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Abstract: In this paper, we consider a nonautonomous singular Choquard equation
with critical exponent{

−∆u+ V (x)u+ λ(Iα ∗ |u|p)|u|p−2u = f(x)u−γ + |u|4u, x ∈ R3,
u > 0, x ∈ R3,

where Iα is the Riesz potential of order α ∈ (0, 3) and 1+ α
3 ≤ p < 3, 0 < γ < 1. Under

certain assumptions on V and f , we show the existence and multiplicity of positive
solutions for λ > 0 by using variational method and Nehari type constraint. We also
study concentration of solutions as λ→ 0+.
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1 Introduction

In this paper, we are interested in the nonautonomous Choquard equation{
−∆u+ V (x)u+ λ(Iα ∗ |u|p)|u|p−2u = f(x)u−γ + |u|4u, x ∈ R3,
u > 0, x ∈ R3,

(Pλ)

where 1 + α
3 ≤ p < 3, 0 < γ < 1, λ > 0 and Iα with α ∈ (0, 3) is the Riesz potential

defined by Iα =
Γ( 3−α

2
)

Γ(α
2
)2απ3/2|x|3−α , x ∈ R3 \ {0}. Here, Γ denotes the Gamma function.

Throughout the paper, we suppose V and f satisfy:
(V1) V ∈ C(R3) satisfies infx∈R3 V (x) > V0 > 0, where V0 is a constant.
(V2) meas{x ∈ R3 : −∞ < V (x) ≤ ν} < +∞ for all ν ∈ R.
(f1) f ∈ L

6
5+γ (R3) is a positive function.

(f2) There are δ1 > 0, max{3+γ
2 , 5+γ−2α

2 } < β1 < 5+γ
2 and ρ1 > 0 such that

f(x) ≥ ρ1|x|−β1 for |x| < δ1.

*This work was supported by the National Natural Science Foundation of China (No. 11871152, 11671085),
Natural Science Foundation of Fujian Province (No. 2023J01163).
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Recently, many scholars pay attentions to the following more general Choquard
equation

−∆u+ V (x)u+ λ(Iα ∗ |u|p)|u|p−2u = h(x, u), x ∈ RN , (1.1)

where N ∈ N and α ∈ (0, N). Problem (1.1) with N = 3, V (x) = 1, λ = −1, p = α = 2
and h(x, u) = 0 was proposed by Pekar [26] to describe the quantum theory of a polaron
at rest and as an approximation to Hartree-Fock theory of one component plasma by
Choquard (see [19]). Many papers considered problem (1.1) with λ = −1: when
V (x) = 1, 2 ≤ p ≤ N+α

N−2 and h(x, u) = 0, Ruiz and Van Schaftingen [27] proved that
least energy nodal solutions for problem (1.1) have an odd symmetry with respect to
a hyperplane when α → 0+ or α → N−. Based on [27], Seok [28] further studied limit
profiles of ground states as α → 0+ or α → N−. When N ≥ 3,V (x) = 1 and p > 1,
Seok [29] considered problem (1.1) with a critical local term and showed the existence
of radially symmetric nontrivial solution and concentration results as α → 0+. When
N ≥ 3 and V (x) = 1+µg(x) is a potential well, Lü [21] obtained the existence of ground
state solutions and concentration results as µ→ +∞ for problem (1.1) with subcritical
exponents and h(x, u) = 0. Li et al. [14] extended the results of Lü [21] to critical
case and obtained the existence of ground state solutions and concentration results as
α → 0. Ghimenti, Moroz and Van Schaftingen [6] got the existence of least action sign-
changing radial solutions for problem (1.1) with V (x) = 1, p = 2 and h(x, u) = 0. The
solution is constructed as the limit of least action sign-changing radial solutions when
p↘ 2. When V (x) = 1, Van Schaftingen and Xia [34], Ao [1], Li and Ma [17], Li and
Tang [15], Seok [30], Su and Chen [31] further investigated the existence of solutions
for problem (1.1) with lower and upper critical exponents. When V (x) = 1 + µg(x)
satisfying some conditions and µ < 0, Zhong and Tang [42] investigated the existence
of ground state sign-changing solutions for problem (1.1) with a critical pure power
nonlinearity. As for λ = 1, Mercuri et al. [23] obtained the existence and regularity
of ground state solutions and radial solutions for problem (1.1) with V (x) = 0, p > 1
and h(x, u) = |u|q−2u, q > 1. When N ≥ 3, p ∈

[
1 + α

N ,
N
N−2

)
, Wu [36] investigated

the existence, multiplicity and asymptotic behavior of positive solution for problem
(1.1) with V (x) and h(x, u) satisfying some suitable conditions. Lü [22] and Li et
al. [16] discussed the existence and concentration of solutions for problem (1.1) with
Kirchhoff term in R3. We [38] obtained the existence, uniqueness and asymptotical
behavior of solutions to problem (1.1) with N = 3 and h(x, u) = f(x)u−γ i.e. a singular
nonlinearity. Mukherjee and Sreenadh [25] investigated a nonlinear Choquard equation
with upper critical exponent and singularity. For more related topics, we refer to the
survey paper [24] and the references therein.

On the bounded domains Ω ⊂ RN with N ≥ 3, problem (1.1) without convolution
term i.e. λ = 0 is related to the following equation{

−∆u = µf(x)u−γ + |u|2∗−2u, x ∈ Ω,
u > 0, x ∈ Ω,
u = 0, x ∈ ∂Ω,

(1.2)

where 2∗ = 2N
N−2 is a critical Sobolev exponent. When f(x) = 1, Coclite and Palmieri

[4] showed the existence of a solution of (1.2); Yang [37] improved the result of [4] and
obtained multiplicity and asymptotic behavior of positive solutions for (1.2); Hirano
et al. [8] further established the multiplicity and regularity of positive solutions for
(1.2) with γ > 0; Giacomoni and Saoudi [7] proved a multiplicity result for a more
general critical and singular problem, involving also a subcritical term and 0 < γ < 3;
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Mukherjee and Sreenadh[25] investigated existence, multiplicity and regularity of posi-
tive solutions for a nonlinear singular Choquard equation with upper critical exponent.
Consider (1.2) with parameter µ multiplying the critical term, Hirano et al. [9] studied
multiplicity of positive solutions for the problem; Wang et al. [35], Sun and Wu [32]
obtained existence and multiplicity of positive solutions and an exact estimate result
for the problem. We [41] investigated the relation between the number of the maxima
of the coefficient function of the critical term and the number of the positive solutions
for elliptic equations with singularity in R3. Both Lei et al. [11] and Liu et al. [20] got
two positive solutions for problem (1.2) with Kirchhoff term. When N = 3 and f(x)
satisfying some suitable conditions, Lei and Liao [12] obtained two positive solutions
for problem (1.2) with Poisson term i.e. a singular Schrödinger-Poisson system. Lei,
Suo and Chu [13] studied a Schrödinger-Newton system with singularity and critical
growth terms in RN . We [40] obtained existence, uniqueness and asymptotic behaviour
of positive solutions for fractional Schrödinger-Poisson system with singularity in R3.

To the best of our knowledge, many works which considered concentration of solu-
tions for Choquard equations [6, 14, 16, 21, 27, 28, 29, 36, 38, 39, 40] mainly focus on
convergence property of one solution such as one ground state positive or sign-changing
(nodal) solution and so on, there are few papers investigated convergence property of
multiple solutions. Moreover, comparing problem (Pλ) with the previous mentioned
works, we need to overcome the lack of compactness as well as the non-differentiability
of the functional of the problem and indirect availability of critical point theory due to
the presence of singular term.

Define the function space E =
{
u ∈ L2(R3) : ∇u ∈ L2(R3), ∥u∥E < +∞

}
,

where ∥u∥E =
( ∫

R3 (|∇u|2 + V (x)u2)dx
)1/2

and Ls(R3) is a Lebesgue space with

the norm ∥u∥s = (
∫
R3 |u|sdx)

1
s . Then E is a Hilbert space with the inner prod-

uct ⟨u, ψ⟩E =
∫
R3 (∇u∇ψ + V (x)uψ)dx. Obviously, for s ∈ [2, 6], the embedding

E ↪→ Ls(R3) is continuous. By [2], we can further get that under assumptions (V1)
and (V2), the embedding E ↪→ Ls(R3) is compact for any s ∈ [2, 6).

The energy functional corresponding to problem (Pλ) given by

Jλ(u) =
1

2
∥u∥2E+

λ

2p

∫
R3

(Iα∗|u|p)|u|pdx−
1

1− γ

∫
R3

f(x)|u|1−γdx−1

6

∫
R3

|u|6dx, (1.3)

and a function u ∈ E is called a solution of problem (Pλ) if u > 0 in R3 and for every
ψ ∈ E,

⟨u, ψ⟩E + λ

∫
R3

(Iα ∗ up)up−2uψdx−
∫
R3

f(x)u−γψdx−
∫
R3

u5ψdx = 0. (1.4)

By using variational method and Nehari type constraint, our main results on existence,
multiplicity and concentration of solutions with respect to the parameter λ for problem
(Pλ) can be stated as follows.

Theorem 1.1. Suppose λ > 0, 0 < γ < 1, 1 + α
3 ≤ p < 3 and (V1), (V2), (f1) hold,

then there exists T0 > 0 such that for all 0 < ∥f∥ 6
5+γ

< T0, problem (Pλ) admits a

positive ground state solution uλ satisfying uλ tends to u0 in E as λ → 0+, where u0
is a positive ground state solution of the limit problem{

−∆u+ V (x)u = f(x)u−γ + |u|4u, x ∈ R3,
u > 0, x ∈ R3.

