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Summary

In this paper, we give some new M-eigenvalue inclusion theorems for fourth-order
partially symmetric tensors, which are more tighter than some existing inclusion sets.
On the basis, some new upper bounds of the M-spectral radius are presented. Further,
as applications, we propose sufficient conditions for the strong ellipticity condition
in the elastic materials. Numerical examples are shown to illustrate validity and su-
periority of our results.
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1 INTRODUCTION

1.1 Background
Let ℝ be the set of all real numbers, ℝ𝑛 be the set of all dimension n real vectors, and [𝑛] = {1, 2, ..., 𝑛}. A fourth-order real
tensor, denoted by  = (𝑎𝑖𝑗𝑘𝑙) ∈ ℝ[𝑛1]×[𝑛2]×[𝑛3]×[𝑛4], consists of 𝑛1 × 𝑛2 × 𝑛3 × 𝑛4 components:

𝑎𝑖𝑗𝑘𝑙 ∈ ℝ, 𝑖 ∈ [𝑛1], 𝑗 ∈ [𝑛2], 𝑘 ∈ [𝑛3], 𝑙 ∈ [𝑛4].

Specifically,  = (𝑎𝑖𝑗𝑘𝑙) ∈ ℝ[𝑚]×[𝑛]×[𝑚]×[𝑛] is called partially symmetric tensors, if its components are invariant under the
following permutation of subscripts:

𝑎𝑖𝑗𝑘𝑙 = 𝑎𝑘𝑗𝑖𝑙 = 𝑎𝑖𝑙𝑘𝑗 = 𝑎𝑘𝑙𝑖𝑗 , 𝑖, 𝑘 ∈ [𝑚], 𝑗, 𝑙 ∈ [𝑛].

In fact, the tensor of elastic moduli for elastic materials exactly is partially symmetric1, and the components of such tensor
are regarded as the coefficients of the bi-quadratic polynomial optimization problem defined by

⎧

⎪

⎨

⎪

⎩

max 𝑓 (𝑥, 𝑦) =
𝑚
∑

𝑖,𝑘=1

𝑛
∑

𝑗,𝑙=1
𝑎𝑖𝑗𝑘𝑙𝑥𝑖𝑦𝑗𝑥𝑘𝑦𝑙,

𝑠.𝑡. 𝑥T𝑥 = 1, 𝑦T𝑦 = 1, 𝑥 ∈ ℝ𝑚, 𝑦 ∈ ℝ𝑛.

(1)

and
⎧

⎪

⎨

⎪

⎩

min 𝑓 (𝑥, 𝑦) =
𝑚
∑

𝑖,𝑘=1

𝑛
∑

𝑗,𝑙=1
𝑎𝑖𝑗𝑘𝑙𝑥𝑖𝑦𝑗𝑥𝑘𝑦𝑙,

𝑠.𝑡. 𝑥T𝑥 = 1, 𝑦T𝑦 = 1, 𝑥 ∈ ℝ𝑚, 𝑦 ∈ ℝ𝑛.

(2)

This optimization problem arises from the strong ellipticity condition problem in solid mechanics1 and the entanglement
problem in quantum physics2, 3. The entanglement problem is to determine whether a quantum state is separable or inseparable
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(entangled)4. It is known that both the strong ellipticity and ordinary ellipticity play an important roles in nonlinear elastic ma-
terial analysis5–9. Qi et al.10 pointed out that strong ellipticity condition holds if and only if the optimal value of the above global
polynomial optimization problem is positive. In polynomial optimization theory11–13, the biquadratic optimization problem is
NP-hard to solve14, 15. In order to better study the optimization problems, through the theory of tensor eigenvalues16, 17, Han et
al.1 in 2009 for the first time transformed this optimization problem into the M-eigenvalue problem of a fourth-order partially
symmetric tensor.

Recently, the research on M-eigenvalues of partially symmetric tensors has become popular18–22. However, due to the
complexity of the tensor eigenvalue problem19, it is difficult to directly calculate. To solve this problem, an inclusive set of
M-eigenvalues of a partially symmetric tensor similar to the Ger�̆�gorin disc theorem of matrix eigenvalues can be given by anal-
ogy. He et al.20 proposed the M-eigenvalue interval theorem. Li et al21 gave the M-eigenvalue inclusion intervals. He et al.22

proposed new S-type inclusion theorems for the M-eigenvalues of a fourth-order partially symmetric tensor.
The M-eigenvalue inclusive set can be used to solve the actual calculation of the largest M-eigenvalue and the strong ellipticity

condition of elastic materials. In order to solve the NP-hard problem of M-eigenvalue, Wang et al.23 presented a practical
algorithm, denoted by WQZ-algorithm, to compute the largest M-eigenvalue of a fourth-order partially symmetric tensor. As an
application, Li et al. used the M-spectral radius obtained by the M-eigenvalue inclusion intervals as a parameter in the WQZ-
algorithm in22. Qi et al.10 have shown that the necessary and sufficient condition for the establishment of the strong ellipticity
condition is that the smallest M-eigenvalue of partially symmetric tensor is positive, called M-positive definite16, 17, 24, 25. Further,
Wang et al.17 provided some checkable sufficient conditions for the positive definiteness of fourth-order partially symmetric
nonnegative tensors. Based on the M-eigenvalue with the strong ellipticity22, 26–33, the research in34 provided some checkable
sufficient conditions for the strong ellipticity, called M-positive definiteness.

Based on this, when studying the inclusion set of M-eigenvalues, we should consider the M-eigenvalue containing set whose
center is at the origin or not, and get the inclusion interval as small as possible. Moreover, when the strong ellipticity condition
holds, it is necessary to judge the positive definiteness of the partial symmetric tensor. Therefore, the rest of the paper is organized
as follows. In Section 2, we give some new M-eigenvalue inclusion sets centered at the origin, and prove that the results are
more accurate than some existing conclusions. In Section 3, we give a new M-eigenvalue containment set whose center is not
at the origin, and prove it is tighter than some existing conclusions. In Section 4, we first recall the WQZ-algorithm. As an
application, we apply the upper bound of the M-eigenvalue to the WQZ-algorithm as a parameter. In Section 5, we propose
some existing sufficient conditions for the positive definiteness of the fourth-order partially symmetric tensor. Additionally, we
apply the derived sufficient conditions to the strong ellipticity condition in the elastic materials.

1.2 Definition and proposition
Definition 1. 10 Let  = (𝑎𝑖𝑗𝑘𝑙) ∈ ℝ[𝑚]×[𝑛]×[𝑚]×[𝑛] be a partially symmetric tensor(PST) and 𝜆 ∈ ℝ. Then 𝜆 is called an
M-eigenvalue of , if there are vectors 𝑥 ∈ ℝ𝑚∖{0} and 𝑦 ∈ ℝ𝑛∖{0} such that

⎧

⎪

⎪

⎨

⎪

⎪

⎩

 ⋅ 𝑦𝑥𝑦 = 𝜆𝑥,
𝑥𝑦𝑥⋅ = 𝜆𝑦,

𝑥T𝑥 = 1,
𝑦T𝑦 = 1.

(3)

where  ⋅ 𝑦𝑥𝑦 and 𝑥𝑦𝑥⋅ are real vectors with 𝑖-th and 𝑙-th components defined by

( ⋅ 𝑦𝑥𝑦)𝑖 =
𝑚
∑

𝑘=1

𝑛
∑

𝑗,𝑙=1
𝑎𝑖𝑗𝑘𝑙𝑦𝑗𝑥𝑘𝑦𝑙, (𝑥𝑦𝑥⋅)𝑙 =

𝑚
∑

𝑖,𝑘=1

𝑛
∑

𝑗=1
𝑎𝑖𝑗𝑘𝑙𝑥𝑖𝑦𝑗𝑥𝑘.

𝑥 and 𝑦 are called the corresponding left and right M-eigenvectors. If 𝑥 and 𝑦 are left and right M-eigenvectors of , associated
with an M-eigenvalue 𝜆, then 𝜆 = 𝑥𝑦𝑥𝑦.
Definition 2. 17 We call  ∈ ℝ[𝑚]×[𝑛]×[𝑚]×[𝑛] an M-identity tensor if its entries satisfy

()𝑖𝑗𝑘𝑙 =

{

1, 𝑖𝑓 𝑖 = 𝑘, 𝑗 = 𝑙,
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(4)

where 𝑖, 𝑘 ∈ [𝑚], 𝑗, 𝑙 ∈ [𝑛].
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Obviously,  ∈ ℝ[𝑚]×[𝑛]×[𝑚]×[𝑛] is a partially symmetric tensor and has the following property:
{

 ⋅ 𝑦𝑥𝑦 = 𝑥,
𝑥𝑦𝑥⋅ = 𝑦,

(5)

with 𝑥T𝑥 = 1, 𝑦T𝑦 = 1 for all 𝑥 ∈ ℝ𝑚, 𝑦 ∈ ℝ𝑛.
Definition 3. 26 The M-spectral radius 𝜌() of  is defined as

𝜌() = max{|𝜆| ∶ 𝜆 ∈ 𝜎()},

where 𝜎() is M-spectrum of , the set of all M-eigenvalues of .
The largest M-eigenvalue of  is

𝜆max() = max{𝜆 ∶ 𝜆 ∈ 𝜎()}.
The M-spectral radius of  is the largest M-eigenvalue. Furthermore, there is a pair of nonnegative M-eigenvectors correspond-
ing to the M-spectral radius.

2 M-EIGENVALUE INCLUSION THEOREMS CENTERED AT THE ORIGIN

In this section, we discuss several new M-eigenvalue inclusion theorems of fourth-order partially symmetric tensors and establish
the corresponding inclusion relationships. First, we introduce relative results given in20.
Theorem 1. 20 Suppose  = (𝑎𝑖𝑗𝑘𝑙) is a partially symmetric tensor with 𝑖, 𝑘 ∈ [𝑚], 𝑗, 𝑙 ∈ [𝑛]. Then

𝜎() ⊆ Γ() =
⋃

𝑖∈[𝑚]
Γ𝑖(),

where Γ𝑖() = {𝜆 ∈ ℝ ∶ |𝜆| ≤ 𝑅𝑖()}, 𝑎𝑛𝑑 𝑅𝑖() =
∑

𝑘∈[𝑚], 𝑗,𝑙∈[𝑛]
|𝑎𝑖𝑗𝑘𝑙|.

Theorem 2. 20 Suppose  = (𝑎𝑖𝑗𝑘𝑙) is a partially symmetric tensor with 𝑖, 𝑘 ∈ [𝑚], 𝑗, 𝑙 ∈ [𝑛]. Then

𝜎() ⊆ () =
⋃

𝑖∈[𝑚]

(

⋂

𝑘∈[𝑚],𝑘≠𝑖
𝑖,𝑘()

)

,

where
𝑖,𝑘() = {𝜆 ∈ ℝ ∶ (|𝜆| − (𝑅𝑖() − 𝑅𝑘

𝑖 ()))|𝜆| ≤ 𝑅𝑘
𝑖 ()𝑅𝑘()},

and 𝑅𝑘
𝑖 () =

∑

𝑗,𝑙∈[𝑛]
|𝑎𝑖𝑗𝑘𝑙|.

Theorem 3. 20 Suppose  = (𝑎𝑖𝑗𝑘𝑙) is a partially symmetric tensor with 𝑖, 𝑘 ∈ [𝑚], 𝑗, 𝑙 ∈ [𝑛]. Then

𝜎() ⊆ () =
⋃

𝑖,𝑘∈[𝑚], 𝑘≠𝑖

(

𝑖,𝑘()
⋃

𝑖,𝑘()
)

,

where
𝑖,𝑘() = {𝜆 ∈ ℝ ∶ (|𝜆| − (𝑅𝑖() − 𝑅𝑘

𝑖 ()))(|𝜆| − 𝑅𝑘
𝑘()) ≤ 𝑅𝑘

𝑖 ()(𝑅𝑘() − 𝑅𝑘
𝑘())},

and
𝑖,𝑘() = {𝜆 ∈ ℝ ∶ |𝜆| − (𝑅𝑖() − 𝑅𝑘

𝑖 ()) ≤ 0, |𝜆| − 𝑅𝑘
𝑘() < 0}.

Theorem 4. 20 Suppose  = (𝑎𝑖𝑗𝑘𝑙) is a partially symmetric tensor with 𝑖, 𝑘 ∈ [𝑚], 𝑗, 𝑙 ∈ [𝑛]. Then

𝜎() ⊆  () =
⋃

𝑖,𝑘∈[𝑚], 𝑘≠𝑖
𝑖,𝑘(),

where 𝑖,𝑘() = {𝜆 ∈ ℝ ∶ (|𝜆| − 𝑅𝑖
𝑖())|𝜆| ≤ (𝑅𝑖() − 𝑅𝑖

𝑖())𝑅𝑘()}.

