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Abstract

In the present era, the plastic waste problem is a global challenge due to its massive
production. The post-use of waste plastic influences the earth’s environment, human
life, marine life, and ocean. Thus there is a necessity to develop good strategies for the
exclusion of plastic waste. Because of this, an extension is paid on the procedure of burning
and recycling plastic waste. As a case study, the four-dimensional systems of ordinary
differential equations are developed to estimate the effects of burned plastic and recycled
plastic on air pollution. The well-posedness and qualitative properties are discussed. The
reproduction number of the plastic waste model and local and global stability are discussed
in detail. The effect of influence parameters is systematically investigated by numerical
experiments. The numerical results provide a better strategy to restrict air pollution and
ensure a good climate, earth’s environment, and healthy human life.

Keywords: Plastic; Burned plastic; Recycled plastic; Air Pollution; Fractional order;
Stability analysis.

1. Introduction

Plastic is a material made from synthetic or semi-synthetic materials and was acciden-
tally found by the German chemist Christian Schonbein. Christian has experimented with
a mixture of nitric acid and sulphuric acid on cotton cloth. The chemical reaction occurred
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and then he placed it over the stove after some time the fabric vanished and became plas-
tic. Plastics do not corrode by water and air whereas almost all metals corrode with them.
Due to this reason, it was widely adopted by the field of chemistry and material science
as a utensil or storage of chemicals. According to the Society of the Plastics Industry, to
recognize plastic by its classification they introduced a resin identification code. This code
categorized the plastic into seven different categories namely polyethylene terephthalate,
high-density polyethylene, polyvinyl chloride, low-density polyethylene, polypropylene,
polystyrene, and other plastics.

Nowadays, plastics are growingly used in our day-to-day life such as in packaging,
consumer products, and transportation as it is easily available and inexpensive. The
single usage of plastic bags, food wrappers, beverage bottles, straws, containers, and caps
are the various sources and pathways through which plastic waste enters the environment.
Also, illegal dumping is the major source of plastic waste detected. In 2020, approximately
400 million tonnes of plastic were produced. According to one estimate, there is only 9
percent of plastic is recycled in total plastic production. Hence plastic pollution becomes
a global challenge as it directly influences the earth’s environment, human life, marine life,
and ocean. Thus to protect the environment we must carefully think about the reduction
of plastic waste by applying control measures such as burning plastic, recycled plastic,
and as much as reducing the usage of plastic.

Plastic burning is one of the foremost reasons to quickly reduce plastic waste simulta-
neously diminish the volume of landfills, generate energy, and utilize it for other purposes,
limit deforestation, burning heat decompose plastic polymers into minor hydrocarbons
that are refined to produce diesel fuel. On the other side, the burning process damages
the environment and the quality of air. It releases various toxic gases, hydrochloric acid,
dioxins, and sulfur dioxide and significantly invites many diseases like asthma, pneumonia,
skin irritations, liver, kidney, and cancer. Thus it is essential to manage or mitigate the
health risks associated with burning plastic waste. Identify the plastic types that generate
more toxicity during burning then use a gasification process. Promote the repalletization
and remolding of plastic waste instead of burning them. Encourage the usage of wa-
ter during the burning process that significantly dissolves the hazardous gases. Burning
of inorganic plastic waste in the open with unrestrained fire is unsafe. Also follows the
guidelines given by the central pollution control board and state authority and burns only
approved plastics. The recycling of plastic is also the procedure to reduce plastic waste
and transfer it into usable products. Recycling plastic waste reduces the need to produce
new raw materials, emissions of carbon dioxide and hazardous gases into the air, spread
rubbish to landfills, and plastic waste. This procedure significantly improved the air qual-
ity and environment as it protected from the emission of dangerous gases. Simultaneously,
the recycling process diminishes the requirement for the production of plastic and saves
energy.
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Air pollution mainly occurs due to the defilement of air level as the scant stuff is mixing
with it. It disturbs the natural environment and the quality of air and when it goes to
breathing then it damages the living organism and as results invite several diseases. This
situation is happened for a longer period then it leads to the death of persons. According
to the World Health Organization, 99 percent population of the world is living where the
quality of air level is not adequate [1]. Due to this reason, in 2019 an estimated 4.2 million
in the globe are met to the premature deaths [1].