(P0)
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Theorem 1.2. Suppose λ > 0, 0 < γ < 1, 1 + α
3 ≤ p < 3 and (V1), (V2), (f1), (f2)

hold, then there exists 0 < T00 < T0 such that for all 0 < ∥f∥ 6
5+γ

< T00, problem (Pλ)

has at least two solutions: a positive ground state solution uλ and a positive solution
vλ. Moreover, as λ→ 0+, these solutions have the following convergence:

(i) uλ tends to u0 in E, where u0 is a positive ground state solution of problem (P0);

(ii) vλ tends to v0 in E, where v0 is a positive solution of problem (P0) and ∥u0∥2E <

∥v0∥2E.

Throughout the paper, we use the following notations.
• D1,2(R3) is the completion of C∞

0 (R3) with the norm ∥ · ∥2 =
∫
R3 |∇ · |2dx.

• Denote dα :=
Γ( 3−α

2
)

2απ3/2Γ( 3+α
2

)

(
Γ( 3

2
)

Γ(3)

)α
3

and D(u) :=
∫
R3(Iα ∗ |u|p)|u|pdx, then it holds

⟨D′(u), ψ⟩ = 2p

∫
R3

(Iα ∗ |u|p)|u|p−2uψdx, ∀ψ ∈ E.

• Br(x) is a ball centered at x with radius r.
• C and Ci denotes various positive constants, which may vary from line to line.
• → (resp. ⇀) denotes the strong (resp. weak) convergence.
• u+ = max{u, 0} and u− = max{−u, 0} for any function u.
• S is the best Sobolev constant for the embedding of D1,2(R3) in L6(R3), namely,

S := inf
u∈D1,2(R3)\{0}

∫
R3 |∇u|2dx(∫
R3 |u|6dx

) 1
3

> 0. (1.5)

Hence,
∫
R3 |u|6dx ≤ S−3∥u∥6 ≤ S−3∥u∥6E .

2 Preliminary results

In this and next section, we always assume that all assumptions in Theorem 1.1 hold.
It follows from Hardy-Littlewood-Sobolev inequality (see [24]) that

D(u) =

∫
R3

(Iα ∗ |u|p)|u|pdx ≤ dα

(∫
R3

|u|
6p

3+αdx
) 3+α

3

. (2.1)

Moreover, since 0 < γ < 1, by Hölder’s inequality, (f1) and (1.5), we have∫
R3

f(x)|u|1−γdx ≤ ∥f∥ 6
5+γ

[ ∫
R3

|u|6dx
] 1−γ

6 ≤ ∥f∥ 6
5+γ

S
γ−1
2 ∥u∥1−γE , (2.2)

and for any u, v ∈ E, it holds∣∣∣∣∫
R3

f(x)
(
|u|1−γ − |v|1−γ

)
dx

∣∣∣∣ ≤ ∫
R3

f(x) |u− v|1−γ dx ≤ ∥f∥ 6
5+γ

[ ∫
R3

|u− v|6 dx
] 1−γ

6 .

(2.3)
In order to prove our results, we first consider the following constrained set:

Nλ =

{
u ∈ E \ {0} : ∥u∥2E + λD(u)−

∫
R3

f(x)|u|1−γdx−
∫
R3

|u|6dx = 0

}
,
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and split Nλ as follows

N+
λ =

{
u ∈ Nλ : 2∥u∥2E + 2pλD(u)− (1− γ)

∫
R3

f(x)|u|1−γdx > 6

∫
R3

|u|6dx
}
,

N−
λ =

{
u ∈ Nλ : 2∥u∥2E + 2pλD(u)− (1− γ)

∫
R3

f(x)|u|1−γdx < 6

∫
R3

|u|6dx
}
,

N 0
λ =

{
u ∈ Nλ : 2∥u∥2E + 2pλD(u)− (1− γ)

∫
R3

f(x)|u|1−γdx = 6

∫
R3

|u|6dx
}
,

for any λ > 0. One can easily see that for u ∈ Nλ,

2∥u∥2E + 2pλD(u)− (1− γ)

∫
R3

f(x)|u|1−γdx− 6

∫
R3

|u|6dx

=2λ(p− 1)D(u) + (1 + γ)

∫
R3

f(x)|u|1−γdx− 4

∫
R3

|u|6dx

=(2− 2p)∥u∥2E + (2p− 1 + γ)

∫
R3

f(x)|u|1−γdx− (6− 2p)

∫
R3

|u|6dx

=(1 + γ)∥u∥2E + λ(2p− 1 + γ)D(u)− (5 + γ)

∫
R3

|u|6dx

=− 4∥u∥2E − (6− 2p)λD(u) + (5 + γ)

∫
R3

f(x)|u|1−γdx.

(2.4)

We also recall the following lemma on the properties of D(u) from [16, 18], etc.

Lemma 2.1. For 0 < α < 3 and 1 + α
3 ≤ p < 3, assume that un ⇀ u in E, then for

any ψ ∈ E, we have lim
n→∞

D(un) = D(u) and lim
n→∞

⟨D′(un), ψ⟩ = ⟨D′(u), ψ⟩.

Set

T1 =
4

5 + γ
S

1−γ
2

[
(1 + γ)S3

5 + γ

] 1+γ
4

. (2.5)

Lemma 2.2. Suppose 0 < ∥f∥ 6
5+γ

< T1, where T1 is defined in (2.5), then for any

u ∈ E\{0}, there exist unique tmax = tmax(u) > 0, t+ = t+(u) > 0 and t− = t−(u) > 0
with t+ < tmax < t−, such that t+u ∈ N+

λ , t−u ∈ N−
λ , Jλ(t

+u) = inf
0<t≤t−

Jλ(tu) and

Jλ(t
−u) = sup

t≥tmax

Jλ(tu). Furthermore, N 0
λ = ∅ for 0 < ∥f∥ 6

5+γ
< T1.

Proof. For any u ∈ E \ {0} and t > 0, we have

t
dJλ(tu)

dt
=t2∥u∥2E + λt2pD(u)− t1−γ

∫
R3

f(x)|u|1−γdx− t6
∫
R3

|u|6dx

=t1−γ
[
t1+γ∥u∥2E − t5+γ

∫
R3

|u|6dx+ λt2p−1+γD(u)−
∫
R3

f(x)|u|1−γdx
]

≡t1−γ
[
g(t)−

∫
R3

f(x)|u|1−γdx
]
,

(2.6)
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where g(t) = t1+γ∥u∥2E− t5+γ
∫
R3

|u|6dx+λt2p−1+γD(u). Rewrite g′(t) = t2p−2+γg1(t)

with

g1(t) = (1 + γ)t2−2p∥u∥2E − (5 + γ)t6−2p

∫
R3

|u|6dx+ λ(2p− 1 + γ)D(u). (2.7)

Since α ∈ (0, 3) and 1 + α
3 ≤ p < 3, we have lim

t→0+
g1(t) = +∞, lim

t→+∞
g1(t) = −∞ and

g′1(t) = (1 + γ)(2− 2p)t1−2p∥u∥2E − (5 + γ)(6− 2p)t5−2p

∫
R3

|u|6dx < 0,

for all t > 0. Thus, g(t) admits a global maximum point tmax which is the unique
zero point of g1(t) and g(t) is increasing on (0, tmax), decreasing on (tmax,+∞). Set
g2(t) = t1+γ∥u∥2E − t5+γ

∫
R3 |u|6dx. Obviously, g2(0) = 0, lim

t→+∞
g2(t) = −∞ and g2(t)

achieves its maximum at tg2 =
[ (1 + γ)∥u∥2E
(5 + γ)

∫
R3 |u|6dx

] 1
4

with

max
t∈[0,+∞)

g2(t) = g2(tg2) =
4

5 + γ
∥u∥2E

[ (1 + γ)∥u∥2E
(5 + γ)

∫
R3 |u|6dx

] 1+γ
4

.

It follows from (1.5) and (2.2) that

g(tmax)−
∫
R3

f(x)|u|1−γdx

≥ max
t∈(0,+∞)

g2(t)−
∫
R3

f(x)|u|1−γdx

≥ 4

5 + γ
∥u∥2E

[ (1 + γ)∥u∥2E
(5 + γ)

∫
R3 |u|6dx

] 1+γ
4

− ∥f∥ 6
5+γ

S
γ−1
2 ∥u∥1−γE

≥
[

4

5 + γ

(
1 + γ

(5 + γ)S−3

) 1+γ
4

− ∥f∥ 6
5+γ

S
γ−1
2

]
∥u∥1−γE > 0,

(2.8)

since 0 < ∥f∥ 6
5+γ

< T1. Consequently, there exist two points 0 < t+ < tmax < t− such

that

g(t+) = g(t−) =

∫
R3

f(x)|u|1−γdx and g′(t+) > 0 > g′(t−).

That is t+u ∈ N+
λ and t−u ∈ N−

λ . Hence, N
±
λ ̸= ∅ when 0 < ∥f∥ 6

5+γ
< T1. We can

further obtain from (2.6) that
dJλ(tu)

dt
> 0 for all t ∈ (t+, t−),

dJλ(tu)

dt
< 0 for all t ∈

(0, t+) and t ∈ (t−,∞). Thus, Jλ(t
+u) = inf

0<t≤t−
Jλ(tu) and Jλ(t

−u) = sup
t≥tmax

Jλ(tu).

