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Abstract

In this paper, a new discrete large-sub-center system is obtained by
using the Euler and nonstandard discretization methods for the corre-
sponding continuous system. It is surprised that all dynamic behaviors
of the discrete system are exactly driven by the large-center equation, for
example, the stabilities, the bifurcations, the period-doubling orbits, and
the chaotic dynamics, etc. Additionally, the global asymptotical stability,
the existence of exact 2-periodic solutions, the �ip bifurcation theorem,
and the invariant set of the sub-center equation is also given. These re-
sults reveal far richer dynamics of the discrete model compared with the
continuous model. Through numerical simulation, we can observe some
complex dynamic behaviors, such as period-doubling cascade, periodic
windows, chaotic dynamics, etc. Especially, our theoretical results are
also showed by those numerical simulations.
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1 Introduction

In recent years, the discrete dynamical models described by the di¤erence equa-
tions have been extensively investigated by a number of authors, for example,
many species of insect have no overlap between successive generations, and thus
their population evolves in discrete-time steps, see [1-12] for the predator-prey
system, [13-18] for the competitive system, and [19-22] for the cooperative sys-
tem. At the same time, such system is often used in the analysis of dynamic
economic systems, for example, economic growth, structural economic change,
innovation, economic competition, regional sciences, see Cafagna and Coccorese
[20], Ding and Shi [22], Nijkamp and Reggiani [23-25], Askar [26], and Dawid
et. al. [27], etc.
The hierarchical structure in the spatial system has been characterized by

a discrete system. Especially, Nijkamp and Reggiani [23-25] considered the
discrete system of the form�

ut+1 = aut(1� ut);
vt+1 = rvt(1� but � vt);

(1)

where u represents the size of the large centre and v the size of the sub-centre,

t 2 f0; 1; 2; � � �g , Z+, 0 < a � 4, r > 0 and 0 < b < 1. The dynamical behavior
of system (1) has been numerically investigated by Nijkamp and Reggiani [23-
25].
System (1) can be obtained by using the Euler�s method from the continuous

system �
dx
dt = ax (m� x) ;
dy
dt = dy (n� ex� y) ;

(2)

where a, m, d, n and e are positive constants. System (2) can be rewritten as�
du1
d� = 
u1 (1� u1) ;
du2
d� = u2 (1� u2 � "2u1) ;

(3)

by using a simpler transformation, see [28] or [29], also see (1.2) in [30]. When
0 < "2 < 1, system (3) has a unique positive steady state (1; 1� "2) which is
globally asymptotically stable ([28] or [29]). In this case, we can say that u1 is
the size of the large centre and that u2 is the size of the sub-centre because the
species u2 has no impact on the evolution of species u1.
However, we �nd that the central position of the large centre u is not clear

for system (1). Speci�cally, we do not know the contributions of u and v for the
complex behavior of (1). Indeed, the species v has no impact on the evolution
of species u in system (1). However, we can see that the species v exists some
distinctive dynamical behaviors which can not be driven by the species u. In
the following, we will give some explanations.
It is well known that the �rst equation of system (1)

ut+1 = aut (1� ut) (4)
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has been extensively discussed by May [31] and subsequently by many other
authors, for instance, Baker and Gollub [32], Baumol and Benhabib [33], Frank
and Stengos [34], Kelsey [35] and Sharkovsky et. al. [36], so we will not discuss
here in any detail the possible evolutionary patterns of u. We will just emphasize
that for a > a� (for example, see Zhang, Jiang and Cheng [37]) a cycle of period
3 appears, beyond which there are cycles in every integer period, as well as an
uncountable number of aperiodic trajectories. In view of Li and Yorke [38], this
is a typical example of a chaotic region. For example, let a = 0:5, 1:5, 3:5 and
4, we can simulate the phase diagrams of (4), see Figure 1.

(a) (b) (c) (d)

Figure 1. The phase diagrams of (4) for a = 0:5; 1:5; 3:5 and 4

We observe that the zero solution of (4) is stable for a = 0:5, the positive
�xed point 13 of (4) is stable for a = 1:5, (4) has a stable 4-periodic solution for
a = 3:5, and (4) is chaos for a = 4. We also obtain the bifurcation diagrams of
the second equation of (1) for b = 0:01 and a = 0:5, 1:5, 3:5 and 4, where r is
the bifurcation parameter, see Figure 2.

