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Abstract. In this paper, we demonstrate how certain active transport processes in liv-

ing cells can be modeled based on a directed search process driven by Lévy motion with

stochastic resetting. We focus on the motor-driven intracellular transport of vesicles to

synaptic targets in the axons and dendrites of neurons, where the restart duration of the

search process after reset is finite, and comprises a finite return time and a refractory

period. We employ a probabilistic renewal method to calculate the splitting probabili-

ties and conditional mean first passage times (MFPTs) for capture by a finite array of

contiguous targets. We consider two different search scenarios: bounded search on the

interval [0, L], where L denotes the length of the array, with a refractory boundary at

x = 0 and a reflecting boundary at x = L (Model A), and partially bounded search on

the half-line (Model B). In the latter case, the probability that the particle cannot find a

target in the absence of resetting is nonzero. We show that both models have the same

splitting probability, and that increasing the resetting rate r increases the splitting proba-

bility. Furthermore, the MFPTs of Model A are monotonically increasing with respect to

r, whereas the MFPTs of Model B are nonmonotone with respect to r, with a minimum

at an optimal resetting rate.
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1 Introduction

Due to its prevalence in diverse domains of nature, the search problem is prompting

increasing interest in identifying optimal strategies [1–4]. Assuming there is a specific

target in the population that needs to be searched if the target cannot be found for

a long time during the search process, the most effective way to address this issue is

to restart the process. Evans and Majumdar [5] first studied diffusion under stochastic

resetting. They defined and studied a simple stochastic resetting diffusion model in which

a Brownian particle is randomly reset to its initial position at a constant rate r, which

can be considered the basic model of a random intermittent search process. The act of

finding a specific target in a crowd can also be considered a restart behavior. Manrubia

and Zanette [6] first studied discrete-time stochastic multiplicative processes with reset

events. Gelenbe [2] investigated the impact of restart behavior using different methods.

Stochastic resetting has become a central part of our daily life. Common resetting methods

involve resetting the router when the network signal is weak and resetting the computer

when it becomes stuck. In our lifestyle, taking a day off from work and going home to rest

is also a form of resetting. Stochastic resetting has optimized our lives in a way that allows

us to restart jobs with high efficiency and saves us time. The emergence and optimization

of resetting in daily life are major reasons for widespread analysis and research in various

fields.

Several attempts have been made to study stochastic resetting in different fields,

including biochemistry [7–9], biology [10], and computer science [11]. The reset position

can be arbitrary, except for a random reset to the origin. Majumdar et al. [8] considered

a model where the position is reset to the farthest distance the searcher has previously

reached. According to [12,13], this model is akin to the random walk model that charac-

terizes animal foraging behavior. During the foraging process, foraging animals tend to

start each search from the farthest point they have previously reached, which increases

their probability of finding food. The specific processes of stochastic resetting have also

been analyzed and studied. Examples include Lévy flights [14,15], continuous time random

walks with or without drift [16–18], and scaled Brownian motion [19, 20]. Furthermore,
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diffusion processes with stochastic resetting have been comprehensively developed.

Currently, most search processes involving stochastic resetting are related to Brown-

ian motion, while few involve Lévy motion. Therefore, it is essential to apply Lévy motion

to directional search processes with stochastic resetting.

The remainder of this paper is organized as follows. Section 2 introduces the search-

and-capture model driven by Lévy motion. To develop the analysis of stochastic resetting

with delays, we first consider the simpler problem of directed search on the half-line with

a single target in Section 3. In Section 4, we analyze the splitting probabilities and mean

first passage times(MFPTs) for the particle to be captured by one of the multiple targets.

We show that Models A and B have the same splitting probabilities but different MFPTs.

In Section 5, we explore the dependence of the splitting probabilities and conditional

MFPTs on various model parameters, including the search phase speed (v+), return phase

speed (v−), resetting rate r and other parameters. Our findings show that the MFPTs of

Model A are monotonically increasing with respect to r, whereas those of Model B are

non-monotonic with a minimum at an optimal resetting rate. We also demonstrate how

increasing the search speed leads to a more uniform distribution of statistical quantities

across the target array. Finally, Section 6 presents the conclusions and proposes some

unresolved issues.

2 Directed search-and-capture model driven by Lévy

motion

Consider a particle moving on a finite interval [0, L] driven by Lévy motion, which

is a standard Brownian motion combined with a Poisson process with parameter λ. The

particle can either have a right-moving (anterograde) state with speed v+ or a left-moving

(retrograde) state with speed v−. It is worth noting that this process satisfies the corre-

sponding Fokker-Planck (FP) equation [21]:

∂pn(x, t)

∂t
= − ∂

∂x
[vnpn(x, t)] +

1

2

∂2pn(x, t)

∂x2
+ λ

∞∑
k=1

(−1)k

k!

∂kpn(x, t)

∂xk
.
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The particle can undergo the state transition v+→v− at a resetting rate r, after which it

returns to the origin. At the origin, the particle enters a refractory state characterized

by an exponentially distributed waiting time with rate η. After this waiting period,

the particle reenters the domain in the anterograde state. Finally, we impose a reflecting

boundary condition at x = L such that if the particle reaches the end x = L, it switches to

the retrograde state and returns to the origin. Figure 1 shows the schematic representation

of different particle states. In this paper, we focus on the first passage time (FPT) problem

of the particle to find one of N contiguous targets of size l with Nl = L. Therefore, we

introduce an additional assumption that the particle can be absorbed anywhere in the

domain [0, L] at a rate κ.

R

η 

x=0 x=L

r

,v +

,v −

Figure 1: Schematic representation of particle states: anterograde state with speed v+, retro-

grade state with speed v−, and refractory state R. The refractory period τ is generated by an

exponential waiting time density ψ(τ) = ηe−ητ , where r denotes the resetting rate.

Let pn(x, t) be the probability density that at time t the particle is at X(t) = x and

in either the anterograde state (n = +) or the retrograde state (n = −). Similarly, let

P0(t) denote the probability that the particle is in the refractory state at time t. The

corresponding Chapman-Kolmogorov (CK) equation is given by

Model A

∂p+
∂t

= −v+
∂p+
∂x

+
1

2

∂2p+
∂x2

+ λ

∞∑
k=1

(−1)k

k!