Now, we come to show that N 0
λ = ∅ for 0 < ∥f∥ 6

5+γ
< T1. By contradiction, assume

that there exists u0 ∈ N 0
λ and u0 ̸= 0. Similarly to (2.8), we can obtain from (2.4) that

0 <
4

5 + γ
∥u0∥2E

[ (1 + γ)∥u0∥2E
(5 + γ)

∫
R3 |u0|6dx

] 1+γ
4

−
∫
R3

f(x)|u0|1−γdx

≤ 4

5 + γ
∥u0∥2E −

∫
R3

f(x)|u0|1−γdx ≤ 0,
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which is a contradiction. Hence, N 0
λ = ∅ for 0 < ∥f∥ 6

5+γ
< T1. □

Lemma 2.3. Suppose 0 < ∥f∥ 6
5+γ

< T1, then there exists a gap structure in Nλ:

∥U∥E > A∗ > A∗ > ∥u∥E , u ∈ N+
λ , U ∈ N−

λ ,

where

A∗ =
(
5 + γ

4
∥f∥ 6

5+γ
S

γ−1
2

) 1
1+γ

, A∗ =
[
(1 + γ)S3

5 + γ

] 1
4

.

Proof. Since 0 < ∥f∥ 6
5+γ

< T1, we have N±
λ ̸= ∅ by Lemma 2.2. For any u ∈ N+

λ , it

follows from (2.2) and (2.4) that

∥u∥2E <
5 + γ

4

∫
R3

f(x)|u|1−γdx ≤ 5 + γ

4
∥f∥ 6

5+γ
S

γ−1
2 ∥u∥1−γE ,

which yields ∥u∥E < A∗.
For any U ∈ N−

λ , it follows from (1.5) and (2.4) that

(1 + γ)∥U∥2E < (5 + γ)

∫
R3

|U |6dx ≤ (5 + γ)S−3∥U∥6E ,

which yields ∥U∥E > A∗.
Using 0 < ∥f∥ 6

5+γ
< T1 and the definition of T1, one can further obtain A∗ <(

5 + γ

4
T1S

γ−1
2

) 1
1+γ

= A∗. So the proof is completed. □

Lemma 2.4. Suppose 0 < ∥f∥ 6
5+γ

< T1, then N−
λ is a closed set in E.

Proof. Since 0 < ∥f∥ 6
5+γ

< T1, by Lemma 2.2, one has N−
λ ̸= ∅ and N 0

λ = ∅. Let {Un}
be a sequence in N−

λ with Un → U0 in E, then Un → U0 in L6(R3). Since N−
λ ⊂ Nλ,

one can obtain from Lemma 2.1, (2.3) and (2.4) that

∥U0∥2E = lim
n→∞

∥Un∥2E = lim
n→∞

[∫
R3

f(x)|Un|1−γdx+
∫
R3

|Un|6dx− λD(Un)
]

=

∫
R3

f(x)|U0|1−γdx+
∫
R3

|U0|6dx− λD(U0)

and

− 4∥U0∥2E − (6− 2p)λD(U0) + (5 + γ)

∫
R3

f(x)|U0|1−γdx

= lim
n→∞

[
− 4∥Un∥2E − (6− 2p)λD(Un) + (5 + γ)

∫
R3

f(x)|Un|1−γdx
]
≤ 0,

so U0 ∈ N−
λ ∪ {0}. It follows from {Un} ⊂ N−

λ and Lemma 2.3 that

∥U0∥2E = lim
n→∞

∥Un∥2E ≥ A∗ > 0,

that is, U0 ̸= 0. Hence, U0 ∈ N−
λ and then N−

λ is a closed set in E. □
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Lemma 2.5. Let 0 < ∥f∥ 6
5+γ

< T1, given u ∈ N±
λ , then there exist ε > 0 and a

continuous function H(w) > 0, w ∈ E, ∥w∥E < ε satisfying that

H(0) = 1, H(w)(u+ w) ∈ N±
λ , ∀w ∈ E, ∥w∥E < ε.

Proof. We only prove the case u ∈ N+
λ . Define F : E ×R → R by

F (w, t) = t2∥u+w∥2E + λt2pD(u+w)− t1−γ
∫
R3

f(x)|u+w|1−γdx− t6
∫
R3

|u+w|6dx.

In view of u ∈ N+
λ ⊂ Nλ, we obtain F (0, 1) = 0 and

Ft(0, 1) = 2∥u∥2E + 2pλD(u)− (1− γ)

∫
R3

f(x)|u|1−γdx− 6

∫
Ω

|u|6dx > 0.

By applying Implicit function Theorem for F at the point (0, 1), we get that there
exists ε̄ > 0 such that for w ∈ E, ∥w∥E < ε̄, the equation F (w, t) = 0 has a unique
continuous solution t = H(w) > 0 satisfying that H(0) = 1 and F (w,H(w)) = 0 i.e.
H(w)(u+ w) ∈ Nλ. Moreover, since Ft(0, 1) > 0 and

Ft(w,H(w)) =2H(w)∥u+ w∥2E + 2pλH2p−1(w)D(u+ w)

− (1− γ)H−γ(w)

∫
R3

f(x)|u+ w|1−γdx− 6H5(w)

∫
R3

|u+ w|6dx

=H−1(w)
[
2H2(w)∥u+ w∥2E + 2pλH2p(w)D(u+ w)

− (1− γ)H1−γ(w)

∫
R3

f(x)|u+ w|1−γdx− 6H6(w)

∫
R3

|u+ w|6dx
]
,

we can choose ε > 0 possibly small (ε < ε̄) such that for w ∈ E and ∥w∥E < ε,

2H2(w)∥u+ w∥2E + 2pλH2p(w)D(u+ w)− (1− γ)H1−γ(w)

∫
R3

f(x)|u+ w|1−γdx

−6H6(w)

∫
R3

|u+ w|6dx > 0,

that is
H(w)(u+ w) ∈ N+

λ , for any w ∈ E, ∥w∥E < ε.

This ends the proof of Lemma 2.5. □

Lemma 2.6. Jλ is coercive and bounded below on Nλ. Moreover,

(i) if 0 < ∥f∥ 6
5+γ

< T1, then infN+
λ ∪{0} Jλ = infN+

λ
Jλ < 0;

(ii) if 0 < ∥f∥ 6
5+γ

<
1− γ

2
T1, then infN−

λ
Jλ ≥ β0 > 0 for some constant β0 =

β0(γ, S, ∥f∥ 6
5+γ

).
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Proof. For any u ∈ Nλ, we can obtain from (1.3), λ > 0, 0 < γ < 1, 1 + α
3 ≤ p < 3

and (2.2) that

Jλ(u) =
(
1

2
− 1

6

)
∥u∥2E + λ

(
1

2p
− 1

6

)
D(u)−

(
1

1− γ
− 1

6

)∫
R3

f(x)|u|1−γdx

≥1

3
∥u∥2E − 5 + γ

6(1− γ)
∥f∥ 6

5+γ
S

γ−1
2 ∥u∥1−γE ≥ 1 + γ

3(γ − 1)
A2
∗,

(2.9)

where A∗ is defined in Lemma 2.3. Due to 0 < γ < 1, Jλ is coercive and bounded from
below on Nλ.

(i) When 0 < ∥f∥ 6
5+γ

< T1, N±
λ ̸= ∅ from Lemma 2.2, also N−

λ and N+
λ ∪ {0}

are two closed sets in E from Lemma 2.4. Hence, infN−
λ
Jλ and infN+

λ ∪{0} Jλ are well

defined. For any u ∈ N+
λ ⊂ Nλ, we can get from 0 < γ < 1, 1 + α

3 ≤ p < 3, (2.4) and
(2.9) that

Jλ(u) =
1

3
∥u∥2E + λ

3− p

6p
D(u)− 5 + γ

6(1− γ)

∫
R3

f(x)|u|1−γdx

<
1

3
∥u∥2E − 2

3(1− γ)
∥u∥2E + λ(3− p)

(
1

6p
− 1

3(1− γ)

)
D(u)

=− 1 + γ

3(1− γ)
∥u∥2E + λ(3− p)

1− γ − 2p

6p(1− γ)
D(u) < 0,

(2.10)

which yields infN+
λ
Jλ < 0. Since Jλ(0) = 0, we can further get infN+

λ ∪{0} Jλ =

infN+
λ
Jλ < 0.