Remark 1. According to20, we know () ⊆ Γ(), () ⊆ Γ() and  () ⊆ Γ(). That is (), () and  () are
more accurate than Γ().

Now, we give two new M-eigenvalue inclusion theorems and establish the corresponding inclusion relationships.
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Theorem 5. Let  = (𝑎𝑖𝑗𝑘𝑙) ∈ ℝ[𝑚]×[𝑛]×[𝑚]×[𝑛] be a partially symmetric tensor. Then

𝜎() ⊆ Υ() =
⋃

𝑖,𝑘∈[𝑚],𝑘≠𝑖

(

�̂�𝑖,𝑘()
⋃

�̃�𝑖,𝑘()
)

,

where

�̂�𝑖,𝑘() = {𝜆 ∈ ℝ ∶ |𝜆| − 𝑅𝑖() + 𝑅𝑘
𝑖 () ≤ 0, |𝜆| − 𝑅𝑘() + 𝑅𝑖

𝑘() < 0},
and

�̃�𝑖,𝑘() = {𝜆 ∈ ℝ ∶ [|𝜆| − 𝑅𝑖() + 𝑅𝑘
𝑖 ()][|𝜆|−𝑅𝑘() + 𝑅𝑖

𝑘()] ≤ 𝑅𝑘
𝑖 ()𝑅𝑖

𝑘()}.

Proof. Assume that 𝜆 is an M-eigenvalue of , 𝑥 = (𝑥1, 𝑥2, ..., 𝑥𝑚)𝑇 ∈ ℝ𝑚∖{0} and 𝑦 = (𝑦1, 𝑦2, ..., 𝑦𝑛)𝑇 ∈ ℝ𝑛∖{0} are the
corresponding left and right M-eigenvectors, then

 ⋅ 𝑦𝑥𝑦 = 𝜆𝑥,𝑥𝑦𝑥⋅ = 𝜆𝑦, 𝑥T𝑥 = 1 𝑎𝑛𝑑 𝑦T𝑦 = 1.

Let
|𝑥𝑡| ≥ |𝑥𝑠| = max

𝑖∈[𝑚],𝑖≠𝑡
|𝑥𝑖|, 0 < |𝑥𝑡| ≤ 1.

From 𝜆𝑥 =  ⋅ 𝑦𝑥𝑦, it holds

𝜆𝑥𝑡 = ( ⋅ 𝑦𝑥𝑦)𝑡 =
∑

𝑘∈[𝑚], 𝑗,𝑙∈[𝑛]
𝑎𝑡𝑗𝑘𝑙𝑦𝑗𝑥𝑘𝑦𝑙

=
∑

𝑘∈[𝑚],𝑘≠𝑠, 𝑗,𝑙∈[𝑛]
𝑎𝑡𝑗𝑘𝑙𝑦𝑗𝑥𝑘𝑦𝑙 +

∑

𝑗,𝑙∈[𝑛]
𝑎𝑡𝑗𝑠𝑙𝑦𝑗𝑥𝑠𝑦𝑙.

Then

|𝜆| ≤
∑

𝑘∈[𝑚],𝑘≠𝑠, 𝑗,𝑙∈[𝑛]
|𝑎𝑡𝑗𝑘𝑙||𝑦𝑗|

|𝑥𝑘|
|𝑥𝑡|

|𝑦𝑙| +
∑

𝑗,𝑙∈[𝑛]
|𝑎𝑡𝑗𝑠𝑙||𝑦𝑗|

|𝑥𝑠|
|𝑥𝑡|

|𝑦𝑙|

≤
∑

𝑘∈[𝑚],𝑘≠𝑠, 𝑗,𝑙∈[𝑛]
|𝑎𝑡𝑗𝑘𝑙| +

∑

𝑗,𝑙∈[𝑛]
|𝑎𝑡𝑗𝑠𝑙|

|𝑥𝑠|
|𝑥𝑡|

.

Therefore,

|𝜆| −
∑

𝑘∈[𝑚],𝑘≠𝑠, 𝑗,𝑙∈[𝑛]
|𝑎𝑡𝑗𝑘𝑙| ≤

∑

𝑗,𝑙∈[𝑛]
|𝑎𝑡𝑗𝑠𝑙|

|𝑥𝑠|
|𝑥𝑡|

. (6)

(1) If |𝑥𝑠| = 0, then |𝜆| − (𝑅𝑡() − 𝑅𝑠
𝑡 ()) ≤ 0.

(i) If |𝜆| − 𝑅𝑠() + 𝑅𝑡
𝑠() ≥ 0, then 𝜆 ∈ �̃�𝑡,𝑠() ⊆ Υ().

(ii) If |𝜆| − 𝑅𝑠() + 𝑅𝑡
𝑠() < 0, then 𝜆 ∈ �̂�𝑡,𝑠() ⊆ Υ().

(2) If |𝑥𝑠| > 0, we have

𝜆𝑥𝑠 = ( ⋅ 𝑦𝑥𝑦)𝑠 =
∑

𝑘∈[𝑚], 𝑗,𝑙∈[𝑛]
𝑎𝑠𝑗𝑘𝑙𝑦𝑗𝑥𝑘𝑦𝑙

=
∑

𝑘∈[𝑚],𝑘≠𝑡, 𝑗,𝑙∈[𝑛]
𝑎𝑠𝑗𝑘𝑙𝑦𝑗𝑥𝑘𝑦𝑙 +

∑

𝑗,𝑙∈[𝑛]
𝑎𝑠𝑗𝑡𝑙𝑦𝑗𝑥𝑡𝑦𝑙.

Then

|𝜆| ≤
∑

𝑘∈[𝑚],𝑘≠𝑡, 𝑗,𝑙∈[𝑛]
|𝑎𝑠𝑗𝑘𝑙||𝑦𝑗|

|𝑥𝑘|
|𝑥𝑠|

|𝑦𝑙| +
∑

𝑗,𝑙∈[𝑛]
|𝑎𝑠𝑗𝑡𝑙||𝑦𝑗|

|𝑥𝑡|
|𝑥𝑠|

|𝑦𝑙|

≤
∑

𝑘∈[𝑚],𝑘≠𝑡, 𝑗,𝑙∈[𝑛]
|𝑎𝑠𝑗𝑘𝑙| +

∑

𝑗,𝑙∈[𝑛]
|𝑎𝑠𝑗𝑡𝑙|

|𝑥𝑡|
|𝑥𝑠|

.

Therefore,

|𝜆| −
∑

𝑘∈[𝑚],𝑘≠𝑡, 𝑗,𝑙∈[𝑛]
|𝑎𝑠𝑗𝑘𝑙| ≤

∑

𝑗,𝑙∈[𝑛]
|𝑎𝑠𝑗𝑡𝑙|

|𝑥𝑡|
|𝑥𝑠|

. (7)

(i) If |𝜆| − 𝑅𝑡() + 𝑅𝑠
𝑡 () ≥ 0 𝑜𝑟 |𝜆| − 𝑅𝑠() + 𝑅𝑡

𝑠() ≥ 0, multiplying (6) with (7) yields

[|𝜆| − 𝑅𝑡() + 𝑅𝑠
𝑡 ()][|𝜆| − 𝑅𝑠() + 𝑅𝑡

𝑠()] ≤ 𝑅𝑠
𝑡 ()𝑅𝑡

𝑠().
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That is
𝜆 ∈ �̃�𝑡,𝑠() ⊆ Υ().

(ii) If |𝜆| − 𝑅𝑡() + 𝑅𝑠
𝑡 () < 0 𝑎𝑛𝑑 |𝜆| − 𝑅𝑠() + 𝑅𝑡

𝑠() < 0, then 𝜆 ∈ �̂�𝑡,𝑠() ⊆ Υ().
Thus 𝜎() ⊆ Υ(). The proof is completed.

On the basis of Theorem 1 and Theorem 5, we can establish the following inclusion relationship between Γ() and Υ().

Corollary 1. Let  = (𝑎𝑖𝑗𝑘𝑙) ∈ ℝ[𝑚]×[𝑛]×[𝑚]×[𝑛] be a partially symmetric tensor. Then

𝜎() ⊆ Υ() ⊆ Γ().

Proof. For any 𝜆 ∈ Υ(), we complete the proof by two cases.
Case 1. If 𝜆 ∈ �̂�𝑖,𝑘(), then

|𝜆| − 𝑅𝑖() + 𝑅𝑘
𝑖 () ≤ 0 𝑎𝑛𝑑 |𝜆| − 𝑅𝑘() + 𝑅𝑖

𝑘() < 0.
Therefore,

|𝜆| ≤ 𝑅𝑖() 𝑎𝑛𝑑 |𝜆| < 𝑅𝑘(),
which implies 𝜆 ∈ Γ().
Case 2. If 𝜆 ∈ �̃�𝑖,𝑘(), then

[|𝜆| − 𝑅𝑖() + 𝑅𝑘
𝑖 ()][|𝜆| − 𝑅𝑘() + 𝑅𝑖

𝑘()] ≤ 𝑅𝑘
𝑖 ()𝑅𝑖

𝑘().

(i) If 𝑅𝑘
𝑖 ()𝑅𝑖

𝑘() = 0, then
|𝜆| − 𝑅𝑖() + 𝑅𝑘

𝑖 () ≤ 0 𝑜𝑟 |𝜆| − 𝑅𝑘() + 𝑅𝑖
𝑘() ≤ 0.

Therefore,
|𝜆| ≤ 𝑅𝑖() 𝑜𝑟 |𝜆| ≤ 𝑅𝑘(),

which implies 𝜆 ∈ Γ().
(ii) If 𝑅𝑘

𝑖 ()𝑅𝑖
𝑘() > 0, then

|𝜆| − 𝑅𝑖() + 𝑅𝑘
𝑖 ()

𝑅𝑘
𝑖 ()

⋅
|𝜆| − 𝑅𝑘() + 𝑅𝑖

𝑘()
𝑅𝑖

𝑘()
≤ 1.

This is
|𝜆| − 𝑅𝑖() + 𝑅𝑘

𝑖 ()
𝑅𝑘

𝑖 ()
≤ 1 𝑜𝑟

|𝜆| − 𝑅𝑘() + 𝑅𝑖
𝑘()

𝑅𝑖
𝑘()

≤ 1.

Therefore,
|𝜆| ≤ 𝑅𝑖() 𝑜𝑟 |𝜆| ≤ 𝑅𝑘(),

which implies 𝜆 ∈ Γ(). Thus Υ() ⊆ Γ().

Theorem 6. Let  = (𝑎𝑖𝑗𝑘𝑙) ∈ ℝ[𝑚]×[𝑛]×[𝑚]×[𝑛] be a partially symmetric tensor. Then

𝜎() ⊆ Θ() =
⋃

𝑖,𝑘∈[𝑚], 𝑘≠𝑖

(

𝑢𝑖,𝑘()
⋃

�̃�𝑖()
)

,

where
𝑢𝑖,𝑘() = {𝜆 ∈ ℝ ∶ [|𝜆| − 𝑅𝑖

𝑖()][|𝜆| − 𝑅𝑘
𝑘()] ≤ (𝑅𝑖() − 𝑅𝑖

𝑖())(𝑅𝑘() − 𝑅𝑘
𝑘())},

�̃�𝑖,𝑘() = {𝜆 ∈ ℝ ∶ |𝜆| − 𝑅𝑖
𝑖() ≤ 0, |𝜆| − 𝑅𝑘

𝑘() < 0}, 𝑅𝑖
𝑖() =

∑

𝑗,𝑙∈[𝑚]
|𝑎𝑖𝑗𝑖𝑙|.

Proof. Assume that 𝜆 is an M-eigenvalue of , 𝑥 = (𝑥1, 𝑥2, ..., 𝑥𝑚)𝑇 ∈ ℝ𝑚∖{0} and 𝑦 = (𝑦1, 𝑦2, ..., 𝑦𝑛)𝑇 ∈ ℝ𝑛∖{0} are the
corresponding left and right M-eigenvectors, then

 ⋅ 𝑦𝑥𝑦 = 𝜆𝑥,𝑥𝑦𝑥⋅ = 𝜆𝑦, 𝑥T𝑥 = 1 𝑎𝑛𝑑 𝑦T𝑦 = 1.