(a) (b) (c) (d)

Figure 2. The bifurcation diagrams of the second equation of (1)

for b = 0:01 and a = 0:5; 1:5; 3:5 and 4:

From Figure 2, we can observe and �nd the following facts:
(i) When 0 < r < 1, the zero solution of the second equation of (1) is stable

for a = 0:5, 1:5, 3:5 and 4;
(ii) For a = 0:5 or 1:5, the second equation of (1) undergoes the stability of

the zero solution, the stability of the positive �xed points, the period-doubling,
and the chaos;
(iii) For a = 3:5, the second equation of (1) undergoes the stability of the

zero solution, the stability of the positive �xed points, the quasi-�xed point, the
quasi-binary period-doubling, and the chaos;
(iv) For a = 4, the second equation of (1) undergoes the stability of the

zero solution, the stability of the positive �xed points, the quasi-�xed point, the
quasi-binary periods, and the chaos.
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From the above observations of (i)-(iv), for any a 2 (0; 4], the second equa-
tion of (1) may show the chaotic behaviors when the parameter r is larger. In
particular, the second equation of (1) can also cause chaos when a 2 (1; 3).
But, the positive �xed point of the second equation of (1) is also stable when
r 2 (0; 1), even if the large centre equation is chaos for a = 4. In this case, the
dominance of "the large centre u" has disappeared in fact.
Clearly, the dynamics of (4) can become �chaotic� for certain parameter

values while their �mother-version�

dx

dt
= rx(1� x)

has very simple dynamics. This can be interpreted as �numerical chaos� and
such dynamical characteristics have also been called �numerically unstable�[39].
However, there are many situations for which continuous models, i.e., di¤erential
equations are the best �t. Thus, we need to be dynamically consistent for
the discrete versions of the corresponding di¤erential equations ([39], [40] and
[41], and the references therein), such as, stability, bifurcation, and chaos. In
the present paper, we will not discuss here in any detail for the dynamical
consistency of the discrete versions, and only choose a mixed discretizing method
so as to manifest the predominance of the large centre x.
In view of Liu and Elaydi [40], we can obtain a nonstandard discrete system

of (3) as (
xt+1 =

(1+'1(h))xt
1+'1(h)xt

;

yt+1 =
(1+'2(h))yt

1+'2(h)("2xt+yt)
;

(5)

where t 2 Z+,

'1 (h) =
e
h � 1



and '2 (h) = e
h � 1:

The unique positive equilibrium (1; 1� "2) of system (5) is globally asymptot-
ically stable, see Theorems 4 in [40]. In this case, the dynamical behaviors of
(3) and (5) are clearly consistent.
On the other hand, our work is also motivated by Kang and Smith [42] and

Kang [43]. In [42] and [43], Kang and Smith investigated the global dynamics
of a discrete two-dimensional competition model of the form�

xt+1 =
r1xt

a+xt+yt
;

yt+1 = yt exp (r2 � xt � yt) ;
(6)

where r1 and r2 are positive and a is nonnegative. System (6) is called a discrete
two-species Lottery-Ricker competition model, where the �rst equation of (6) is
the lottery model and the second equation of (6) is the Ricker model, see Kang
and Smith [42] or Kang [43].
The dynamical behaviors for the discrete system of the form(

xt+1 = axt (1� xt) ;
yt+1 =

(1+b)yt
1+b(xt+cyt)

;
(7)
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will be considered in this paper, where b = eh� 1 > 0 and 1 < a � 4. Note that
"2; xt; "2xt 2 (0; 1), thus, "2xt is replaced by xt. For more general applications,
we add the coe¢ cient c > 0 before yt. Certainly, c can also be interpreted as
the intraspeci�c acting coe¢ cient. System (7) is also a hybrid discrete system
with the logistic model and the lottery model. We will demonstrate that the
dynamical behaviors of system (7) is exactly driven by the large centre x.
We have known that the chaos for di¤erence schemes governing discrete pop-

ulation growth is by no means restricted to single-species models, for example,
Guckenheomer, Oster and Ipaktchi [47] considered the two-dimensional Leslie
model: �

xt+1 = (b1xt + b2yt) exp (�a (xt + yt)) ;
yt+1 = sxt;