(ii) Let u ∈ N−
λ , it follows from Lemma 2.3 that ∥u∥E > A∗. Using this and (2.9),

∥f∥ 6
5+γ

∈ (0,
1− γ

2
T1), we can obtain that

Jλ(u) ≥∥u∥1−γE

[
1

3
∥u∥1+γE − 5 + γ

6(1− γ)
∥f∥ 6

5+γ
S

γ−1
2

]
≥
[
(1 + γ)S3

5 + γ

] 1−γ
4
{
1

3

[
(1 + γ)S3

5 + γ

] 1+γ
4

− 5 + γ

6(1− γ)
∥f∥ 6

5+γ
S

γ−1
2

}
> 0,

which implies that there exists a constant β0 = β0(γ, S, ∥f∥ 6
5+γ

) such that infN−
λ
Jλ ≥

β0 > 0 for ∥f∥ 6
5+γ

∈ (0,
1− γ

2
T1). □

According to Lemma 2.2 and Lemma 2.4, for 0 < ∥f∥ 6
5+γ

< T1, V−
λ := N−

λ and

V+
λ := N+

λ ∪ {0} are two closed sets in E, then we can apply Ekeland variational

principle to find the minimums of functional Jλ on both V+
λ and V−

λ . Let {un} ⊂ V±
λ

be a minimizing sequence for Jλ on V±
λ . That is, {un} ⊂ V±

λ satisfy

τ±λ < Jλ(un) < τ±λ +
1

n
(2.11)

and

Jλ(z) ≥ Jλ(un)−
1

n
∥un − z∥E ,∀z ∈ V±

λ , (2.12)
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where

τ+λ = inf
u∈V+

λ

Jλ(u) = inf
u∈N+

λ

Jλ(u), τ
−
λ = inf

u∈N−
λ

Jλ(u) and τλ = inf
u∈Nλ

Jλ(u).

From Jλ(|un|) = Jλ(un), we could assume that un ≥ 0. Moreover, Lemma 2.6 shows
that ∥un∥E ≤ C0 for some suitable positive constant C0, so there exists a nonnegative
function uλ ∈ E such that

un ⇀ uλ, in E,

un → uλ, in Ls(R3), s ∈ [2, 6),

un → uλ, a.e. in R3.

(2.13)

By Vitali Convergence Theorem, similarly to the proof of [13, Lemma 2.7], we have

lim
n→∞

∫
R3

f(x)|un|1−γdx =

∫
R3

f(x)|uλ|1−γdx, (2.14)

when {un} is bounded in E. In order to show that all convergence in (2.13) hold true
on a strong sense, inspired by [32, 5], we need following Lemmas.

Lemma 2.7. Assume 0 < ∥f∥ 6
5+γ

< T1. Suppose {un} ⊂ N±
λ satisfy (2.13) with

uλ ̸≡ 0, then there exists a constant C1 > 0 such that for n large enough, the following
alternative holds true:

(i) if {un} ⊂ N+
λ , we have

(1 + γ)∥un∥2E + λ(2p− 1 + γ)D(un)− (5 + γ)

∫
R3

|un|6dx ≥ C1;

(ii) if {un} ⊂ N−
λ , we have

(1 + γ)∥un∥2E + λ(2p− 1 + γ)D(un)− (5 + γ)

∫
R3

|un|6dx ≤ −C1.

Proof. We only prove (i), since (ii) follows similarly. Using un ∈ N+
λ , (2.4), Lemma

2.1, (2.14) and uλ ̸≡ 0, it is enough to show that

(5 + γ)

∫
R3

f(x)|uλ|1−γdx− (6− 2p)λD(uλ) > lim inf
n→∞

[
4∥un∥2E

]
. (2.15)

Arguing by contradiction, assume that

(5 + γ)

∫
R3

f(x)|uλ|1−γdx− (6− 2p)λD(uλ) = lim inf
n→∞

[
4∥un∥2E

]
. (2.16)

Since un ∈ N+
λ , one has

(5 + γ)

∫
R3

f(x)|un|1−γdx− (6− 2p)λD(un) > 4∥un∥2E .
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According to (2.14) and Lemma 2.1, we can further obtain

(5 + γ)

∫
R3

f(x)|uλ|1−γdx− (6− 2p)λD(uλ) ≥ lim sup
n→∞

[
4∥un∥2E

]
≥ lim inf

n→∞

[
4∥un∥2E

]
.

(2.17)
It follows from (2.16) and (2.17) that

(5 + γ)

∫
R3

f(x)|uλ|1−γdx− (6− 2p)λD(uλ) = lim
n→∞

[
4∥un∥2E

]
. (2.18)

Since un ∈ N+
λ ⊂ Nλ, i.e.

∫
R3 |un|6dx = ∥un∥2E+λD(un)−

∫
R3 f(x)|un|1−γdx, passing

to the limit as n→ ∞ and using (2.14), (2.18) and Lemma 2.1 lead to

lim
n→∞

∫
R3

|un|6dx =
1 + γ

4

∫
R3

f(x)|uλ|1−γdx+
p− 1

2
λD(uλ). (2.19)

Therefore, it follows from (2.18), (2.19), λ > 0 and uλ ̸≡ 0 that

lim
n→∞

(1 + γ)∥un∥2E
(5 + γ)

∫
R3 |un|6dx

< 1. (2.20)

Similarly to (2.8), for 0 < ∥f∥ 6
5+γ

< T1, one can get from (2.2), (2.14), (2.18) and

(2.20) that

0 ≤
[

4

5 + γ

(
1 + γ

(5 + γ)S−3

) 1+γ
4

− ∥f∥ 6
5+γ

S
γ−1
2

]
lim
n→∞

∥un∥1−γE

≤ lim
n→∞

4

5 + γ
∥un∥2E

( (1 + γ)∥un∥2E
(5 + γ)

∫
R3 |un|6dx

) 1+γ
4

− lim
n→∞

∫
R3

f(x)u1−γn dx

<
4

5 + γ
lim
n→∞

∥un∥2E −
∫
R3

f(x)|uλ|1−γdx = −6− 2p

5 + γ
λD(uλ) < 0,

which is clearly impossible. So (2.15) holds and this ends the proof. □
For any 0 ≤ ψ ∈ E, we apply Lemma 2.5 with u = un ∈ N±

λ (n large enough such

that
(1− γ)C0

n
< C1) and w = ηψ, η > 0 small enough, we can find hn,ψ(η) = H(ηψ)

such that hn,ψ(0) = 1 and hn,ψ(η)(un + ηψ) ∈ N±
λ . However, we have no idea whether

or not hn,ψ(η) is differentiable. For the sake of proof, we set

h′n,ψ(0) = lim
η→0+

hn,ψ(η)− 1

η
∈ [−∞,+∞].

If the above limit does not exist, we choose ηk → 0 (instead of η → 0) with ηk > 0

such that h′n,ψ(0) = lim
k→∞

hn,ψ(ηk)− 1

ηk
∈ [−∞,+∞].

Lemma 2.8. Assume 0 < ∥f∥ 6
5+γ

< T1. Suppose {un} ⊂ N±
λ satisfy (2.12) and (2.13)

with uλ ̸≡ 0, then h′n,ψ(0) is uniformly bounded for any 0 ≤ ψ ∈ E and n large enough.
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Proof. We only consider that un, hn,ψ(η)(un + ηψ) ∈ N+
λ since the situation on N−

λ

can be proved similarly. By un, hn,ψ(η)(un + ηψ) ∈ N+
λ ⊂ Nλ, we have

∥un∥2E + λD(un)−
∫
R3

f(x)u1−γn dx =

∫
R3

u6ndx,

h2n,ψ(η)∥un + ηψ∥2E + λh2pn,ψD(un + ηψ)− h1−γn,ψ (η)

∫
R3

f(x)(un + ηψ)1−γdx

= h6n,ψ(η)

∫
R3

(un + ηψ)6dx.

Using 0 < γ < 1 and λ > 0, the above two equalities yield

0 =
[
h2n,ψ(η)− 1

]
∥un + ηψ∥2E + λ

[
h2pn,ψ(η)− 1

]
D(un + ηψ)

−
[
h1−γn,ψ (η)− 1

]∫
R3

f(x)(un + ηψ)1−γdx−
[
h6n,ψ(η)− 1

]∫
R3

(un + ηψ)6dx

+
[
∥un + ηψ∥2E − ∥un∥2E

]
+ λ

[
D(un + ηψ)−D(un)

]
−
∫
R3

f(x)
[
(un + ηψ)1−γ − u1−γn

]
dx−

∫
R3

[
(un + ηψ)6 − u6n

]
dx

≤
[
hn,ψ(η)− 1

]{[
hn,ψ(η) + 1

]
∥un + ηψ∥2E + λ

h2pn,ψ(η)− 1

hn,ψ(η)− 1
D(un + ηψ)

−
h1−γn,ψ (η)− 1

hn,ψ(η)− 1

∫
R3

f(x)(un + ηψ)1−γdx−
h6n,ψ(η)− 1

hn,ψ(η)− 1

∫
R3

(un + ηψ)6dx
}

+
[
∥un + ηψ∥2E − ∥un∥2E

]
+ λ

[
D(un + ηψ)−D(un)

]
.