Let
|𝑥𝑡| ≥ |𝑥𝑠| = max

𝑖∈[𝑚],𝑖≠𝑡
|𝑥𝑖|, 0 < |𝑥𝑡| ≤ 1.
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From 𝜆𝑥 =  ⋅ 𝑦𝑥𝑦, it holds

𝜆𝑥𝑡 = ( ⋅ 𝑦𝑥𝑦)𝑡 =
∑

𝑘∈[𝑚], 𝑗,𝑙∈[𝑛]
𝑎𝑡𝑗𝑘𝑙𝑦𝑗𝑥𝑘𝑦𝑙

=
∑

𝑘∈[𝑚],𝑘≠𝑡, 𝑗,𝑙∈[𝑛]
𝑎𝑡𝑗𝑘𝑙𝑦𝑗𝑥𝑘𝑦𝑙 +

∑

𝑗,𝑙∈[𝑛]
𝑎𝑡𝑗𝑡𝑙𝑦𝑗𝑥𝑡𝑦𝑙.

Then

|𝜆| ≤
∑

𝑘∈[𝑚],𝑘≠𝑡, 𝑗,𝑙∈[𝑛]
|𝑎𝑡𝑗𝑘𝑙||𝑦𝑗|

|𝑥𝑘|
|𝑥𝑡|

|𝑦𝑙| +
∑

𝑗,𝑙∈[𝑛]
|𝑎𝑡𝑗𝑡𝑙||𝑦𝑗||𝑦𝑙|

≤
∑

𝑘∈[𝑚],𝑘≠𝑡, 𝑗,𝑙∈[𝑛]
|𝑎𝑡𝑗𝑘𝑙|

|𝑥𝑠|
|𝑥𝑡|

+
∑

𝑗,𝑙∈[𝑛]
|𝑎𝑡𝑗𝑡𝑙|.

Therefore,

|𝜆| −
∑

𝑗,𝑙∈[𝑛]
|𝑎𝑡𝑗𝑡𝑙| ≤

∑

𝑘∈[𝑚],𝑘≠𝑡, 𝑗,𝑙∈[𝑛]
|𝑎𝑡𝑗𝑘𝑙|

|𝑥𝑠|
|𝑥𝑡|

. (8)

(1) If |𝑥𝑠| = 0, then |𝜆| − 𝑅𝑡
𝑡()) ≤ 0, which implies 𝜆 ∈ �̃�𝑡() ⊆ Θ().

(2) If |𝑥𝑠| > 0, we have

𝜆𝑥𝑠 = ( ⋅ 𝑦𝑥𝑦)𝑠 =
∑

𝑘∈[𝑚], 𝑗,𝑙∈[𝑛]
𝑎𝑠𝑗𝑘𝑙𝑦𝑗𝑥𝑘𝑦𝑙

=
∑

𝑘∈[𝑚],𝑘≠𝑠, 𝑗,𝑙∈[𝑛]
𝑎𝑠𝑗𝑘𝑙𝑦𝑗𝑥𝑘𝑦𝑙 +

∑

𝑗,𝑙∈[𝑛]
𝑎𝑠𝑗𝑠𝑙𝑦𝑗𝑥𝑠𝑦𝑙.

Then

|𝜆| ≤
∑

𝑘∈[𝑚],𝑘≠𝑠, 𝑗,𝑙∈[𝑛]
|𝑎𝑠𝑗𝑘𝑙||𝑦𝑗|

|𝑥𝑘|
|𝑥𝑠|

|𝑦𝑙| +
∑

𝑗,𝑙∈[𝑛]
|𝑎𝑠𝑗𝑠𝑙||𝑦𝑗||𝑦𝑙|

≤
∑

𝑘∈[𝑚],𝑘≠𝑠, 𝑗,𝑙∈[𝑛]
|𝑎𝑠𝑗𝑘𝑙|

|𝑥𝑡|
|𝑥𝑠|

+
∑

𝑗,𝑙∈[𝑛]
|𝑎𝑠𝑗𝑠𝑙|.

Therefore,

|𝜆| −
∑

𝑗,𝑙∈[𝑛]
|𝑎𝑠𝑗𝑠𝑙| ≤

∑

𝑘∈[𝑚],𝑘≠𝑠, 𝑗,𝑙∈[𝑛]
|𝑎𝑠𝑗𝑘𝑙|

|𝑥𝑡|
|𝑥𝑠|

. (9)

(i) If |𝜆| − 𝑅𝑡
𝑡()) ≥ 0 𝑜𝑟 |𝜆| − 𝑅𝑠

𝑠()) ≥ 0, multiplying (8) with (9) yields

[|𝜆| − 𝑅𝑡
𝑡()][|𝜆| − 𝑅𝑠

𝑠()] ≤ (𝑅𝑡() − 𝑅𝑡
𝑡())(𝑅𝑠() − 𝑅𝑠

𝑠()).

That is
𝜆 ∈ 𝑢𝑡,𝑠() ⊆ Θ().

(ii) If |𝜆| − 𝑅𝑡
𝑡()) < 0 𝑎𝑛𝑑 |𝜆| − 𝑅𝑠

𝑠()) < 0, then 𝜆 ∈ �̃�𝑡,𝑠() ⊆ Θ(). This shows that 𝜎() ⊆ Θ().

On the basis of Theorem 1 and Theorem 6, we can establish the following inclusion relationship between Γ() and Θ().

Corollary 2. Let  = (𝑎𝑖𝑗𝑘𝑙) ∈ ℝ[𝑚]×[𝑛]×[𝑚]×[𝑛] be a partially symmetric tensor. Then

𝜎() ⊆ Θ() ⊆ Γ().

Proof. For any 𝜆 ∈ Θ(), we break the proof into two cases.
Case 1. If 𝜆 ∈ �̃�𝑖(), then

|𝜆| − 𝑅𝑖
𝑖() ≤ 0.

Therefore,
|𝜆| ≤ 𝑅𝑖(),

which implies 𝜆 ∈ Γ().
Case 2. If 𝜆 ∈ 𝑢𝑖,𝑘(), then

[|𝜆| − 𝑅𝑖
𝑖(𝜆𝐴)][|𝜆| − 𝑅𝑘

𝑘()] ≤ (𝑅𝑖() − 𝑅𝑖
𝑖())(𝑅𝑘() − 𝑅𝑘

𝑘().
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(i) If (𝑅𝑖() − 𝑅𝑖
𝑖())(𝑅𝑘() − 𝑅𝑘

𝑘() = 0, then

[|𝜆| − 𝑅𝑖
𝑖(𝜆𝐴)][|𝜆| − 𝑅𝑘

𝑘()] ≤ 0.

Therefore,
|𝜆| ≤ 𝑅𝑖() 𝑜𝑟 |𝜆| ≤ 𝑅𝑘(),

which implies 𝜆 ∈ Γ().
(ii) If (𝑅𝑖() − 𝑅𝑖

𝑖())(𝑅𝑘() − 𝑅𝑘
𝑘() > 0, then

|𝜆| − 𝑅𝑖
𝑖()

𝑅𝑖() − 𝑅𝑖
𝑖()

⋅
|𝜆| − 𝑅𝑘

𝑘()

𝑅𝑘() − 𝑅𝑘
𝑘()

≤ 1.

This is
|𝜆| − 𝑅𝑖

𝑖()
𝑅𝑖() − 𝑅𝑖

𝑖()
≤ 1 𝑜𝑟

|𝜆| − 𝑅𝑘
𝑘()

𝑅𝑘() − 𝑅𝑘
𝑘()

≤ 1.

Therefore,
|𝜆| ≤ 𝑅𝑖() 𝑜𝑟 |𝜆| ≤ 𝑅𝑘(),

which implies 𝜆 ∈ Γ(). Thus Θ() ⊆ Γ().
Example 2.1. 20 Consider the fourth-order partially symmetric tensor with

𝑎𝑖𝑗𝑘𝑙 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑎1111 = 1, 𝑎1112 = 2, 𝑎1121 = 2, 𝑎1212 = 3,
𝑎1222 = 5, 𝑎1211 = 2, 𝑎1122 = 4, 𝑎1221 = 4,
𝑎2111 = 2, 𝑎2112 = 4, 𝑎2121 = 3, 𝑎2122 = 5,
𝑎2211 = 4, 𝑎2212 = 5, 𝑎2221 = 5, 𝑎2222 = 6.

By Theorem 1 to Theorem 4, we have

Γ() =
⋃

𝑖∈[𝑚]
Γ𝑖() = {𝜆 ∈ ℝ ∶ |𝜆| ≤ 34},

() =
⋃

𝑖∈[𝑚]

(

⋂

𝑘∈[𝑚],𝑘≠𝑖
𝑖,𝑘()

)

= {𝜆 ∈ ℝ ∶ |𝜆| ≤
19 +

√

1741
2

},

() =
⋃

𝑖,𝑘∈[𝑚], 𝑘≠𝑖

(

𝑖,𝑘((𝐴))
⋃

𝑖,𝑘()
)

= {𝜆 ∈ ℝ ∶ |𝜆| ≤
27 +

√

1021
2

},

 () =
⋃

𝑖,𝑘∈[𝑚], 𝑘≠𝑖
𝑖,𝑘() = {𝜆 ∈ ℝ ∶ |𝜆| ≤

19 +
√

1741
2

}.

From Theorem 5, we obtain

Υ() =
⋃

𝑖,𝑘∈[𝑚],𝑘≠𝑖

(

�̂�𝑖,𝑘()
⋃

�̃�𝑖,𝑘()
)

= {𝜆 ∈ ℝ ∶ |𝜆| ≤
27 +

√

1021
2

},

where
�̂�1,2() = {𝜆 ∈ ℝ ∶ |𝜆| ≤ 8}, �̂�2,1() = {𝜆 ∈ ℂ ∶ |𝜆| < 8},

�̃�1,2() = �̃�2,1() = {𝜆 ∈ ℝ ∶ |𝜆| ≤
27 +

√

1021
2

}.

From Theorem 6, we obtain

Θ() =
⋃

𝑖,𝑘∈[𝑚], 𝑘≠𝑖

(

𝑢𝑖,𝑘()
⋃

�̃�𝑖()
)

= {𝜆 ∈ ℝ ∶ |𝜆| ≤
27 +

√

1021
2

},

where

𝑢1,2() = 𝑢2,1() = {𝜆 ∈ ℝ ∶ |𝜆| ≤
27 +

√

1021
2

},

�̃�1() = {𝜆 ∈ ℝ ∶ |𝜆| ≤ 8},
�̃�2() = {𝜆 ∈ ℝ ∶ |𝜆| ≤ 19}.
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Further, we use Figure 1 to show the above calculation results. From Figure 1, Υ() and Θ() are more accurate than Γ()
and ().

Figure 1 Comparison of inclusion sets of Example 2.1.

Example 2.2. 20 Consider the fourth-order partially symmetric tensor with

𝑎𝑖𝑗𝑘𝑙 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑎1111 = −1, 𝑎1112 = 2, 𝑎1131 = 3, 𝑎1121 = −1, 𝑎1211 = 2, 𝑎1221 = 1, 𝑎1122 = 1,
𝑎2111 = −1, 𝑎2211 = 1, 𝑎2112 = 1, 𝑎2131 = −2, 𝑎2222 = 2,
𝑎3111 = 3, 𝑎3232 = −1, 𝑎3131 = −2,
𝑎𝑖𝑗𝑘𝑙 = 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

By Theorem 1 to Theorem 4, we have

Γ() =
⋃

𝑖∈[𝑚]
Γ𝑖() = {𝜆 ∈ ℝ ∶ |𝜆| ≤ 11},

() =
⋃

𝑖∈[𝑚]

(

⋂

𝑘∈[𝑚],𝑘≠𝑖
𝑖,𝑘()

)

= {𝜆 ∈ ℝ ∶ |𝜆| ≤ 4 +
√

34},

() =
⋃

𝑖,𝑘∈[𝑚], 𝑘≠𝑖

(

𝑖,𝑘((𝐴))
⋃

𝑖,𝑘()
)

= {𝜆 ∈ ℝ ∶ |𝜆| ≤ 5 + 2
√

6},

 () =
⋃

𝑖,𝑘∈[𝑚], 𝑘≠𝑖
𝑖,𝑘() = {𝜆 ∈ ℝ ∶ |𝜆| ≤

5 +
√

193
2

}.