(8)

where b1, b2, a and s are positive constants. System (8) possesses for cer-
tain choices of the parameters 3-cycles which appear numerically to be globally
stable, see Guckenheomer, Oster and Ipaktchi [47]. Thus, Marotto [48] gave
an extended version of Li-Yorke�s theorem, that is, "Snap-back repellers imply
chaos in Rn". Unfortunately, there is a minor technical �aw, see Marotto [49]
and the references therein. In [49], Marotto has corrected the �aw, however, the
Marotto�s theorem is invalid for our system (7) because its positive �xed point
is not a repeller. In particular, Liang and Jiang [50] and Huang [51] also inves-
tigated the extended versions of Li-Yorke�s theorem for the planar monotone or
competitive maps. The results in [50] and [51] are also invalid for our system,
see Corollary 3 in Huang [51].

Remark 1. We notice that (6) and (8) are coupled systems.

The paper is organized as follows. In Section 2, we will give the local dy-
namical behaviors of system (7) for its four �xed points

E0 = (0; 0) ; E1 =

�
a� 1
a

; 0

�
; E2 =

�
0;
1

c

�
and E3 =

�
a� 1
a

;
1

ac

�
:

By the local analysis of those �xed points, we conjecture that the �xed point
E3 should be globally attractive. Indeed, we prove that any solution f(xt; yt)g
with the initial values x0 2 (0; 1) and y0 > 0 of system (7) satis�es

lim
t!1

xt =
a� 1
a

and lim
t!1

yt =
1

ac
;

when 1 < a < 3. We observe that such result only require the conditions b > 0
and c > 0. That is, there is no additional limitation for the time stepsize and
the competitive intensity of the sub-centre. In Section 3, we will investigate
the bifurcation and the center manifold for a = 3. Furthermore, the exact 2-
periodic positive solutions of (7) will be considered in Section 4. Some numerical
simulations will be given in Section 5. For the convenience of simulation, the
invariant set of the sub-center equation is also given in this section. In the �nal
section, some conclusions and discussions will be given.
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2 The dynamics about �xed points of (7)

In this section, we will discuss the local dynamical behaviors of system (7) for
its four �xed points

E0 = (0; 0) ; E1 =

�
a� 1
a

; 0

�
; E2 =

�
0;
1

c

�
and E3 =

�
a� 1
a

;
1

ac

�
;

where b; c > 0, and 1 < a � 4. Specially, the global attractivity of the �xed
point E3 wil also be investigated.
The Jacobian matrix of system (7) at (x; y) is given by

J (x; y) =

 
a� 2ax 0
�b(1+b)y

[1+b(x+cy)]2
(1+b)(1+bx)

[1+b(x+cy)]2

!
: (9)

The characteristic equation of Jacobian matrix can be written as

�2 + p (x; y)�+ q (x; y) = 0; (10)

where

p (x; y) = a (2x� 1)� (1 + b) (1 + bx)

[1 + b (x+ cy)]
2

and

q (x; y) =
2 (1 + b) (1 + bx) (1� 2x)

[1 + b (x+ cy)]
2 :

Let �1; �2 be two roots of (10), we recall some de�nitions of topological types
for a �xed point (x; y). A �xed point (x; y) of a two-dimension discrete system
is called a sink if j�1j < 1 and j�2j < 1, a sink is locally asymptotic stable.
The �xed point (x; y) is called a source when j�1j > 1 and j�2j > 1, a source is
locally unstable. (x; y) is called a saddle if j�1j < 1 and j�2j > 1 (or j�1j > 1
and j�2j < 1). And (x; y) is called non-hyperbolic if either j�1j = 1 or j�2j = 1.
In the following, we will discuss the local dynamics for the �xed points Ei

for i = 0; 1; 2; 3. For the �xed point E0, we have

J (E0) =

�
a 0
0 1 + b

�
which has the eigenvalues �1 (E0) = a > 1 and �2 (E0) = 1 + b > 1, thus, E0 is
unstable and a source or a repelling node.
For E1, the Jacobian matrix of system (7) is

J (E1) =

�
2� a 0
0 1 + b

a(1+b)�b

�
which has the eigenvalues �1 (E1) = 2 � a and j�1 (E1)j = j2� aj < 1 if and
only if 1 < a < 3, and