To resolve or overcome this situation few theoretical attempts are registered in the form
of a mathematical model. The mathematical model is a great tool to overcome any worst
situation in the absence of experimental work. Nowadays mathematical models are gaining
more attention due to the development of computer technology and their applicability in
almost all areas of science, technology, earth science, biology, neuroscience, medicine, and
so on [2–28]. Chaturvedi et al. have developed a mathematical model to study the effect of
plastic waste on the surface of the ocean [29]. Barma et al. have developed a mathematical
model for municipal solid waste and examine the establishment of recycling, composting,
and combusting centers for optimum cost [30]. Izadi et al. have developed a waste plastic
model to examine the effects of marine debris and recycling on the ocean environment
[31]. Besides this mathematical approach, various attempts have been made to study
the cause and optimal solution of plastic waste on air pollution and the environment
with different statistical techniques and case studies [32–38]. Thus it is observed from
the literature that seldom mathematical attempts are registered to manage plastic waste
and its side effects on the environment. Thus motivated by this, in this study we have
developed a mathematical plastic waste model to study the impact of burned plastic and
recycled plastic on air pollution. To the best of the author’s knowledge to date, none of
the mathematical models has provided a deep insight into the control of plastic waste and
air pollution.

The paper is organized as follows. In Section 2, we provide the basic definition of the
fractional derivative. In Section 3, we introduce the novel plastic waste model and then
extend it to fractional order. In Section 4, we discuss its various equilibria and local and
global stability behavior. In Section 5, numerical experiments are performed to validate
the analytical finding and develop a treatment mechanism to control air pollution. Finally,
we conclude some important results in Section 6.

2. Preliminaries of plastic waste model

Some basic definitions of fractional derivatives and their Laplace transform are recalled
in this section which is important for this study [39–43].

Definition 1 Let f(t) be a function f : R+ → R then the Riemann-Liouville fractional
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integral is defined as

RLIα0+f(t) =
1

Γ(α)

t∫
0

(t− w)α−1f(w)dw, (1)

where α is the order of derivatives and t > 0.

Definition 2 Let f(t) be a function f : R+ → R then the Riemann-Liouville fractional
derivative is defined as

RLDα
0+f(t) = DnRLIn−α

0+ f(t), (2)

where α is the order of derivative, D is the classical derivative and t > 0.

Definition 3 The Caputo fractional derivative (CFD) of a function f(t) is defined as

CDα
0+f(t) =

RLIn−α
0+ Dnf(t) =

1

Γ(n− α)

t∫
0

(t− w)n−α−1fn(w)dw, (3)

where α ∈ (n− 1, n) is the order of derivatives and n ∈ N.

Definition 4 The Laplace transform of CFD of a function f(t) is given by

L{CDα
0+f(t)} = sαF (s)−

n−1∑
j=0

sα−j−1f (j)(0). (4)

3. Mathematical model

In this section, we have developed a mathematical model for plastic waste and analyzed
it to examine the impact on air pollution. The burning and recycling of plastic, two
strategies are adopted in the model for the reduction of plastic waste. The model is
divided into four compartments plastic P (t), burned plastic B(t), recycled plastic R(t),
and air pollution A(t). The constant demand rate of plastic Λ is considered, β represents
the burning rate of plastic, δ represents the rate of air pollution through burned plastic, θ
represents the recycling rate of plastic, ρ represents the rate of recycling plastic for reused,
φ represents the burning rate of recycled plastic for high temperature, γ represents the
rate of air pollution through recycling plastic, ω represents the rate of disposable plastic
or recovery rate from each compartment. A schematic diagram in Figure 1 represents this
situation.
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Table 1: Description of the model parameters.

Parameter Description of parameter
Λ Demand rate
β Burning rate
θ Recycling rate
ρ Recycle or reused rate
ω Wastage rate
φ Burning rate through recycling process
δ Air pollution rate due to burned plastic
γ Air pollution rate due to the recycling process of plastic

Figure 1: Flow diagram of the PBRA model.