From Theorem 5, we obtain

Υ() =
⋃

𝑖,𝑘∈[𝑚],𝑘≠𝑖

(

�̂�𝑖,𝑘()
⋃

�̃�𝑖,𝑘()
)

= {𝜆 ∈ ℝ ∶ |𝜆| ≤ 6 +
√

13},

where

�̂�1,2() = {𝜆 ∈ ℝ ∶ |𝜆| < 4}, �̂�1,3() = {𝜆 ∈ ℝ ∶ |𝜆| < 3},
�̂�2,1() = {𝜆 ∈ ℝ ∶ |𝜆| ≤ 4}, �̂�2,3() = {𝜆 ∈ ℝ ∶ |𝜆| ≤ 5},
�̂�3,1() = {𝜆 ∈ ℝ ∶ |𝜆| ≤ 3}, �̂�3,2() = {𝜆 ∈ ℝ ∶ |𝜆| < 5},

�̃�1,2() = �̃�2,1() = {𝜆 ∈ ℝ ∶ 6 −
√

13 ≤ |𝜆| ≤ 6 +
√

13},

�̃�1,3() = �̃�3,1() = {𝜆 ∈ ℝ ∶
11 −

√

61
2

≤ |𝜆| ≤
11 +

√

61
2

},

�̃�2,3() = �̃�3,2() = {𝜆 ∈ ℝ ∶ 5 ≤ |𝜆| ≤ 6}.
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From Theorem 6, we obtain

Θ() =
⋃

𝑖,𝑘∈[𝑚], 𝑘≠𝑖

(

𝑢𝑖,𝑘()
⋃

�̃�𝑖()
)

= {𝜆 ∈ ℝ ∶ |𝜆| ≤
7 +

√

129
2

},

where

𝑢1,2() = 𝑢2,1() = {𝜆 ∈ ℝ ∶ |𝜆| ≤
7 +

√

129
2

},

𝑢1,3() = 𝑢3,1() = {𝜆 ∈ ℝ ∶ |𝜆| ≤ 4 +
√

19},

𝑢2,3() = 𝑢3,2() = {𝜆 ∈ ℝ ∶ |𝜆| ≤
5 +

√

61
2

},

�̃�1() = {𝜆 ∈ ℝ ∶ |𝜆| ≤ 5},
�̃�2() = {𝜆 ∈ ℝ ∶ |𝜆| ≤ 2},
�̃�3() = {𝜆 ∈ ℝ ∶ |𝜆| ≤ 3}.

Moreover, we use Figure 2 to show the above calculation results. From Figure 2, it can be seen that the new M-eigenvalue
inclusion set Υ() and Θ() are more accurate than Γ(), () and ().

Figure 2 Comparison of inclusion sets of Example 2.2.

3 M-EIGENVALUE INCLUSION THEOREMS

In this section, we first introduce some existing M-eigenvalue inclusion theorems in26 whose center point is not at the origin.
Then we give some new M-eigenvalue inclusion theorems where the center point is not at the origin. Further, we show that they
are more tighter than some existing conclusions.
Theorem 7. 26 Let  = (𝑎𝑖𝑗𝑘𝑙) ∈ ℝ[𝑚]×[𝑛]×[𝑚]×[𝑛] be a partially symmetric tensor and  be an M-identity tensor. For any
𝛼 = (𝛼1, ..., 𝛼𝑚)T ∈ ℝ𝑚, then

𝜎() ⊆ 𝔛(, 𝛼) =
⋃

𝑖∈[𝑚]
𝔛𝑖(, 𝛼),
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where

𝔛𝑖(, 𝛼) = {𝜆 ∈ ℝ ∶ |𝜆 − 𝛼𝑖| ≤ 𝑅𝑖(, 𝛼𝑖)},
𝑅𝑖(, 𝛼𝑖) =

∑

𝑘∈[𝑚], 𝑗,𝑙∈[𝑛]
|𝑎𝑖𝑗𝑘𝑙 − 𝛼𝑖()𝑖𝑗𝑘𝑙|.

Further,
𝜎() ⊆

⋂

𝛼∈ℝ𝑚

𝔛(, 𝛼).

Theorem 8. 26 Let  = (𝑎𝑖𝑗𝑘𝑙) ∈ ℝ[𝑚]×[𝑛]×[𝑚]×[𝑛] be a partially symmetric tensor and  be an M-identity tensor. For any
𝛼 = (𝛼1, ..., 𝛼𝑚)T ∈ ℝ𝑚, then

𝜎() ⊆ 𝔎(, 𝛼) =
⋃

𝑖∈[𝑚]
(

⋂

𝑘≠𝑖,𝑘∈[𝑚]
𝔎𝑖,𝑘(, ⨍ )),

where

𝔎𝑖,𝑘(, 𝛼) = {𝜆 ∈ ℝ ∶ [|𝜆 − 𝛼𝑖| − (𝑅𝑖(, 𝛼𝑖) − 𝑅𝑘
𝑖 (, 𝛼𝑖))]|𝜆 − 𝛼𝑘|

≤ 𝑅𝑘
𝑖 (, 𝛼𝑖)𝑅𝑘(, 𝛼𝑘)},

𝑅𝑘
𝑖 (, 𝛼𝑖) =

∑

𝑗,𝑙∈[𝑛]
|𝑎𝑖𝑗𝑘𝑙 − 𝛼𝑖()𝑖𝑗𝑘𝑙|.

Further,
𝜎() ⊆

⋂

𝛼∈ℝ𝑚

𝔎(, 𝛼).

Theorem 9. 26 Let  = (𝑎𝑖𝑗𝑘𝑙) ∈ ℝ[𝑚]×[𝑛]×[𝑚]×[𝑛] be a partially symmetric tensor and  be an M-identity tensor. For any
𝛼 = (𝛼1, ..., 𝛼𝑚)T ∈ ℝ𝑚, then

𝜎() ⊆ 𝔎(, 𝛼) ⊆ 𝔛(, 𝛼).

Now, we give two new M-eigenvalue inclusion theorems and establish the corresponding inclusion relationships.

Theorem 10. Let  = (𝑎𝑖𝑗𝑘𝑙) ∈ ℝ[𝑚]×[𝑛]×[𝑚]×[𝑛] be a partially symmetric tensor and  be an M-identity tensor. For any
𝛼 = (𝛼1, ..., 𝛼𝑚)T ∈ ℝ𝑚, then

𝜎() ⊆ 𝔑(, 𝛼) =
⋃

𝑖,𝑘∈[𝑚], 𝑘≠𝑖
𝔑𝑖,𝑘(, ⨍ ),

where

𝔑𝑖,𝑘(, 𝛼) = {𝜆 ∈ ℝ ∶ [|𝜆 − 𝛼𝑖| − (𝑅𝑖
𝑖(, 𝛼𝑖))]|𝜆 − 𝛼𝑘|

≤ [𝑅𝑖(, 𝛼𝑖) − 𝑅𝑖
𝑖(, 𝛼𝑖)]𝑅𝑘(, 𝛼𝑘)},

𝑅𝑖
𝑖(, 𝛼𝑖) =

∑

𝑗,𝑙∈[𝑛]
|𝑎𝑖𝑗𝑖𝑙 − 𝛼𝑖()𝑖𝑗𝑖𝑙|.

Further,
𝜎() ⊆

⋂

𝛼∈ℝ𝑚

𝔑(, 𝛼).

Proof. Assume that 𝜆 is an M-eigenvalue of , 𝑥 = (𝑥1, 𝑥2, ..., 𝑥𝑚)𝑇 ∈ ℝ𝑚∖{0} and 𝑦 = (𝑦1, 𝑦2, ..., 𝑦𝑛)𝑇 ∈ ℝ𝑛∖{0} are the
corresponding left and right M-eigenvectors, and  is an M-identity tensor, then

 ⋅ 𝑦𝑥𝑦 = 𝜆𝑥 = 𝜆 ⋅ 𝑦𝑥𝑦, 𝑥T𝑥 = 1 𝑎𝑛𝑑 𝑦T𝑦 = 1.

Let
|𝑥𝑡| ≥ |𝑥𝑠| = max

𝑖∈[𝑚],𝑖≠𝑡
|𝑥𝑖|, 0 < |𝑥𝑡| ≤ 1.

From  ⋅ 𝑦𝑥𝑦 = 𝜆𝑥 = 𝜆 ⋅ 𝑦𝑥𝑦, it holds that
∑

𝑘∈[𝑚], 𝑗,𝑙∈[𝑛]
𝜆(𝑡𝑗𝑘𝑙)𝑦𝑗𝑥𝑘𝑦𝑙 =

∑

𝑘∈[𝑚], 𝑗,𝑙∈[𝑛]
𝑎𝑡𝑗𝑘𝑙𝑦𝑗𝑥𝑘𝑦𝑙.
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Then, for any real number 𝛼𝑡, it follows that

(𝜆 − 𝛼𝑡)𝑥𝑡 =
∑

𝑘∈[𝑚], 𝑗,𝑙∈[𝑛]
(𝜆 − 𝛼𝑡)()𝑡𝑗𝑘𝑙𝑦𝑗𝑥𝑘𝑦𝑙

=
∑

𝑘≠𝑡,𝑘∈[𝑚], 𝑗,𝑙∈[𝑛]
(𝑎𝑡𝑗𝑘𝑙 − 𝛼𝑡()𝑡𝑗𝑘𝑙)𝑦𝑗𝑥𝑘𝑦𝑙

+
∑

𝑗,𝑙∈[𝑛]
(𝑎𝑡𝑗𝑡𝑙 − 𝛼𝑡()𝑡𝑗𝑡𝑙)𝑦𝑗𝑥𝑡𝑦𝑙.

Taking modulus in the above equation and using the triangle inequality leads to

|𝜆 − 𝛼𝑡||𝑥𝑡| ≤
∑

𝑘∈[𝑚],𝑘≠𝑡, 𝑗,𝑙∈[𝑛]
|𝑎𝑡𝑗𝑘𝑙 − 𝛼𝑡()𝑡𝑗𝑘𝑙||𝑦𝑗||𝑥𝑘||𝑦𝑙|

+
∑

𝑗,𝑙∈[𝑛]
|𝑎𝑡𝑗𝑡𝑙 − 𝛼𝑡()𝑡𝑗𝑡𝑙||𝑦𝑗||𝑥𝑡||𝑦𝑙|

≤ (𝑅𝑡(, 𝛼𝑡) − 𝑅𝑡
𝑡(, 𝛼𝑡))|𝑥𝑠| + 𝑅𝑡

𝑡(, 𝛼𝑡)|𝑥𝑡|.

Therefore,

|𝜆 − 𝛼𝑡| − 𝑅𝑡
𝑡(, 𝛼𝑡) ≤ (𝑅𝑡(, 𝛼𝑡) − 𝑅𝑡

𝑡(, 𝛼𝑡))
|𝑥𝑠|
|𝑥𝑡|

. (10)

(1) If |𝑥𝑠| = 0, then |𝜆 − 𝛼𝑡| − 𝑅𝑡
𝑡(, 𝛼𝑡) ≤ 0, which implies 𝜆 ∈ 𝔑𝑡,𝑠(, 𝛼) ⊆ 𝔑(, 𝛼).

(2) If |𝑥𝑠| > 0, we have

(𝜆 − 𝛼𝑠)𝑥𝑠 =
∑

𝑘∈[𝑚], 𝑗,𝑙∈[𝑛]
(𝑎𝑠𝑗𝑘𝑙 − 𝛼𝑠()𝑠𝑗𝑘𝑙)𝑦𝑗𝑥𝑘𝑦𝑙.

Taking modulus in the above equation, we have

|𝜆 − 𝛼𝑠||𝑥𝑠| ≤
∑

𝑘∈[𝑚], 𝑗,𝑙∈[𝑛]
|𝑎𝑠𝑗𝑘𝑙 − 𝛼𝑠()𝑠𝑗𝑘𝑙||𝑦𝑗||𝑥𝑘||𝑦𝑙|

≤ 𝑅𝑠(, 𝛼𝑠)|𝑥𝑡|.

Therefore,

|𝜆 − 𝛼𝑠| ≤ 𝑅𝑠(, 𝛼𝑠)
|𝑥𝑡|
|𝑥𝑠|

. (11)

(i) If |𝜆 − 𝛼𝑡| − 𝑅𝑡
𝑡(, 𝛼𝑡) ≥ 0, multiplying (10) with (11) yields

[|𝜆 − 𝛼𝑡| − 𝑅𝑡
𝑡(, 𝛼𝑡)]|𝜆 − 𝛼𝑠| ≤ [𝑅𝑡(, 𝛼𝑡) − 𝑅𝑡

𝑡(, 𝛼𝑡)]𝑅𝑠(, 𝛼𝑠).

