Received: Added at production Revised: Added at production Accepted: Added at production

DOI: xxx/xxxx

RESEARCH ARTICLE

Further results of M-eigenvalue localization theorem for
fourth-order partially symmetric tensors and their applications

Juan Zhang'? | Xiaonv Liang!

I Department of Mathematics and

Computational Science, Xiangtan Summary

ggiizzrmy’ Xiangtan, 411105, Hunan, In this paper, we give some new M-eigenvalue inclusion theorems for fourth-order
Hunan Key Laboratory for Computation partially symmetric tensors, which are more tighter than some existing inclusion sets.

and Simulation in Science and Engineering, On the basis, some new upper bounds of the M-spectral radius are presented. Further,

Xiangtan University, Xiangtan, 411105, licati ffici diti for th i ak
Hunan, China as applications, we propose sufficient conditions for the strong ellipticity condition

in the elastic materials. Numerical examples are shown to illustrate validity and su-
Correspondence

Juan Zhang. Email: zhangjuan @xtu.edu.cn periority of our results.

KEYWORDS:
Partially symmetric tensors, M-eigenvalue, Strong ellipticity condition

AMS subject classifications: 15A69, 15A72

1 | INTRODUCTION

1.1 | Background

Let R be the set of all real numbers, R” be the set of all dimension n real vectors, and [n] = {1,2,...,n}. A fourth-order real
tensor, denoted by A = (q,;,) € RImXmIxInsiXind consists of n; X ny X ny X n, components:

a;u €ER, i€nl,j€lnl k€lnsl,l € [nyl

Specifically, A = (a;;;,) € RImXInXimxinl js called partially symmetric tensors, if its components are invariant under the
following permutation of subscripts:

i = Qi = Qg = Agyij» Bk € [m], j,1 € [n].

In fact, the tensor of elastic moduli for elastic materials exactly is partially symmetric'’, and the components of such tensor
are regarded as the coefficients of the bi-quadratic polynomial optimization problem defined by

( m n

max f(x,y) = Z Z QXY Xic Vs
9 ik=1j,I=1 (1)
s.t. xTx = l,yTy=1, xeR" yeR"

\

and

m n
min f(x,y) = 2 Z ;i1 X VX Vs
1 ik=1j,l=1 @)

s.t. x'x=1,y'y=1, xeR", y e R".

L

This optimization problem arises from the strong ellipticity condition problem in solid mechanics'' and the entanglement
problem in quantum physics® 5. The entanglement problem is to determine whether a quantum state is separable or inseparable




2 | Juan Zhang ET AL

(entangled)®. It is known that both the strong ellipticity and ordinary ellipticity play an important roles in nonlinear elastic ma-
terial analysis>™, Qi et al. 1% pointed out that strong ellipticity condition holds if and only if the optimal value of the above global
polynomial optimization problem is positive. In polynomial optimization theory! 113, the biquadratic optimization problem is
NP-hard to solve#13. In order to better study the optimization problems, through the theory of tensor eigenvalues!® 17, Han et
al.!'in 2009 for the first time transformed this optimization problem into the M-eigenvalue problem of a fourth-order partially
symmetric tensor.

Recently, the research on M-eigenvalues of partially symmetric tensors has become popular'®22, However, due to the
complexity of the tensor eigenvalue problem'™, it is difficult to directly calculate. To solve this problem, an inclusive set of
M-eigenvalues of a partially symmetric tensor similar to the Gersgorin disc theorem of matrix eigenvalues can be given by anal-
ogy. He et al.?Y proposed the M-eigenvalue interval theorem. Li et al“! gave the M-eigenvalue inclusion intervals. He et al.%
proposed new S-type inclusion theorems for the M-eigenvalues of a fourth-order partially symmetric tensor.

The M-eigenvalue inclusive set can be used to solve the actual calculation of the largest M-eigenvalue and the strong ellipticity
condition of elastic materials. In order to solve the NP-hard problem of M-eigenvalue, Wang et al.*® presented a practical
algorithm, denoted by WQZ-algorithm, to compute the largest M-eigenvalue of a fourth-order partially symmetric tensor. As an
application, Li et al. used the M-spectral radius obtained by the M-eigenvalue inclusion intervals as a parameter in the WQZ-
algorithm in“Z, Qi et al.1% have shown that the necessary and sufficient condition for the establishment of the strong ellipticity
condition is that the smallest M-eigenvalue of partially symmetric tensor is positive, called M-positive definite ¢ 122423 Fyrther,
Wang et al.lZ
nonnegative tensors. Based on the M-eigenvalue with the strong ellipticity?%29%33 the research in®# provided some checkable
sufficient conditions for the strong ellipticity, called M-positive definiteness.

Based on this, when studying the inclusion set of M-eigenvalues, we should consider the M-eigenvalue containing set whose
center is at the origin or not, and get the inclusion interval as small as possible. Moreover, when the strong ellipticity condition
holds, it is necessary to judge the positive definiteness of the partial symmetric tensor. Therefore, the rest of the paper is organized
as follows. In Section [2] we give some new M-eigenvalue inclusion sets centered at the origin, and prove that the results are

provided some checkable sufficient conditions for the positive definiteness of fourth-order partially symmetric

more accurate than some existing conclusions. In Section [3| we give a new M-eigenvalue containment set whose center is not
at the origin, and prove it is tighter than some existing conclusions. In Section {4, we first recall the WQZ-algorithm. As an
application, we apply the upper bound of the M-eigenvalue to the WQZ-algorithm as a parameter. In Section [5] we propose
some existing sufficient conditions for the positive definiteness of the fourth-order partially symmetric tensor. Additionally, we
apply the derived sufficient conditions to the strong ellipticity condition in the elastic materials.

1.2 | Definition and proposition

Definition 1. "9 Let A = (q;;,) € RIXI"XmXinl be 3 partially symmetric tensor(PST) and 4 € R. Then 4 is called an
M-eigenvalue of A, if there are vectors x € R™\{0} and y € R"\{0} such that

A-yxy=Ax,

Axyx-= Ay,
T (3

X' x= 1,

yy= L

where A - yxy and Axyx- are real vectors with i-th and /-th components defined by

m n m n
(A-yxy); = Z Z QiK1 VXKV (Axyx-), = Z Z Qi XiyVjXk-

k=1 j,I=1 ik=1 j=1
x and y are called the corresponding left and right M-eigenvectors. If x and y are left and right M-eigenvectors of .4, associated
with an M-eigenvalue A, then 4 = Axyxy.
Definition 2. 7 We call 7, € RImXnximixinl 3 M-identity tensor if its entries satisfy

Lifi=kj=1
(PM)ijklz{ v / C)]

0, otherwise.

where i, k € [m], j,l € [n].
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Obviously, F, € RImXnximIxInl 5 3 partially symmetric tensor and has the following property:

Fp - yxy = X, )
Fxyx- =y,

with xTx = 1,yTy =1 forall x € R",y € R".
Definition 3. 2% The M-spectral radius p(A) of A is defined as

p(A) = max{[4]| : 4 € 6(A)},

where o(A) is M-spectrum of A, the set of all M-eigenvalues of A.
The largest M-eigenvalue of A is
Amax(A) =max{4d : 1 € oc(A)}.
The M-spectral radius of A is the largest M-eigenvalue. Furthermore, there is a pair of nonnegative M-eigenvectors correspond-
ing to the M-spectral radius.