∂kp+
∂xk

− rp+ − κp+, x ∈ (0, L), (2.1a)

∂p−
∂t

= v−
∂p−
∂x

− 1

2

∂2p−
∂x2

− λ

∞∑
k=1

(−1)k

k!

∂kp−
∂xk

+ rp+, (2.1b)
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dP0

dt
= v−p−(0, t)−

1

2

∂p−
∂x

∣∣∣∣
x=0

− λ
∞∑
k=1

(−1)k

k!

∂k−1p−
∂xk−1

∣∣∣∣
x=0

− ηP0(t). (2.1c)

with the boundary conditions

v+p+(0, t)−
1

2

∂p+
∂x

∣∣∣∣
x=0

− λ

∞∑
k=1

(−1)k

k!

∂k−1p+
∂xk−1

∣∣∣∣
x=0

= ηP0(t),

v−p−(L, t)−
1

2

∂p−
∂x

∣∣∣∣
x=L

− λ

∞∑
k=1

(−1)k

k!

∂k−1p−
∂xk−1

∣∣∣∣
x=L

=

v+p+(L, t)−
1

2

∂p+
∂x

∣∣∣∣
x=L

− λ
∞∑
k=1

(−1)k

k!

∂k−1p+
∂xk−1

∣∣∣∣
x=L

.

(2.1)

The boundary conditions indicate that the instantaneous state of the particle reaches two

boundaries. The first equation indicates that the particle enters the anterograde state

from the refractory period at x = 0. The second equation indicates that the particle

switches from the anterograde state to the retrograde state at x = L. We assume that

the particle starts in the anterograde state at x = 0. The probability Pk(t) of the particle

being captured by the kth target at time t is given by

dPk
dt

= κ

∫ kl

(k−1)l

p+(x, t)dx. (2.2)

By adding equations (2.1a) and (2.1b) and then integrating with respect to x over the

interval [0, L],and applying the boundary conditions (2.1), we obtain

d

dt

∫ L

0

p(x, t)dx+
N∑
k=0

dPk
dt

= 0,

where p = p++ p−. This ensures the conservation of total probability over all events, i.e.,∫ L

0

p(x, t)dx+
N∑
k=0

Pk(t) = 1. (2.3)

We also consider another model in which there is no reflecting boundary at x = L.

Specifically, we consider the case where the particle can continue beyond the array of

targets until it resets and switches to the return phase. Then, equations (2.1a)-(2.1)

become

Model B

∂p+
∂t

= −v+
∂p+
∂x

+
1

2

∂2p+
∂x2

+ λ
∞∑
k=1

(−1)k

k!

∂kp+
∂xk

− rp+ − κH(L− x)p+, (2.4a)
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∂p−
∂t

= v−
∂p−
∂x

− 1

2

∂2p−
∂x2

− λ

∞∑
k=1

(−1)k

k!

∂kp−
∂xk

+ rp+, (2.4b)

dP0

dt
= v−p−(0, t)−

1

2

∂p−
∂x

∣∣∣∣
x=0

− λ
∞∑
k=1

(−1)k

k!

∂k−1p−
∂xk−1

∣∣∣∣
x=0

− ηP0(t),

v+p+(0, t)−
1

2

∂p+
∂x

∣∣∣∣
x=0

− λ
∞∑
k=1

(−1)k

k!

∂k−1p+
∂xk−1

∣∣∣∣
x=0

= ηP0(t), (2.4c)

where H(x) denotes the Heaviside function, and x ∈ (0,∞) in equations (2.4a) and (2.4b).

The first equality in equation (2.4c) means that the loss of probability particle from the

retrograde state into the refractory state is equal to the probability of instantaneous entry

into the refractory state.

There is a major difference between the two models in the absence of resetting. In

Model A, the probability of the particle being captured by one of the targets is 1 when

r = 0, which is a result of the reflecting boundary condition at x = L. In contrast, in

Model B, the particle may pass beyond the target array without being captured by any

targets, leading to differences in how the conditional MFPTs vary with the resetting rate.

3 For a single target: MFPT

In this section, we first consider a simple problem of a particle moving rightward on

the half-line at a constant speed v+ governed by a Poisson process with parameter λ(as

in Model B), a single target at a fixed location X∗ > 0 and resetting to the origin. If the

particle is within a distance l of the target, l ⩽ X∗, then the particle can be absorbed by

the target at a rate κ.

3.1 MFPT with instantaneous resetting

In the case of instantaneous resetting, we have

∂p+
∂t

= −v+
∂p+
∂x

+
1

2

∂2p+
∂x2

+ λ

∞∑
k=1

(−1)k

k!

∂kp+
∂xk

− κχ(x−X∗)p+ − rp+ + rδ(x). (3.1)

Here χ(x) denotes an indicator function: χ(x) = 1 if |x| < l and is zero otherwise. The

fifth term on the right-hand side represents the negative probability flux rp+ at each point

x. The sixth term represents the corresponding positive probability flux into x = 0 which
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sums to r. Let Qr(x0, t) denote the survival probability that the particle has not been

absorbed by the target up to time t, having started at x0. Then, we have

Qr(x0, t) =

∫ ∞

0

p+(x, t|x0, 0)dx. (3.2)

In particular, we set Qr(t) = Qr(0, t). The MFPT Tr to be absorbed by the target can

be expressed in terms of the survival probability as follows:

Tr = −
∫ ∞

0

t
dQr(t)

dr
=

∫ ∞

0

Qr(t)dt. (3.3)

Note that Qr is related to the survival probability without resetting Q0 using the last

renewal equation [22]:

Qr(x0, t) = e−rtQ0(x0, t) + r

∫ t

0

Q0(t
′)Qr(x0, t− t′)e−rt

′
dt′.

The first term on the right-hand side represents trajectories without resetting. The inte-

grand in the second term is the contribution from trajectories that last reset at time t− t′;

it consists of the product of the survival probability starting from x = x0 with resetting

up to time t− t′ and the survival probability starting from x = x0 without any resetting

for the time interval of duration t′. Since we have a convolution, it is natural to introduce

the Laplace transform as follows:

Q̃r(x0, s) =

∫ ∞

0

Qr(x0, t)e
−stdt.