That is
𝜆 ∈ 𝔑𝑡,𝑠(, 𝛼) ⊆ 𝔑(, 𝛼).

(ii) If |𝜆 − 𝛼𝑡| − 𝑅𝑡
𝑡(, 𝛼𝑡) < 0, then 𝜆 ∈ 𝔑𝑡,𝑠(, 𝛼) ⊆ 𝔑(, 𝛼). Thus 𝜎() ⊆ 𝔑(, 𝛼).

On the basis of Theorem 7 and Theorem 10, we can establish the following inclusion relationship between 𝔛(, 𝛼) and
𝔑(, 𝛼).

Corollary 3. Let  = (𝑎𝑖𝑗𝑘𝑙) ∈ ℝ[𝑚]×[𝑛]×[𝑚]×[𝑛] be a partially symmetric tensor and  be an M-identity tensor. For any
𝛼 = (𝛼1, ..., 𝛼𝑚)T ∈ ℝ𝑚, then

𝜎() ⊆ 𝔑(, 𝛼) ⊆ 𝔛(, 𝛼).

Proof. For any 𝜆 ∈ 𝔑(, 𝛼), without loss of generality, there exists 𝑡 ∈ [𝑚] such that 𝜆 ∈ 𝔑𝑡,𝑘(, 𝛼), for all 𝑡 ≠ 𝑘. Thus,

[|𝜆 − 𝛼𝑡| − 𝑅𝑡
𝑡(, 𝛼𝑡)]|𝜆 − 𝛼𝑘| ≤ [𝑅𝑡(, 𝛼𝑡) − 𝑅𝑡

𝑡(, 𝛼𝑡)]𝑅𝑘(, 𝛼𝑘).

We now break up the argument into two cases.
Case 1. If [𝑅𝑡(, 𝛼𝑡) − 𝑅𝑡

𝑡(, 𝛼𝑡)]𝑅𝑘(, 𝛼𝑘) = 0, then

|𝜆 − 𝛼𝑡| − 𝑅𝑡
𝑡(, 𝛼𝑡) ≤ 0 𝑜𝑟 𝜆 = 𝛼𝑘.

Hence,
|𝜆 − 𝛼𝑡| ≤ 𝑅𝑡

𝑡(, 𝛼𝑡) ≤ 𝑅𝑡(, 𝛼𝑡) 𝑜𝑟 𝜆 = 𝛼𝑘.
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Therefore, 𝜆 ∈ 𝔛𝑡(, 𝛼)
⋃

𝔛𝑘(, 𝛼) ⊆ 𝔛(, 𝛼).
Case 2. If [𝑅𝑡(, 𝛼𝑡) − 𝑅𝑡

𝑡(, 𝛼𝑡)]𝑅𝑘(, 𝛼𝑘) > 0, then
|𝜆 − 𝛼𝑡| − 𝑅𝑡

𝑡(, 𝛼𝑡)
𝑅𝑡(, 𝛼𝑡) − 𝑅𝑡

𝑡(, 𝛼𝑡)
⋅

|𝜆 − 𝛼𝑘|
𝑅𝑘(, 𝛼𝑘)

≤ 1.

That is
|𝜆 − 𝛼𝑡| − 𝑅𝑡

𝑡(, 𝛼𝑡)
𝑅𝑡(, 𝛼𝑡) − 𝑅𝑡

𝑡(, 𝛼𝑡)
≤ 1 𝑜𝑟

|𝜆 − 𝛼𝑘|
𝑅𝑘(, 𝛼𝑘)

≤ 1.

Therefore,
|𝜆 − 𝛼𝑡| ≤ 𝑅𝑡(, 𝛼𝑡) 𝑜𝑟 |𝜆 − 𝛼𝑘| ≤ 𝑅𝑘(, 𝛼𝑘),

which implies 𝜆 ∈ 𝔛𝑡(, 𝛼)
⋃

𝔛𝑘(, 𝛼) ⊆ 𝔛(, 𝛼). Thus 𝔑(, 𝛼) ⊆ 𝔛(, 𝛼).

Theorem 11. Let  = (𝑎𝑖𝑗𝑘𝑙) ∈ ℝ[𝑚]×[𝑛]×[𝑚]×[𝑛] be a partially symmetric tensor and  be an M-identity tensor. For any
𝛼 = (𝛼1, ..., 𝛼𝑚)T ∈ ℝ𝑚, then

𝜎() ⊆ 𝔐(, 𝛼) =
⋃

𝑖,𝑘∈[𝑚], 𝑘≠𝑖

(

𝔐𝑖,𝑘(, 𝛼)
⋃

ℌ𝑖,𝑘(, 𝛼)
)

,

where

𝔐𝑖,𝑘(, 𝛼) = {𝜆 ∈ ℝ ∶ [|𝜆 − 𝛼𝑖| − (𝑅𝑖(, 𝛼𝑖) − 𝑅𝑘
𝑖 (, 𝛼𝑖))][|𝜆 − 𝛼𝑘| − 𝑅𝑘

𝑘(, 𝛼𝑘)]
≤ 𝑅𝑘

𝑖 (, 𝛼𝑖)[𝑅𝑘(, 𝛼𝑘) − 𝑅𝑘
𝑘(, 𝛼𝑘)]},

and
ℌ𝑖,𝑘(, 𝛼) = {𝜆 ∈ ℝ ∶ |𝜆 − 𝛼𝑖| − (𝑅𝑖(, 𝛼𝑖) − 𝑅𝑘

𝑖 (, 𝛼𝑖)) ≤ 0, |𝜆 − 𝛼𝑘| − 𝑅𝑘
𝑘(, 𝛼𝑘) < 0}.

Further,
𝜎() ⊆

⋂

𝛼∈ℝ𝑚

𝔐(, 𝛼).

Proof. Assume that 𝜆 is an M-eigenvalue of , 𝑥 = (𝑥1, 𝑥2, ..., 𝑥𝑚)𝑇 ∈ ℝ𝑚∖{0} and 𝑦 = (𝑦1, 𝑦2, ..., 𝑦𝑛)𝑇 ∈ ℝ𝑛∖{0} are the
corresponding left and right M-eigenvectors, and  is an M-identity tensor, then

 ⋅ 𝑦𝑥𝑦 = 𝜆𝑥 = 𝜆 ⋅ 𝑦𝑥𝑦, 𝑥T𝑥 = 1 𝑎𝑛𝑑 𝑦T𝑦 = 1.

Let
|𝑥𝑡| ≥ |𝑥𝑠| = max

𝑖∈[𝑚],𝑖≠𝑡
|𝑥𝑖|, 0 < |𝑥𝑡| ≤ 1

From  ⋅ 𝑦𝑥𝑦 = 𝜆𝑥 = 𝜆 ⋅ 𝑦𝑥𝑦, it holds that
∑

𝑘∈[𝑚], 𝑗,𝑙∈[𝑛]
𝜆(𝑡𝑗𝑘𝑙)𝑦𝑗𝑥𝑘𝑦𝑙 =

∑

𝑘∈[𝑚], 𝑗,𝑙∈[𝑛]
𝑎𝑡𝑗𝑘𝑙𝑦𝑗𝑥𝑘𝑦𝑙.

Then, for any real number 𝛼𝑡, it follows that

(𝜆 − 𝛼𝑡)𝑥𝑡 =
∑

𝑘∈[𝑚], 𝑗,𝑙∈[𝑛]
(𝜆 − 𝛼𝑡)()𝑡𝑗𝑘𝑙𝑦𝑗𝑥𝑘𝑦𝑙

=
∑

𝑘≠𝑠,𝑘∈[𝑚], 𝑗,𝑙∈[𝑛]
(𝑎𝑡𝑗𝑘𝑙 − 𝛼𝑡()𝑡𝑗𝑘𝑙)𝑦𝑗𝑥𝑘𝑦𝑙

+
∑

𝑗,𝑙∈[𝑛]
(𝑎𝑡𝑗𝑠𝑙 − 𝛼𝑡()𝑡𝑗𝑠𝑙)𝑦𝑗𝑥𝑠𝑦𝑙.

Taking modulus in the above equation and using the triangle inequality gives

|𝜆 − 𝛼𝑡||𝑥𝑡| ≤
∑

𝑘∈[𝑚],𝑘≠𝑠, 𝑗,𝑙∈[𝑛]
|𝑎𝑡𝑗𝑘𝑙 − 𝛼𝑡()𝑡𝑗𝑘𝑙||𝑦𝑗||𝑥𝑘||𝑦𝑙|

+
∑

𝑗,𝑙∈[𝑛]
|𝑎𝑡𝑗𝑠𝑙 − 𝛼𝑡()𝑡𝑗𝑠𝑙||𝑦𝑗||𝑥𝑠||𝑦𝑙|

≤ (𝑅𝑡(, 𝛼𝑡) − 𝑅𝑠
𝑡 (, 𝛼𝑡))|𝑥𝑡| + 𝑅𝑠

𝑡 (, 𝛼𝑡)|𝑥𝑠|.

Therefore,

|𝜆 − 𝛼𝑡| − (𝑅𝑡(, 𝛼𝑡) − 𝑅𝑠
𝑡 (, 𝛼𝑡)) ≤ 𝑅𝑠

𝑡 (, 𝛼𝑡)
|𝑥𝑠|
|𝑥𝑡|

. (12)
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(1) If |𝑥𝑠| = 0, then |𝜆 − 𝛼𝑡| − (𝑅𝑡(, 𝛼𝑡) − 𝑅𝑠
𝑡 (, 𝛼𝑡)) ≤ 0.

(i) If |𝜆 − 𝛼𝑠| − 𝑅𝑠
𝑠(, 𝛼𝑠) ≥ 0, then 𝜆 ∈ 𝔐𝑡,𝑠(, 𝛼) ⊆ 𝔐(, 𝛼).

(ii) If |𝜆 − 𝛼𝑠| − 𝑅𝑠
𝑠(, 𝛼𝑠) < 0, then 𝜆 ∈ ℌ𝑡,𝑠(, 𝛼) ⊆ 𝔐(, 𝛼).

(2) If |𝑥𝑠| > 0, we have

|𝜆 − 𝛼𝑠||𝑥𝑠| ≤
∑

𝑘∈[𝑚],𝑘≠𝑠, 𝑗,𝑙∈[𝑛]
|𝑎𝑠𝑗𝑘𝑙 − 𝛼𝑠()𝑠𝑗𝑘𝑙||𝑦𝑗||𝑥𝑘||𝑦𝑙|

+
∑

𝑗,𝑙∈[𝑛]
|𝑎𝑠𝑗𝑠𝑙 − 𝛼𝑠()𝑠𝑗𝑠𝑙||𝑦𝑗||𝑥𝑠||𝑦𝑙|

≤ (𝑅𝑠(, 𝛼𝑠) − 𝑅𝑠
𝑠(, 𝛼𝑠))|𝑥𝑡| + 𝑅𝑠

𝑠(, 𝛼𝑠)|𝑥𝑠|.

Therefore,

|𝜆 − 𝛼𝑠| − 𝑅𝑠
𝑠(, 𝛼𝑠) ≤ (𝑅𝑠(, 𝛼𝑠) − 𝑅𝑠

𝑠(, 𝛼𝑠))
|𝑥𝑡|
|𝑥𝑠|

. (13)

(i)If |𝜆 − 𝛼𝑡| − (𝑅𝑡(, 𝛼𝑡) − 𝑅𝑠
𝑡 (, 𝛼𝑡)) ≥ 0 𝑜𝑟 |𝜆 − 𝛼𝑠| − 𝑅𝑠

𝑠(, 𝛼𝑠) ≥ 0, multiplying (12) with (13) yields

[|𝜆 − 𝛼𝑡| − (𝑅𝑡(, 𝛼𝑡) − 𝑅𝑠
𝑡 (, 𝛼𝑡))][|𝜆 − 𝛼𝑠| − 𝑅𝑠

𝑠(, 𝛼𝑠)]
≤ 𝑅𝑠

𝑡 (, 𝛼𝑡)(𝑅𝑠(, 𝛼𝑠) − 𝑅𝑠
𝑠(, 𝛼𝑠)).

That is
𝜆 ∈ 𝔐𝑡,𝑠(, 𝛼) ⊆ 𝔐(, 𝛼).

(ii)If |𝜆 − 𝛼𝑡| − (𝑅𝑡(, 𝛼𝑡) − 𝑅𝑠
𝑡 (, 𝛼𝑡))) < 0 𝑎𝑛𝑑 |𝜆 − 𝛼𝑠| − 𝑅𝑠

𝑠(, 𝛼𝑠) < 0, then 𝜆 ∈ ℌ𝑡,𝑠(, 𝛼) ⊆ 𝔐(, 𝛼). This shows that
𝜎() ⊆ 𝔐(, 𝛼).