Thus by considering this situation the set of nonlinear ordinary differential equations
for the plastic waste model is described as follows

dP
dt

= Λ− βPB − θPR + ρR− ωP,
dB
dt

= βPB + φR− δB − ωB,
dR
dt

= θPR− ρR− φR− γR− ωR,
dA
dt

= δB + γR− ωA,

(5)

along with the initial conditions P (0) = P0, B(0) = B0, R(0) = R0, and A(0) = A0. The
plastic waste model parameters and their description are listed in Table 1.

Here, we consider the fractional derivative approach to involve the impact of vertical
transmission in the plastic waste model. The term vertical transmission stands for the
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transfer of plastic from one generation to the next generation through recycling or repro-
duction which is the process of heredity. Fractional derivatives are non-local operators and
can best describe heredity phenomena in the dynamical system. Also, the fractional order
model best describes the heredity traits, anomalous diffusion, and mechanical properties
of materials whereas the integer order model fails. A fractional differential equation is
a generalization of an ordinary differentiation equation as it provides a great degree of
freedom to choose the order of derivative [39–43]. It can be applied in the linear as well as
nonlinear differential equation in a straightforward manner as an ordinary differentiation
equation. This model (5) is transformed in the form of fractional differential equations as
follows

C
0 D

α
t P = Λ− βPB − θPR + ρR− ωP,

C
0 D

α
t B = βPB + φR− δB − ωB,

C
0 D

α
t R = θPR− ρR− φR− γR− ωR,

C
0 D

α
t A = δB + γR− ωA,

(6)

with the initial conditions P (0) = P0, B(0) = B0, R(0) = R0, and A(0) = A0. Note that
when the order of the derivative is reached α = 1 then the fractional PBRA model (6)
converts to the original PBRA model (5).

4. Model analysis

In this section, the positivity and boundedness of the proposed PBRA model (6) are
derived.

4.1. Positivity and boundedness

Lemma 1 [42] Let f(t) be a continuous function on [a, b] and the CFD of f(t) is also a
continuous function for 0 < α ≤ 1 then for every t ∈ (a, b] we have

f(t) = f(a) +
1

Γ(α)
C
0 D

α
t f(τ)(t− a)α, (7)

where 0 ≤ τ ≤ t.
If f(t) be a continuous function on [a, b] and for every t ∈ (0, b] we have C

0 D
α
t f(t) ≥ 0,

for 0 < α ≤ 1 then f(t) is positive for all t.

Theorem 1 If the initial conditions of the PBRA model (6) are in the region Ω and it is
defined as Ω =

{
(P,B,R,A) ∈ R4

+

∣∣P,B,R,A ≥ 0
}
than all the possible solutions of the

model are lying within in Ω.
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Proof. Let’s consider the first equation of the model (6)

C
0 D

α
t P |P=0 = Λ+ ρR ≥ 0, (8)

as Λ the demand rate of plastic and ρ the recycling rate of plastic are positive parameters.
Similarly, we have

C
0 D

α
t B|B=0 = φR ≥ 0,

C
0 D

α
t R|R=0 = 0,

C
0 D

α
t A|A=0 = δB + γR ≥ 0,

(9)

Equations (8)-(9) hold for all the points in the region, hence, by using Lemma 1 we
confirmed that the given region is positive invariant. Next, we prove the boundedness of
the proposed PBRA model.

To obtain the total demand for plastic we add the equations of the model (6) then we
get

C
0 D

α
t T (t) = Λ− ωP − ωB − ωR− ωA, (10)

where T (t) = P (t) +B(t) +R(t) + A(t).
Thus we have

C
0 D

α
t T (t) = Λ− ωT, (11)

Hence to confirm the boundedness of the model we solve the following fractional initial
value problem

C
0 D

α
t T (t) + ωT = Λ, (12)

with T (0) = T0.
By applying the Laplace transform to both sides of the equation (12) we have

L
(
C
0 D

α
t T (t) + ωT

)
= L(Λ), (13)

Then by using equation (4) equation (13) is transformed as

T̄ (s) =
s−1Λ

sα + ω
+

sα−1T0

sα + ω
, (14)

Next by inverting the Laplace transform of equation (14), we have

T (t) = ΛtαEα,α+1(−ωtα) + Eα,1(−ωtα)T0,
≤ Λ

ω
(tαωEα,α+1(−ωtα)) + Eα,1(−ωtα),

≤ Λ
ω

1
Γ(1)

≤ Λ
ω
.