�2 (E1) = 1 +
b

a (1 + b)� b > 1:
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Thus, the �xed point E1 is a saddle.
Note that

y =
(1 + b) y

1 + b (x+ cy)

or

1 =
1 + b

1 + b (x+ cy)

if y 6= 0. In this case, we have

J (x; y) =

�
a� 2ax 0

� by
1+b

1+bx
1+b

�
:

Thus, the Jacobian matrix of E2 is

J (E2) =

�
a 0
�b

c(1+b)
1
1+b

�
;

which has the eigenvalues �1 (E2) = a > 1 and �2 (E2) = 1= (1 + b) < 1. In this
case, the �xed point E2 is also a saddle.
For the �xed point E3, similarly, we have

J (E3) =

�
2� a 0
�b

ac(1+b) 1� b
a(1+b)

�
which has two eigenvalues

�1 = 2� a and �2 = 1�
b

a (1 + b)
:

We �nd that

0 < 1� b

a (1 + b)
< 1

for any a > 1 and b > 0, and that j�1 (E3)j = j2� aj < 1 if and only if 1 < a < 3.

Proposition 1. For any b; c > 0 and 1 < a � 4, E0 is a source and E1 is a
saddle. Additionally, E2 is also saddle when a > 1, and E3 is local attractive if
1 < a < 3.
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In view of Proposition 1, we can give a simple phase diagram, see Figure 3.

Figure 3. The local phase diagrams of (7) for 1 < a < 3:

From Figure 3, we can naturally obtain a conjecture that the �xed point
E3 should be globally asymptotically stable for 1 < a < 3. Thus, we have the
following theorem.

Theorem 1. Assume that b; c > 0, and 1 < a < 3. For any x0 2 (0; 1) and
y0 > 0, the solution f(xt; yt)g of system (7) satis�es

lim
t!1

xt =
a� 1
a

and lim
t!1

yt =
1

ac
:

Proof. For any x0 2 (0; 1) and y0 > 0, clearly, we have xt 2 (0; 1) and
yt > 0 for t = 1; 2; :::, and

lim
t!1

xt =
a� 1
a

:

Since yt > 0, so

1

yt+1
=

1 + b (xt + cyt)

(1 + b) yt
=

1

1 + b

�
1

yt
+
bxt
yt
+ bc

�
=

1

1 + b

��
b

�
xt �

a� 1
a

�
+ 1 +

b (a� 1)
a

�
1

yt
+ bc

�
;

and
1

yt+1
� ac =

1

1 + b

��
b

�
xt �

a� 1
a

�
+ 1 +

b (a� 1)
a

�
1

yt
+ bc

�
� ac

=
1

1 + b

�
b

�
xt �

a� 1
a

�
+ 1 +

b (a� 1)
a

��
1

yt
� ac

�
+
abc

1 + b

�
xt �

a� 1
a

�
:
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Let
Xt = xt �

a� 1
a

; Yt =
1

yt
� ac;

then we have

Yt+1 =
1

1 + b

�
bXt + 1 +

b (a� 1)
a

�
Yt +

abc

1 + b
Xt

=

�
b

1 + b
Xt + 1�

b

a(1 + b)

�
Yt +

abc

1 + b
Xt:

Let

q = 1� b

2a(1 + b)
:

Clearly, 0 < q < 1. Note that limt!1Xt = 0, thus, for any " > 0, there exists
N1 > 0 such that

jXtj < min
�
";
1

2a

�
;

and ���� b

1 + b
Xt

���� < b

2a (1 + b)
for all t > N1:

Hence

0 <

���� b

1 + b
Xt

����+ 1� b

a(1 + b)
< q < 1 for all t > N1: (11)

In view of (11), for t > N1, we get that

jYt+1j =

����� b

1 + b
Xt + 1�

b

a(1 + b)

�
Yt +

abcXt
1 + b

����
�

���� b

1 + b
Xt + 1�

b

a(1 + b)

���� jYtj+ abc

1 + b
jXtj

�
�
1� b

2a(1 + b)

�
jYtj+

abc

1 + b
" = q jYtj+

abc

1 + b
";

and

jYN1+1+tj � qt jYN1+1j+
abc

1 + b

�
1 + q + � � �+ qt�1

�
"

� qt jYN1+1j+
abc

(1 + b) (1� q)":

Note that 0 < q < 1, for any " > 0, there exists N2 > 0 such that qt < " for
t > N2. In particular, for t > N1 +N2 + 1, we have

jYtj �
�
jYN1+1j+

abc

(1 + b) (1� q)

�
";
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which implies that limt!1 Yt = 0, that is

lim
t!1

yt =
1

ac
.