On the basis of Theorem 7 and Theorem 11, we can establish the following inclusion relationship between 𝔛(, 𝛼) and
𝔐(, 𝛼).

Corollary 4. Let  = (𝑎𝑖𝑗𝑘𝑙) ∈ ℝ[𝑚]×[𝑛]×[𝑚]×[𝑛] be a partially symmetric tensor and  be an M-identity tensor. For any
𝛼 = (𝛼1, ..., 𝛼𝑚)T ∈ ℝ𝑚, then

𝜎() ⊆ 𝔐(, 𝛼) ⊆ 𝔛(, 𝛼).

Proof. For any 𝜆 ∈ 𝔐(, 𝛼), without loss of generality, there exists 𝑡 ∈ [𝑚] such that 𝜆 ∈ 𝔐𝑡,𝑘(, 𝛼), for all 𝑡 ≠ 𝑘. We break
the proof into two cases.
Case 1. If 𝜆 ∈ ℌ𝑡,𝑘(, 𝛼), then

|𝜆 − 𝛼𝑡| − (𝑅𝑡(, 𝛼𝑡) − 𝑅𝑘
𝑡 (, 𝛼𝑡)) ≤ 0 𝑎𝑛𝑑 |𝜆 − 𝛼𝑘| − 𝑅𝑘

𝑘(, 𝛼𝑘) < 0.

Therefore,
|𝜆 − 𝛼𝑡| ≤ 𝑅𝑡(, 𝛼𝑡) 𝑎𝑛𝑑 |𝜆 − 𝛼𝑘| ≤ 𝑅𝑘(, 𝛼𝑘).

which implies 𝜆 ∈ 𝔛𝑡(, 𝛼)
⋃

𝔛𝑘(, 𝛼) ⊆ 𝔛(, 𝛼).
Case 2. If 𝜆 ∈ 𝔐𝑡,𝑘(, 𝛼), then

[|𝜆 − 𝛼𝑡| − (𝑅𝑡(, 𝛼𝑡) − 𝑅𝑘
𝑡 (, 𝛼)𝑡)][|𝜆 − 𝛼𝑘| − 𝑅𝑘

𝑘(, 𝛼𝑘)]
≤ 𝑅𝑘

𝑡 (, 𝛼𝑡)[𝑅𝑘(, 𝛼𝑘) − 𝑅𝑘
𝑘(, 𝛼𝑘)].

(i) If 𝑅𝑘
𝑡 (, 𝛼𝑡)[𝑅𝑘(, 𝛼𝑘) − 𝑅𝑘

𝑘(, 𝛼𝑘)] = 0, then

[|𝜆 − 𝛼𝑡| − (𝑅𝑡(, 𝛼𝑡) − 𝑅𝑘
𝑡 (, 𝛼)𝑡)][|𝜆 − 𝛼𝑘| − 𝑅𝑘

𝑘(, 𝛼𝑘)] ≤ 0.

Therefore,
|𝜆 − 𝛼𝑡| − (𝑅𝑡(, 𝛼𝑡) − 𝑅𝑘

𝑡 (, 𝛼)𝑡) ≤ 0 𝑜𝑟 [|𝜆 − 𝛼𝑘| − 𝑅𝑘
𝑘(, 𝛼𝑘)] ≤ 0.

This is
|𝜆 − 𝛼𝑡| ≤ 𝑅𝑡(, 𝛼𝑡) 𝑜𝑟 |𝜆 − 𝛼𝑘| ≤ 𝑅𝑘(, 𝛼𝑘),

which implies 𝜆 ∈ 𝔛𝑡(, 𝛼)
⋃

𝔛𝑘(, 𝛼) ⊆ 𝔛(, 𝛼).
(ii) If 𝑅𝑘

𝑡 (, 𝛼𝑡)[𝑅𝑘(, 𝛼𝑘) − 𝑅𝑘
𝑘(, 𝛼𝑘)] > 0, then

|𝜆 − 𝛼𝑡| − (𝑅𝑡(, 𝛼𝑡) − 𝑅𝑘
𝑡 (, 𝛼𝑡))

𝑅𝑘
𝑡 (, 𝛼𝑡)

⋅
|𝜆 − 𝛼𝑘| − 𝑅𝑘

𝑘(, 𝛼𝑘)

𝑅𝑘(, 𝛼𝑘) − 𝑅𝑘
𝑘(, 𝛼𝑘)

≤ 1.
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That is
|𝜆 − 𝛼𝑡| − (𝑅𝑡(, 𝛼𝑡) − 𝑅𝑘

𝑡 (, 𝛼𝑡))

𝑅𝑘
𝑡 (, 𝛼𝑡)

≤ 1 𝑜𝑟
|𝜆 − 𝛼𝑘| − 𝑅𝑘

𝑘(, 𝛼𝑘)

𝑅𝑘(, 𝛼𝑘) − 𝑅𝑘
𝑘(, 𝛼𝑘)

≤ 1.

Therefore,
|𝜆 − 𝛼𝑡| ≤ 𝑅𝑡(, 𝛼𝑡) 𝑜𝑟 |𝜆 − 𝛼𝑘| ≤ 𝑅𝑘(, 𝛼𝑘),

which implies 𝜆 ∈ 𝔛𝑡(, 𝛼)
⋃

𝔛𝑘(, 𝛼) ⊆ 𝔛(, 𝛼). Thus 𝔐(, 𝛼) ⊆ 𝔛(, 𝛼).

Example 3.1. Consider the partially symmetric tensor  = (𝑎𝑖𝑗𝑘𝑙) ∈ ℝ[2]×[2]×[2]×[2] with

𝑎𝑖𝑗𝑘𝑙 =

⎧

⎪

⎨

⎪

⎩

𝑎1111 = 2, 𝑎1211 = 𝑎1112 = 3, 𝑎1121 = 6, 𝑎1212 = 2;
𝑎1222 = 10, 𝑎2111 = 6, 𝑎2212 = 10, 𝑎2222 = 5;
𝑎𝑖𝑗𝑘𝑙 = 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

Here, we set 𝛼 = (2, 5)T (This optimal parameter is obtained by traversal). The bounds via different inclusion theorems are
shown in Table 1.

Table 1 Comparison of the inclusion intervals of Example 3.1.

Theorem Inclusion interval
Theorem 2.120 Γ() = [−26, 26]
Theorem 2.220 () = [−24, 24]
Theorem 2.320 () = [−23.6941, 23.6941]
Theorem 2.420  () = [−24, 24]

Theorem 2.5 Ours Υ() = [−23.6941, 23.6941]
Theorem 2.6 Ours Θ() = [−23.6941, 23.6941]

Theorem 3.126 𝔛(, (2, 5)) = [−22, 24]
Theorem 3.226 𝔎(, (2, 5)) = [−16.1208, 22.5702]

Theorem 3.4 Ours 𝔑(, (2, 5)) = [−16.1208, 22.5702]
Theorem 3.5 Ours 𝔐(, (2, 5)) = [−16.1208, 22.5702]

Example 3.2. Consider the partially symmetric tensor with

𝑎𝑖𝑗𝑘𝑙 =

⎧

⎪

⎨

⎪

⎩

𝑎1111 = 20, 𝑎1122 = 𝑎1221 = 1, 𝑎1212 = 8;
𝑎2222 = 10, 𝑎2112 = 𝑎2211 = 1, 𝑎2121 = 7;
𝑎𝑖𝑗𝑘𝑙 = 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

Here, we set 𝛼 = (14, 8.5)T (This optimal parameter is obtained by traversal26). The bounds via different inclusion theorems are
shown in Table 2.

Example 3.1 and Example 3.2 give the comparison between the M-eigenvalue inclusion intervals. From Table 1 and Table
2, we can see that the inclusion intervals obtained in Section 3 are significantly smaller than Section 2. When 𝑚 = 𝑛 = 2,
𝔑(, 𝛼) = 𝔎(, 𝛼). From Table 1, 𝔑(, 𝛼) and 𝔐(, 𝛼) are more accurate than 𝔛(, 𝛼) and (). From Table 2, it can
be seen that 𝔐(, 𝛼) is more accurate than 𝔛(, 𝛼) and 𝔎(, 𝛼). This shows that our inclusion intervals are better than the
existing results in some cases. Moreover, our inclusion intervals can be positioned on the non-negative axis.

4 APPLICATION TO WQZ-ALGORITHM

In this section, we first present new upper bounds of the fourth-order partially symmetric tensors using the results derived in
Section 2. Then, as an application, taking these new upper bounds as a parameter in WQZ-algorithm, can make the generated
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Table 2 Comparison of the inclusion interval of Example 3.2.

References Inclusion interval
Theorem 2.120 Γ() = [−30, 30]
Theorem 2.220 () = [−29.2971, 29.2971]
Theorem 2.320 () = [−28.3523, 28.3523]
Theorem 2.420  () = [−29.2971, 29.2971]

Theorem 2.5 Ours Υ() = [−28.3523, 28.3523]
Theorem 2.6 Ours Θ() = [−28.3523, 28.3523]

Theorem 3.126 𝔛(, (14, 8.5)) = [0, 28]
Theorem 3.226 𝔎(, (14, 8.5)) = [0.7154, 26.5539]

Theorem 3.4 Ours 𝔑(, (14, 8.5)) = [0.7154, 26.5539]
Theorem 3.5 Ours 𝔐(, (14, 8.5)) = [1.0925, 26.2708]

sequence more rapidly converge to a good approximation of the M-spectral radius. The WQZ-algorithm for solving the largest
M-eigenvalue is summarized as follows.

Algorithm 1 WQZ-Algorithm23

1: Initial Step: Input  = (𝑎𝑖𝑗𝑘𝑙) ∈ ℝ[𝑚]×[𝑛]×[𝑚]×[𝑛] and unfold it into a matrix 𝐴 = (𝐴𝑠𝑡) ∈ ℝ[𝑚𝑛]×[𝑚𝑛] by mapping 𝐴𝑠𝑡 = 𝑎𝑖𝑗𝑘𝑙
with 𝑠 = 𝑛(𝑖 − 1) + 𝑗, 𝑡 = 𝑛(𝑘 − 1) + 𝑙.

2: Substep 1: Take 𝜏 =
∑

1≤𝑠≤𝑡≤𝑚𝑛
|𝐴𝑠𝑡| and  = 𝜏 +, where  = (𝛿𝑖𝑗𝑘𝑙) ∈ ℝ[𝑚]×[𝑛]×[𝑚]×[𝑛] with 𝛿𝑖𝑗𝑘𝑙 = 1 if 𝑖 = 𝑘 and 𝑗 = 𝑙,

otherwise, 𝛿𝑖𝑗𝑘𝑙 = 0. Then unfold  = (𝑎𝑖𝑗𝑘𝑙) ∈ ℝ[𝑚]×[𝑛]×[𝑚]×[𝑛] into a matrix 𝐴 = (𝐴𝑠𝑡) ∈ ℝ[𝑚𝑛]×[𝑚𝑛]

3: Substep 2: Compute the unit eigenvalue 𝑤 = (𝑤𝑖)𝑚𝑛𝑖=1 ∈ ℝ𝑚𝑛 of matrix 𝐴 associated with its largest eigenvalue, and fold
vector 𝑤 into the matrix 𝑊 = (𝑊𝑖𝑗) ∈ ℝ[𝑚]×[𝑛], 𝑊𝑖𝑗 = 𝑤𝑘, where 𝑖 = ⌈𝑘∕𝑛⌉, 𝑗 = (𝑘 − 1)𝑚𝑜𝑑𝑛 + 1, ∀𝑘 = 1, 2, ..., 𝑚𝑛.