(15)

Hence, equation (15) confirmed the boundedness of the model (6). □

Theorem 2 The PBRA model (6) possesses three equilibrium points namely (I) Pollution
free equilibrium (PFE) point EP (II) Recycling free equilibrium (RFE) point ER (III)
Endemic equilibrium point (EEP) E∗.
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Proof. To determine the equilibrium point of the model (6), we simultaneously solve the
following equations

C
0 D

α
t P (t) = C

0 D
α
t B(t) = C

0 D
α
t R(t) = C

0 D
α
t A(t) = 0. (16)

Then we reach the set of algebraic equations as

Λ− βPB − θPR + ρR− ωP = 0,
βPB + φR− δB − ωB = 0,
θPR− ρR− φR− γR− ωR = 0,
δB + γR− ωA = 0.

(17)

Then the simple algebraic calculation provides the three solutions to equation (17). The
first solution is known as the PFE point EP = (P P , BP , RP , AP ), where

P P =
Λ

ω
,BP = RP = AP = 0. (18)

The second solution is known as the RFE point ER = (PR, BR, RR, AR), where

PR =
δ − ω

β
,BR =

Λβ − ω(δ + ω)

β(δ + ω)
, RR = 0, AR =

δ(Λβ − ω(δ + ω))

βω(δ + ω)
. (19)

and the third solution is known as EEP E∗ = (P ∗, B∗, R∗, A∗), where

P ∗ = ρ+γ+φ+ω
θ

, B∗ = φ(ω(ρ+γ+φ+ω)−Λθ)
((ρ+γ+φ+ω)(β(γ+ω)−θ(δ+ω))+θρ(δ+ω))

,

R∗ = (ω(ρ+γ+φ+ω)−Λθ)(θ(δ+ω)−β(ρ+γ+φ+ω))
θ(((ρ+γ+φ+ω)(−θ(δ+ω)+β(γ+ω)))+θρ(δ+ω))

,

A∗ = (ω(ρ+γ+φ+ω)−Λθ)(θ(γ(δ+ω)+δφ)−β(ρ+γ+φ+ω))
θω(((ρ+γ+φ+ω)(−θ(δ+ω)+β(γ+ω)))+θρ(δ+ω))

.

(20)

This completes the proof. □

4.2. Basic reproduction number

The basic reproduction number (R0) in epidemiology shows the transmissibility of
infectious pathogens. Here R0 shows how pollution spreads through the pollutant class
that is the burning and recycling process of plastic. That provides information about
influence parameters and supports to development of an efficient public health policy to
control or restrict air pollution. The basic reproduction number of the PBRA model is
obtained by using the next-generation matrix method [44]. For that, we have considered
the right-hand side of the pollutant class B and R and rearranged in the following system
as

C
0 D

α
t x = F (x)− V (x), (21)
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where x = [B,R]T , F is the term containing the pollution rate, and V containing the
other terms.

The Jacobian matrices of F (x) and V (x) at the PFE point EP are

F (x) =

(
Λβ/ω 0
0 0

)
, V (x) =

(
δ + ω −φ
0 ρ+ γ + φ+ ω − Λθ/ω

)
. (22)

Now,

FV −1 =

(
Λβ/ω 0
0 0

)(
1/(δ + ω) φ/((δ + ω)(ρ+ γ + φ+ ω − Λθ/ω))

0 1/(ρ+ γ + φ+ ω − Λθ/ω)

)
,

=

( Λβ
ω(δ+ω)

βPφ
(δ+ω)(ρ+γ+φ+ω−Λθ/ω)

0 0

)
.