2 | M-EIGENVALUE INCLUSION THEOREMS CENTERED AT THE ORIGIN

In this section, we discuss several new M-eigenvalue inclusion theorems of fourth-order partially symmetric tensors and establish

the corresponding inclusion relationships. First, we introduce relative results given in2C,

Theorem 1. 2% Suppose A = (q, ki) 1s @ partially symmetric tensor with i, k € [m], j, € [n]. Then
o(A) ST = | T,

i€[m]

where I';(A) = {1 € R : |4] £ R;(A)}, and R,(A) = D 1@k
kelml, j.l€ln]
Theorem 2. 2 Suppose A = (a; jk,) is a partially symmetric tensor with i, k € [m], j,I € [n]. Then

s c L) = < N E,-,k(A)>,
i€[m] \k€[m]k#i

L (A) = {2 €R : (4] = (R(A) = R{(ANIA| < RECAR (A},

where

and RF(A) = Y lal.
JI€ln]
Theorem 3. 2 Suppose A = (a; jk,) is a partially symmetric tensor with i, k € [m], j,I € [n]. Then

svcmMA= |J (MuUH).
ikelml, ki
where
M (A) = {A € R 1 (|A] = (R(A) = RECAN(A] = R{(A)) < RF(ANR,(A) = Ri(A))},
and
H; (A) = {A€R : [A] = (R(A) = RI(A) 0, |A] = R{(A) <0}.
Theorem 4. 2% Suppose A = (q, k) 18 a partially symmetric tensor with i, k € [m], j, ! € [n]. Then
sHSND= | N,
ikelml, ki
where NV, (A) = {A € R : (J4] = R(A)|A| < (R,(A) = R(A)R(A)}.
Remark 1. According to?’, we know L£(A) C I'(A), M(A) C T'(A) and N'(A) C I'(A). That is £(A), M(A) and N'(A) are
more accurate than I'(A).

Now, we give two new M-eigenvalue inclusion theorems and establish the corresponding inclusion relationships.
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Theorem 5. Let A = (a;;;,) € RImXInXImixInl be g partially symmetric tensor. Then

svcrw= |J (FuolUrm).

i k€m] ki
where

P ={A€R 1 |A] = R(A) + Ri(A) <0, |A] — Ri(A) + R, (A) <0},
and
Fir(A) = {2 € R : [|A] = R(A) + RECAIIAI-R,(A) + R,(A)] < RICAR|(A)}.
Proof. Assume that A is an M-eigenvalue of A, x = (x|, X, ..., x,,)] € R™\{0} and y = (¥}, 5, ...,¥,)] € R"\{0} are the
corresponding left and right M-eigenvectors, then
A-yxy=Ax, Axyx- = Ay,x x =1 and y'y=1.

Let
x,| > |x.| = max |x;|, 0<|x,| <1.
| ll _| S| ieimli tl ,l | t| =

From Ax = A - yxy, it holds

Ax, = (A - yxy), = z ikt VXKV
kelml, jl€n]

= Z Qi YiXeyr + Z i1y Xs Y

ke[m],k#s, j,l€[n] JiI€ln]
Then
[x x|
ESY oyl 31257 ||y,|+ 2|a,,s,||y,| il
kelm],ks, jI€ln] X / I€[n) %
X,
< |aljkl| + Z |athl| | |
kelml.k#s, jl€ln] Jj.l€ln] X
Therefore,

Ix,|
A= Y lagul £ D) lagal== ©6)

k€lm].k#s, jl€ln] J.l€ln] |x ’l
(D If |xg| = 0, then | 4] = (R,(A) — R}(A)) < 0.
@) If [A] = Ry(A) + RI(A) > 0, then 1 €7, ((A) C Y(A).
(i) If | A] = R,(A) + R'(A) <0, then 1 € 7, (A) C Y(A).
(2) If |x,| > 0, we have

Axg = (A - yxy), = Z Asik1YiXi i

ke[m], j,l€[n]

Agja Y Xy + Z AginY XY

kelml.k#t, jI€n] ED
Then
x| | x|
FESEEY lasjully |25 il + D lasjal ;1725 191
kelml.k#t, jI€n] Xs jileln]
x|
< |asjk[| + Z |as1tl|| |
kelml.k#t, jl€n] jilEln]
Therefore,

|x
A= Y lagl < Z|s,,1| ’ (7)

ke[m],k#t, j,l€[n] JHI€ln]
() If |A] = R,(A) + R:(A) 2 0 or |A] = R,(A) + R'(A) > 0, multiplying (6) with (7) yields

[14] = R,(A) + RI(AI[1A] = Ry(A) + Ri(A)] < RI(A)R(A).
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That is
LEF,(A) S Y(A).
(i) If [A] = R,(A) + R}(A) < 0 and |A| — R(A) + R\ (A) <0, then 1 € 7, ((A) C Y(A).
Thus 6(A) C Y(A). The proof is completed. O

On the basis of Theorem and Theorem@ we can establish the following inclusion relationship between I'(A) and Y(A).
Corollary 1. Let A = (a;;;,) € RImXInxmixInl be g partially symmetric tensor. Then
o(A) C Y(A) CT(A).

Proof. For any A € Y(A), we complete the proof by two cases.
Case 1. If A € 7 ;(A), then
|Al = Ri(A) + RE(A) <0 and |A] — R(A) + Ri(A) <O0.
Therefore,
14 < R(A) and [A] < Ry(A),
which implies A € I'(A).
Case 2. If A € 7, (A), then
[14] = R,(A) + RE(AII Al = Ry (A) + Ri(A)] < RE(A)R (A).
o If RfF(A)Rj((A) =0, then
[A] = R;,(A) + Rff(A) <0 or |A—R,(A)+ R;;(A) <0.
Therefore,
[Al < R;(A) or |4] £ R (A),
which implies 4 € ['(A).