The proof is complete.

Remark 2. We note that the �xed point E0 is a repeller, however, it is not
a snap-back �xed point in view of Theorem 1. Thus, the Marotto�s theorem is
invalid.

3 Center manifolds and �ip bifurcation theorem

Based on the analysis in Section 2, we will discuss the �ip bifurcation of the
�xed points by using center manifold theorem and bifurcation theory in [44].
To this end, we �rstly consider the case a = 3, at this time, the �xed points E1
and E3 are reduced to

E1 =

�
2

3
; 0

�
; E3 =

�
2

3
;
1

3c

�
;

respectively. For the �xed E1, we have

J (E1) =

�
�1 0
0 1 + b

3+2b

�
;

which has two eigenvalues

�1 (E1) = �1 and �2 (E1) = 1 +
b

3 + 2b
> 1:

Thus, the �xed point E1 is non-hyperbolic and unstable .
For the �xed E3, we have

J (E3) =

� �1 0
�b

3c(1+b) 1� b
3(1+b)

�
and

�1 (E3) = �1 and �2 (E3) = 1�
b

3 (1 + b)
< 1:

Let
ut = xt �

2

3
or xt = ut +

2

3
:

From the �rst equation of (7), we directly get that the center manifold of the
form

ut+1 = �ut � 3u2t : (12)

10



The zero solution of (12) is locally asymptotically stable. In view of the center
manifold theorem (see Theorem 3.2.2 in Guckenheimer and Holmes [44]), the
�xed point

E3 =

�
2

3
;
1

3c

�
of (7) is also locally asymptotically stable.
The generic one-parameter family has a two-dimensional center manifold

(including the parameter direction) on which it is topologically equivalent to
the saddle-node family de�ned by the �rst equation of (7), see Guckenheimer
and Holmes [44]. Now, we assume that a is a parameter and rewrite (7) as0@ x

y
�

1A!

0@ ax (1� x)
(1+b)y

1+b(x+cy)

�

1A
Let � = a� 3, u = x� 2

3 and v = y �
1
3c . We have

u0 = (� + 3)

�
u+

2

3

��
1� u� 2

3

�
� 2
3

(13)

= �u+ 2
9
� � 3u2 � 1

3
u� � u2� , �u+ 2

9
� + f� (u; v) :

Similarly, we can obtain that0@ u
v
�

1A!

0@ �1 0 2
9

�b
3c(1+b)

3+2b
3+3b 0

0 0 1

1A0@ u
v
�

1A+
0@ f� (u; v)
g� (u; v)
0

1A :
The coe¢ cient matrix 0@ �1 0 2

9
�b

3c(1+b)
3+2b
3+3b 0

0 0 1

1A
has the eigenvalues

�1; 2b+ 3
3b+ 3

and 1

and the corresponding eigenvectors

col

�
1

b
(6c+ 5bc) ; 1; 0

�
; col (0; 1; 0) , and col

�
1

9
;� 1
9c
; 1

�
:

Let

T =

0@ 1
b (6c+ 5bc) 0 1

9
1 1 � 1

9c
0 0 1

1A ;
11



which implies that

T�1 =

0@ b
6c+5bc 0 � b

54c+45bc

� b
6c+5bc 1 2b+2

18c+15bc

0 0 1

1A :
We assume that 0@ u

v
�

1A = T

0@ w
z
�

1A ;
or 0@ w

z
�

1A = T�1

0@ u
v
�

1A :
Thus, we have

T

0@ w
z
�

1A!

0@ �1 0 2
9

�b
3c(1+b)

3+2b
3+3b 0

0 0 1

1AT
0@ w
z
�

1A+
0@ F (w; z; �)
G (w; z; �)

0

1A ;
0@ w
z
�

1A! T�1

0@ �1 0 2
9

�b
3c(1+b)

3+2b
3+3b 0

0 0 1

1AT
0@ w
z
�

1A+ T�1
0@ F (w; z; �)
G (w; z; �)

0

1A ;
or 0@ w

z
�

1A!

