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Abstract

We study the multiplicity of solutions for a class of fractional differential equations influenced by both instantaneous

and non-instantaneous impulses, subject to Neumann boundary conditions. A key contribution of this paper is that we

have established a new variational structure and successfully applied critical point theory to investigate the impulsive

fractional Neumann boundary value problem. By using the critical point theorem, we give some new criteria to guarantee

that the impulsive problem has at least three solutions. An example is also given to illustrate the main results.
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1. Introduction

The purpose of this paper is to establish the existence of solutions for the following impulsive fractional Neumann

boundary value problem:

tD
α
T (C0 D

α
t u(t)) + q(t)u(t) = λfk(t, u(t)), t ∈ (sk, tk+1], k = 0, 1, 2, · · · , l,

∆(tD
α−1
T (C0 D

α
t u))(tk) = Ik(u(tk)), k = 1, 2, · · · , l,

tD
α−1
T (C0 D

α
t u)(t) = tD

α−1
T (C0 D

α
t u)(t+k ), t ∈ (tk, sk], k = 1, 2, · · · , l,

tD
α−1
T (C0 D

α
t u)(s−k ) = tD

α−1
T (C0 D

α
t u)(s+

k ), k = 1, 2, · · · , l,

tD
α−1
T (C0 D

α
t u)(0) = tD

α−1
T (C0 D

α
t u)(T ) = 0,

(1.1)

where tD
α
T ,

C
0 D

α
t are the right Riemann-Liouville fractional derivative and the left Caputo fractional derivative, respective-

ly, of order α ∈ (1/2, 1], q(t) ∈ C([0, T ]) with 0 < q0 = min[0,T ]q(t) ≤ q(t) ≤ q0 = max[0,T ]q(t), λ is a positive parameter,

0 = s0 < t1 < s1 < · · · < sl < tl+1 = T , Ik ∈ C(R,R)(k=1, 2, · · ·, l) and fk ∈ C((sk, tk+1]× R,R)(k=0, 1, 2, · · ·, l),

∆(tD
α−1
T (C0 D

α
t u))(tk) = tD

α−1
T (C0 D

α
t u)(t+k )− tD

α−1
T (C0 D

α
t u)(t−k ),

tD
α−1
T (C0 D

α
t u)(t±k ) = lim

t→t±k
tD

α−1
T (C0 D

α
t u)(t),

tD
α−1
T (C0 D

α
t u)(s±k ) = lim

t→s±k
tD

α−1
T (C0 D

α
t u)(t).

Fractional calculus has a long history. Its origins can be traced back to more than 300 years ago [1], and it has been

extensively studied and developed during the last few decades. One of the main reasons is that fractional differential

equations(FDEs) have been successfully applied in many fields, such as: physics [2], economics [3], signal processing [4],

control theory [5], viscoelasticity theory [6], rheology [7], etc. For more applications and references we refer the reader to

[8, 9].

In the past two decades, a great deal of mathematical effort has been devoted to the study of fractional boundary value

problems (BVPs) and achieved many profound results. However, these results are far from sufficient when compared to

the research achievements of BVPs for integer-order differential equations. It is well known that the variational method
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is a very useful approach to studying BVPs of differential equations, and it has been widely used to investigate BVPs for

integer-order differential equations with some classical boundary conditions (BCs), such as Dirichlet BCs [10], Neumann

BCs [11-14], periodic BCs [15], anti-periodic BCs [16], Sturm-Liouville BCs [17] and multi-point BCs [18]. However,

according to existing literature results, we find that the application of the variational method to fractional BVPs is

currently limited to the study of fractional Dirichlet and Sturm-Liouville BVPs [19-21]. Therefore, a natural question is

whether it is possible to establish the variational structure for FDEs under other boundary conditions, which is the main

motivation for this study.

Impulsive differential equations serve as basic models to study the dynamics of processes that are subject to sudden

changes in their states. Such processes naturally occur in population dynamics, chemotherapy, and medicine[22, 23].

It follows from the existing literature that there are two prevalent types of impulses are recognized: instantaneous and

non-instantaneous impulses[24]. In recent years, some scholars by using variational method studied on the impulsive

FDEs with Dirichlet BCs and Sturm-Liouville BCs for the analysis of existence and multiplicity of solutions [25-28]. For

example, Rodŕıguez-López and Tersian [26] studied the multiplicity of solutions for FDEs subject to Dirichlet BCs and

instantaneous impulses with the help of three critical points theorem. Min and Chen [27] proved the infinitely many

solutions for p-Laplacian FDEs subject to Sturm-Liouville BCs and instantaneous impulses by using symmetry mountain

pass theorem. Zhao et al. [28] employed the least action principle and mountain pass theorem to investigate the existence

and multiplicity of solutions for FDEs supplemented with Dirichlet BCs and non-instantaneous impulses.