By applying the Laplace transform to the last renewal equation, we have∫ ∞

0

Qr(x0, t)e
−stdt =

∫ ∞

0

e−rtQ0(x0, t)e
−stdt+ r

∫ ∞

0

∫ t

0

Q0(t
′)Qr(x0, t− t′)e−rt

′
dt′e−stdt

= Q̃0(x0, r + s) + r

∫ ∞

0

Qr(x0, t− t′)e−s(t−t
′)dt

∫ t

0

Q0(t
′)e−rt

′
e−st

′
dt′

= Q̃0(x0, r + s) + rQ̃r(x0, s)Q̃0(r + s),

and by rearranging, we obtain

Q̃r(x0, s) =
Q̃0(x0, r + s)

1− rQ̃0(r + s)
. (3.4)
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Substituting into equation (3.3) with x0 = 0, we obtain that the MFPT to reach the

target is

Tr = Q̃0(r) =
Q̃0(r)

1− rQ̃0(r)
. (3.5)

3.2 MFPT in the presence of refractory periods

Let ψ(t) denote the waiting time density of the refractory period following each return

to the origin, with a finite mean τ . The generalized renewal equation is given by

Qr(t) = e−rtQ0(t) + r

∫ t

0

(
1−Ψ(σ)

)
e−r(t−σ)Q0(t− σ)dσ

+r

∫ t

0

Q0(t
′)e−rt

′
[ ∫ t−t′

0

ψ(τ)Qr(t− t′ − τ)dτ

]
dt′. (3.6)

The first term on the right-hand side represents trajectories without resetting. The second

term sums over all trajectories that first reset at some time t− σ, 0 ⩽ σ ⩽ t and are still

in the refractory state at time t. The probability of the remaining refractory for a period

t is 1−Ψ(t) with

Ψ(t) =

∫ t

0

ψ(σ)dσ,

The third term is the contribution from trajectories that last reset at time t−t′−σ, spend

a time σ in the refractory state, and then exit the refractory state at time t− t′ without

further resetting. By applying the Laplace transform to equation (3.6), we obtain

Q̃r(s) = Q̃0(r + s) + r

∫ ∞

0

∫ t

0

(
1−Ψ(σ)

)
e−r(t−σ)Q0(t− σ)dσe−stdt

+ r

∫ ∞

0

∫ t

0

Q0(t
′)e−rt

′
[ ∫ t−t′

0

ψ(τ)Qr(t− t′ − τ)dτ

]
dt′e−stdt

= Q̃0(r + s) + r

∫ ∞

0

∫ t

0

e−r(t−σ)e−s(t−σ)Q0(t− σ)d(t− σ)e−sσdt

− r

∫ ∞

0

∫ t

0

(∫ σ

0

ψ(y)dy

)
e−r(t−σ)Q0(t− σ)dσe−stdt

+ r

∫ ∞

0

∫ t

0

Q0(t
′)e−rt

′
e−st

′
[ ∫ t−t′

0

ψ(τ)e−sτQr(t− t′ − τ)e−s(t−t
′−τ)dτ

]
dt′dt,

we have

Q̃r(s) = Q̃0(r + s) + r
1− ψ̃(s)

s
Q̃0(r + s) + rQ̃0(r + s)ψ̃(s)Q̃r(s), (3.7)
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which can be rearranged to obtain

Q̃r(s) =

Q̃0(r + s)

[
1 + r(1−ψ̃(s))

s

]
1− rQ̃0(r + s)ψ̃(s)

. (3.8)

Taking the limit s→ 0 in equation (3.8), using ψ̃(0) = 1 with

lim
s→0

1− ψ̃(s)

s
= −ψ′(0) =

∫ ∞

0

τψ(τ)dτ ≡ τ ,

we obtain that the MFPT with a refractory period is

Tr =
Q̃0(r)[1 + rτ ]

1− rQ̃0(r)
. (3.9)

Moreover, without a refractory period, this equation reduces to equation (3.5).

3.3 MFPT in the presence of finite return times

Rather than a refractory period, suppose that the particle returns to the origin at a

speed v− following each resetting event. Equation (3.1) becomes

∂p+
∂t

= −v+
∂p+
∂x

+
1

2

∂2p+
∂x2

+ λ
∞∑
k=1

(−1)k

k!

∂kp+
∂xk

− κχ(x−X∗)p+ − rp+, (3.10a)

∂p−
∂t

= v−
∂p−
∂x

− 1

2

∂2p−
∂x2

− λ
∞∑
k=1

(−1)k

k!

∂kp−
∂xk

+ rp+, x ∈ (0,∞). (3.10b)

v+p+(0, t)−
1

2

∂p+
∂x

∣∣∣∣
x=0

− λ
∞∑
k=1

(−1)k

k!

∂k−1p+
∂xk−1

∣∣∣∣
x=0

= v−p−(0, t)−
1

2

∂p−
∂x

∣∣∣∣
x=0

− λ

∞∑
k=1

(−1)k

k!

∂k−1p−
∂xk−1

∣∣∣∣
x=0

. (3.10c)

Turning to the calculation of the MFPT, we have to write down the appropriate

generalization of the renewal equation (3.4):

Qr(t) = e−rtQ0(t) + r

∫ t/ξ+

0

e−r(t−σ)Q0(t− σ)dσ

+

∫ t

0

Q0(t
′)re−rt

′
[ ∫ (t−t′)/ξ−

0

Qr(t− t′ − σξ−)re
−rσdσ

]
dt′, (3.11)

where

ξ+ =
v+ + v−
v+

, ξ− =
v−
v+
.
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Similar to equation (3.4), the first term on the right-hand side represents trajectories

without resetting. The second term sums over all trajectories that first reset at some

time t− σ, 0 ⩽ σ ⩽ t/ξ+ and are still in the process of returning to the origin. Since the

particle has been in the ballistic state for time t− σ, it has traveled a distance v+(t− σ),

which means that

σ ⩽
v+
v−

(t− σ).