(ii) If R“(A)R! (A) > 0, then ‘
[l = R + REA) 121 = R(A) + Ry(A)

Rf‘(.A) R;'{(A) -

This is . ,

[A] = R;(A) + R/ (A) <1 |4l = R(A) + R, (A) <

<1 or . <
Ri(A) R, (A)
Therefore,
[A] < Ri(A) or |A] < R (A),

which implies 4 € I'(A). Thus Y(A) CT(A). O

Theorem 6. Let A = (a;;;,) € RI"X"XImXIn) e 3 partially symmetric tensor. Then

swcon= ) (woJaw).

ikelml, ki
where
U (A) = {2 €R : [|A] = RUAIIIA = R{(A)] < (Ri(A) = RI(A)NR(A) — Ri (A},
Tu(A) = (2 ER : 121 = RI(A) <0141 = RYA) <O} R = B Jayl.
Js m
Proof. Assume that A is an M-eigenvalue of A, x = (X, X, ..., x,,)] € R™\{0} and y = (¥}, 5, ....,)] € R"\{0} are the
corresponding left and right M-eigenvectors, then

A-yxy=Ax, Axyx- = Ay,x x =1 and y'y=1.

Let
x| 2 |x,| = max |x; . 0<|x,| <1.
| tl | S| ie[m],i#tl ll | t|
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From Ax = A - yxy, it holds

Ax, = (A - yxy), = Z A1 YiXi i
kelml, j.l€ln]

= Z Qi YiXyr + Z iy iXe Y-

kelm).k#t, jI€ln] JA€ln]
Then
x|
FESY a1y, 157 il + D lagully 1yl
k€[m],k#t, j,I€[n] Xt J.I€[n]
|l
< z |ar/kl|| | + z la,;u-
kelml k#t, jl€n] Xl e
Therefore,

Ix,|
A= D lagal < Y a7 ®)
t

Jjil€ln] ke€[m].k#t, j,l€[n]
(1) If |x;| = O, then 4] — R}(A)) < 0, which implies 4 € u,(A) C O(A).
(2) If [x,| > 0, we have
Axg = (A yxp)y = D agy%g)

ke[m], j,l€[n]

Qg Yi Xy + Z AgjsYiXs Y-

ke[m].k#s, jI€ln] jl€ln]
Then
x|
=) |aS,k,||y,|| Tl + D lagallylwl
ke[m],k#s, j,l€[n] 5 Jj,l€[n]
< slkll + Z Ias1s1|

k€l[m].k#s, j.I€ln] s JiI€ln]

Therefore,

x|
A= Y lagal < > @l ©)

j.l€ln] k€[m].k#s, jI€[n] $ l

(@) If [A] = RI(A)) > 0 or |A] = R}(A)) > 0, multiplying (8) with (9) yields
(Al = R(AIA] = R (A)] < (R,(A) = RI(A)(R (A) — R(A)).

That is
A€ u, (A) CO(A).
(i) If |A] — R:(.A)) <0and |A| — R{(A)) <0, then 4 € E,,S(A) C ©(A). This shows that 6(A) C B(A). O

On the basis of Theorem [I]and Theorem [6] we can establish the following inclusion relationship between I'(A) and ©(A).
Corollary 2. Let A = (a;;,) € RUmXInxmixinl be  partially symmetric tensor. Then

o(A) CO(A) CT(A).

Proof. For any A € ®(A), we break the proof into two cases.
Case 1. If 1 € 4,(A), then
[A] - Rf(A) <0.
Therefore,
[4] < Ry(A),
which implies A € ['(A).
Case 2. If 4 € 4, ;(A), then

[1A] = RIAAIIA] = RE(A] < (Ri(A) — RIAN(R,(A) — RE(A).
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@ If (R,(A) - R;(A))(Rk(.A) — Ri(A) =0, then

[IA] = RI(AA)[|A] — RE()] < 0.
Therefore,

[A] < R,(A) or [i] £ Ry (A),

which implies A € ['(A).
(i) If (R,(A) — R;i(A))(Rk(A) - R’;(A) > 0, then

Al = Ri(A) 14l = R(A)

R,(A) = Ri(A) R, (A)—Ri(A) ~

This is . X
[A] = R;(A) [A] = R (A)
———— <1 or ——————<
R;(A) - R(A) R (A) = R (A)
Therefore,
|4l < Ri(A) or [4] < R, (A),
which implies 4 € I'(A). Thus B(A) CT'(A).
Example 2.1. 2 Consider the fourth-order partially symmetric tensor with
ay =Llayy =2a1y =2,a;, =3,
g = Ay = 5,411 = 2,411 =4 a1, =4,
ikl =
’ a1y = 2,911 = 4, ag1p = 3,410 = 5,
api =4 Ay = 5,0y, =5,y = 6.
By Theorem[I]to Theorem 4] we have
M) = JI={1eR: 4 <34},

i€[m]

19 + /1741
L(A) = U< N £,~,k<A>>={AeR : |A|s%},
i€[m] \k€[m],k#i
27+ V1021
M(A) = M (A | JH () ={1eR: ] < ———},
“ i,ker#i< #( U 4L )) { 14 2 }
19 + V1741
N = M,k(A)={ieR:M|s+}.
i,kelm], ki
From Theorem 5} we obtain
~ ~ 27 + /1021
YW= U (uoUr)=tier: i< ==,

ike[m) ki
where
?1,2(A) ={A€eR: |1 <8}, ?2,1(-'4) ={AeC: |4 <8},

~ ~ 27 + /1021
rip(A)=r(A)={1eR i < T}'
From Theorem[6] we obtain
- , 27 + /1021
o= |J (wUaw)=t1er:is=—o—)

i,k€[m], k#i

where

27+ /1021 )
2 b

U 5(A) =ty (A) = {[AER : |4] <
7(A) = {A€R: |1 <8},
i(A) = {A€R : 4] <19}
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Further, we use Figure [1|to show the above calculation results. From Figure (1} Y(.A) and ®(A) are more accurate than I'(A)

and L(A).
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Figure 1 Comparison of inclusion sets of Example

Example 2.2. Y Consider the fourth-order partially symmetric tensor with

ayn =-Laypn=20a3 =3,a;5 =-Lap,=2a =lLa,,=1
ar = —Lay =1lay,=1ay3 =-2,a5 =2,

Gkt = =3, a5 = 1,y = —2
a3 = 93,433 = —1, 43131 = —4,

i = 0, otherwise.
By Theorem|[I|to Theorem ] we have
) = [Jr=er: <11y,

i€[m]

e = < N £,-,k<A)> = {AeR : |4l <4+ 34},

i€[m] \k€[m]k#i

M= | (Mu@ UM ) =12eRr 121 <5+2V6),
i,ke[m], k#i

5+ 14/193

N = |J Mu=tier: <2

i,ke[m], k#i
From Theorem 3] we obtain
YW= | (FuOUFu)=t1eRr: 11<6+ VD),
i,ke[m],k#i

where

Pa(A) = (AER
?2,1(A) ={1eR
(A = {AeR

71,2(-'4) = 72,1(-'4) =

DAl <4}, Fia(A) ={reR |4 <3},
D1Al <4}, Ps(A) = {AE€R: |4 <5),
DAL 3), Fp(A) = {AER 4] <5},

(A€R:6-V13 < |4 <6+ 13},

11

- Vel

2

<Al <

Foa(A) = Fya(A) = {A€R : 5 < |4] <6}.