Dividing by η > 0 and passing to the limit as η → 0+, it follows from (2.4) and the
continuity of hn,ψ(η) that

0 ≤h′n,ψ(0)
{
2∥un∥2E + 2pλD(un)− (1− γ)

∫
R3

f(x)u1−γn dx− 6

∫
R3

u6ndx
}

+ 2⟨un, ψ⟩E + λ⟨D′(un), ψ⟩

=h′n,ψ(0)
{
(1 + γ)∥un∥2E + λ(2p− 1 + γ)D(un)− (5 + γ)

∫
R3

|un|6dx
}

+ 2⟨un, ψ⟩E + λ⟨D′(un), ψ⟩,

(2.21)

which implies that h′n,ψ(0) ̸= −∞ according to Lemma 2.7 and the boundedness of

{un}. Now we show that h′n,ψ(0) ̸= +∞. Arguing by contradiction, we assume that

h′n,ψ(0) = +∞ and so hn,ψ(η) > 1 for n sufficiently large and η > 0 small. Applying

condition (2.12) with z = hn,ψ(η)(un + ηψ) leads to

1

n
[hn,ψ(η)− 1]∥un∥E +

η

n
hn,ψ(η)∥ψ∥E ≥ 1

n
∥un − hn,ψ(η)(un + ηψ)∥E

≥ Jλ(un)− Jλ[hn,ψ(η)(un + ηψ)].
(2.22)
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Since un ∈ N+
λ ⊂ Nλ, then one can get from (1.3) and (2.22) that

∥ψ∥E
n

hn,ψ(η) ≥
hn,ψ(η)− 1

η

{
− ∥un∥E

n
−
(
1

2
− 1

1− γ

)
[hn,ψ(η) + 1]∥un + ηψ∥2E

− λ
(
1

2p
− 1

1− γ

)h2pn,ψ(η)− 1

hn,ψ(η)− 1
D(un + ηψ)

+
(
1

6
− 1

1− γ

)h6n,ψ(η)− 1

hn,ψ(η)− 1

∫
R3

(un + ηψ)6dx
}

−
(
1

2
− 1

1− γ

)∥un + ηψ∥2 − ∥un∥2

η

+
(
1

6
− 1

1− γ

)∫
R3

(un + ηψ)6 − u6n
η

dx

− λ
(
1

2p
− 1

1− γ

)D(un + ηψ)−D(un)

η
.

Letting η → 0+, using the continuity of hn,ψ(η), Lemma 2.7 and ∥un∥E ≤ C0, we
obtain

∥ψ∥E
n

≥h′n,ψ(0)
{
− ∥un∥E

n
−
(
1− 2

1− γ

)
∥un∥2E − λ

(
1− 2p

1− γ

)
D(un)

+
(
1− 6

1− γ

)∫
R3

u6ndx
}
−
(
1− 2

1− γ

)
⟨un, ψ⟩E

+
(
1− 6

1− γ

)∫
R3

u5nψdx− λ
(
1

2p
− 1

1− γ

)
⟨D′(un), ψ⟩

=h′n,ψ(0)
{
− ∥un∥E

n
+

1

1− γ

[
(γ + 1)∥un∥2E + λ(2p− 1 + γ)D(un)

− (5 + γ)

∫
R3

u6ndx
]}

−
(
1− 2

1− γ

)
⟨un, ψ⟩E

+
(
1− 6

1− γ

)∫
R3

u5nψdx− λ
(
1

2p
− 1

1− γ

)
⟨D′(un), ψ⟩

≥h′n,ψ(0)
(
− C0

n
+

C1

1− γ

)
−
(
1− 2

1− γ

)
⟨un, ψ⟩E

+
(
1− 6

1− γ

)∫
R3

u5nψdx− λ
(
1

2p
− 1

1− γ

)
⟨D′(un), ψ⟩

(2.23)

which is impossible because h′n,ψ(0) = +∞ and −C0

n
+

C1

1− γ
> 0 for n large enough.

Hence, h′n,ψ(0) ̸= +∞. To sum up, |h′n,ψ(0)| < +∞. Moreover, Lemma 2.7, (2.21) and

(2.23) with ∥un∥ ≤ C0 also imply that

|h′n,ψ(0)| ≤ C2, (2.24)

for n sufficiently large and a suitable positive constant C2. □

13



Lemma 2.9. Assume 0 < ∥f∥ 6
5+γ

< T1. Suppose {un} ⊂ N±
λ satisfy (2.12) and (2.13)

with uλ ̸≡ 0, then for any ψ ∈ E, we have as n→ ∞,

⟨un, ψ⟩E +
λ

2p
⟨D′(un), ψ⟩ −

∫
R3

f(x)u−γn ψdx−
∫
R3

u5nψdx = o(1). (2.25)

Proof. For any 0 ≤ ψ ∈ E, applying condition (2.12) with z = hn,ψ(η)(un + ηψ)
leads to

|1− hn,ψ(η)|
η

∥un∥E
n

+
∥ψ∥E
n

hn,ψ(η)

≥ 1

nη
∥un − hn,ψ(η)(un + ηψ)∥E ≥ 1

η

{
Jλ(un)− Jλ[hn,ψ(η)(un + ηψ)]

}
=
hn,ψ(η)− 1

η

{
−
hn,ψ(η) + 1

2
∥un + ηψ∥2E −

λ[h2pn,ψ(η)− 1]

2p[hn,ψ(η)− 1]
D(un + ηψ)

+
h1−γn,ψ (η)− 1

(1− γ)[hn,ψ(η)− 1]

∫
R3

f(x)(un + ηψ)1−γdx+
h6n,ψ(η)− 1

6[hn,ψ(η)− 1]

∫
R3

(un + ηψ)6dx
}

− 1

2

∥un + ηψ∥2E − ∥un∥2E
η

− λ[D(un + ηψ)−D(un)]

2pη

+
1

6

∫
R3

(un + ηψ)6 − u6n
η

dx+
1

1− γ

∫
R3

f(x)
(un + ηψ)1−γ − u1−γn

η
dx.

Passing to the liminf as η → 0+ and using the continuity of hn,ψ(η), Fatou’s Lemma,
0 < γ < 1 lead to

|h′n,ψ(0)| · ∥un∥E
n

+
∥ψ∥E
n

≥h′n,ψ(0)
{
− ∥un∥2E +

∫
R3

f(x)u1−γn dx− λD(un) +

∫
R3

u6ndx
}
− ⟨un, ψ⟩E

− λ

2p
⟨D′(un), ψ⟩+

∫
R3

u5nψdx+ lim inf
η→0+

1

1− γ

∫
R3

f(x)
(un + ηψ)1−γ − u1−γn

η
dx

≥− ⟨un, ψ⟩E − λ

2p
⟨D′(un), ψ⟩+

∫
R3

u5nψdx+

∫
R3

f(x)

1− γ
lim inf
η→0+

(un + ηψ)1−γ − u1−γn

η
dx

=− ⟨un, ψ⟩E − λ

2p
⟨D′(un), ψ⟩+

∫
R3

u5nψdx+

∫
R3

f(x)u−γn ψdx,

since un ∈ N±
λ ⊂ Nλ. Hence, for n large, we have∫

R3

f(x)u−γn ψdx ≤
|h′n,ψ(0)| · ∥un∥E

n
+

∥ψ∥E
n

+ ⟨un, ψ⟩E +
λ

2p
⟨D′(un), ψ⟩ −

∫
R3

u5nψdx

≤C0 · C2 + ∥ψ∥E
n

+ ⟨un, ψ⟩E +
λ

2p
⟨D′(un), ψ⟩ −

∫
R3

u5nψdx,
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thanks to ∥un∥E ≤ C0 and |h′n,φ(0)| ≤ C2 by (2.24). Thus, for any 0 ≤ ψ ∈ E, we can
get as n→ ∞,

⟨un, ψ⟩E +
λ

2p
⟨D′(un), ψ⟩ −

∫
R3

f(x)u−γn ψdx−
∫
R3

u5nψdx ≥ o(1). (2.26)

Now, we come to show that (2.26) holds for every ψ ∈ E. For any ψ ∈ E and ε > 0,
set ψε = un + εψ and Ωε = {x ∈ R3 : ψε ≤ 0}. Since un ∈ Nλ, by applying inequality
(2.26) with ψ = ψ+

ε , we have

o(1) ≤1

ε

{
⟨un, ψ+

ε ⟩E +
λ

2p
⟨D′(un), ψ

+
ε ⟩ −

∫
R3

f(x)u−γn ψ+
ε dx−

∫
R3

u5nψ
+
ε dx

}
=
1

ε

∫
R3\Ωε

{
∇un∇ψε + V (x)unψε + λ(Iα ∗ upn)up−2

n unψε − f(x)u−γn ψε − u5nψε

}
dx

=
1

ε

{
∥un∥2E + λD(un)−

∫
R3

f(x)u1−γn dx−
∫
R3

u6ndx
}

+
{
⟨un, ψ⟩E +

λ

2p
⟨D′(un), ψ⟩ −

∫
R3

f(x)u−γn ψdx−
∫
R3

u5nψdx
}

− 1

ε

∫
Ωε

{
∇un∇ψε + V (x)unψε + λ(Iα ∗ upn)up−2

n unψε − f(x)u−γn ψε − u5nψε

}
dx

=
{
⟨un, ψ⟩E +

λ

2p
⟨D′(un), ψ⟩ −

∫
R3

f(x)u−γn ψdx−
∫
R3

u5nψdx
}

− 1

ε

∫
Ωε

[
|∇un|2 + V (x)u2n + λ(Iα ∗ upn)upn

]
dx

−
∫
Ωε

[
∇un∇ψ + V (x)unψ + λ(Iα ∗ upn)up−2

n unψ
]
dx

+
1

ε

∫
Ωε

[
f(x)u−γn ψε + u5nψε

]
dx

≤
{
⟨un, ψ⟩E +

λ

2p
⟨D′(un), ψ⟩ −

∫
R3

f(x)u−γn ψdx−
∫
R3

u5nψdx
}

−
∫
Ωε

[
∇un∇ψ + V (x)unψ + λ(Iα ∗ upn)up−2

n unψ
]
dx.

(2.27)
Letting ε → 0+ to the above inequality and using the fact that |Ωε| → 0 as ε → 0+,
we have

⟨un, ψ⟩E +
λ

2p
⟨D′(un), ψ⟩ −

∫
R3

f(x)u−γn ψdx−
∫
R3

u5nψdx ≥ o(1), ∀ψ ∈ E.