Rearranging this equation yields the constraint that σ ⩽ t/ξ+. The third term is the

contribution from trajectories whose last reset occurred at time t − t′ − v+σ/v−, where

σ is the time spent in the ballistic state before resetting, after which the particle takes a

time v+σ/v− to return to the origin, and then an additional time t′ in the ballistic state

without further resetting. We also require

σ
v+
v−

⩽ (t− t′),

which yields the constraint σ ⩽ (t− t′)ξ−.

Next, we apply Laplace transformation to all the terms in equation (3.11). First, we

set

A(t) :=

∫ t/ξ+

0

e−r(t−σ)Q0(t− σ)dσ =

∫ t

t/ξ

e−rσQ0(σ)dσ.

with ξ−1 = 1− ξ−1
+ . It follows that

dA(t)

dt
= Q0(t)e

−rt − ξ−1Q0(t/ξ)e
−rt/ξ.

Applying Laplace transformation to this equation with A(0) = 0 gives∫ ∞

0

dA(t)

dt
e−stdt =

∫ ∞

0

Q0(t)e
−rte−stdt−

∫ ∞

0

ξ−1Q0(t/ξ)e
−rt/ξe−stdt,

s

∫ ∞

0

A(t)e−stdt = Q̃0(r + s)−
∫ ∞

0

Q0(t/ξ))e
−rt/ξe−std(t/ξ),

sÃ(s) = Q̃0(r + s)− Q̃0(r + sξ),

which yields

Ã(s) =
Q̃0(r + s)− Q̃0(r + ξs)

s
. (3.12)
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Next, let

B(t) :=

∫ t/ξ−

0

Qr(t− σξ−)re
−rσdσ = ξ−1

−

∫ t

0

Qr(t− τ)re−rτ/ξ−dτ.

Similarly, we have

B̃(s) =
Q̃r(s)

sξ− + r
. (3.13)

Finally, by applying Laplace transformation to equation (3.11) and using equations (3.12)

and (3.13), we obtain

Q̃r(s) = Q̃0(r + s) + r

[
Q̃0(r + s)− Q̃0(r + ξs)

s

]
+ rQ̃0(r + s)r

1

sξ+r
Q̃r(s)

= Q̃0(r + s) + r

[
Q̃0(r + s)− Q̃0(r + ξs)

s

]
+

r2

sξ− + r
Q̃0(r + s)Q̃r(s),

which can be rearranged to obtain

Q̃r(s) =

Q̃0(r + s) + r

[
Q̃0(r + s)− Q̃0(r + ξs)

]
/s

1− r2Q̃0(r + s)/(r + sξ−)
. (3.14)

Taking the limit s→ 0 in equation (3.14) and using

lim
s→0

Q̃0(r + s)− Q̃0(r + ξs)

s
= (1− ξ)Q̃′

0(r) = −v+
v−
Q̃′

0(r),

we obtain that the MFPT in the presence of finite return times is

Tr =
Q̃0(r)− r v+

v−
Q̃′

0(r)

1− rQ̃0(r)
. (3.15)

Taking the limit v− → ∞ (instantaneous resetting), this reduces to equation (3.5). Finally,

equations (3.9) and (3.15) demonstrate that the effect of refractory periods and finite

return times gives MFPT of the form

Tr =
Q̃0(r) + rτQ̃0(r)− r v+

v−
Q̃′

0(r)

1− rQ̃0(r)
. (3.16)

3.4 Alternative renewal method

We now describe an alternative renewal method for calculating MFPTs in the pres-

ence of delays, which employs some classical concepts from probability theory: stopping
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times and strong Markov properties. This approach was previously applied to the search-

and-capture model of cytoneme-based morphogen transport [23] and has recently been

used to derive a general expression for a search process with stochastic resetting and

delays. We will extend this method to multiple targets in Section 4.

The basic idea of this approach is to exploit the fact that resetting eliminates any

memory of previous search stages. We introduce the discrete random variable K(t) ∈

{0, 1}, which determines whether the particle has been captured by the target (K(t) = 1)

or is still free (K(t) = 0) in the time interval [0, t]. Consider the following set of FPT:

T = inf{t > 0;X∗ − l ⩽ X(t) ⩽ X∗ + l,K(t) = 1},

S = inf{t > 0;X(t) = 0, K(t) = 0},

R = inf{t > 0;X∗ − l ⩽ X(t+ S +N ) ⩽ X∗ + l,K(t+ S +N ) = 1}.

Here, T denotes the FPT for finding the target irrespective of the number of resettings; S

denotes the FPT for the first resetting and return to the origin given that the particle is

still free; N denotes the first refractory period; R denotes the FPT for finding the target

given that at least one resetting has occurred. Next, we introduce the sets

Ω = {T <∞}, Γ = {S < T <∞}.

That is, Ω is the set of all events for which the particle is eventually absorbed by the

target, and Γ is the subset of Ω for which the particle resets at least once. It then follows

that

Ω\Γ = {T < S = ∞}.

In other words, Ω\Γ is the set of all events for which the particle is captured by the

target without any resetting. We now use a probabilistic argument to calculate the MFPT

Tr = E[T ] in the presence of resetting (r > 0).

Consider the decomposition

E[T ] = E[T 1Ω\Γ] + E[T 1Γ]. (3.17)

The first expectation on the right-hand side can be evaluated by noting that it is the

MFPT captured by the target without any resetting, and the probability density function

12



of such an event is −e−rτ∂tQ0(t). Hence,

E[T 1Ω\Γ] = −
∫ ∞

0

τe−rτ
∂Q0(τ)

∂τ
dτ =

(
1 + r

d

dr

)
Q̃0(r). (3.18)

The second expectation can be further decomposed as

E[T 1Γ] = E[(S +N +R)1Γ] = E[S1Γ] + τP[Γ] + E[R1Γ]

= E[S1Γ] + (τ + Tr)P[Γ]. (3.19)

Here, E[N ] = τ denotes the mean refractory period; we used the result E[R1Γ] = TrP[Γ].

The latter follows from the fact that return to the origin restarts the stochastic process

without any memory.