(23)

The spectral radius of FV −1 known as the basic reproduction number and is defined by
R0 as

R0 =
Λβ

ω(δ + ω)
. (24)

Theorem 3 The PFE point EP = (P P , BP , RP , AP ) of the model (6) is locally asymp-
totically stable if R0 < 1 and under the condition

Λθ

ω
< (ρ+ γ + φ+ ω), (25)

otherwise unstable.

Proof. The Jacobian matrix for the model (6) is given by

J =


−(βB + θR + ω) −βP ρ− θP 0

βB βP − (δ + ω) φ 0
θR 0 θP − (ρ+ φ+ γ + ω) 0
0 δ γ −ω

 . (26)

The Jacobian matrix at the PFE point EP is

J(EP ) =


−ω −Λβ/ω ρ− Λθ/ω 0
0 Λβ/ω − (δ + ω) φ 0
0 0 Λθ/ω − (ρ+ φ+ γ + ω) 0
0 δ γ −ω

 . (27)

The Jacobian matrix J(EP ) possesses four Eigenvalues λ1, λ2, λ3 and λ4 as follows

λ1 = λ2 = −ω, λ3 =
Λθ − ω(ρ+ φ+ γ + ω)

ω
, λ4 =

Λβ − ω(δ + ω)

ω
. (28)
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The first and second Eigenvalues are negative. To determine the nature of the fourth
Eigen value we rearranged as follows

λ4 =
Λβ − ω(δ + ω)

ω
= (δ + ω)

(
Λβ

ω(δ + ω)
− 1

)
= (δ + ω)(R0 − 1). (29)

Hence λ4 < 0 if R0 < 1. The third Eigenvalues λ3 < 0 if

Λθ − ω(ρ+ φ+ γ + ω)

ω
< 0. (30)

Therefore to confirm the PFE point EP is locally asymptotically stable it must satisfy the
condition Λθ

ω
< (ρ+ γ + φ+ ω). This completes the proof. □

Theorem 4 The RFE point ER = (PR, BR, RR, AR), of the model (6) is locally asymp-
totically stable if R0 < 1 and under the condition

θ(δ + ω)

β
< (ρ+ φ+ γ + ω), (31)

otherwise unstable.

Proof. We calculate the Jacobian matrix given in equation (26) at the RFE point ER as
follows

J(ER) =


− Λβ

(δ+ω)
−(δ + ω) ρβ − θ(δ + ω) 0

Λβ−ω(δ+ω)
(δ+ω)

0 φ 0

0 0 θ(δ+ω)
β

− (ρ+ φ+ γ + ω) 0

0 δ γ −ω

 , (32)

The Jacobian matrix J(ER) possesses four Eigenvalues λ1, λ2, λ3 and λ4 as follows

λ1 = −ω, λ2 =
θ(δ+ω)−β(ρ+φ+γ+ω)

β
,

λ3,4 =
−Λβ±

√
Λ2β2+4ω(δ+ω)3−4Λβ(δ+ω)2

2(δ+ω)
.

(33)

The first Eigenvalue is negative. The second Eigenvalue λ2 < 0 if

θ(δ + ω)− β(ρ+ φ+ γ + ω)

β
< 0. (34)

Therefore to confirm λ2 < 0 it must satisfy the condition θ(δ+ω)
β

< (ρ + φ + γ + ω). To
determine the nature of the remaining two Eigen value we rearranged them as follows

λ3,4 =
−Λβ ±

√
Λ2β2 + 4ω(δ + ω)2 {ω(δ + ω)(1−R0)}

2(δ + ω)
. (35)
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Therefore to confirm the RFE point ER is locally asymptotically stable it must satisfy
R0 < 1 along with the condition (31). This completes the proof. □

Theorem 5 The EEP point E∗ = (P ∗, B∗, R∗, A∗), of the model (6) is locally asymptoti-
cally stable if R0 < 1 and under the condition

β(ρ+ γ + φ+ ω) <
θ(δ + ω)

β
, (36)

otherwise unstable.