More recently, there has been a growing interest among scholars in investigating the existence and multiplicity of

solutions for fractional BVPs with both instantaneous and non-instantaneous impulses [29-34]. For instance, Wang

et al. [30] investigated the existence of solutions for a fractional Dirichlet problem with both instantaneous and non-

instantaneous impulses by using the least action principle. Li et al. [31] studied the multiplicity of solutions for p-Laplacian

fractional Dirichlet problem with both instantaneous and non-instantaneous impulses by applying a three critical points

theorem proved by Ricceri. Tian and Zhang [32] considered the existence of solutions for p-q-Laplacian fractional Dirichlet

problem with instantaneous and non-instantaneous impulses by utilizing Ekeland’s variational principle. Zhang and Ni

[33] discussed the multiplicity of solutions for p-Laplacian FDEs subject to Sturm-Liouville BCs and involving both

instantaneous and non-instantaneous impulses by the use of a three critical points theorem proposed by Bonanno and

Marano.

To the best of our knowledge, no existing literature has utilized variational methods to study the Neumann BVPs of

FDEs. Inspired by the above work, in this paper, we discuss a class of fractional Neumann BVP with both instantaneous

and non-instantaneous impulses (1.1). Our analysis is based on a three critical points theorem (see Theorem 2.1 below)

contained in [35]. The main contributions of this paper are highlighted as follows.

• The variational structure of the fractional Neumann BVPs has been established, and a class of fractional Neumann

BVP (1.1) has been successfully studied via critical point theorem. This work expands the application scope of

variational methods in fractional BVPs.

• Sufficient conditions for the existence of three solutions to problem (1.1) are given by using the three critical points

theorem, and the validity of the main results is illustrated by an example.

• Observe that if α→ 1, tk = sk, k = 1, 2, · · · , l, the problem (1.1) reduces to the second order BVP. The existence

of the existence and multiplicity of solutions for this problem is widely studied via variational methods among the

papers, see for example ([11-14]). Therefore, the work in this paper extends the results for integer order BVP to

the more general case of fractional order.

2. Preliminaries

In this section, we first recall some necessary definitions and properties of the fractional calculus, and then we introduce

a fractional derivative space Eα and some of related lemmas, and present a three critical points theorem which will be

applied in the next section.

Definition 2.1. ([8]) Let ν > 0, u ∈ C[0, T ]. Then the left and right Riemann-Liouville fractional integrals 0D
−ν
t u(t)
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and tD
−ν
T u(t) are respectively defined by

0D
−ν
t u(t) =

1

Γ(ν)

∫ t

0

(t− θ)ν−1
u(θ)dθ, t ∈ [0, T ],

tD
−ν
T u(t) =

1

Γ(ν)

∫ T

t

(θ − t)ν−1
u(θ)dθ, t ∈ [0, T ].

Definition 2.2. ([8]) Let ν ∈ (0, 1), u ∈ C[0, T ]. Then the left and right Riemann-Liouville fractional derivatives 0D
ν
t u(t)

and tD
ν
Tu(t) are respectively defined by

0D
ν
t u(t) =

d

dt
0D

ν−1
t u(t) =

1

Γ(1− ν)

d

dt

∫ t

0

(t− θ)−νu(θ)dθ, t ∈ [0, T ],

tD
ν
Tu(t) = − d

dt
tD

ν−1
T u(t) =

−1

Γ(1− ν)

d

dt

∫ T

t

(θ − t)−νu(θ)dθ, t ∈ [0, T ].

Definition 2.3. ([8]) Let ν ∈ (0, 1), u ∈ AC[0, T ]. Then the left and right Caputo fractional derivatives C
0 D

ν
t u(t) and

C
t D

ν
Tu(t) are respectively defined by

C
0 D

ν
t u(t) = 0D

ν−1
t u′(t) =

1

Γ(1− ν)

∫ t

0

(t− θ)−νu′(θ)dθ, t ∈ [0, T ],

C
t D

ν
Tu(t) = −tDν−1

T u′(t) =
−1

Γ(1− ν)

d

dt

∫ T

t

(θ − t)−νu′(θ)dθ, t ∈ [0, T ].