To calculate E[S1Γ], it is necessary to incorporate the time to return to the origin

following the first return event. The first resetting occurs with probability re−rτQ0(τ)dτ

on the interval [τ, τ + dτ ]. At time τ , the particle is at position v+τ and thus takes an

additional time v+τ/v− to return to x = 0. Therefore, we have

E[S1Γ] =
∫ ∞

0

re−rττ

(
1 +

v+
v−

)
Q0(τ)dτ = −r

(
1 +

v+
v−

)
d

dr
Q̃0(r). (3.20)

Moreover, from the definitions of the FPTs and the effect of resetting, we have

P[Γ] = P[S <∞]P[R <∞], (3.21)

with P[R <∞] = 1 and

P[S <∞] =

∫ ∞

0

re−rτQ0(τ)dτ = rQ̃0(r). (3.22)

Combining equations (3.18) and (3.22), we obtain the implicit equation

Tr =

(
1 + r

d

dr

)
Q̃0(r) + rτQ̃0(r)− r

(
1 +

v+
v−

)
d

dr
Q̃0(r) + rQ̃0(r)Tr . (3.23)

Then, rearranging this equation recovers the general result (3.16).

4 For multiple targets: splitting probabilities and

conditional MFPTs

Next, we extend the above probabilistic renewal method to calculate the splitting

probability π
(r)
k that a particle evolving according to Models A and B in Section 2 is

13



eventually captured by the kth target,

π
(r)
k = lim

t→∞
Pk(t),

N∑
k=1

π
(r)
k = 1, (4.1)

and the corresponding conditional MFPT T
(r)
k . This generates expressions for π

(r)
k and

T
(r)
k in terms of statistical quantities for the search process without a return phase(no

resetting nor reflection at x = L). To achieve this, we first analyze target capture in

the absence of a return phase. This means that if the particle reaches the end x = L, it

cannot be captured by any target.

4.1 Target capture without a return phase

Consider the splitting probability πk and conditional MFPT Tk for the particle to be

captured by the kth target when p−(x, t) ≡ 0 (no return phase), having started in the

search phase at position x = 0 and time t = 0. The first step is to solve equation (2.1a)

with r = 0, which becomes

∂p+
∂t

= −v+
∂p+
∂x

+
1

2

∂2p+
∂x2

+ λ
∞∑
k=1

(−1)k

k!

∂kp+
∂xk

− κp+ . (4.2)

Generally, the contribution of higher-order terms of the generalized FPK equation to the

entire equation is small [24]; therefore, we keep the equation until the second-order term.

Consequently, we obtain

∂p+
∂t

= −(v+ + λ)
∂p+
∂x

+
1 + λ

2

∂2p+
∂x2

− κp+ . (4.3)

Then we solve equation(4.3). Let p+(x, t) = f(x)g(t). Substituting this expression

into equation(4.3), we obtain a probability density for variable separation. Hence, equa-

tion(4.3) has the solution of the form

p+(x, t|0, 0) = δ(x− v+t)e
2(v++λ)

1+λ
x−κt, 0 < t <

L

v+
.

The probability flux into the kth target is

Jk(t) = κ

∫ kl

(k−1)l

p+(x, t|0, 0)dx = κ

∫ kl

(k−1)l

δ(x− v+t)e
2(v++λ)

1+λ
x−κtdx

=
1 + λ

2(v+ + λ)
κχk(t)e

2(v++λ)

1+λ
x−κt, (4.4)
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where χk(t) = 1 if τ(k−1) < t < τk and zero otherwise; we have set τk = kl/v+. Let Tk
denote the FPT that the particle is captured by the kth target, with Tk = ∞ indicating

that it is not captured. Then, the splitting probability that the particle is captured by

the kth target is given by

πk := P[0 < Tk <∞] =

∫ ∞

0

Jk(x, t)dt =
1 + λ

2(v+ + λ)
e

2(v++λ)

1+λ
xκ

∫ ∞

0

χk(t)e
−κtdt

=
1 + λ

2(v+ + λ)
e

2(v++λ)

1+λ
x[e−κτk−1 − e−κτk ]. (4.5)

Here 1+λ
2(v++λ)

e
2(v++λ)

1+λ
xe−κτk−1 is the probability of reaching the kth target without being

captured by any upstream targets. Thus, πk is the probability that the particle is captured

by the kth target before passing to the (k + 1)th target. It follows that

N∑
k=1

πk = 1− 1 + λ

2(v+ + λ)
e

2(v++λ)

1+λ
xe−κL/v+ , (4.6)

where 1+λ
2(v++λ)

e
2(v++λ)

1+λ
xe−κL/v+ is the probability of the particle reaching the end without

being captured by any target in the array.

Given the splitting probability πk, we define the corresponding conditional MFPT by

Tk = E[Tk|Tk <∞]. (4.7)

To determine Tk, it is convenient to consider the probability Πk(t) that the particle is

captured by the kth target after time t:

Πk(t) = P[t < Tk <∞] =

∫ ∞

t

Jk(t
′)dt′. (4.8)

Substituting into Jk(t) and using equation (4.4), we obtain

Πk(t) =
1 + λ

2(v+ + λ)
e

2(v++λ)

1+λ
x

{
H(τk − t)[e−κt − e−κτk ] +H(τk−1 − t)[e−κτk−1 − e−κt]

}
,

(4.9)

where H(t) is a Heaviside function. Note that Πk(0) = πk, and the complementary prob-

ability Λk(t) that the particle is captured by the kth target before time t is given by

Λk(t) =

∫ t

0

Jk(t
′)dt′ =

∫ ∞

0

Jk(t
′)dt′ −

∫ ∞

t

Jk(t
′)dt′ = πk − Πk(t). (4.10)
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Therefore, the conditional MFPT can be expressed as

Tk =

∫ ∞

0

Πk(t)

πk
dt =

Π̃k(0)

πk
,

where Π̃k(s) denotes the Laplace transform of Πk(τ):

Π̃k(s) =
1 + λ

2(v+ + λ)
e

2(v++λ)

1+λ
x

{
1

s+ κ
(1− e−(s+κ)τk)− 1

s
(1− e−sτk)e−κτk

− 1

s+ κ
(1− e−(s+κ)τk−1) +

1

s
(1− e−sτk)e−κτk−1

}
. (4.11)