11+ 61
T}’
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From Theorem [} we obtain
~ . 74+ V129
o= | (olJaw)=ter:ias—"1=

i,k€[m], k#i

b

where

7+\/129}
2 9

U 5(A) = uz (A) = {A€R : || <4+V19),

5+\/a
2 b

upo(A) = uy (A)={A€R : | <

Uy3(A) = uz,(A)={A1€R : |A] £
(W) = {AeR: |4 <5},
U(A) = {AeR |4 L2},
uy(A) = {AeR: |4 <3).

Moreover, we use Figure 2] to show the above calculation results. From Figure [2] it can be seen that the new M-eigenvalue
inclusion set Y(.A) and ®(.A) are more accurate than I'(A), L£(.A) and M(A).

15

10 -

10}

15 . . ‘ . ‘
-15 -10 -5 0 5 10 15

Figure 2 Comparison of inclusion sets of Example|2.2

3 | M-EIGENVALUE INCLUSION THEOREMS

In this section, we first introduce some existing M-eigenvalue inclusion theorems in?® whose center point is not at the origin.
Then we give some new M-eigenvalue inclusion theorems where the center point is not at the origin. Further, we show that they
are more tighter than some existing conclusions.
Theorem 7. “° Let A = (a;;;,) € RIXXmXIn) be g partially symmetric tensor and 7, be an M-identity tensor. For any
a=(a,..,a,)" €R™, then

o) C XA = ] £(Aw,

i€[m]
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where
X(A0) ={1eR |1-aq| <R(A )},
R(A, o) = Z |aijkl - ai(rM)ijkll'
kelml, j,I€n]
Further,

oA C () A ).
aER™
Theorem 8. “¢ Let A = (a;;;,) € RI"X"XImxInl be a partially symmetric tensor and 7, be an M-identity tensor. For any

1
a=(a,.., am)T € R™, then

s CRAa=J( [ KA

i€[m] k#i,ke[m]

where
K (A a) = {A€R : [|A—a] — (R(A, &) — RE(A )4 — ]
S Rf((A7 al)Rk(A’ ak)}7
Rf-((A’ o) = Z |aijkl - ai(FM)ijkll'
JiI€ln]
Further,

oA C [ KA .
acR™m

Theorem 9. %° Let A = (a;;,) € RIMXmXImXinl he 3 partially symmetric tensor and F,, be an M-identity tensor. For any

a=(a,..,a,)" €R™, then

ijk
o(A) C K(A,a) C X(A, ).

Now, we give two new M-eigenvalue inclusion theorems and establish the corresponding inclusion relationships.

Theorem 10. Let A = (g;;,) € RI™XUXmxInl pe 3 partially symmetric tensor and 7, be an M-identity tensor. For any
a=(ay, ...,am)T € R™, then
s CRA= ] Ruh,

ikelm), ki
where
N, (Aa) = (A€R : [|4-a - (R(A a4 -]
< [Ri(A, ) — RI(A, a)]R, (A, @)},
R;(A, a;) = Z |aiji1 - ai(rM)ijill'
J,I€ln]
Further,

o(A) C (] R(A ).

acR™

Proof. Assume that A is an M-eigenvalue of A, x = (x;,X,,...,x,)] € R™\{0} and y = (3, ¥,,....y,)] € R"\{0} are the
corresponding left and right M-eigenvectors, and 7, is an M-identity tensor, then

A-yxy=Ax = AF ) - yxy, x'x=1 and y'y=1.

Let
x| 2 [x.,| = max |x; N 0<|x,| <1
| tl —| 5| i [ ],i tl ll | t| —_

From A - yxy = Ax = AF,, - yxy, it holds that

}‘(FMtjkl)ijkyl = Z i1 YiXe Y-
kelm, j,l€ln] kelm), j.len]
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Then, for any real number «,, it follows that

(A —a)x,

(4- at)(FM)tjklijky[
ke[m], j,l€[n]

@k = 4 (Fy)k) Vi Xy
k#t,k€[m], j,I€[n]

+ 2 (atjtl - at(FM)tjtl)ijtyl'
J-l€ln]
Taking modulus in the above equation and using the triangle inequality leads to

|4 —a,lx,| < Z |arjk1—at(FM);jkzllJ’ijkHyll
kelm),k#t, j.l€ln]

+ D Hagu = aFupyally; 1111y
J.l€[n]

< (R(A, @) = Ri(A, a))x,] + Ri(A, a)Ix,|.

Therefore,

|4 —a| - Ri(A, ) < (R(A, @) — Ri(A, ) %, . (10)

|,

(1) If [x,| =0, then |4 — | — R;(A, a,) < 0, which implies 1 € M, (A, @) € N(A, a).
(2) If |x,| > 0, we have
(A—a)x; = Z (asjkl - as(rM)sjkl)ijkyl'
kelml, jl€n]

Taking modulus in the above equation, we have

IA

14— agIx;] D agu = o Fadgully;l1xdly]
ke[m], j,l€[n]

R(A, a))|x,|.

IA

Therefore,
|x/|
|4 —a,] < Ry(A, as)ﬁ- (1)
xS
() If |2 = «,| = RI(A, @) > 0, multiplying (10) with (11) yields
[14— a] = Ri(A, a)]14 — a] < [R,(A, ) — R(A, )R (A, a,).
That is
AEM, (A @) CIH(A, ).
(i) If [A — a,| = RI(A,a,) <0, then A € N, (A, @) C N(A, a). Thus 6(A) C N(A, a). O
On the basis of Theorem [/| and Theorem we can establish the following inclusion relationship between X(A, &) and
NA, a).

Corollary 3. Let A = (q,;) € RI"XXImxinl e 3 partially symmetric tensor and 7, be an M-identity tensor. For any
a = (a,....,a,)" €R™, then
o(A) CN(A, a) C X(A, a).