Definition 2.4. ([20]) Let α ∈ (1/2, 1]. The fractional derivative space

Eα = {u ∈ AC([0, T ],RN ) : C0 D
α
t u(t) ∈ L2([0, T ],RN )},

is defined by the closure of C∞([0, T ],RN ) with the norm

||u||α,2 =
(∫ T

0

|u(t)|2dt+

∫ T

0

|C0 Dα
t u(t)|2dt

)1/2

.

Remark 2.1. For any u ∈ Eα, then u ∈ L2([0, T ],RN ) and C
0 D

α
t u(t) ∈ L2([0, T ],RN ).

Lemma 2.1. ([21]) Let q(t) ∈ C([0, T ]) is such that 0 < q0 ≤ q(t) ≤ q0 and u ∈ Eα. The norm ||u||α,2 is equivalent to

||u||α =
(∫ T

0

q(t)|u(t)|2dt+

∫ T

0

|C0 Dα
t u(t)|2dt

)1/2

. (1.2)

Lemma 2.2. ([20]) Let α ∈ (0, 1], the space Eα is a reflexive and separable Banach space.

Lemma 2.3. ([19]) Let α ∈ (0, 1] and p ∈ [1,+∞). For any u ∈ Lp([0, T ],RN ),

||0D−αξ u||Lp([0,t]) ≤
tα

Γ(α+ 1)
||u||Lp([0,t]), ξ ∈ [0, t], t ∈ [0, T ].

Lemma 2.4. ([19]) Let η > 0, p, q ≥ 1, 1
p + 1

q ≤ 1 + η or p 6= 1, q 6= 1, 1
p + 1

q = 1 + η, then the following property of

fractional integration ∫ b

a

[aD
−η
t u(t)]v(t)dt =

∫ b

a

[tD
−η
b v(t)]u(t)dt,

holds, provided that u(t) ∈ Lp([a, b],RN ), v(t) ∈ Lq([a, b],RN ).

Lemma 2.5. ([20]) Let α ∈ (1/2, 1] and the sequence {un} converges weakly to u in Eα, i.e., un ⇀ u. Then un → u in

C([0, T ],RN ), i.e., ||un − u||∞ → 0 as n→∞.

Theorem 2.1. ([35]) Let X be a reflexive real Banach space, let Φ : X → R be a sequentially weakly lower semi-

continuous, coercive and continuously Gâteaux differentiable functional whose Gâteaux derivative admits a continuous

inverse on X∗, and let Ψ : X → R be a sequentially weakly upper semi-continuous and continuously Gâteaux differentiable

functional whose Gâteaux derivative is compact. Assume that there exist r ∈ R and x0, x̄ ∈ X, with Φ(x0) < r < Φ(x̄)

and Ψ(x0) = 0, such that

(i) sup
Φ(x)≤r

Ψ(x) < (r − Φ(x0)) Ψ(x̄)
Φ(x̄)−Φ(x0) ,

(ii) for each λ ∈ Λr :=
(

Φ(x̄)−Φ(x0)
Ψ(x̄) , r−Φ(x0)

supΦ(x)≤rΨ(x)

)
the functional Φ− λΨ is coercive.

Then, for each λ ∈ Λr the functional Φ− λΨ has at least three distinct critical points in X.
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3. Main result

In this section, we introduce a new norm for space Eα and demonstrate its equivalence to the standard norm (1.2).

We then present the definition of weak solutions for problem (1.1) and define two functionals Φ and Ψ. To begin with,

we define a new norm for fractional derivative space Eα as follows:

||u|| =

(∫ T

0

|C0 Dα
t u(t)|2dt+

l∑
k=0

∫ tk+1

sk

q(t)|u(t)|2dt

)1/2

. (3.1)

Lemma 3.1. For u ∈ Eα, the norm ||u||α is equivalent to ||u||, i.e., there exist two positive constants ρ1 and ρ2 such that

ρ1||u||α ≤ ||u|| ≤ ρ2||u||α, for all u ∈ Eα.