Hence,

πkTk = Π̃k(0) =
1 + λ

2(v+ + λ)
e

2(v++λ)

1+λ
x

[
πk
κ

+ τke
−κτk − τk−1e

−κτk−1

]
. (4.12)

4.2. Target capture with a return phase: probabilistic renewal method

To incorporate the effects of stochastic resetting (or reflection at x = L in Model

A) and delays, we introduce the discrete random variable K(t) ∈ {0, 1, ..., N}, which

determines whether the particle has been captured by the kth target (K(t) = k, k ̸= 0)

or has not been absorbed by any target (K(t) = 0) on the time interval [0, t]. Consider

the following set of FPTs;

Tk = inf{t > 0; (k − 1)l ⩽ X(t) ⩽ kl,K(t) = k},

S = inf{t > 0;X(t) = 0, K(t) = 0},

Rk = inf{t > 0; (k − 1)l ⩽ X(t+ S +N ) ⩽ kl,K(t+ S +N ) = k}.

Here, Tk denotes the FPT for finding the kth target irrespective of the number of return

phases; S denotes the FPT for the first return to the origin given that no target has cap-

tured the particle; N denotes the first refractory period; Rk denotes the FPT for finding

the kth target given that at least one return phase has occurred. Next, we introduce the

sets

Ωk = {Tk <∞}, Γk = {S < Tk <∞} ⊂ Ωk,

where Ωk is the set of all events for which the particle is eventually absorbed by the kth

target, and Γk is the subset of Ωk for which the particle returns to the origin at least once.

It then follows that

Ωk\Γk = {Tk < S = ∞}.
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In other words, Ωk\Γk is the set of all events for which the particle is captured by the kth

target without any returns to the origin via resetting (or reflection at x = L in the case of

Model A). Next, we generalize the probabilistic approach of Section 3.4 to calculate the

splitting probability π
(r)
k and MFPT T

(r)
k in the presence of resetting (r > 0).

The splitting probability π
(r)
k can be decomposed as

π
(r)
k := P[Ωk] = P[Ωk\Γk] + P[Γk]. (4.13)

Note that the probability that the particle is captured by the kth target in the interval

[τ, τ + dτ ] without any returns to the origin is e−rτJk(τ)dτ with Jk(τ) given by equation

(4.4). Hence,

P[Ωk\Γk] =
∫ ∞

0

e−rτJk(τ)dτ = −
∫ ∞

0

e−rτ
dΠk(τ)

dτ
dτ = −rΠ̃k(r) + πk = rΛ̃k(r). (4.14)

From the definition of FPTs, we have

P[Γk] = P[S <∞]P[Rk <∞], (4.15)

and memoryless return to the origin implies that P[Rk <∞] = π
(r)
k . In the case of Model

B, we obtain

P[S <∞] =

∫ ∞

0

re−rτ
[
1−

N∑
k=1

Λk(τ)

]
dτ

= 1− r
N∑
k=1

Λ̃k(r) = r
N∑
k=1

Π̃k(r) +
1 + λ

2(v+ + λ)
e

2(v++λ)

1+λ
x−κL/v+ . (4.16)

Here, we used the fact that the probability of first switching to the shrinking phase in the

time interval [τ, τ + dτ ] is equal to the product of the reset probability re−rτdτ and the

probability 1−
∑N

k=1 Λk(τ) that the particle has not been captured by a target up to time

τ . The term 1+λ
2(v++λ)

e
2(v++λ)

1+λ
x−κL/v+ in the final expression arises from the normalization

condition (4.6), which denotes the probability that the particle reaches the end of the

array at x = L, after which it continues in the anterograde state until the first reset. It

turns out that P[S < ∞] is the same for Model A. Next, we integrate only the resetting

time over the interval τ ∈ [0, L/v+], after which the particle returns to the origin with

probability one:

P[S <∞] =

∫ L/v+

0

re−rτ
[
1−

N∑
k=1

Λk(τ)

]
dτ + e−rL/v+

1 + λ

2(v+ + λ)
e

2(v++λ)

1+λ
x−κL/v+ .
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The second term on the right-hand side is the probability that the particle reaches the

end of the array without resetting or being captured by the target. Using the fact that∑N
k=1Πk(t) = 0 for t > L/v+, we have∫ L/v+

0

re−rτ
[
1−

N∑
k=1

Λk(τ)

]
dτ =

∫ L/v+

0

re−rτ
[ N∑
k=1

Πk(τ) +
1 + λ

2(v+ + λ)
e

2(v++λ)

1+λ
x−κL/v+

]
dτ

= r

N∑
k=1

Π̃k(r) +
1 + λ

2(v+ + λ)
e

2(v++λ)

1+λ
x−κL/v+(1− e−rL/v+),

and we recover equation (4.16). Hence, for both models, equation (4.15) becomes

P[Γk] = π
(r)
k

[
r

N∑
k=1

Π̃k(r) +
1 + λ

2(v+ + λ)
e

2(v++λ)

1+λ
x−κL/v+

]
. (4.17)

Combining equations (4.14) and (4.17), we obtain an implicit expression of the form

π
(r)
k = rΛ̃k(r) +

[
1− r

N∑
k=1

Λ̃k(r)

]
π
(r)
k ,

and rearranging this expression, we obtain the following expressions, which hold for both

models:

π
(r)
k =

rΛ̃k(r)

r
∑N

l=1 Λ̃l(r)
=

πk − rΠ̃k(r)

1− r
∑N

l=1 Π̃l(r)− 1+λ
2(v++λ)

e
2(v++λ)

1+λ
x−κL/v+

. (4.18)

Summing both sides of equation (4.18) and using equation (4.6), we have
∑N

k=1 π
(r)
k = 1.

In other words, in the presence of reset, the particle is captured by one of the targets with

probability one. Consequently, using the fact that

lim
r→0

rΠ̃k(r) = Πk(∞) = 0,

we have

lim
r→0

π
(r)
k =

πk

1− 1+λ
2(v++λ)

e
2(v++λ)

1+λ
x−κL/v+

= π̂k.