Proof. The Jacobian matrix for the model (6) is given by

J =


−(βB + θR + ω) −βP ρ− θP 0

βB βP − (δ + ω) φ 0
θR 0 θP − (ρ+ φ+ γ + ω) 0
0 δ γ −ω

 . (37)

The Jacobian matrix at the EEP E∗ is

J(E∗) =


−(βB∗ + θR∗ + ω) −βP ∗ ρ− θP ∗ 0

βB∗ βP ∗ − (δ + ω) φ 0
θR∗ 0 θP ∗ − (ρ+ φ+ γ + ω) 0
0 δ γ −ω

 . (38)

The characteristic polynomial for the Jacobian matrix J(E∗) is

λ4 + a1λ
3 + a2λ

2 + a3λ+ a4 = 0, (39)

where

a1 = (βB∗ + θR∗ + ω) + ω + k1 + k2,
a2 = (β2B∗P ∗ + P ∗R∗θ2 +R∗θρ) + k1(βB

∗ + θR∗ + ω) + k2(βB
∗ + θR∗ + ω)

+ ω(βB∗ + θR∗ + ω) + (k1k2 + ωk1 + ωk2),
a3 = (β2B∗P ∗k2 + ωβ2B∗P ∗ + βP ∗R∗θφ+ P ∗R∗θ2k1 + ωP ∗R∗θ2 +R∗θρk1 + ωk1k2
+ ωR∗θρ+ k1k2(βB

∗ + θR∗ + ω) + ωk1(βB
∗ + θR∗ + ω) + ωk2(βB

∗ + θR∗ + ω)),
a4 = ω(β2B∗P ∗k2 + βP ∗R∗θφ+ P ∗R∗θ2k1 +R∗θρk1 + k1k2(βB

∗ + θR∗ + ω)),
(40)

and
k1 = (δ + ω)− βP ∗,
k2 = (ρ+ φ+ γ + ω)− θP ∗.

(41)

The model (6) is locally asymptotically stable we must ensure that the roots of the equation
(39) are negative. Then by the Routh-Hurwitz stability criteria [45], it is necessary and
sufficient to show that aj > 0, j = 1, 2, 3, 4.
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Thus to meet this criteria it must satisfy R0 < 1 along with k1, k2 > 0. Hence the EEP
E∗ of the model (6) is locally asymptotically stable if R0 < 1 and under the condition
(36). This completes the proof. □

Lemma 2 [46] Let f(t) ∈ R+ be a differentiable and continuous function on [0, t]. Then
for any f ∗ ∈ R+ we have

C
0 D

α
t

[
f(t)− f ∗ − f ∗ ln

f(t)

f ∗

]
≤

(
1− f ∗

f(t)

)
C
0 D

α
t f(t). (42)

where α ∈ (0, 1).

Lemma 3 [47] Let f(t) be a locally Lipschiptz function defined over a domain S ⊂ Rn

and Ω ⊂ S be a compact positively invariant with respect to y′ = f(t). Let L(t) be a C1

function defined over S such that L′(t) ≤ 0 in Ω. Let P be the set of all points in Ω where
L′(t) = 0, and F be the largest invariant set in P . Then, every solution starting in Ω
approaches F as t → ∞, means that d(y(t, t0), F ) → 0, ast → ∞, for all t0 ∈ Ω.

Theorem 6 The EEP point E∗ = (P ∗, B∗, R∗, A∗), of the model (6) is globally asymptot-
ically stable if R0 > 1 otherwise unstable.

Proof. Let’s consider the positive definite Lyapunov function L(P,B,R,A) : Ω → R+

defined by

L(t) = W1

[
P − P ∗ − P ∗ ln

(
P

P ∗

)]
+W2

[
B −B∗ −B∗ ln

(
B

B∗

)]
+W3

[
R−R∗ −R∗ ln

(
R

R∗

)]
,

(43)

where W1 =
1
ω
,W2 =

(R0−1)
δ+ω

, R0 > 1 and W3 =
1

(ρ+φ+γ+ω)
are positive constants. The CFD

of the Lyapunov function is obtained as follows

C
0 D

α
t L(t) =

1
ω
C
0 D

α
t

[
P − P ∗ − P ∗ ln

(
P
P ∗

)]
+ (R0−1)