Proof. Choosing ρ2=1, it is easy to see that ||u|| ≤ ρ2||u||α. Let `=
∑l
k=0 (tk+1−sk), by Lemma 2.3, we obtain

|u(0)|2 =
1

`

l∑
k=0

∫ tk+1

sk

|u(0)|2dt =
1

`

l∑
k=0

∫ tk+1

sk

|u(t)−0D
−α
t (C0 D

α
t u(t))|2dt

≤ 2

`

l∑
k=0

∫ tk+1

sk

(|u(t)|2 + |0D−αt (C0 D
α
t u(t))|2)dt

≤ 2

`

[∫ T

0

|0D−αt (C0 D
α
t u(t))|2dt+

l∑
k=0

∫ tk+1

sk

|u(t)|2dt

]

≤ 2

`

[(
Tα

Γ(α+ 1)

)2 ∫ T

0

|C0 Dα
t u(t)|2dt+

l∑
k=0

∫ tk+1

sk

|u(t)|2dt

]
(by using Lemma 2.3)

≤ 2

`(min{1, q0})

[(
Tα

Γ(α+ 1)

)2 ∫ T

0

|C0 Dα
t u(t)|2dt+

l∑
k=0

∫ tk+1

sk

q(t)|u(t)|2dt

]

≤ 2

`(min{1, q0})
max

{
1,

(
Tα

Γ(α+ 1)

)2
}
||u||2.

This, together with Lemma 2.3, yields∫ T

0

|u(t)|2dt =

∫ T

0

|u(0) + 0D
−α
t (C0 D

α
t u(t))|2dt

≤ 2

∫ T

0

(
|u(0)|2 + |0D−αt (C0 D

α
t u(t))|2

)
dt

≤ 2

[(
Tα

Γ(α+ 1)

)2 ∫ T

0

|C0 Dα
t u(t)|2dt+|u(0)|2T

]
(by using Lemma 2.3)

≤ 2

[(
Tα

Γ(α+ 1)

)2 ∫ T

0

|C0 Dα
t u(t)|2dt

+
2T ||u||2

`(min{1, q0})
max

{
1,

(
Tα

Γ(α+ 1)

)2
}]

≤ 2

[(
Tα

Γ(α+ 1)

)2

+
2T

`(min{1, q0})
max

{
1,

(
Tα

Γ(α+ 1)

)2
}]
||u||2 := Ξ||u||2.

It then follows that

||u||2α =

∫ T

0

|C0 Dα
t u(t)|2dt+

∫ T

0

q(t)|u(t)|2dt

≤
∫ T

0

|C0 Dα
t u(t)|2dt+ q0

∫ T

0

|u(t)|2dt ≤ (1 + q0Ξ)||u||2.

Take ρ1 = (1 + q0Ξ)−1/2, we get ρ1||u||α ≤ ||u||. The proof is therefore complete.

Lemma 3.2. If α ∈ (1/2, 1], then ||u||∞ ≤M ||u||, where

M :=
Tα−(1/2)

Γ(α)(2α− 1)
1/2

+

[
2

T1(min{1, q0})
max

{
1,

(
Tα

Γ(α+ 1)

)2
}]1/2

.
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Proof. For any u ∈ Eα, by using the Hölder’s inequality, we have

|u(t)| ≤ |0D−αt (C0 D
α
t u(t))|+ |u(0)|

=
1

Γ(α)

∣∣∣ ∫ t

0

(t− s)α−1C
0 D

α
s u(s)ds

∣∣∣+ |u(0)|

≤ 1

Γ(α)

(∫ t

0

(t− s)2(α−1)
ds

)1/2
(∫ T

0

|C0 Dα
s u(s)|2ds

)1/2

+ |u(0)|

≤ Tα−(1/2)

Γ(α)(2α− 1)1/2

(∫ T

0

|C0 Dα
t u(t)|2dt

)1/2

+ |u(0)| ≤M ||u||,

which implies that ||u||∞ ≤M ||u||. The proof is complete.

Lemma 3.3. A function u ∈ Eα is a solution of problem (1.1), then we have the following identity∫ T

0

(C0 D
α
t u(t))(C0 D

α
t v(t))dt+

n∑
k=1

Ii(u(tk))v(tk) +

n∑
k=0

∫ tk+1

sk

q(t)u(t)v(t)dt = λ

n∑
k=0

∫ tk+1

sk

fk(t, u(t))v(t)dt. (3.2)

holds for any v ∈ Eα.