Note that the splitting probability π
(r)
k is independent of the refractory rate η and the

retrograde speed v−. However, implicit in the calculation of π
(r)
k is the assumption that

v−, η > 0; otherwise, resetting would not allow the particle to return to the origin and

escape from the refractory state in a finite time.
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The conditional MFPT E[Tk1Ωk
] = π

(r)
k T

(r)
k can be analyzed following a similar ap-

proach to splitting probability by introducing the decomposition

E[Tk1Ωk
] = E[Tk1Ωk\Γk

] + E[Tk1Γk
]. (4.19)

The first expectation can be evaluated by noting that it is the MFPT captured by the

kth target without any resetting, and the probability density function of such an event is

e−rτJk(τ)dτ . Hence,

E[Tk1Ωk\Γk
] = −

∫ ∞

0

τe−rτ
dΠk(τ)

dτ
dτ =

[
1 + r

d

dr

]
Π̃k(r). (4.20)

The second expectation can be further decomposed as

E[Tk1Γk
] = E[(S + τ̂ +Rk)1Γk

] = E[S1Γk
] +

1

η
P[Γk] + E[Rk1Γk

]

= E[S1Γk
] +

(
1

η
+ T

(r)
k

)
P[Γk], (4.21)

with P[Γk] given by equation (4.17). Here, N denotes the random time spent in the

refractory state at x = 0 before switching back to the search phase, with E[N ] = η−1; we

used the result E[Rk1Γ] = T
(r)
k P[Γk]. The latter follows from the fact that return to the

origin restarts the stochastic process without any memory.

To calculate E[S1Γk
], it is necessary to incorporate the time to return to the origin fol-

lowing the first return even, which differs for Models A and B. In the case of Model A, the

first return is initiated before reaching the end x = L with probability re−rτ
∑

k Πk(τ)dτ

in the interval [τ, τ+dτ ]. At time τ the particle is at position v+τ and takes an additional

time v+τ/v− to return to x = 0. On the other hand, the particle reaches x = L with

probability 1+λ
2(v++λ)

e
2(v++λ)

1+λ
x−κL/v+ after the time τ = L/v+ and then returns to the origin

over a time interval equal to L/v−. Thus, we have

E[S1Γk
] = π

(r)
k

{∫ ∞

0

re−rτ
(
τ +

v+τ

v−

)[ N∑
k=1

Πk(τ)

]
dτ

+

(
L

v+
+

L

v−

)
1 + λ

2(v+ + λ)
e

2(v++λ)

1+λ
x−κL/v+

}
= π

(r)
k

{(
L

v+
+

L

v−

)
1 + λ

2(v+ + λ)
e

2(v++λ)

1+λ
x−κL/v+ − r

(
1 +

v+
v−

)[ N∑
k=1

dΠ̃k(r)

dr

]}
.

(4.22a)
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Here, we used P[Rk < ∞] = π
(r)
k and the fact that

∑N
k=1 Πk(τ) = 0 for τ > L/v+. In the

case of Model B, resetting can occur any time after the particle passes beyond the array;

thus, we have

E[S1Γk
] = π

(r)
k

{∫ ∞

0

re−rτ
(
τ +

v+τ

v−

)[ N∑
k=1

Πk(τ)

]
dτ

+
1 + λ

2(v+ + λ)
e

2(v++λ)

1+λ
x−κL/v+

∫ ∞

L/v+

re−rτ
(
τ +

v+τ

v−

)
dτ

}
= π

(r)
k

{
1 + λ

2(v+ + λ)

(
1 +

v+
v−

)(
1

r
+

L

v+

)
e

2(v++λ)

1+λ
x−(κ+r)L/v+

− r

(
1 +

v+
v−

)[ N∑
k=1

dΠ̃k(r)

dr

]}
. (4.22b)

Combining equations (4.20) and (4.21) with either (4.22a) or (4.22b), we obtain an

implicit expression of the form:

π
(r)
k T

(r)
k =

[
1 + r

d

dr

]
Π̃k(r) +

{
A− r

(
1 +

v+
v−

)[ N∑
k=1

dΠ̃k(r)

dr

]}
π
(r)
k

+

(
1

η
+ T

(r)
k

)
π
(r)
k

[
r

N∑
k=1

Π̃k(r) +
1 + λ

2(v+ + λ)
e

2(v++λ)

1+λ
x−κL/v+

]
, (4.23)

where

A =

 ( L
v+

+ L
v−
) 1+λ
2(v++λ)

e
2(v++λ)

1+λ
x−κL/v+ (Model A),

(1 + v+
v−
)(1
r
+ L

v+
) 1+λ
2(v++λ)

e
2(v++λ)

1+λ
x−(κ+r)L/v+ (Model B).

(4.24)

Rearranging equation (4.23), we obtain the following result for the conditional MFPT:

T
(r)
k =

LΠ̃k(r) + Bπ(r)
k

π
(r)
k

[
1− r

∑N
k=1 Π̃k(r)− 1+λ

2(v++λ)
e

2(v++λ)

1+λ
x−κL/v+

] . (4.25)

Here

LΠ̃k(r) =

[
1 + r

d

dr

]
Π̃k(r)− r

(
1 +

v+
v−

)[ N∑
k=1

dΠ̃k(r)

dr

]
π
(r)
k , (4.26)

and

B =
1

η

[
r

N∑
k=1

Π̃k(r) +
1 + λ

2(v+ + λ)
e

2(v++λ)

1+λ
x−κL/v+

]
+A. (4.27)
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The MFPTs of Models A and B exhibit different behavior as r → 0. In particular, it

is clear from equation (4.24) that for Model B, we have A → ∞ as r → 0, which implies

T
(r)
k → ∞ as r → 0. This reflects the fact that the MFPTs of Model B are infinite without

resetting. In contrast, A is independent of r for Model A; thus, we obtain

lim
r→0

T
(r)
k =

1

1− 1+λ
2(v++λ)

e
2(v++λ)

1+λ
x−κL/v+

{
Π̃k(0)[1− 1+λ

2(v++λ)
e

2(v++λ)

1+λ
x−κL/v+ ]

πk

+

[
1

η
+ L

(
1

v+
+

1

v−

)]
1 + λ

2(v+ + λ)
e

2(v++λ)

1+λ
x−κL/v+

}
. (4.28)

This expression has an intuitive interpretation. As r → 0, the particle can only return to

the origin by reflecting at the end x = L, which occurs with probability 1+λ
2(v++λ)

e
2(v++λ)

1+λ
x−κL/v+

during one search phase. The first term in square brackets represents the conditional

MFPT without any returns to the origin, and the second term represents the additional

time taken for the particle to reach the end and return to the origin once before being

captured by the target.