This inequality also holds for −ψ, hence we conclude that (2.25) holds for every ψ ∈ E.
□

Lemma 2.10. Assume 0 < ∥f∥ 6
5+γ

< T1. Suppose {un} ⊂ N±
λ satisfy (2.12), (2.13)

and
Jλ(un) → c < c∗, as n→ ∞, (2.28)
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where c ̸= 0 and c∗ =
1

3
S

3
2 −D∗∥f∥

2
γ+1
6

5+γ

with D∗ =
1 + γ

2

[
2S

3(1− γ)

] γ−1
γ+1

[
5 + γ

6(1− γ)

] 2
γ+1

,

then uλ ̸≡ 0 and {un} possesses a subsequence strongly convergent to uλ in E.

Proof. We claim that uλ ̸≡ 0. Arguing by contradiction, uλ ≡ 0. Then, by un ∈
N±
λ ⊂ Nλ, Lemma 2.1 and (2.14), we have

∥un∥2E =

∫
R3

|un|6dx+ o(1). (2.29)

It follows from (2.29) and Jλ(un) → c ̸= 0 that

c = Jλ(un) + o(1) =
1

3
∥un∥2E + o(1). (2.30)

If c < 0, we get a contradiction from the last relation. If c > 0, there exists n0 ∈ N such
that ∥un∥2E ≥ c for n ≥ n0. This together with (1.5) and (2.29) leads to lim

n→∞
∥un∥2E ≥

S
3
2 . Then, by (2.28), (2.30) and the fact of the above relation, we obtain that

c < c∗ =
1

3
S

3
2 −D∗∥f∥

2
γ+1
6

5+γ

<
1

3
S

3
2 ≤ 1

3
lim
n→∞

∥un∥2E = c,

which is a contradiction. Therefore uλ ̸≡ 0. By Brézis-Lieb’s Lemma, we have

∥un∥2E = ∥uλ∥2E + ∥un − uλ∥2E + o(1),∫
R3

|un|6dx =

∫
R3

|uλ|6dx+
∫
R3

|un − uλ|6dx+ o(1).
(2.31)

For any ψ ∈ E, set

Q(un, ψ) = (un, ψ)E +
λ

2p
⟨D′(un), ψ⟩ −

∫
R3

f(x)u−γn ψdx−
∫
R3

u5nψdx.

Then,

Jλ(un)−
1

6
Q(un, un) =

1

3
∥un∥2E + λ(

1

2p
− 1

6
)D(un)− (

1

1− γ
− 1

6
)

∫
R3

f(x)u1−γn dx

=
1

3
∥un − uλ∥2E +

1

3
∥uλ∥2E + λ(

1

2p
− 1

6
)D(un)

− (
1

1− γ
− 1

6
)

∫
R3

f(x)u1−γn dx+ o(1).

(2.32)
Applying (2.25) with ψ = uλ and using un ∈ N±

λ ⊂ Nλ, (2.13), (2.14), (2.31), Lemma
2.1 lead to

o(1) =− ⟨un, uλ⟩E − λ

2p
⟨D′(un), uλ⟩+

∫
R3

f(x)u−γn uλdx+

∫
R3

u5nuλdx

=∥un∥2E − ⟨un, uλ⟩E + λD(un)−
λ

2p
⟨D′(un), uλ⟩ −

∫
R3

f(x)u1−γn dx

+

∫
R3

f(x)u−γn uλdx−
∫
R3

u6ndx+

∫
R3

u5nuλdx
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=∥un∥2E − ∥uλ∥2E −
∫
R3

f(x)u1−γλ dx+

∫
R3

f(x)u−γn uλdx−
∫
R3

u6ndx

+

∫
R3

u6λdx+ o(1)

=∥un − uλ∥2E −
∫
R3

f(x)u1−γλ dx+

∫
R3

f(x)u−γn uλdx−
∫
R3

|un − uλ|6dx+ o(1).

Therefore,

lim
n→∞

∥un − uλ∥2E −
∫
R3

f(x)u1−γλ dx+ lim
n→∞

∫
R3

f(x)u−γn uλdx = lim
n→∞

∫
R3

|un − uλ|6dx.

(2.33)
By Fatou’s Lemma, we can obtain∫

R3

f(x)u1−γλ dx ≤ lim inf
n→∞

∫
R3

f(x)u−γn uλdx. (2.34)

We can get from (2.33) and (2.34) that

lim
n→∞

∥un − uλ∥2E ≤ lim
n→∞

∫
R3

|un − uλ|6dx. (2.35)

Set lim
n→∞

∥un − uλ∥2E = l, then it follows from (1.5) and (2.35) that l ≤ S−3l3, which

implies that either l = 0 or l ≥ S
3
2 . Suppose l ≥ S

3
2 , then one can obtain from (2.28),

(2.32), (2.25), (2.14), (2.2), Lemma 2.1 and Young inequalities that

c∗ > c =
l

3
+

1

3
∥uλ∥2E + λ(

1

2p
− 1

6
)D(uλ)− (

1

1− γ
− 1

6
)

∫
R3

f(x)u1−γλ dx

≥1

3
S

3
2 +

1

3
∥uλ∥2E − (

1

1− γ
− 1

6
)∥f∥ 6

5+γ
S

γ−1
2 ∥uλ∥1−γ

≥1

3
S

3
2 − 1 + γ

2

[
2S

3(1− γ)

] γ−1
γ+1

[
5 + γ

6(1− γ)

] 2
γ+1

∥f∥
2

γ+1
6

5+γ

= c∗,

which is a contradiction. So l = 0 and un → uλ strongly in E. □

3 Existence of a first solution in N+
λ

In this section, we want to prove Theorem 1.1 by a minimization argument on N+
λ .

Proof of Theorem 1.1. Fix 0 < ∥f∥ 6
5+γ

< T0 = min{T1, T2}, where T1 is defined

in (2.5) and T2 =
4

(5 + γ)S
γ−1
2

[
S

3
2 (1− γ)

1 + γ

] γ+1
2

, then c∗ > 0. Due to Lemma 2.2,

Lemma 2.4 and Ekeland variational principle, we can obtain a minimizing sequence
{un} ⊂ V+

λ = N+
λ ∪ {0} satisfying (2.11)+, (2.12)+ and (2.13). According to (2.11)+

and Lemma 2.6 (i), we have

Jλ(un) → τ+λ < 0 < c∗,
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so {un} ⊂ N+
λ and applying Lemma 2.10 with c = τ+λ results in uλ ̸≡ 0 and un → uλ

in E, up to a subsequence.
Step 1. uλ is a solution of problem (Pλ).

One can further obtain from the above relation, un ∈ N+
λ ⊂ Nλ, Lemma 2.1 and

Lemma 2.7 (i) that uλ ∈ Nλ and

(1 + γ)∥uλ∥2E + λ(2p− 1 + γ)D(uλ)− (5 + γ)

∫
R3

|uλ|6dx > 0.

Hence, uλ ∈ N+
λ . Furthermore, passing to the limit as n → ∞ in (2.25) and using

Fatou’s Lemma, Lemma 2.1 and (2.13) lead to∫
R3

f(x)u−γλ ψdx ≤ lim inf
n→∞

∫
R3

f(x)u−γn ψdx = ⟨uλ, ψ⟩E +
λ

2p
⟨D′(uλ), ψ⟩ −

∫
R3

u5λψdx,

(3.1)
for any 0 ≤ ψ ∈ E. We can repeat the arguments used in (2.26)-(2.27) to derive that
(3.1) holds for any ψ ∈ E. Thus, uλ verifies (1.4) by the arbitrariness of ψ ∈ E in
(3.1). Similar to the proof of [33, Theorem 1], we have uλ ∈ C2

loc(R3). Since uλ ≥ 0,

uλ ̸≡ 0 and uλ satisfies (1.4), the strong maximum principle implies uλ > 0 in R3 and
then uλ is a solution of problem (Pλ).
Step 2. uλ is a ground state solution of problem (Pλ).

For any u ∈ N−
λ , according to Lemma 2.2, there exists unique 0 < t+(u) < tmax <

t−(u) such that t+(u)u ∈ N+
λ , t−(u)u ∈ N−

λ , Jλ(t
+(u)u) = inf

0<t≤t−(u)
Jλ(tu) and

Jλ(t
−(u)u) = sup

t≥tmax

Jλ(tu). Then t
−(u) = 1 and there exists t(u) ∈ (tmax, t

−(u)) such

that Jλ(t
+(u)u) < Jλ(t(u)u). So

τ+λ ≤ Jλ(t
+(u)u) < Jλ(t(u)u) ≤ Jλ(t

−(u)u) = Jλ(u).

By the arbitrariness of u ∈ N−
λ and the definition of τ±λ and τλ, we have τ

+
λ < τ−λ and

so τλ = τ+λ thanks to Nλ = N+
λ ∪ N−

λ by Lemma 2.2. Therefore, Jλ(uλ) = τ+λ = τλ
and thus uλ is a ground state solution of problem (Pλ).
Step 3. For any vanishing sequence {λn} ⊂ (0, 1), uλn

→ u0 strongly in E where u0
is a positive solution of problem (P0) .