Proof. For u, v ∈ Eα, by Lemma 2.4, we have∫ T

0

(C0 D
α
t u(t))(C0 D

α
t v(t))dt =

∫ T

0
tD

α−1
T (C0 D

α
t u(t))v′(t)dt

=

l∑
k=0

∫ tk+1

sk
tD

α−1
T (C0 D

α
t u(t))v′(t)dt+

l∑
k=1

∫ sk

tk
tD

α−1
T (C0 D

α
t u(t))v′(t)dt

=

l∑
k=0

tD
α−1
T (C0 D

α
t u(t))v(t)

∣∣t−k+1

s+k
+

l∑
k=0

∫ tk+1

sk
tD

α
T (C0 D

α
t u(t))v(t)dt

+

l∑
k=1

tD
α−1
T (C0 D

α
t u(t))v(t)

∣∣s−k
t+k
−

l∑
k=1

∫ sk

tk

d

dt
(tD

α−1
T (C0 D

α
t u(t)))v(t)dt

=

l∑
k=1

[
tD

α−1
T (C0 D

α
t u(t−k ))v(tk)−tDα−1

T (C0 D
α
t u(t+k ))v(tk)

]
+

l∑
k=1

[
tD

α−1
T (C0 D

α
t u(s−k ))v(sk)−tDα−1

T (C0 D
α
t u(s+

k ))v(sk)
]

+ tD
α−1
T (C0 D

α
t u(T ))v(T )−tDα−1

T (C0 D
α
t u(0))v(0)

+ λ

l∑
k=0

∫ tk+1

sk

fk(t, u(t))v(t)dt−
l∑

k=0

∫ tk+1

sk

q(t)u(t)v(t)dt

= −
n∑
k=1

Ik(u(tk))v(tk) + λ

l∑
k=0

∫ tk+1

sk

fk(t, u(t))v(t)dt−
l∑

k=0

∫ tk+1

sk

q(t)u(t)v(t)dt.

This lemma is proved.

Definition 3.1. A function u ∈ Eα is called a weak solution of problem (1.1), if (3.2) holds for any v ∈ Eα.

In order to apply Theorem 2.1 to our problem, we define the functionals Φ,Ψ : Eα → R as follows:

Φ(u) =
1

2
||u||2 +

l∑
k=1

∫ u(tk)

0

Ik(s)ds, Ψ(u) =

l∑
k=0

∫ tk+1

sk

Fk(t, u(t))dt, (3.3)

for u ∈ Eα. Standard arguments show that Φ∈C1(Eα,R), Ψ has continuous Gâteaux derivatives. For any v(t)∈Eα, their

Gâteaux derivatives at the point u(t)∈Eα are the functional Φ′(u),Ψ′(u) ∈ (Eα)∗, respectively, given by

Φ′(u)(v) =

∫ T

0

(C0 D
α
t u(t))(C0 D

α
t v(t))dt+

l∑
k=0

∫ tk+1

sk

q(t)u(t)v(t)dt+

l∑
k=1

Ik(u(tk))v(tk), (3.4)

Ψ′(u)(v) =

l∑
k=0

∫ tk+1

sk

fk(t, u(t))v(t)dt. (3.5)

5



Obviously, one way we look for the weak solutions of problem (1.1) is to establish the critical points of functional Φ−λΨ.

Moreover, similar to Lemma 3.3 in [34], the weak solution of FDEs (1.1) is also a classical one.

Theorem 3.1. Assume that the following conditions hold:

(C1) There exist positive constants a, b > 0, such that Fk(t, u) ≤ au2 + b, where Fk(t, u)=

∫ u

0

fk(t, s)ds, k=0, 1, · · ·, l.

(C2) Ik(u) is nondecreasing and Ik(u)u ≥ 0, for all u ∈ R, k=1, · · ·, l.

(C3) There exist positive constants c, d > 0, such that

c2

2M2
<

1

2
d2

l∑
k=0

∫ tk+1

sk

q(t)dt+

l∑
k=1

∫ d

0

Ik(s)ds,

and

2aTM2 < Λ1 :=
2M2

c2

l∑
k=0

∫ tk+1

sk

max
u∈[−c,c]

Fk(t, u)dt < Λ2 :=

∑l
k=0

∫ tk+1

sk

Fk(t, d)dt

(d2
/

2)
∑l
k=0

∫ tk+1

sk

q(t)dt+
∑l

k=1

∫ d

0

Ik(s)ds

.

Then, for any λ ∈ [1/Λ2, 1/Λ1], the problem (1.1) has at least three distinct solutions in Eα.