δ+ω
C
0 D

α
t

[
B −B∗ −B∗ ln

(
B
B∗

)]
+ 1

(ρ+φ+γ+ω)
C
0 D

α
t

[
R−R∗ −R∗ ln

(
R
R∗

)]
,

(44)

Then by applying the results of Lemma 2, we have

C
0 D

α
t L(t) ≤ 1

ω

(
1− P ∗

P (t)

)
C
0 D

α
t P (t) + (R0−1)

δ+ω

(
1− B∗

B(t)

)
C
0 D

α
t B(t)

+ 1
(ρ+φ+γ+ω)

(
1− R∗

R(t)

)
C
0 D

α
t R(t),

(45)

From equation (6), we get

C
0 D

α
t L(t) ≤ 1

ω

(
1− P ∗

P (t)

)
(Λ− βPB − θPR + ρR− ωP )

+ (R0−1)
δ+ω

(
1− B∗

B(t)

)
(βPB + φR− δB − ωB)

+ 1
(ρ+φ+γ+ω)

(
1− R∗

R(t)

)
(θPR− ρR− φR− γR− ωR),

(46)
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Table 2: The numerical value of the PBRA model.

Parameter Value Parameter Value
Λ 0.05 β 0.35
θ 0.40 ρ 0.2
ω 0.30 φ 0.05
δ 0.40 γ 0.30

From equation (20), we have the following relationship between E∗ = (P ∗, B∗, R∗, A∗)

Λ− βP ∗B∗ − θP ∗R∗ = ωP ∗ − ρR∗,
βP ∗B∗ + φR∗ = (δ + ω)B∗,
θP ∗R∗ = (ρ+ φ+ γ + ω)R∗.

(47)

Then by plugging the values of equation (47) into equation (46) we have

C
0 D

α
t L(t) ≤ −

{
(P − P ∗)2

P
+

(B −B∗)2

B
(R0 − 1) +

(R−R∗)2

R

}
. (48)

Thus it is clear that if R0 > 1 then C
0 D

α
t L(t) ≤ 0, and if P = P ∗, B = B∗ and R = R∗ then

we get C
0 D

α
t L(t) = 0. Hence by LaSalle’s extension to Lyapunov’s principle provided in

Lemma 3, the EEP point E∗ of the model (6) is globally asymptotically stable if R0 > 1.
The global asymptotic stability confirmed that any trajectories starting from any initial
conditions in the domain finally tend to the EEP point of the system. □

5. Numerical results and discussion

In this section, the numerical simulation of the PBRA model is carried out to analyze
the effect of burned plastic and recycled plastic on air pollution. The initial conditions are
chosen to be P (0) = 5, B(0) = 2.5, R(0) = 1.25 and A(0) = 2. The parameter values used
for numerical simulation are given in Table 2. Using the Adams-type predictor-corrector
numerical method developed by Diethelm et al. [48], the PBRA model is simulated for
different values of burning rate, recycling rate, reused rate, air pollution rate due to burned
and recycled plastic, and fractional order to analyze the dynamical behavior of the model.
The numerical results are performed using MATLAB software and simulated in window
core(TM) i5-6500 CPU @ 3.20 GHz Processing speed and 8 GB memory.

Figure 2 shows the dynamical behavior of the PBRA model (6) which demonstrates
the initial state as well as the long-term behavior of the model. Initially, the demand for
plastic is high then gradually it decreases as the community uses the plastic from recycled
plastic. As time is increased air pollution is leisurely increased due to the burning and
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Figure 2: Dynamic behavior of the PBRA model.

recycling process of plastic. The dynamic behavior is calculated for the three years for
fractional order α = 1 along with the model parameters.