For any vanishing sequence {λn} ⊂ (0, 1), since {uλn
} ⊂ N+

λn
is a ground state

solution sequence to problem (Pλn
) provided by Step 2, then Jλn

(uλn
) = τ+λn

= τλn
and

⟨uλn
, ψ⟩E +

λn
2p

⟨D′(uλn
), ψ⟩ =

∫
R3

f(x)u−γλn
ψdx+

∫
R3

u5λn
ψdx, (3.2)

for every ψ ∈ E and n ∈ N. By Lemma 2.3, (2.9) and (2.10), we have ∥uλn
∥E < A∗

and 1+γ
3(γ−1)

A2
∗ ≤ τλn

< 0. Thus, there exists a subsequence of {λn}, still denoted by

{λn}, such that as n→ ∞, τλn
→ µ1 ≤ 0 and

uλn
⇀ u0, in E,

uλn
→ u0, in Ls(R3), s ∈ [2, 6),

uλn
→ u0, a.e. in R3,

(3.3)
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where u0 is a nonnegative function in E. According to (2.10), Lemma 2.1 and weak
lower semicontinuity of the norm, we can further get

µ1 = lim inf
n→∞

Jλn
(uλn

)

≤ lim inf
n→∞

[
− 1 + γ

3(1− γ)
∥uλn

∥2E + λn(3− p)
1− γ − 2p

6p(1− γ)
D(uλn

)

]
≤− 1 + γ

3(1− γ)
∥u0∥2E < 0.

(3.4)

This together with c∗ > 0 leads to Jλn
(uλn

) → µ1 < 0 < c∗. Using (3.2) and the
statement in the proof of Lemma 2.10, one can similarly obtain that u0 ̸≡ 0 and
uλn

→ u0 strongly in E. Then, according to ∥uλn
∥E < A∗ and {uλn

} ⊂ N+
λn

⊂ Nλn
,

we have ∥u0∥E ≤ A∗ and u0 ∈ N0. Passing to the lim as n→ ∞ in (3.2) and repeating
the arguments used in Step 1, for every ψ ∈ E, we have

⟨u0, ψ⟩E =

∫
R3

f(x)u−γ0 ψdx+

∫
R3

u50ψdx, (3.5)

and u0 is a positive solution of problem (P0). Hence, J0(u0) = µ1 ≥ τ0 where τ0 =
infu∈N0

J0(u).
Step 4. u0 is a ground state solution of problem (P0).

In order to show u0 is a ground state solution of problem (P0), it is enough to prove
that J0(u0) = τ0. Noticing that λ = 0 is allowed in Step 1 and Step 2, then problem
(P0) admits a ground state solution w0 satisfying 0 < w0 ∈ N0 and J0(w0) = τ0. By
Lemma 2.2, for all n ∈ N, there exists 0 < t+λn

< t−λn
such that t±λn

w0 ∈ N±
λn

⊂ Nλn

and Jλn
(t+λn

w0) = inf
0<t≤t−λn

Jλn
(tw0). We claim that {t−λn

} is bounded. Suppose to the

contrary that there exists a subsequence of {t−λn
}, still denoted by {t−λn

} such that

t−λn
→ +∞ as n→ ∞. Then, by t−λn

w0 ∈ N−
λn

⊂ Nλn
and (2.4), we have

1

(t−λn
)4
∥w0∥2E +

λn

(t−λn
)6−2p

D(w0) =
1

(t−λn
)5+γ

∫
R3

f(x)|w0|1−γdx+
∫
R3

|w0|6dx, (3.6)

and

−(6− 2p)(t−λn
)2pλnD(w0) + (5 + γ)(t−λn

)1−γ
∫
R3

f(x)|w0|1−γdx < 4(t−λn
)2∥w0∥2E . (3.7)

Moreover, w0 ∈ N0 means

∥w0∥2E =

∫
R3

f(x)|w0|1−γdx+
∫
R3

|w0|6dx. (3.8)

Subtracting (3.6) with (3.8) provides[
1− 1

(t−λn
)4

]
∥w0∥2E − λn

(t−λn
)6−2p

D(w0) =
[
1− 1

(t−λn
)5+γ

]∫
R3

f(x)|w0|1−γdx. (3.9)

Passing to the limit in the above equality, we have

∥w0∥2E =

∫
R3

f(x)|w0|1−γdx,
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a contradiction to (3.8). Therefore, {t−λn
} is bounded. Up to a subsequence, suppose

that t−λn
→ t−0 . We claim that t−0 ≥ 1. Arguing by contradiction suppose that 0 <

t−0 < 1, then it follows from (3.9) and (3.7) that[
1− 1

(t−0 )
4

]
∥w0∥2E =

[
1− 1

(t−0 )
5+γ

]∫
R3

f(x)|w0|1−γdx, (3.10)

and

(5 + γ)(t−0 )
1−γ

∫
R3

f(x)|w0|1−γdx ≤ 4(t−0 )
2∥w0∥2E . (3.11)

Combining (3.10) with (3.11), we can deduce that

4(t−0 )
5+γ − (5 + γ)(t−0 )

4 + 1 + γ ≤ 0,

which is impossible since 4t5+γ−(5+γ)t4+1+γ > 0 for all t ∈ (0, 1). Therefore, t−0 ≥ 1.

If t−0 > 1, then t−λn
> 1 for some n large enough. This together with Jλn

(t+λn
w0) =

inf
0<t≤t−λn

Jλn
(tw0) leads to Jλn

(w0) ≥ Jλn
(t+λn

w0) for some n large enough. If t−0 = 1,

then t−λn
→ 1. For some n large enough with t−λn

≥ 1, we have Jλn
(w0) ≥ Jλn

(t+λn
w0)

by the similar statement above. For some n large enough with t−λn
< 1, according to

Lemma 2.2, there exists tλn
∈ (t+λn

, t−λn
) such that Jλn

(w0) = Jλn
(tλn

w0) ≥ Jλn
(t+λn

w0).

Follows from above two cases, we get Jλn
(w0) ≥ Jλn

(t+λn
w0) for some n large enough

when t−0 = 1. To sum up, Jλn
(w0) ≥ Jλn

(t+λn
w0) for some n large enough. Hence, we

can obtain from t+λn
w0 ∈ N+

λn
and τ+λn

= τλn
that

τ0 =J0(w0) = Jλn
(w0)−

λn
2p

D(w0) ≥ Jλn
(t+λn

w0)−
λn
2p

D(w0)

≥τ+λn
− λn

2p
D(w0) = τλn

− λn
2p

D(w0),

for some n large enough and so

lim sup
n→+∞

τλn
≤ τ0. (3.12)

Using (3.12), one can further get

τ0 ≤ J0(u0) = lim sup
n→+∞

Jλn
(uλn

) = lim sup
n→+∞

τλn
≤ τ0.

This shows that J0(u0) = τ0 and so u0 is a ground state solution of problem (P0). The
proof is completed. □

4 Existence of a second solution in N−
λ

It is well known that S can be attained by the function

Uε(x) =
(3ε)

1
4

(ε+ |x|2) 1
2

, ε > 0, x ∈ R3, (4.1)
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and ∥Uε∥2 = ∥Uε∥66 = S
3
2 . Let η(x) ∈ C∞

0 (R3) be a radially symmetric function such
that 0 ≤ η ≤ 1, η|B δ

2

(0) ≡ 1 and suppη ⊂ Bδ(0) for some δ > 2δ1 where δ1 is given in

(f2). Moreover, set wε(x) = η(x)Uε(x), then for ε > 0 small enough, we have (see [3])∫
R3

|∇wε|2dx = K1 +O(ε
1
2 ),

∫
R3

|wε|6dx = K2 +O(ε
3
2 ), (4.2)

and ∫
R3

|wε|sdx =

 O(ε
s
4 ), s ∈ [2, 3),

O(ε
s
4 |lnε|), s = 3,

O(ε
6−s
4 ), s ∈ (3, 6),

(4.3)

where K1, K2 are positive constants and
K1

K
1
3

2

= S. Using (4.2), we can further get

∫
R3 |∇wε|2dx

(
∫
R3 |wε|6dx)

1
3

= S +O(ε
1
2 ) (4.4)

Lemma 4.1. Assume (V1), (V2), (f1) and (f2) hold, then there exists 0 < T00 < T0
where T0 is defined in proof of Theorem 1.1, such that for 0 < ∥f∥ 6

5+γ
< T00 and ε > 0

small, we have
τ−λ ≤ sup

t≥0
Jλ(twε) < c∗, ∀λ > 0,

where c∗ is given in Lemma 2.10.

Proof. For 0 < ∥f∥ 6
5+γ

<
1− γ

2
T1, by Lemma 2.2 and Lemma 2.6 (ii), there exists

tε > tmax > 0 such that tεwε ∈ N−
λ and Jλ(tεwε) = supt≥0 Jλ(twε) ≥ β0 > 0. We

can get from this and Jλ(twε) → −∞ as t → +∞ that there exist positive constants
t00, t0 independent of ε such that t00 ≤ tε ≤ t0. Motivated by [10, 42], let Jλ(tεwε) =
A(ε) +B(ε) + C(ε)−D(ε), where

A(ε) =
t2ε
2

∫
R3

|∇wε|2dx−
t6ε
6

∫
R3

|wε|6dx, B(ε) =
t2ε
2

∫
R3

V (x)|wε|2dx

C(ε) = λ
t2pε
2p

D(wε), D(ε) =
t1−γε

1− γ

∫
R3

f(x)|wε|1−γdx.