0@ �1 0 0
0 2b+1

3b+3 0

0 0 1

1A0@ w
z
�

1A+ T�1
0@ F (w; z; �)
G (w; z; �)

0

1A ;
where

F (w; z; �) = � (3 + �)
�
c (6 + 5b)

b
w +

1

9
�

�2
� 1
3

�
c (6 + 5b)

b
w +

1

9
�

�
�

= �c2
�
75 +

180

b
+
108

b2

�
w2 � 2

27
�2 � c

�
5� 6

b

�
w�

�c
�
10

9
+
4

3b

�
w�2 � c2

�
25 +

60

b
+
36

b2

�
w2� � 1

81
�3:

In the following, we give the �ip bifurcation theorem which can be seen in
[44].

Lemma 1. Let f� : R ! R be a one-parameter family of mappings such
that f�0 has a �xed point x0 with eigenvalue �1. Assume

@f

@�

@2f

@x2
+ 2

@2f

@x@�
=
@f

@�

@2f

@x2
�
�
@f

@x
� 1
�
@2f

@x@�
6= 0 (14)
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and
1

2

�
@2f

@x2

�2
+
1

3

�
@3f

@x3

�
6= 0 (15)

at (x0; �0). Then there is a smooth curve of �xed points of f�, passing through
(x0; �0), the stability of which changes at (x0; �0). There is also a smooth curve

 passing through (x0; �0) so that 
�f(x0; �0)g is a union of hyperbolic period
2 orbits. The curve 
 has quadratic tangency with the line R�f�0g at (x0; �0).

Theorem 2. For a = 3, system (7) undergoes a �ip bifurcation and the
bifurcated 2-periodic points are stable.

Proof. Note that

f (w; �) = �w + b

6c+ 5bc
F (w; z; �) :

Thus, we have
@f

@�

��
(0;0) = 0;

@f

@w

��
(0;0) = �1;

@2f

@�@w

��
(0;0) = �

c (5b� 6)
b

b

6c+ 5bc
= �5b� 6

5b+ 6
;

@2f

@w2
��
(0;0) =

�2c2b
6c+ 5bc

and
@3f

@w3
��
(0;0) = 0:

@f

@�

@2f

@x2
+ 2

@2f

@x@�
= �25b� 6

5b+ 6
;

@f

@�

@2f

@x2
�
�
@f

@x
� 1
�
@2f

@x@�
= �25b� 6

5b+ 6

and
1

2

�
@2f

@x2

�2
+
1

3

�
@3f

@x3

�
=
1

2
�
�
�2c2b
6c+ 5bc

�2
=

2c4b2

(6c+ 5bc)
2 :

In view of Lemma 1, we �nish the proof of theorem.

Remark 3. In view of Theorems 1 and 2, we can see that the Marotto�s
theorem is invalid, see Marotto [48] and [49]. On the other hand, when the
parameter condition a = 3 hold, a �ip bifurcation occurs at �xed point E3.
This re�ects in the market competition that there will be a stable 2-period
cycle between two �rms when a > 3 and a�3 is enough small. As a approaches
3 from above, the period-two cycle �shrinks�and disappears. A �ip corresponds
to a pitchfork bifurcation of the second iterate. Please see Figure 4a and Figure
4c in Section 5.
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4 Two periodic positive solutions

In view of Theorem 2, we have known that system (7) has a stable 2-periodic
solution when a > 3 is near 3. In the present section, we will consider its exact
2-periodic solutions. A real sequence fxtg is 2-periodic if and only if

xt = a0 + a1 (�1)t ; (16)

where a0; a1 2 R and a1 6= 0, see Zhang, Jiang and Cheng [37]. To �nd our
desired solutions, we substitute (16) into the �rst equation of (7) and obtain

a0 � a1 (�1)t � a
�
a0 + a1 (�1)t

�
+ a

�
a0 + a1 (�1)t

�2
= a0 � aa0 + aa20 + aa21 + (�a1 � aa1 + 2aa0a1) (�1)

t
= 0

which implies that �
a0 � aa0 + aa20 + aa21 = 0;
�a1 � aa1 + 2aa0a1 = 0.