Proof. For any A € (A, a), without loss of generality, there exists t € [m] such that A € E)Zt’k(A, a), for all t # k. Thus,
[14 =] = RI(A, @114 — @] < [R(A, @) — RI(A, @R (A, ).

We now break up the argument into two cases.
Case 1. If [R,(A, @) — Ri(A, a)]R (A, ;) = 0, then

[A—a,| - Ri(A,a) <0o0r A =aq.

Hence,
|A—a,| < Ri(A,a) < R(A,a) or A =a.
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Therefore, A € X,(A, a) | X, (A, a) C X(A, a).
Case 2. If [R,(A, @) — Ri(A, a)]IR (A, ;) > 0, then

[A—a|-Ri(A @) |i-al <
Rt(As a[) - R;(As at) Rk(A7 ak) -

That is

|4 - a| - Ri(A,q,) 13— al
- <lor —— < 1.
Rt(A7 a;) - Rt(Aa at) Rk('A’ ak)
Therefore,
[A—a,| < R(A,a)or |A—a,| < R(A a),
which implies 1 € X,(A, a) | (A, a) C X(A, a). Thus N(A, ) C X(A, a). O]

Theorem 11. Let A = (a;;,) € RUmXInix(mix(n] be a partially symmetric tensor and 7, be an M-identity tensor. For any
a=(a,...,a,)" €R", then

svcman= |J (MuaolJsuan).

i,ke[m], k#i
where
M, (Aa) = {A€R : [|[A-q] — (R(A, a) — RE(A, a)][|4 — a;| — Ri(A, a;)]
< RE(A, )[R (A, @) — R{(A, )]},
and
9 (A a)={A€R 1 |A-a] - (R(A, @) — R(A,a)) <0, |2 -] — R{(A,a) <0}.
Further,

o(A) C (] M(A, @),

acR™

Proof. Assume that A is an M-eigenvalue of A, x = (x,X,,...,x,) € R™\{0} and y = (3, ¥,,....y,)] € R"\{0} are the
corresponding left and right M-eigenvectors, and 7, is an M-identity tensor, then

A-yxy=Ax = AF ) - yxy, x'x=1 and y'y=1.

Let
x| > |x.| = max |x;|, 0<|x,|<1
] 2 x| = max [x,l, 0 < x|
From A - yxy = Ax = AF,, - yxy, it holds that
Z }”(FMtjkl)ijkyl = Z Qi1 YiXe Y-
kelml, j.l€ln] kelm), jl€ln]

Then, for any real number «,, it follows that

(A —a)x,

Z (4- at)(FM)tjklijkyl

k€[m], j,l€[n]

@k = G Fa)k) Vi Xy
k#s,k€[m], j,I€[n]

+ Z (@50 = 0 (Fpjs1)YiXs V1
J.l€ln]
Taking modulus in the above equation and using the triangle inequality gives

li—allx] < Y lagy = aFadullyxd iyl
ke[m],k#s, j,l€[n]

+ Y lag = a(Fr)yallylx] il
J.I€[n]

< (R(A,a) = RI(A, a))|x,| + R/ (A, a)]x].

Therefore,

X
[4—a] = (R(A,a) — Rj(A,@)) < R}(A, at)%' 12)
t
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(D If |x| = 0, then |4 — a,| = (R, (A, @) — R}(A, ) <0.
D) If |4 — | = Ri(A,a;) 20, then 1 € M, (A, @) C M(A, a).
(i) If [A — & | = R(A, ;) <0, then 4 € §, (A, a) C M(A, a).
(2) If [x,| > 0, we have

[A—a]lx,] < 2 lagjur = o (F ) gjual 1y 11341311
kelml.k#s, j,I€[n]

+ D lagy = a(Fually %11yl
J.l€[n]

(Ry(A, a) — Ri(A, ap)|x,| + RY(A, ap)|x,].

IA

Therefore,
|x, |
x|
MOIf |4 = a,| = (R(A, ) — R}(A, @) 2 0or |2 —ay| — R} (A, a;) > 0, multiplying (12) with (13) yields
[14 -] = (R (A @) — R(A a4 - a,| - Ri(A, )]
< RJ(A, 0)(R((A, &) — RI(A, ay)).

|4 —a,| — R(A,a) < (R(A,a) - R(A,a,)) (13)

That is

AEM, (A, a) CMA, a).
(DIf |24 — o] = (R(A, @) — R}(A, @) < 0and |A—a — R(A,a) <0,then 1 € 9, (A, @) C M(A, a). This shows that
o(A) CIM(A, a). O

On the basis of Theorem [7| and Theorem we can establish the following inclusion relationship between X(A, a) and
M(A, a).

Corollary 4. Let A = (q,;) € RI"XXImxinl e 3 partially symmetric tensor and F,, be an M-identity tensor. For any
a=(a, ...,am)T € R™, then
o(A) CM(A,a) C X(A, a).

Proof. For any A € M(A, @), without loss of generality, there exists ¢ € [m] such that A € 9)2,,,((,4, a), for all t # k. We break
the proof into two cases.
Case 1.If 1 € 9, ,(A, a), then

[4—a] - (R(A,a)— RY(A,a)) <0and |A—a,| — Ri(A, ) <O.
Therefore,
[A—a,| < R(A,a,) and |1 — ;| < R (A, ap).
which implies 1 € X,(A, ) | X,(A, a) C X(A, a).
Case 2.If 1 € M, (A, @), then
(14— & — (R(A, @) — R{(A, @))][|14 — a;| — Ry(A, a;)]
< RE(AL @)[R (A, @) — Ri(A. ).
(i) If R¥(A, )[R, (A, a;) — RE(A, @)] = 0, then
[14 - a] — (R(A, @) — R{(A, @))][|4 — a;| — Ri(A,a)] <0.
Therefore,
14— o] — (R(A, &) — R{(A,@),) <0 or [|A—a;,| — R} (A, a)] <O0.
This is
|A - azl < R,(A, C(,) or |)’ - akl < Rk(Aa ak)’
which implies 1 € X,(A, a) | (A, a) C X(A, a).
(ii) If R*(A, a)[ R, (A, &) — RE(A, ;)] > 0, then
14— o] — (R (A, @) — R(A,a)  |A—a| - Ri(A, ) B
RA, @) Ri(A.a) — Ri(A.ap) —
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That is . .
|4 —a| - (R(A, @) — R/ (A, a))) <1or [4—a,| — R, (A, a;) <
REA, @) - Ri(A,a) — Ri(A, ap) —
Therefore,
|j' - atl S Rt(As az) or |A' - akl S Rk(As ak),
which implies 1 € X,(A, a) | £,(A, @) C X(A, a). Thus M(A, a) C X(A, a). O

Example 3.1. Consider the partially symmetric tensor A = (q,;;,) € RIZXZX2XC yith
ay =2,ap =ay, =3,a1 =60, =2
Aijki = %1222 = 10,a511y = 6, ay15 = 10,499, = 5;
a;j = 0, otherwise.