4: Substep 3: Compute the singular vectors 𝑢1 and 𝑣1 corresponding to the largest singular value 𝜎1 of the matrix 𝑊 . Specif-

ically, the singular value decomposition of 𝑊 is 𝑊 = 𝑈TΣ𝑉 =
𝑟
∑

𝑖=1
𝜎𝑖𝑢𝑖𝑣T𝑖 , where 𝜎1 ≥ 𝜎2 ≥ ... ≥ 𝜎𝑟 and 𝑟 is the rank of

𝑊 .
5: Substep 4: Take 𝑥0 = 𝑢1, 𝑦0 = 𝑣1, and let 𝑘 = 0.
6: Iterative Step: Execute the following procedures alternatively until certain convergence criterion is satisfied and output

𝑥∗, 𝑦∗:

𝑥𝑘+1 =  ⋅ 𝑦𝑘𝑥𝑘𝑦𝑘, 𝑥𝑘+1 =
𝑥𝑘+1

‖𝑥𝑘+1‖
,

𝑦𝑘+1 = 𝑥𝑘+1𝑦𝑘𝑥𝑘+1, 𝑦𝑘+1 =
𝑦𝑘+1

‖𝑦𝑘+1‖
,

𝑘 = 𝑘 + 1.
7: Final Step: Output the largest M-eigenvalue of the tensor : 𝜆max() = 𝑓 (𝑥∗, 𝑦∗) − 𝜏, where 𝑓 (𝑥∗, 𝑦∗) =

𝑚
∑

𝑖,𝑘=1

𝑛
∑

𝑗,𝑙=1
𝑎𝑖𝑗𝑘𝑙𝑥∗𝑖 𝑦

∗
𝑗𝑥

∗
𝑘𝑦

∗
𝑙 and the associated M-eigenvectors: 𝑥∗, 𝑦∗.

We recall some existing upper bounds for M-eigenvalues of the fourth-order partially symmetric tensor in20.
Theorem 12. 20 Let  = (𝑎𝑖𝑗𝑘𝑙) ∈ ℝ[𝑚]×[𝑛]×[𝑚]×[𝑛] be a partially symmetric tensor. Then

𝜌() ≤ 𝜏1 = max
𝑖∈[𝑚]

𝑅𝑖().

Theorem 13. 20 Let  = (𝑎𝑖𝑗𝑘𝑙) ∈ ℝ[𝑚]×[𝑛]×[𝑚]×[𝑛] be a partially symmetric tensor. Then

𝜌() ≤ 𝜏2

= max
𝑖∈[𝑚]

min
𝑘∈[𝑚], 𝑘≠𝑖

1
2

{

𝑅𝑖() − 𝑅𝑘
𝑖 () +

√

(𝑅𝑖() − 𝑅𝑘
𝑖 ())2 + 4𝑅𝑘

𝑖 ()𝑅𝑘()
}

.
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Theorem 14. 20 Let  = (𝑎𝑖𝑗𝑘𝑙) ∈ ℝ[𝑚]×[𝑛]×[𝑚]×[𝑛] be a partially symmetric tensor. Then

𝜌() ≤ 𝜏3 = max
𝑖,𝑘∈[𝑚], 𝑘≠𝑖

{1
2
(𝑅𝑖() − 𝑅𝑘

𝑖 () + 𝑅𝑘
𝑘() + 𝛿𝑘𝑖 ), 𝑅𝑖() − 𝑅𝑘

𝑖 (), 𝑅𝑘
𝑘()

}

,

where

𝛿𝑘𝑖 () = ((𝑅𝑖() − 𝑅𝑘
𝑖 () + 𝑅𝑘

𝑘())2 − 4[(𝑅𝑖() − 𝑅𝑘
𝑖 ())𝑅𝑘

𝑘()
−𝑅𝑘

𝑖 ()(𝑅𝑘() − 𝑅𝑘
𝑘())])1∕2.

Theorem 15. 20 Let  = (𝑎𝑖𝑗𝑘𝑙) ∈ ℝ[𝑚]×[𝑛]×[𝑚]×[𝑛] be a partially symmetric tensor. Then

𝜌() ≤ 𝜏4 = max
𝑖,𝑘∈[𝑚], 𝑘≠𝑖

{

1
2
(𝑅𝑖

𝑖() +
√

𝑅𝑖
𝑖()2 + 4((𝑅𝑖() − 𝑅𝑖

𝑖())𝑅𝑘()))
}

.

By Theorem 5 and Theorem 6, we obtain the following result.

Theorem 16. Let  = (𝑎𝑖𝑗𝑘𝑙) ∈ ℝ[𝑚]×[𝑛]×[𝑚]×[𝑛] be a partially symmetric tensor. Then

𝜌() ≤ 𝜏5 = max
𝑖,𝑘∈[𝑚], 𝑘≠𝑖

{1
2
(

[(𝑅𝑖() − 𝑅𝑘
𝑖 ()) + (𝑅𝑘() − 𝑅𝑖

𝑘())] + 𝛿𝑘𝑖 ()
)

,

𝑅𝑖() − 𝑅𝑘
𝑖 (), 𝑅𝑘() − 𝑅𝑖

𝑘()
}

,

where

𝛿𝑘𝑖 () = ([(𝑅𝑖() − 𝑅𝑘
𝑖 ()) + (𝑅𝑘() − 𝑅𝑖

𝑘())]2 − 4[(𝑅𝑖() − 𝑅𝑘
𝑖 ())

(𝑅𝑘() − 𝑅𝑖
𝑘()) − 𝑅𝑘

𝑖 ()𝑅𝑖
𝑘()])1∕2.

Proof. Suppose 𝜌() is the largest M-eigenvalue of . We complete the proof by two cases.
Case 1. There exist 𝑖, 𝑘 ∈ [𝑚], 𝑖 ≠ 𝑘 such that 𝜌() ∈ �̃�𝑖,𝑘(). In this case, we have

(𝜌() − 𝑅𝑖() + 𝑅𝑘
𝑖 ())(𝜌() − 𝑅𝑘() + 𝑅𝑖

𝑘()) ≤ 𝑅𝑘
𝑖 ()𝑅𝑖

𝑘(),

which yields that

𝜌() ≤ 1
2
(

[(𝑅𝑖() − 𝑅𝑘
𝑖 ()) + (𝑅𝑘() − 𝑅𝑖

𝑘())] + 𝛿𝑘𝑖 ()
)

≤ max
𝑖,𝑘∈[𝑚], 𝑘≠𝑖

1
2
(

[(𝑅𝑖() − 𝑅𝑘
𝑖 ()) + (𝑅𝑘() − 𝑅𝑖

𝑘())] + 𝛿𝑘𝑖 ()
)

.

Case 2. There exist 𝑖, 𝑘 ∈ [𝑚], 𝑖 ≠ 𝑘 such that 𝜌() ∈ �̂�𝑖,𝑘(). In this case, we get

𝜌() ≤ 𝑅𝑖() − 𝑅𝑘
𝑖 (),

and
𝜌() ≤ 𝑅𝑘() − 𝑅𝑖

𝑘().
Thus, we complete the proof.

Similar to the proof of Theorem 16, the following conclusion is true.

Theorem 17. Let  = (𝑎𝑖𝑗𝑘𝑙) ∈ ℝ[𝑚]×[𝑛]×[𝑚]×[𝑛] be a partially symmetric tensor. Then

𝜌() ≤ 𝜏6 = max
𝑖,𝑘∈[𝑚], 𝑘≠𝑖

{1
2
(𝑅𝑖

𝑖() + 𝑅𝑘
𝑘() + 𝛿𝑘𝑖 ()), 𝑅𝑖

𝑖()
}

,

where
𝛿𝑘𝑖 () =

√

(𝑅𝑖
𝑖() + 𝑅𝑘

𝑘()) − 4(𝑅𝑖
𝑖()𝑅𝑘

𝑘() − ((𝑅𝑖() − 𝑅𝑘
𝑖 ())(𝑅𝑘() − 𝑅𝑖

𝑘())).

Viewing Theorem 12 to Theorem 17, 𝜏1 to 𝜏6 are upper bounds for the M-spectral radius of a fourth-order partially symmetric
tensor, hence they can be taken as the parameter 𝜏 in WQZ-algorithm. Li et al.21 illustrated that the selection for the parameter 𝜏
in the WQZ-algorithm has a significant impact on the convergence rate. The comparison is illustrated by the following example,
refer to23.
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Example 4.1. 23 Consider the tensor 2 with

2(∶, ∶, 1, 1) =
⎡

⎢

⎢

⎣

−0.9727 0.3169 −0.3437
−0.6332 −0.7866 0.4257
−0.3350 −0.9896 −0.4323

⎤

⎥

⎥

⎦

,

2(∶, ∶, 2, 1) =
⎡

⎢

⎢

⎣

−0.6332 −0.7866 0.4257
0.7387 0.6873 −0.3248
−0.7986 −0.5988 −0.9485

⎤

⎥

⎥

⎦

,

2(∶, ∶, 3, 1) =
⎡

⎢

⎢

⎣

−0.3350 −0.9896 −0.4323
−0.7986 −0.5988 −0.9485
0.5853 0.5921 0.6301

⎤

⎥

⎥

⎦

,

2(∶, ∶, 1, 2) =
⎡

⎢

⎢

⎣

0.3169 0.6158 −0.0184
−0.7866 0.0160 0.0085
−0.9896 −0.6663 0.2559

⎤

⎥

⎥

⎦

,

2(∶, ∶, 2, 2) =
⎡

⎢

⎢

⎣

−0.7866 0.0160 0.0085
0.6873 0.5160 −0.0216
−0.5988 0.0411 0.9857

⎤

⎥

⎥

⎦

,

2(∶, ∶, 3, 2) =
⎡

⎢

⎢

⎣

−0.9896 −0.6663 0.2559
−0.5988 0.0411 0.9857
0.5921 −0.2907 −0.3881

⎤

⎥

⎥

⎦

,

2(∶, ∶, 1, 3) =
⎡

⎢

⎢

⎣

−0.3437 −0.0184 0.5649
0.4257 0.0085 −0.1439
−0.4323 0.2559 0.6162

⎤

⎥

⎥

⎦

,

2(∶, ∶, 2, 3) =
⎡

⎢

⎢

⎣

0.4257 0.0085 −0.1439
−0.3248 −0.0216 −0.0037
−0.9485 0.9857 −0.7734

⎤

⎥

⎥

⎦

,

2(∶, ∶, 3, 3) =
⎡

⎢

⎢

⎣

−0.4323 0.2559 0.6162
−0.9485 0.9857 −0.7734
0.6301 −0.3881 −0.8526

⎤

⎥

⎥

⎦

.

By calculation, we can get 𝜏 = 23.3503. The values of 𝜏1, ..., 𝜏6 are as follows.

𝜏1 𝜏2 𝜏3 𝜏4 𝜏5 𝜏6
16.6014 15.4102 15.1288 14.9160 15.4044 15.1393

Taking 𝜏1, ..., 𝜏6 to 𝜏 in the WQZ-algorithm. The numerical result is given in Figure 3.
From Figure 3, it can be seen that, when taking 𝜏 = 𝜏5, 𝜏6, the WQZ-algorithm needs fewer iterations and converges more

rapidly to the largest M-eigenvalue 𝜆max() than 𝜏1, 𝜏2. This shows that our upper bounds are more tighter than the existing
results in some cases.

5 APPLICATION TO STRONG ELLIPTICITY CONDITIONS

In this section, using the bounds derived in Section 3, we first propose some new sufficient conditions for the positive definiteness
of fourth-order partially symmetric tensors. Subsequently, as an application, the strong ellipticity conditions of elastic materials
are obtained through the new sufficient conditions. The following lemma and some existing sufficient conditions for the positive
definiteness are required.
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Figure 3 Numerical results of Example 4.1.

Lemma 1. 1 Let  = (𝑎𝑖𝑗𝑘𝑙) ∈ ℝ[𝑚]×[𝑛]×[𝑚]×[𝑛] be a partially symmetric tensor. The strong ellipticity condition holds. i.e.,

𝑓 (𝑥, 𝑦) = 𝑥𝑦𝑥𝑦 =
𝑚
∑

𝑖,𝑘=1

𝑛
∑

𝑗,𝑙=1
𝑎𝑖𝑗𝑘𝑙𝑥𝑖𝑦𝑗𝑥𝑘𝑦𝑙 > 0,

for all nonzero vectors 𝑥, 𝑦 ∈ ℝ𝑛 if and only if the smallest M-eigenvalue of  is positive.
Theorem 18. 26 Let  = (𝑎𝑖𝑗𝑘𝑙) ∈ ℝ[𝑚]×[𝑛]×[𝑚]×[𝑛] be a partially symmetric nonnegative tensor and  be an M-identity tensor.
For 𝑖 ∈ [𝑚], if there exists positive real vector 𝛼 = (𝛼1, ..., 𝛼𝑚)T ∈ ℝ𝑚 such that

𝛼𝑖 > 𝑅𝑖(, 𝛼𝑖),

then  is positive definite.
Theorem 19. 26 Let  = (𝑎𝑖𝑗𝑘𝑙) ∈ ℝ[𝑚]×[𝑛]×[𝑚]×[𝑛] be a partially symmetric nonnegative tensor and  be an M-identity tensor.
For 𝑖 ∈ [𝑚], if there exists positive real vector 𝛼 = (𝛼1, ..., 𝛼𝑚)T ∈ ℝ𝑚 and 𝑘 ≠ 𝑖 such that

(𝛼𝑖 − (𝑅𝑖(, 𝛼𝑖) − 𝑅𝑘
𝑖 (, 𝛼𝑖)))𝛼𝑘 > 𝑅𝑘

𝑖 (, 𝛼𝑖)𝑅𝑘(, 𝛼𝑘),

then  is positive definite.