Figure 3-Figure 7 show the impact of burning, recycling, reused, pollution due to
burning, and pollution due to recycling plastic over air pollution. The order of fractional
derivatives is considered α = 0.8, α = 0.9, and α = 1 in subfigures (a) to (c) respectively to
capture the effects of vertical transmission. The burning of plastics releases black carbon,
organic carbon, polycyclic aromatic hydrocarbons, and greenhouse gases into the air.
Figure 3 reveals that as we increase the burning rate from 0.25 to 0.45, large amounts of
particles and gases are released into to air that damage the climate and raise air pollution.
By simultaneously comparing the results of Figure 3(a-c), it is observed that for α = 1 there
is high air pollution compared to α = 0.8. This result reveals that vertical transmission
also plays a significant role in reducing air pollution. Recycling plastic reduces energy,
emission of carbon dioxide, and toxic gases, and ultimately controls air pollution. But
when the recycling of plastic waste is executed at a high burning rate then causes air
pollution. Figure 4 reveals that a subtle rise in air pollution is observed as we increase the
recycling rate from 0.30 to 0.50. By simultaneously comparing the results of Figure 4(a-c),
it is observed that for α = 1 there is high air pollution compared to α = 0.8. This result
reveals that vertical transmission also plays a significant role in reducing air pollution.
Also, the graphical results show that as the recycling rate increases air pollution increases
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Figure 3: Effect of burning rate on air pollution for (a) α = 0.8 (b) α = 0.9 (c) α = 1.15
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Figure 4: Effect of recycling rate on air pollution for (a) α = 0.8 (b) α = 0.9 (c) α = 1.16
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Figure 5: Effect of reused plastic on air pollution for (a) α = 0.8 (b) α = 0.9 (c) α = 1.17
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Figure 6: Effect of air pollution due to burned plastic on air pollution for (a) α = 0.8 (b) α = 0.9 (c)
α = 1.
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Figure 7: Effect of air pollution due to recycling plastic on air pollution for (a) α = 0.8 (b) α = 0.9 (c)
α = 1.
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Figure 8: Phase diagram of burned plastic against air pollution.
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Figure 9: Phase diagram of recycled plastic against air pollution.
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but is minimal compared to the burning rate. From Figure 5, it is observed that as the
community adopts the reused plastic or its rate increases the air pollution is decreases. It
is observed that promoting the reuse of plastic and vertical transmission both are crucial
strategies for reducing air pollution. From Figure 6, it is observed that as the plastic is
burned at a high rate it creates lots of air pollution in the environment. As the air pollution
rate due to burning plastic increases then there is a dramatic rise in air pollution. From
Figure 7, it is observed that as the plastic is recycled at high temperatures also it creates
lots of air pollution. As the air pollution rate due to recycled plastic increases then there
is a dramatic rise in air pollution.

Figure 8 shows the phase diagram of burned plastic against air pollution whereas
Figure 9 shows the phase diagram of recycled plastic against air pollution. Both the results
reveal that as the burning rate or recycling rate of plastic increases then air pollution
increases whereas the burning rate or recycling rate of plastic decreases then air pollution
decreases. Also, the graphical results reveal that as the burning and recycling process is
terminated temporarily then the air pollution through burning and recycling of plastic
also tends to zero. Thus there is a strong positive correlation between the burning rate
and air pollution through plastic and the recycled rate and air pollution through plastic.

6. Conclusion

In this paper, we presented a mathematical model for plastic waste for the transmission
dynamics of burned plastic and recycled plastic on air pollution. The qualitative, and
quantitative behavior and reproduction number were computed. The analysis shows that
the model possesses three equilibrium points namely the pollution-free, recycling-free,
and endemic equilibrium points. The PFE point, RFE point, and EEP point are locally
asymptotically stable if R0 < 1 and under the condition (25), (31), and (36) respectively.
The EEP point is globally asymptotically stable if R0 > 1, otherwise unstable. The
numerical results show that the process of burning plastic and recycling plastic is an
important strategy to reduce waste plastic. Furthermore, air pollution is only reduced
if plastic production is reduced and promote the reuse of plastic. Burning plastic and
recycling plastic restrict plastic waste. Still, for the optimal solution of plastic waste and
air pollution, we altogether make an effort to cut down the usage of plastic and promote
the reuse of plastic. In the future, the present model can be extended to study the effects
of plastic waste on air pollution along with cardiovascular diseases and nervous system.
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