y) = K"z f(y) + () - K"y,

which means that

for all z,y € A. Hence we get

(2.19)

nlingoﬂ(wf(zzy) _xf(y)) (S) =1

for all z,y € A and all s > 0. In particular, we have by the additivity of h,

u(x%%h(y)) )= g (f(k"y)fh(kny)) (k")
> 111700 o (5): 10 ]"))

for all x,y € A and all s > 0. This inequality and (2.13) guarantee the following

lim p .
n—oo (a: .f(;:ny) —zh(y)

)(s) =1 (2.20)

for all z,y € A and all s > 0.
On the other hand,

z —zh s) = S
Hf )=o) () u(xf(y)—x—“iﬁ”+w—f‘52'y’—xh(y))( )

for all z,y € A, all s >0 and n € N.
By taking n — oo in the last inequality and using (2.19) and (2.20), we have

zf(y) = xh(y) (2.21)
for all z,y € A. Consequently, (2.18) becomes
h(zy) = xh(y) + 6(z)y

for all z,y € A.
On the other hand,

d(zy) = h(zy) —zyf(e) = x(h(y) —yfle)) + d(x)y = 26(y) + d(2)y,

for all z,y € A. That is, d is a derivation.
Letting = e in (2.21), we have f = h. Therefore, we conclude that f is a
generalized derivation, which completes the proof. O

Corollary 2.1. Suppose that f: A — A is a mapping such that
i (ty) 1 @)~ ) (8) 2 (2, Y, 1),

1t (zy)—a () — f (2)y (E) 2 (2,9, 1)
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for all x,y € A and all t > 0. If there exist a natural number k € K, constant
0<L<1and0< B <1 such that

1
> R
o(kx, ky,t) > o(z,y, L|k|t),

1
1/1 k:c,y,t 2 Z/J z,Y, =t
(ke.9.) > (r.y. 570
forallz,y € A and allt > 0, then f is a derivation.
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