Theorem 20. Let  = (𝑎𝑖𝑗𝑘𝑙) ∈ ℝ[𝑚]×[𝑛]×[𝑚]×[𝑛] be a partially symmetric nonnegative tensor and  be an M-identity tensor.
For 𝑖 ∈ [𝑚], if there exists positive real vector 𝛼 = (𝛼1, ..., 𝛼𝑚)T ∈ ℝ𝑚 and 𝑘 ≠ 𝑖 such that

(𝛼𝑖 − 𝑅𝑖
𝑖(, 𝛼𝑖))𝛼𝑘 > [𝑅𝑖(, 𝛼𝑖) − 𝑅𝑖

𝑖(, 𝛼𝑖)]𝑅𝑘(, 𝛼𝑘), (14)

then  is positive definite. That is, the strong ellipticity condition holds.

Proof. We complete the proof by contradiction. Suppose 𝜆 ≤ 0. From Theorem 10, there exists 𝑖0 ∈ [𝑚] such that 𝛼 ∈
𝔑𝑖0,𝑝(, ⨍ ), then

[|𝜆 − 𝛼𝑖0 | − 𝑅𝑖0
𝑖0
(, 𝛼𝑖0)]|𝜆 − 𝛼𝑝| ≤ [𝑅𝑖0(, 𝛼𝑖0) − 𝑅𝑖0

𝑖0
(, 𝛼𝑖0)]𝑅𝑝(, 𝛼𝑝), ∀𝑝 ≠ 𝑖0.

Further, it follows from 𝛼𝑖0 , 𝛼𝑝 > 0 and 𝜆 ≤ 0 that

[𝛼𝑖0 − 𝑅𝑖0
𝑖0
(, 𝛼𝑖0)]𝛼𝑝 ≤ [|𝜆 − 𝛼𝑖0 | − 𝑅𝑖0

𝑖0
(, 𝛼𝑖0)]|𝜆 − 𝛼𝑝|

≤ [𝑅𝑖0(, 𝛼𝑖0) − 𝑅𝑖0
𝑖0
(, 𝛼𝑖0)]𝑅𝑝(, 𝛼𝑝),

which contradicts (14). Hence, 𝜆 > 0. Since  is partially symmetric and all M-eigenvalues are positive, then  is positive
definite. That is, the strong ellipticity condition of the elastic material is established.
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Theorem 21. Let  = (𝑎𝑖𝑗𝑘𝑙) ∈ ℝ[𝑚]×[𝑛]×[𝑚]×[𝑛] be a partially symmetric nonnegative tensor and  be an M-identity tensor.
For 𝑖 ∈ [𝑚], if there exists positive real vector 𝛼 = (𝛼1, ..., 𝛼𝑚)T ∈ ℝ𝑚 and 𝑘 ≠ 𝑖 such that

[𝛼𝑖 − (𝑅𝑖(, 𝛼𝑖) − 𝑅𝑘
𝑖 (, 𝛼𝑖))][𝛼𝑘 − 𝑅𝑘

𝑘(, 𝛼𝑘)]
> 𝑅𝑘

𝑖 (, 𝛼𝑖)[𝑅𝑘(, 𝛼𝑘) − 𝑅𝑘
𝑘(, 𝛼𝑘)], (15)

or

𝛼𝑖 − (𝑅𝑖(, 𝛼𝑖) − 𝑅𝑘
𝑖 (, 𝛼𝑖)) > 0 𝑎𝑛𝑑 𝛼𝑘 − 𝑅𝑘

𝑘 > 0, (16)

then  is positive definite. That is, the strong ellipticity condition holds.

Proof. We complete the proof by contradiction. Suppose 𝜆 ≤ 0. From Theorem 11, we consider two cases.
Case 1. There exists 𝑖0 ∈ [𝑚] such that 𝛼 ∈ 𝔐𝑖0,𝑝(, ⨍ ), then for ∀𝑝 ≠ 𝑖0,

[|𝜆 − 𝛼𝑖0 | − (𝑅𝑖0(, 𝛼𝑖0) − 𝑅𝑝
𝑖0
(, 𝛼𝑖0))][|𝜆 − 𝛼𝑝| − 𝑅𝑝

𝑝(, 𝛼𝑝)]
≤ 𝑅𝑝

𝑖0
(, 𝛼𝑖0)[𝑅𝑝(, 𝛼𝑝) − 𝑅𝑝

𝑝(, 𝛼𝑝)].

Further, it follows from 𝛼𝑖0 , 𝛼𝑝 > 0 and 𝜆 ≤ 0 that

[𝛼𝑖0 − (𝑅𝑖0(, 𝛼𝑖0) − 𝑅𝑝
𝑖0
(, 𝛼𝑖0)][𝛼𝑝 − 𝑅𝑝

𝑝(, 𝛼𝑝)]

≤ [|𝜆 − 𝛼𝑖0 | − (𝑅𝑖0(, 𝛼𝑖0) − 𝑅𝑝
𝑖0
(, 𝛼𝑖0))][|𝜆 − 𝛼𝑝| − 𝑅𝑝

𝑝(, 𝛼𝑝)]

≤ 𝑅𝑝
𝑖0
(, 𝛼𝑖0)[𝑅𝑝(, 𝛼𝑝) − 𝑅𝑝

𝑝(, 𝛼𝑝)],

which contradicts with (15). Hence, 𝜆 > 0.
Case 2. There exists 𝑖0 ∈ [𝑚] such that 𝛼 ∈ ℌ𝑖0,𝑝(, ⨍ ), then

|𝜆 − 𝛼𝑖0 | − (𝑅𝑖0(, 𝛼𝑖0) − 𝑅𝑝
𝑖0
(, 𝛼𝑖0)) ≤ 0 𝑎𝑛𝑑 |𝜆 − 𝛼𝑝| − 𝑅𝑝

𝑝 ≤ 0.

Further, it follows from 𝛼𝑖0 , 𝛼𝑝 > 0 and 𝜆 ≤ 0 that

𝛼𝑖0 − (𝑅𝑖0(, 𝛼𝑖0) − 𝑅𝑝
𝑖0
(, 𝛼𝑖0)) ≤ |𝜆 − 𝛼𝑖0 | − (𝑅𝑖0(, 𝛼𝑖0) − 𝑅𝑝

𝑖0
(, 𝛼𝑖0)) ≤ 0,

and
𝛼𝑝 − 𝑅𝑝

𝑝 ≤ |𝜆 − 𝛼𝑝| − 𝑅𝑝
𝑝 ≤ 0,

which contradicts with (16). Hence, 𝜆 > 0.

In summary, is partially symmetric and all M-eigenvalue are positive, is positive definite. Thus, Theorem 20 and Theorem
21 are sufficient conditions for the strong ellipticity of elastic materials. Moreover, we offer corresponding numerical examples
to verify the validity of the obtained results below.

Example 5.1. Consider the partially symmetric tensor  = (𝑎𝑖𝑗𝑘𝑙) ∈ ℝ[2]×[2]×[2]×[2]×[2] with

𝑎𝑖𝑗𝑘𝑙 =

⎧

⎪

⎨

⎪

⎩

𝑎1111 = 10, 𝑎1122 = 𝑎1221 = −0.5, 𝑎1212 = 4;
𝑎2222 = 3, 𝑎2112 = 𝑎2211 = −0.5, 𝑎2121 = 5;
𝑎𝑖𝑗𝑘𝑙 = 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

By Theorem 7 of16, we obtain that the minimum M-eigenvalue and corresponding with left and right M-eigenvectors are

(𝜆, 𝑥, 𝑦) = (3, (0, 1), (0, 1)).

Hence,  is positive definite. That is, the strong ellipticity condition holds.
Here, we set 𝛼 = (8, 4)T (This optimal parameter is obtained by traversal). According to Theorem 20, we have

(𝛼1 − 𝑅1
1(, 𝛼1))𝛼2 = 6 > [𝑅1(, 𝛼1) − 𝑅1

1(, 𝛼1)]𝑅2(, 𝛼2) = 3,

(𝛼2 − 𝑅2
2(, 𝛼2))𝛼1 = 14 > [𝑅2(, 𝛼2) − 𝑅2

2(, 𝛼2)]𝑅1(, 𝛼1) = 7.
Hence,  satisfies the condition of Theorem 20, which implies that  is positive definite. That is, the strong ellipticity condition
holds.
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According to Theorem 21, we have

[𝛼1 − (𝑅1(, 𝛼1) − 𝑅2
1(, 𝛼1))][𝛼2 − 𝑅2

2(, 𝛼2)] = 2
> 𝑅2

1(, 𝛼1)[𝑅2(, 𝛼2) − 𝑅2
2(, 𝛼2)] = 1,

[𝛼2 − (𝑅2(, 𝛼2) − 𝑅1
2(, 𝛼2))][𝛼1 − 𝑅1

1(, 𝛼1)] = 4
> 𝑅1

2(, 𝛼2)[𝑅1(, 𝛼1) − 𝑅1
1(, 𝛼1)] = 1.

Hence,  satisfies the condition of Theorem 21, which implies that  is positive definite. That is, the strong ellipticity condition
holds.

Example 5.2. Consider the partially symmetric tensor  = (𝑎𝑖𝑗𝑘𝑙) ∈ ℝ[2]×[2]×[2]×[2]×[2] with

𝑎𝑖𝑗𝑘𝑙 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑎1111 = 10, 𝑎1212 = 8, 𝑎1122 = 𝑎1221 = 0.5;
𝑎1222 = −1.5, 𝑎1112 = 𝑎1211 = −0.1, 𝑎1121 = 1.5;
𝑎2222 = 3, 𝑎2121 = 5, 𝑎2112 = 𝑎2211 = 0.5;
𝑎2212 = −1.5, 𝑎2221 = 𝑎2122 = −0.1, 𝑎2111 = 1.5.

By Theorem 7 of16, we obtain that the minimum M-eigenvalue and corresponding with left and right M-eigenvectors are

(𝜆, 𝑥, 𝑦) = (2.5774, (0.2724, 0.9622), (−0.0452, 0.9990)).

Hence,  is positive definite.
Here, we set 𝛼 = (8, 4)T (This optimal parameter is obtained by traversal). According to Theorem 20, we have

(𝛼1 − 𝑅1
1(, 𝛼1))𝛼2 = 23.2 < [𝑅1(, 𝛼1) − 𝑅1

1(, 𝛼1)]𝑅2(, 𝛼2) = 24.8,

(𝛼2 − 𝑅2
2(, 𝛼2))𝛼1 = 14.4 > [𝑅2(, 𝛼2) − 𝑅2

2(, 𝛼2)]𝑅1(, 𝛼1) = 24.8.
which implies that the condition of Theorem 20 is not satisfied. Thus, Theorem 20 is not suitable in this case. However, from
Theorem 21, we have

𝛼1 − (𝑅1(, 𝛼1) − 𝑅2
1(, 𝛼1)) = 5.8 > 0 𝑎𝑛𝑑 𝛼2 − 𝑅2

2(, 𝛼2) = 1.8 > 0,
𝛼2 − (𝑅2(, 𝛼2) − 𝑅1

2(, 𝛼2)) = 1.8 > 0 𝑎𝑛𝑑 𝛼1 − 𝑅1
1(, 𝛼1)] = 5.8 > 0.

Hence,  satisfies the condition of Theorem 21, which implies that  is positive definite. That is, the strong ellipticity of the
elastic material can be checked.

6 CONCLUSION

In this paper, we have proposed some new M-eigenvalue inclusion theorems for fourth-order partially symmetric tensors, which
are more accurate than some existing theorems. As applications, we have applied the upper bound to the WQZ-algorithm to
solve the largest M-eigenvalue. Numerical experiments have shown that using the obtained upper bound as a parameter can
make the sequence generated by the WQZ-algorithm rapidly converge to a good approximation of the M-spectral radius of the
fourth-order partially symmetric tensor. Moreover, the judgment theorem about the sufficient condition of the strong ellipticity
of elastic material has been obtained. Through numerical examples, we have verified that the sufficient conditions for the strong
ellipticity condition holds of the elastic materials.
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