Here, we set @ = (2,5)T (This optimal parameter is obtained by traversal). The bounds via different inclusion theorems are
shown in Table[l]

Table 1 Comparison of the inclusion intervals of Examp]e

Theorem Inclusion interval
Theorem 2.1 '(A) = [-26,26]
Theorem 2.229 L(A) =[-24,24]
Theorem 2.320 M(A) = [-23.6941,23.6941]
Theorem 2.42Y N(A) = [-24,24]

Theorem 2.5 Ours Y(A) = [-23.6941,23.6941]
Theorem 2.6 Ours O(A) = [-23.6941,23.6941]
Theorem 3.12¢ X(A, (2,5) =[-22,24]
Theorem 3.2 K(A,(2,5)) =[-16.1208,22.5702]
Theorem 3.4 Ours  N(A, (2,5)) = [—16.1208, 22.5702]
Theorem 3.5 Ours  M(A, (2,5)) = [—16.1208,22.5702]

Example 3.2. Consider the partially symmetric tensor with
aj = 20,01 = apy; = Lap; =8;
Aijki = Y9202 = 10,a5115 = apyy = Lagp =75
a;; = 0, otherwise.

Here, we set @ = (14, 8.5)T (This optimal parameter is obtained by traversal?®). The bounds via different inclusion theorems are
shown in Table 2]

Example [3.1] and Example [3.2] give the comparison between the M-eigenvalue inclusion intervals. From Table [T} and Table
we can see that the inclusion intervals obtained in Section [3| are significantly smaller than Section [2} When m = n = 2,
N(A, @) = K(A, ). From Table |1} 9N(A, «) and M(A, ) are more accurate than X(A, «) and L(A). From Table [2} it can
be seen that M (A, a) is more accurate than X(A, @) and K(A, a). This shows that our inclusion intervals are better than the
existing results in some cases. Moreover, our inclusion intervals can be positioned on the non-negative axis.

4 | APPLICATION TO WQZ-ALGORITHM

In this section, we first present new upper bounds of the fourth-order partially symmetric tensors using the results derived in
Section 2] Then, as an application, taking these new upper bounds as a parameter in WQZ-algorithm, can make the generated
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Table 2 Comparison of the inclusion interval of Example

References Inclusion interval
Theorem 2.1 I'(A4) =[-30,30]
Theorem 2.220 L(A) =[-29.2971,29.2971]
Theorem 2.320 M(A) = [-28.3523,28.3523]
Theorem 2.420 N(A) =[-29.2971,29.2971]

Theorem 2.5 Ours Y(A) = [-28.3523, 28.3523]
Theorem 2.6 Ours O(A) = [-28.3523,28.3523]
Theorem 3.126 X(A,(14,8.5)) = [0, 28]
Theorem 3228 R(A,(14,8.5)) = [0.7154,26.5539]
Theorem 3.4 Ours ~ M(A, (14,8.5)) = [0.7154,26.5539]
Theorem 3.5 Ours ~ IM(A, (14,8.5)) = [1.0925,26.2708]

sequence more rapidly converge to a good approximation of the M-spectral radius. The WQZ-algorithm for solving the largest
M-eigenvalue is summarized as follows.

Algorithm 1 WQZ-Algorithm??

1:

Initial Step: Input A = (a;;,) € RI™XUXImixInl and unfold it into a matrix A = (A,,) € R by mapping A, = a;,
with s = n(i — 1) + j, t=n(k—1)+l._
Substep 1: Take 7 = ), |Ay|and A = 71 + A, where T = (§,;,) € RIMXXmxnl with 5, = 1if i = kand j = [,

1<s<t<mn

otherwise, &;;;; = 0. Then unfold A = (g, ;;,) € RI"X"XmXI") into a matrix A = (A,,) € RI™XIm]

Substep 2: Compute the unit eigenvalue w = (w,)7”, € R™ of matrix A associated with its largest eigenvalue, and fold

vector w into the matrix W = (W};) € R W, = w,, where i = [k/n], j = (k — D)modn+ 1, Vk=1,2,...,mn.

Substep 3: Compute the singular vectors u; and v, corresponding to the largest singular value o, of the matrix W. Specif-
r

ically, the singular value decomposition of W is W = UTZV = Y cr,-u,-v[T, where 6, > 0, > ... > o, and r is the rank of
i=1

w

i=

: Substep 4: Take x, = u;,y, = v;, and let k = 0.
. Tterative Step: Execute the following procedures alternatively until certain convergence criterion is satisfied and output

x*, y*:
- —- Xkt
Xpp1 = A VXV X1 = 7=
(1%l
- = _ i
Vil = AXp 1 ViXpats Vil = 7= ’
Vsl
k=k+1.
: Final Step: Output the largest M-eigenvalue of the tensor A: A, (A) = f(x* y") — 7, where f(x* y*) =
m n

- L S S 2 1 . * k
‘kzl ‘121 a;;4X;y; Xy, and the associated M-eigenvectors: x*, y*.
Lk=1],I=

We recall some existing upper bounds for M-eigenvalues of the fourth-order partially symmetric tensor in”.

20)

Theorem 12. 20 Let A = (a;,,) € RI"X"XImiXIn] be 3 partially symmetric tensor. Then

p(A) <1 = max R;(A).

Theorem 13. 20 Let A = (a;,,) € RI"X"XImiXn be 3 partially symmetric tensor. Then

AA) < 7,

min  + {R,.(A) — RAA) + \/ (Ri(A) — RX(A)P + 4Rf.‘(A)Rk(A)} .

max
i€lm) ke[m], k#i 2
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Theorem 14. 2V Let A = (g;;,) € RI"X"XImXI"l pe 3 partially symmetric tensor. Then

_ l _ pk k k _ pk k
A <75 = | max { S(R(A) = RAA) + RECA) + 85, R(A) = RECA) REA) }
where
81 (A) = (Ri(A) — RF(A) + R(A))* — 4[(R,(A) — RE(A)R{(A)
—RE(A)(R,(A) — RE(AND'/2.
Theorem 15. 2 Let A = (a;;,) € RI™XI"xImixInl pe 3 partially symmetric tensor. Then

_ l i i 2 _ PRI
p(A) <7y = ahaX, { Z(Ri(A) + \/Ri(A) +4(R,(A) R,-(A))Rk(A)))} .
By Theorem [5]and Theorem [6] we obtain the following result.