In order to prove Theorem 3.1, we first prove three auxiliary lemmas.

Lemma 3.3. Assume that (C2) holds. Then the functional Φ : Eα → R is weakly lower semi-continuous and coercive.

Proof. Let {un} ⊂ Eα satisfies un ⇀ u as n → ∞, then we have ||u|| ≤ lim infn→∞||un||. Moreover, by Lemma 2.5, we

also get {un} converges uniformly to u on C([0, T ]). As a consequence, we obtain

lim inf
n→∞

Φ(un) = lim inf
n→∞

[
1

2
||un||2 +

l∑
k=1

∫ un(tk)

0

Ik(s)ds

]
≥ 1

2
||u||2 +

l∑
k=1

∫ u(tk)

0

Ik(s)ds = Φ(u).

which means that Φ is weakly lower semi-continuous. Moreover, by using the condition (C2), it can easily be seen that

Φ is coercive. The lemma is proved.

Lemma 3.4. Assume that (C2) holds. Then the functional Φ′ : Eα → (Eα)∗ admits a continuous inverse on (Eα)∗.

Proof. We first show that Φ′ is coercive. In fact, for every u∈Eα\{0}, by (3.4) and condition (C2), we have

Φ′(u)(u) =

∫ T

0

|C0 Dα
t u(t)|2dt+

l∑
k=0

∫ tk+1

sk

q(t)|u(t)|2dt+

l∑
k=1

Ik(u(tk))u(tk) ≥ ||u||2.

which implies that Φ′ is coercive. Moreover, for given u, v∈Eα, it follows from condition (C2) that

(Φ′(u)− Φ′(v))(u− v) = ||u− v||2 +

l∑
k=1

[Ik(u(tk))− Ik(v(tk))](u(tk)− v(tk)) ≥ ||u− v||2.

This implies, Φ′ is uniformly monotone. In view of [36, Theorem 26.A (d)], we see that (Φ′)−1 exists and is continuous

on (Eα)∗. The proof is complete.

Lemma 3.5. Ψ : Eα → R is weakly upper semi-continuous and Ψ′ : Eα → (Eα)∗ is a continuous and compact functional.

Proof. Easily, we can obtain that Ψ is weakly upper semi-continuous. In order to prove Ψ′ is continuous and compact,

we first show that Ψ′ is strongly continuous on Eα. In fact, let {un} ⊂ Eα satisfies un ⇀ u as n → ∞, then by Lemma

2.5, we know that {un} converges uniformly to u on C([0, T ]). Since the functions fk∈C((sk, tk+1]×R,R), it follows that

fk(t, un) → fk(t, u), as n → ∞. Then we obtain Ψ′(un) → Ψ′(u) as n → ∞, that is, Ψ′ is strongly continuous on Eα.

Furthermore, by [36, Proposition 26.2] we can infer that Ψ′ is a compact operator. This completes the proof.

By using Theorem 2.1, we are now turning to the proof of Theorem 3.1.
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Proof. (Theorem 3.1.) From Lemma 3.3 and Lemma 3.4 that Φ is a weakly lower semi-continuous, coercive and

continuously Gâteaux differentiable functional, and its Gâteaux derivative admits a continuous inverse on (Eα)∗. By

Lemma 3.5, we also obtain that Ψ is a weakly upper semi-continuous and continuously Gâteaux differentiable functional,

and its Gâteaux derivative is compact. Let r = c2(2M2)−1 and choose u0 = 0, u1 = d. Obviously, u0, u1 ∈ Eα.

Furthermore,

Φ(u0) = 0, Ψ(u1) =

l∑
k=0

∫ tk+1

sk

Fk(t, d)dt,

Φ(u1) =
1

2
d2

l∑
k=0

∫ tk+1

sk

q(t)dt+

l∑
k=1

∫ d

0

Ik(s)ds.

By condition (C3), we can obtain Φ(u0) < r < Φ(u1). On the other hand, for any u ∈ Eα such that Φ(u) ≤ r, then

||u||2 ≤ 2r. It follows from Lemma 3.2 that ||u||∞ ≤ c. Therefore,

sup
Φ(u)≤r

Ψ(u) ≤
l∑

k=0

∫ tk+1

sk

max
u∈[−c,c]

Fk(t, u)dt.