For the purpose of proof, set g3(t) =
t2

2

∫
R3

|∇wε|2dx − t6

6

∫
R3

|wε|6dx, then one can

easily get that g3(t) achieves its maximum at Tmax with Tmax =

(∫
R3 |∇wε|2dx∫
R3 |wε|6dx

) 1
4

.

Thus, it follows from (4.4) that

A(ε) = g3(tε) ≤ g3(Tmax) =
1

3

(

∫
R3

|∇wε|2dx)
3
2

(

∫
R3

|wε|6dx)
1
2

=
1

3
S

3
2 +O(ε

1
2 ). (4.5)
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Since t00 ≤ tε ≤ t0, one can get from V ∈ C(R3), the definition of wε and (4.3) that

B(ε) =
t2ε
2

∫
Bδ(0)

V (x)|wε|2dx ≤ max
x∈Bδ(0)

V (x) ·
t20
2

∫
Bδ(0)

|wε|2dx = O(ε
1
2 ). (4.6)

By (2.1), (4.3) and 1 + α
3 ≤ p < 3, we also have

C(ε) ≤ λ
t2p0
2p
dα

(∫
R3

|wε|
6p

3+αdx
) 3+α

3

=


O(ε

p
2 ), 3+α

3 ≤ p < 3+α
2 ,

O(ε
p
2 |lnε| 3+α

3 ), p = 3+α
2 ,

O(ε
3+α−p

2 ), 3+α
2 < p < 3,

(4.7)

Similarly, by (f2) and
3+γ
2 < β1 <

5+γ
2 < 3, for any ε satisfying 0 < ε ≤ δ21, we have

D(ε) =
t1−γε

1− γ

∫
|x|<δ

f(x)|wε|1−γdx

=
t1−γε

1− γ

[∫
|x|<δ1

f(x)|wε|1−γdx+
∫
δ1≤|x|<δ

f(x)|wε|1−γdx

]
≥

t1−γ00

1− γ

∫
|x|<δ1

ρ1|x|−β1(3ε)
1−γ
4

(ε+ |x|2)
1−γ
2

dx = C3ε
1−γ
4

∫ δ1

0

r2

rβ1(ε+ r2)
1−γ
2

dr

= C3ε
γ+5−2β1

4

∫ δ1√
ε

0

r2

rβ1(1 + r2)
1−γ
2

dr ≥ C3ε
γ+5−2β1

4

∫ 1

0

r2

2
1−γ
2 rβ1

dr = C4ε
γ+5−2β1

4 .

(4.8)
Case 1. 3+α

3 ≤ p ≤ 3+α
2 .

For 3+α
3 ≤ p ≤ 3+α

2 , using the fact that lim
ε→0+

ε
p−1
2 |lnε| 3+α

3 = 0 and p
2 ≥ 3+α

6 > 1
2 , we

can obtain from (4.7) that C(ε) = O(ε
1
2 ). Combining this with (4.5), (4.6) and (4.8)

leads to

Jλ(tεwε) ≤
1

3
S

3
2 +O(ε

1
2 )− C4ε

γ+5−2β1
4 ≤ 1

3
S

3
2 + C5ε

1
2 − C4ε

γ+5−2β1
4 .

Set ε = ∥f∥
4

1+λ
6

5+γ

and T∗ =
(

C4

C5+D∗

) 1+γ
2β1−3−γ

where D∗ is given in Lemma 2.10, since

3+γ
2 < β1 <

5+γ
2 , we have

C5ε
1
2 − C4ε

γ+5−2β1
4 = ∥f∥

2
γ+1
6

5+γ

(
C5 − C4∥f∥

γ+3−2β1
1+γ

6
5+γ

)
< −D∗∥f∥

2
γ+1
6

5+γ

,

and so

sup
t≥0

Jλ(twε) = Jλ(tεwε) <
1

3
S

3
2 −D∗∥f∥

2
γ+1
6

5+γ

= c∗,

for all ∥f∥ 6
5+γ

sufficiently small with ∥f∥ 6
5+γ

< T3 = min{1− γ

2
T1, T2, T∗}.

Case 2. 3+α
2 < p < 3.

When p−α ≤ 2 i.e. 3+α−p
2 ≥ 1

2 , similarly to Case 1, we can obtain supt≥0 Jλ(twε) <
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c∗. Hence, we only consider the situation when p − α > 2. It follows from p − α > 2
and 3+α

2 < p < 3 that α
2 <

3+α−p
2 < 1

2 . Hence, one can get from (4.5)-(4.8) that

Jλ(tεwε) ≤
1

3
S

3
2 +O(ε

1
2 ) +O(ε

3+α−p
2 )− C4ε

γ+5−2β1
4 ≤ 1

3
S

3
2 + C6ε

α
2 − C4ε

γ+5−2β1
4 .

Set ε = ∥f∥
4

α(1+γ)
6

5+γ

and T∗∗ =
(

C4

C6+D∗

) α(1+γ)
2β1+2α−5−γ

, since 5+γ−2α
2 < β1 <

5+γ
2 , we have

C6ε
α
2 − C4ε

γ+5−2β1
4 = ∥f∥

2
γ+1
6

5+γ

(
C6 − C4∥f∥

γ+5−2β1−2α

α(1+γ)
6

5+γ

)
< −D∗∥f∥

2
γ+1
6

5+γ

,

and so for all ∥f∥ 6
5+γ

sufficiently small with ∥f∥ 6
5+γ

< T4 = min{1− γ

2
T1, T2, T∗∗}, we

have

sup
t≥0

Jλ(twε) = Jλ(tεwε) <
1

3
S

3
2 −D∗∥f∥

2
γ+1
6

5+γ

= c∗.

To sum up, set T00 = min{T3, T4}, then for all ∥f∥ 6
5+γ

sufficiently small with ∥f∥ 6
5+γ

<

T00, we have
τ−λ ≤ Jλ(tεwε) = sup

t≥0
Jλ(twε) < c∗,

since tεwε ∈ N−
λ and this ends the proof. □

Proof of Theorem 1.2. Fix 0 < ∥f∥ 6
5+γ

< T00, according to Theorem 1.1, we only

need to show the existence and asymptotic behavior of another solution vλ which is
different with the first solution uλ. Since N−

λ is a closed set in E by Lemma 2.4,
applying the Ekeland variational principle to construct a minimizing sequence {un} ⊂
N−
λ satisfying (2.11)−, (2.12)− and (2.13) with weak limit vλ, to not confuse with uλ

obtained in Section 2 and Section 3.
Step 1. vλ is a solution of problem (Pλ).

We can get from (2.11)−, Lemma 2.6 (ii) and Lemma 4.1 that

τ−λ ≥ β0 > 0 and Jλ(un) → τ−λ < c∗,

so Lemma 2.10 with c = τ−λ results in vλ ̸≡ 0 and un → vλ in E, up to a subsequence.

Then, Jλ(vλ) = τ−λ . Moreover, un ∈ N−
λ ⊂ Nλ and un → vλ further lead to vλ ∈ Nλ.

Similarly, one can get from Lemma 2.1 and Lemma 2.7 (ii) that

(1 + γ)∥vλ∥2E + λ(2p− 1 + γ)D(vλ)− (5 + γ)

∫
R3

|vλ|6dx < 0,

therefore, vλ ∈ N−
λ . Following the argument used for the first solution uλ in Section

3, we see that vλ is also a positive solution of problem (Pλ). Moreover, since uλ ∈ N+
λ

and vλ ∈ N−
λ , we get from Lemma 2.3 that ∥vλ∥E > ∥uλ∥E . So uλ and vλ are distinct.

Step 2. For any vanishing sequence {λn} ⊂ (0, 1), vλn
→ v0 strongly in E where v0 is

a positive solution of problem (P0) .
For any vanishing sequence {λn} ⊂ (0, 1), since {vλn

} ⊂ N−
λn

is a positive solution

sequence to problem (Pλn
) provided by Step 1, then β0 ≤ Jλn

(vλn
) = τ−λn

< c∗,
∥vλn

∥E > A∗ > 0 and

(vλn
, ψ)E +

λn
2p

⟨D′(vλn
), ψ⟩ =

∫
R3

f(x)v−γλn
ψdx+

∫
R3

v5λn
ψdx, (4.9)

23



for every ψ ∈ E and n ∈ N. Since vλn
∈ Nλn

and Jλn
(vλn

) < c∗, then {vλn
} is bounded

in E by (2.9). Thus, there exists a subsequence of {λn}, still denoted by {λn}, such
that as n→ ∞, τ−λn

→ µ2 and

vλn
⇀ v0, in E,

vλn
→ v0, in Ls(R3), s ∈ [2, 6),

vλn
→ v0, a.e. in R3,

(4.10)

where v0 is nonnegative in E. Hence, µ2 ≥ β0 > 0 and Jλn
(vλn

) → µ2 < c∗. Using (4.9)
and the statement in the proof of Lemma 2.10, one can similarly obtain that v0 ̸≡ 0
and vλn

→ v0 strongly in E. Then, ∥v0∥E ≥ A∗ follows from ∥vλn
∥E > A∗. Passing

to the lim as n→ ∞ in (4.9) and repeating the arguments used in Step 1 in the proof
of Theorem 1.1, we have that v0 is a positive solution of problem (P0). It follows from
∥u0∥E ≤ A∗, ∥v0∥E ≥ A∗ and A∗ < A∗ in Lemma 2.3 that ∥u0∥E < ∥v0∥E . The proof
is completed. □
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