Theorem 16. Let A = (a;;;,) € RI"X"XmX" be a partially symmetric tensor. Then
1 i
p(A) <75 = dhax, { 3 ([(R;(A) = RE(A)) + (R (A) — R (A)] + 6/(A)) ,
R,(A) = RE(A), Ri(A) = Ri(A)},
where

8F(A) = ((Ri(A) — RE(A) + (R, (A) — RL(AD]* — 4[(R,(A) — R¥(A))
(R (A) — RL(A) — RECARL (A2

Proof. Suppose p(A) is the largest M-eigenvalue of .A4. We complete the proof by two cases.
Case 1. There exist i, k € [m], i # k such that p(A) € 7,-!,((.,4). In this case, we have

(P(A) = R(A) + RE(A)(p(A) = R, (A) + R (A)) < RICAR(A),
which yields that

p(A)

IA
=

([(R:(A) = Ri(A) + (R (A) = R (A)N] + 6 (A))

max 2 (ICR(A) = RECA) + (Ry(A) = Ry(AN]+ 8A)

T ike[m], ki
Case 2. There exist i, k € [m], i # k such that p(A) € 57,»,,((./4). In this case, we get
p(A) < Ri(A) = R (A),
and
P(A) < R (A) = Ri(A).
Thus, we complete the proof. O

Similar to the proof of Theorem 16} the following conclusion is true.

Theorem 17. Let A = (a;;;,) € RImXInXmXInl be a partially symmetric tensor. Then

A <= max_ {S(RIA) + REA) + 55D, R |

i,k€m], ki
where

85 (A) = \/ (Ri(A) + Ri(A) = 4RI(ARE(A) = (R(A) = RF(AN(R(A) = R (A)).

Viewing Theorem[I2]to Theorem|[I7] 7, to z4 are upper bounds for the M-spectral radius of a fourth-order partially symmetric
tensor, hence they can be taken as the parameter 7 in WQZ-algorithm. Li et al. 2! illustrated that the selection for the parameter 7
in the WQZ-algorithm has a significant impact on the convergence rate. The comparison is illustrated by the following example,
refer to%3,
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Example 4.1. %J Consider the tensor .4, with

[ —0.9727 0.3169 —0.3437 |

A,(:, 1, 1,1) = =0.6332 —0.7866 0.4257

A2(1$

A,(e,

Az(:,

AQ(:7

A, (e,

Ay (e,

5,5,3,2) =] —0.5988 0.0411 0.9857

5, 1,3)=] 0.4257 0.0085 -0.1439

5,2,3) =] —0.3248 -0.0216 —0.0037

5,3,3) =] —0.9485 0.9857 —-0.7734

| —0.3350 —0.9896 —0.4323 |
[ —0.6332 —0.7866 0.4257 ]

5,2, 1) =] 0.7387 0.6873 —0.3248

| —0.7986 —0.5988 —0.9485 |
[ —0.3350 —0.9896 —0.4323 ]

,3,1) =] —0.7986 —0.5988 —0.9485

0.5853 0.5921 0.6301 |
0.3169 0.6158 —0.0184 |

5, 1,2) =] -0.7866 0.0160 0.0085

—0.9896 —0.6663 0.2559 |
—0.7866 0.0160 0.0085

5,52,2) = 0.6873 0.5160 —0.0216

—0.5988 0.0411 0.9857
[ —0.9896 —0.6663 0.2559 ]

| 0.5921 —0.2907 —0.3881 |
[ —0.3437 —0.0184 0.5649 ]

| —0.4323 0.2559 0.6162 |
[ 0.4257 0.0085 —0.1439 ]

| —0.9485 0.9857 —0.7734 |
[ —0.4323 0.2559 0.6162 ]

i

| 0.6301 -0.3881 —0.8526 |

By calculation, we can get 7 = 23.3503. The values of 7, ..., 74 are as follows.

T

T

T3 Ty 5

T6

16.6014

15.4102

15.1‘288 14.9160 15.4044

15.1393

Taking 7, ..., 74 to 7 in the WQZ-algorithm. The numerical result is given in Figure 3]
From Figure [3 it can be seen that, when taking 7 = 75, 74, the WQZ-algorithm needs fewer iterations and converges more
rapidly to the largest M-eigenvalue A,,(A) than 7, 7,. This shows that our upper bounds are more tighter than the existing

results in some cases.

S | APPLICATION TO STRONG ELLIPTICITY CONDITIONS

In this section, using the bounds derived in Section[3] we first propose some new sufficient conditions for the positive definiteness
of fourth-order partially symmetric tensors. Subsequently, as an application, the strong ellipticity conditions of elastic materials
are obtained through the new sufficient conditions. The following lemma and some existing sufficient conditions for the positive

definiteness are required.
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11=16.6014
12=15.4102
13=15.1288
14=14.9160 ]| 7

2315

2311

2305

23

2.295 - - - -
0 20 40 60 80 100

Figure 3 Numerical results of Example

Lemma 1. "' Let A = (q,;,,) € RI"XXminl be a partially symmetric tensor. The strong ellipticity condition holds. i.e.,

m n
f(x,y) = Axyxy = Z 2 a;j %y %y > 0,

ik=1j,l=1
for all nonzero vectors x, y € R” if and only if the smallest M-eigenvalue of A is positive.
Theorem 18. *°'Let A = (a;;,,) € RU™XIXImXInl be 3 partially symmetric nonnegative tensor and F,, be an M-identity tensor.
For i € [m], if there exists positive real vector @ = (a;, ..., am)T € R™ such that

a; > R;(A, o)),
then A is positive definite.

Theorem 19. *°'Let A = (g,;;,) € RImXnXImXinl be g partially symmetric nonnegative tensor and ', be an M-identity tensor.
For i € [m], if there exists positive real vector & = (@, ..., a,,)" € R™ and k # i such that

(a; — (Ri(A, ;) — RF(A, a))a. > RE(A, ) R (A, @),
then A is positive definite.

Theorem 20. Let A = (q;;,) € RI"X"XImXIn be 3 partially symmetric nonnegative tensor and 7, be an M-identity tensor.
For i € [m], if there exists positive real vector @ = (a;, ..., am)T € R™ and k # i such that

(& = Ri(A, @)y > [R(A, &) — RI(A, @)IR, (A, &), (14)
then A is positive definite. That is, the strong ellipticity condition holds.