This combining with condition (C3), we can derive

(r − Φ(u0))
Ψ(u1)

Φ(u1)− Φ(u0)
=

c2

2M2
·

∑l
k=0

∫ tk+1

sk

Fk(t, d)dt

(d2
/

2)
∑l
k=0

∫ tk+1

sk

q(t)dt+
∑l

k=1

∫ d

0

Ik(s)ds

>

l∑
k=0

∫ tk+1

sk

max
u∈[−c,c]

Fk(t, u)dt ≥ sup
Φ(u)≤r

Ψ(u),

that is, the condition (i) of Theorem 2.1 holds. For any u ∈ Eα, in view of the conditions (C1), (C2), Lemma 3.2 and

Eq. (3.3), we have

Φ(u)− λΨ(u) =
1

2
||u||2 +

l∑
k=1

∫ u(tk)

0

Ik(s)ds− λ
l∑

k=0

∫ tk+1

sk

Fk(t, u(t))dt

≥
(

1

2
− λaTM2

)
||u||2 − λbT. (3.6)

By condition (C3), one has

1

2
− λaTM2 > 0, λ ∈ [1/Λ2, 1/Λ1]. (3.7)

It follows from the inequalities (3.6) and (3.7) that lim
||u||→∞

(Φ(u) − λΨ(u)) = +∞. Thus, the condition (ii) of Theorem

2.1 holds. According to Theorem 2.1, for any λ ∈ [1/Λ2, 1/Λ1], the functional Φ − λΨ possesses at least three distinct

critical points in Eα, i.e., the impulsive problem (1.1) has at least three solutions. The proof is completed.

Remark 3.1. Assume that the conditions (C1)-(C3) hold. If there exists a k ∈ {0, 1, 2, · · · , l}, such that fk(t, 0) 6= 0,

then problem (1.1) has at least three nonzero solutions.

4. Example

Example 4.1. Consider the following fractional Neumann impulsive problem

tD
3/4
1 (C0 D

3/4
t u(t)) + 1

45u(t) = λfk(t, u(t)), t ∈ (si, ti+1], i = 0, 1,

∆(tD
α−1
T (C0 D

α
t u))(ti) = I1(u(t1)),

tD
α−1
T (C0 D

α
t u)(t) = tD

α−1
T (C0 D

α
t u)(t+1 ), t ∈ (t1, s1],

tD
α−1
T (C0 D

α
t u)(s−1 ) = tD

α−1
T (C0 D

α
t u)(s+

1 ),

tD
α−1
T (C0 D

α
t u)(0) = tD

α−1
T (C0 D

α
t u)(1) = 0,

(4.1)
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Corresponding to problem (1.1), here

l = 1, 0 = s0 < t1 =
1

2
< s1 =

3

5
< t2 = 1, T = 1, α =

3

4
,

fk(t, u) = cosu+
1

2
u, k = 0, 1, I1(u) =

1

100
u, q(t) =

1

45
,

Obviously, the condition (C2) holds. Choose,

a =
1

4
, b = c = 1, d =

π

2
.

Through direct calculation, we can obtain

T1 = 0.9, M ≈ 3.785, Fk(t, u) = sinu+
1

4
u2 ≤ 1

4
u2 + 1, k = 0, 1,

0.035 ≈ c2

2M2
<

1

2
d2

1∑
k=0

∫ tk+1

sk

q(t)dt+

∫ d

0

I1(s)ds =
π2

8

(
9

10
· 1

45
+

1

100

)
≈ 0.037,

2aTM2 =
1

2
M2 < Λ1 = 2M2

1∑
k=0

∫ tk+1

sk

max
u∈[−1,1]

Fk(t, u)dt =
9M2

5

(
sin 1 +

1

4

)
≈ 28.15

< Λ2 =

∑1
k=0

∫ tk+1

si

Fk(t, π/2)dt

(π2
/

8)
∑1
k=0

∫ tk+1

sk

q(t)dt+

∫ d

0

I1(s)ds

≈ 1

0.037
· 9

10

(
1 +

π2

16

)
≈ 39.33.

Therefore, the assumptions (C1) and (C3) in Theorem 3.1 hold. Now all the assumptions in Theorem 3.1 are satisfied

and, consequently, its conclusion implies that for any λ ∈ [1/Λ2, 1/Λ1] the BVP (4.1) has at least three solutions.

Remark 4.1. For impulsive fractional BVP (4.1), note that fk(t, 0) = 1 6= 0, k = 0, 1, thus the solutions of problem

(4.1) are nonzero solutions.
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