5 Results

In this section, we illustrate the parameter dependence of the splitting probability π
(r)
k

and conditional MFPT T
(r)
k , which are given in equations (4.18) and (4.25), respectively.

We fix the units of time and length by setting the capture rate κ = 1 and the target size

l = 1.

Figure 2 shows the plots of the splitting probability π
(r)
k as a function of k for an

array of N = 10 targets with various speeds v+. Several observations can be made. First,

the splitting probability is a monotonically decreasing function of k. As one might expect,

targets closer to the origin are more likely to capture the particle. Second, increasing v+

tends to alleviate this impact, leading to a more even distribution of splitting probabilities.

In particular, there is a crossover of the plots for different speeds. Moreover, increasing

the particle position x can increase the splitting probability. Additionally, the splitting

probability can decrease for a large resetting rate r. Figure 3 shows analogous plots of the

conditional MFPT T
(r)
k for Model A. In contrast to the splitting probability, the MFPT
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Figure 2: Plots of the splitting probability π
(r)
k as a function of target site k, k = 1, ..., 10, for

various speeds v+. (a) r = 0.1, x = 0, (b) r = 0.1, x = 0.1, (c) r = 5, x = 0, and (d) r = 5,

x = 0.1. Another parameter is λ = 0.1.
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Figure 3: Plots of conditional MFPT T
(r)
k as a function of target site k, k = 1, ..., 10, for various

speeds v+ (Model A). (a) r = 0.1, x = 0, (b) r = 0.1, x = 0.1, (c) r = 1, x = 0, and (d) r = 1,

x = 0.1. Other parameters are v− = 1, η = 1 and λ = 0.1.
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depends on the refractory rate η and the retrograde speed v−. For illustration, we set

η = v− = 1. One would expect the conditional MFPT to increase for more distal targets,

which is confirmed in Figure 3. It can be seen that T
(r)
k increases approximately linearly

with k. Similar to the splitting probability, increasing v+ tends to flatten the curves so

that the MFPT is a weaker function of k, and there is a crossover of plots for different

speeds. Additionally, increasing the particle position x can increase conditional MFPT.

The conditional MFPT can increase for a large resetting rate r. This is because frequent

returns to the starting point reduce the particle’s chance of finding the target, as the

particle is often reset before it can reach the target.
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Figure 4: Plots of the splitting probability π
(r)
k as a function of the resetting rate r for various

targets k. (a) x = 0, (b) x = 0.05. Other parameters are v+ = 5, v− = 1, η = 1 and λ = 1.

Figures 4 and 5 show the splitting probability π
(r)
k and conditional MFPT T

(r)
k (Model

A) as a function of r for various targets k and fixed speed v+ = 5. It can be seen that the

splitting probability decreases with r, whereas increasing the resetting rate r leads to an

approximately linear increase in T
(r)
k . Additionally, the size of the splitting probability

and conditional MFPTs depend on the particle position x. Therefore, resetting in Model

A tends to have a detrimental effect on the conditional MFPTs because the particle

returns to the origin without resetting. As shown in Figure 6, conditional MFPTs are

nonmonotonic functions of r (Model B). This is because conditional MFPTs tend to
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Figure 5: Plots of conditional MFPT T
(r)
k as a function of the resetting rate r for various targets

k. (a) x = 0, (b) x = 0.05. Other parameters are v+ = 5, v− = 1, η = 1 and λ = 1.
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Figure 6: Model B. Plots of conditional MFPT T
(r)
k as a function of the resetting rate r for

various targets k. (a) x = 0, (b) x = 0.05. Other parameters are v+ = 5, v− = 1, η = 1 and

λ = 15.
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infinity as r → 0. Therefore, there exists an optimal resetting rate that minimizes T
(r)
k

for a given k.

6 Discussion

In this paper, we analyzed a directed search-and-capture model driven by Lévy mo-

tion with stochastic resetting, refractory periods, and finite return times. We used a

probabilistic renewal method to determine the splitting probability π
(r)
k and MFPT T

(r)
k

for a particle captured by the kth contiguous target in a one-dimensional array, which

are derived from equations (4.18) and (4.25), respectively. We also compared the search

for the bounded domain [0, L] (Model A) with a partially bounded search on the half-line

(Model B). Our findings showed that the probability of target capture without resetting

is one in Model A and less than one in Model B. In contrast, the probability of target

capture is the same in both models (4.18), but with different conditional MFPTs (4.25).

According to equation (4.25), the conditional MFPTs for the bounded search were mono-

tonically increasing functions of r, whereas the corresponding MFPTs on the half-line

were nonmonotonic with respect to r, and there exists an optimal resetting rate that

minimizes the conditional MFPTs in this case.

The classical search-and-capture model with stochastic resetting mainly considers

the Brownian motion as a stochastic factor. However, the process of vesicle transport

to synaptic targets in the neuronal system is often burst and unpredictable; Lévy mo-

tion as a classical non-Gaussian process, can more realistically and accurately depict

these phenomena. Furthermore, the search-and-capture process can be more efficient after

adding stochastic resetting. Moreover, Lévy motion has important application prospects

in biology. For example, it can simulate protein synthesis during gene regulation. When

stochastic resetting is added, the probability of the synthesis process can change: a higher

survival probability and shorter MFPT increase the likelihood successful protein synthe-

sis. This paper considers Lévy motion, which is a standard Brownian motion combined

with a Poisson process with parameter λ; however, for general Lévy motion, it will be

a problem for further research. From a biological perspective, it is crucial to understand
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the practical benefits of stochastic resetting. Specifically, it is important to investigate

what happens when stochastic resetting occurs during high-dimensional search processes.

These issues are of great value for discussion.
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