Proof. We complete the proof by contradiction. Suppose 4 < 0. From Theorem @, there exists i, € [m] such that ¢ €
ETZl-U’p(A, #), then

A —a |- Rﬁg(A, a4 —a,| <[R; (A o) — Rﬁg(A, @ )R, (A, ), Vp # iy.
Further, it follows from @, > 0 and A < 0 that
la;, = R (A, & )la, < 14— | = R (A, )11 4 — |
< [R (A, ;) = RY(A, 4 )IR, (A, ),

which contradicts (14). Hence, 4 > 0. Since A is partially symmetric and all M-eigenvalues are positive, then A is positive
definite. That is, the strong ellipticity condition of the elastic material is established. O
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Theorem 21. Let A = (a;;;,) € RImXnXImixInl be 3 partially symmetric nonnegative tensor and 7, be an M-identity tensor.
For i € [m], if there exists positive real vector @ = (a;, ..., am)T € R™ and k # i such that

[ = (Ri(A, &) = R{ (A, a)]la = Ri(A, )]
> RY(A, a)[R(A, @) — Ri(A, )], (15)
or
a; — (R{(A, ;) — R:.‘(A,ai)) >0 and a; — Rﬁ >0, (16)
then A is positive definite. That is, the strong ellipticity condition holds.
Proof. We complete the proof by contradiction. Suppose 4 < 0. From Theorem[T1] we consider two cases.
Case 1. There exists i, € [m] such that a € 93?,»0”,,(‘/4, £), then for Vp # i,
p
(17— &, | = (R, (A, ;) = R (A, DIIIA = | = RI(A, )]
p
<R, (A q;)[R,(A, @) — RI(A, )]
Further, it follows from @, a, > 0 and 4 < 0 that
P
la;, — (R (A, &) = R; (A, a;)][a, — RI(A )]
D
<A = o | = (Ry (A, ) = R (A, DA = | = R(A, )]
< RfO(A, % )[R (A, @) — RI(A, )],

which contradicts with (15). Hence, 4 > O.
Case 2. There exists iy € [m] such that « € $,; ,(A, f), then

D
|4 - “i0| - (RiO(A, aio) - RiU(A,aiO)) <0 and |A—a,| - Rﬁ <0.
Further, it follows from @, > 0 and A <0 that
@, — (RiO(A» aio) - RfU(Aa aio)) <|A- aiol - (R,-O(.A, aio) - RfO(A» aio)) <0,
and
ap—RZS M—apl—RZSO,

which contradicts with (16). Hence, 4 > O. L]

In summary, A is partially symmetric and all M-eigenvalue are positive, A is positive definite. Thus, Theorem[20]and Theorem

[21] are sufficient conditions for the strong ellipticity of elastic materials. Moreover, we offer corresponding numerical examples
to verify the validity of the obtained results below.

Example 5.1. Consider the partially symmetric tensor A = (a;;,) € RIZXZXZX2IXR2T with
ajy = 10,0119 = a1 = =0.5,a5, = 4
Gijk1 = Y9222 = 3,451 = apy = —0.5,a55, =55
a;; = 0, otherwise.
By Theorem 7 of'®, we obtain that the minimum M-eigenvalue and corresponding with left and right M-eigenvectors are
(4,x,y) = (3,(0,1),(0, 1)).

Hence, A is positive definite. That is, the strong ellipticity condition holds.
Here, we set « = (8,4)T (This optimal parameter is obtained by traversal). According to Theorem we have

(a; — Ri(A,a']))az =6>[R|(A,a)) - Ri(A, aDIRy (A, ay) =3,
(a, — R%(A, a))a; =14 > [Ry(A, ay) — R%(.A,az)]Rl(A, a)="1.

Hence, A satisfies the condition of Theorem[20] which implies that A is positive definite. That is, the strong ellipticity condition
holds.
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According to Theorem 21| we have
[@) = (R, (A, @) = R{(A, a)][a, — R (A, @y)] =2
> RIA, a)[Ry(A, ay) — Ry(A, ap)] = 1,
[a, = (Ry(A, @y) — Ry(A, ap)]la; — R}(A, )] = 4
> RY(A, 0)[R (A, a;) — Ri(A, a)] = L.

Hence, A satisfies the condition of Theorem[21] which implies that A is positive definite. That is, the strong ellipticity condition
holds.

Example 5.2. Consider the partially symmetric tensor A = (a;;,) € RIZX2XZX2IXRT with

ay =10,a15, = 8,41, = ajp; =0.5;

A = —1.5,ay11, = ap; = -0.1,ay5, = 1.5;
St = = 3,y131 = 5. ay115 = Gy, = 0.5;
Gy = 93,4121 = D54 12 = Ay = V.95

ayip = 1.5, ay) = a315 = =0.1, a3, = 1.5.
By Theorem 7 of 1, we obtain that the minimum M-eigenvalue and corresponding with left and right M-eigenvectors are
(4, x,y) = (2.5774,(0.2724,0.9622), (—0.0452, 0.9990)).

Hence, A is positive definite.
Here, we set & = (8,4)T (This optimal parameter is obtained by traversal). According to Theorem we have

(a; — RI(A, a))a, = 23.2 < [R(A, &) — RI(A, 2))IRy (A, o) = 24.8,

(a — RA(A, )y = 14.4 > [Ry(A, ay) — R5(A, )R (A, a)) = 24.8.
which implies that the condition of Theorem [2;0] is not satisfied. Thus, Theorem[@] is not suitable in this case. However, from
Theorem[21] we have

a; — (Ry(A,a) — Ri(A,2))) =58>0 and a, — R3(A, ;) = 1.8 >0,

@, — (Ry(A,a)) = RY(A, 0y)) = 1.8 >0 and a; — Rj(A,a;)] =5.8>0.
Hence, A satisfies the condition of Theorem 21} which implies that A is positive definite. That is, the strong ellipticity of the
elastic material can be checked.

6 | CONCLUSION

In this paper, we have proposed some new M-eigenvalue inclusion theorems for fourth-order partially symmetric tensors, which
are more accurate than some existing theorems. As applications, we have applied the upper bound to the WQZ-algorithm to
solve the largest M-eigenvalue. Numerical experiments have shown that using the obtained upper bound as a parameter can
make the sequence generated by the WQZ-algorithm rapidly converge to a good approximation of the M-spectral radius of the
fourth-order partially symmetric tensor. Moreover, the judgment theorem about the sufficient condition of the strong ellipticity
of elastic material has been obtained. Through numerical examples, we have verified that the sufficient conditions for the strong
ellipticity condition holds of the elastic materials.
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