(17)

By solving (17), we obtain the non-trivial roots

a0 =
a+ 1

2a
and a(�)1 = � 1

2a

p
a2 � 2a� 3: (18)

In order that a1 is a nonzero real number, we need

a2 � 2a� 3 > 0

which implies that a > 3.
Let yt = b0 + b1 (�1)t. Similarly, we also have

0 =
�
b0 � b1 (�1)t

��
1 + b

�
a0 + a1 (�1)t + c

�
b0 + b1 (�1)t

���
� (b+ 1)

�
b0 + b1 (�1)t

�
= ba0b0 � bb0 + bcb20 + ba1b1 + bcb21

+(�bb1 + ba0b1 + ba1b0 + 2bcb0b1) (�1)t :

Let �
ba0b0 � bb0 + bcb20 + ba1b1 + bcb21 = 0;
�bb1 + ba0b1 + ba1b0 + 2bcb0b1 = 0:

(19)

By solving (19), we obtain the non-trivial roots

b0 = �
1

2c
(1� a0 + a1) and b1 = �

1

2c
(1� a0 + a1) ;

b0 =
1

2c
(1� a0 + a1) and b1 = �

1

2c
(1� a0 + a1) ;
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or
b0 =

1� a0
c

; b1 = �
a1
c
:

We easily prove that

b0 = �
1

2c
(1� a0 + a1) and b1 = �

1

2c
(1� a0 + a1)

and
b0 =

1

2c
(1� a0 + a1) and b1 = �

1

2c
(1� a0 + a1)

are invalid and they will be omitted.
In the following, we will discuss

b0 =
1� a0
c

and b1 = �
a1
c
:

To this end, we assume that�
xt = a0 + a1 (�1)t ;
yt = b0 + b1 (�1)t ;

is a 2-periodic positive solution of (7), where

a0 =
a+ 1

2a
, a(�)1 = � 1

2a

p
a2 � 2a� 3;

b0 =
1� a0
c

and b1 = �
a1
c
:

In fact, we have

1� a0 = 1�
a+ 1

2a
=
a� 1
2a

;

a� 1
2ac

� 1

2a

p
a2 � 2a� 3 = 1

2a

�
a� 1
c

�
p
a2 � 2a� 3

�
;

a� 1
c

�
p
a2 � 2a� 3 =

�
a�1
c

�2 � �a2 � 2a� 3�
a�1
c +

p
a2 � 2a� 3

=

�
1� c2

�
(a� 1)2 + 4c2

c (a� 1) + c2
p
a2 � 2a� 3

;

thus, we need to discuss �
1� c2

�
(a� 1)2 + 4c2 > 0: (20)

When 0 < c � 1, clearly, (20) is true. In the following, we assume that c > 1.
In this case, (20) can be rewritten by

(a� 1)2 � c2
h
(a� 1)2 � 4

i
> 0

15



or

c <

r
a2 � 2a+ 1
a2 � 2a� 3 :

To sum up, we obtain the following result.

Theorem 3. Assume that b > 0, 3 < a � 4 and

c <

r
a2 � 2a+ 1
a2 � 2a� 3 ;

then system (7) has a positive 2-periodic solution of the form�
xt = a0 + a1 (�1)t ;
yt = b0 + b1 (�1)t ;

where
a0 =

a+ 1

2a
; a
(�)
1 = � 1

2a

p
a2 � 2a� 3;

b0 =
1� a0
c

and b1 = �
a1
c
:

Remark 4. For 3 < a � 4, we have

a2 � 2a+ 1
a2 � 2a� 3 = 1 +

4

(a� 1)2 � 4
� 9

5
;

and

lim
a!3+

a2 � 2a+ 1
a2 � 2a� 3 = +1:

Thus, the parameters b and c can be chosen for any positive numbers.

5 Numerical simulation

In this section, we will present some numerical simulations to support and extend
the theoretical results obtained in the former sections. For 1 < a � 4, we see that
the interval (0; 1) is a invariant set of xt+1 = axt (1� xt). For the convenience
of simulation, we will seek a invariant set of y. Note that

1

yt+1
=
1 + b (xt + cyt)

(1 + b) yt
� bc

1 + b
;

or

yt+1 �
1 + b

bc
:

We therefore obtain the following result.
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Proposition 2. The set

(0; 1)�
�
0;
1 + b

bc

�
is a invariant set of system (7) when b; c > 0 and 1 < a � 4.

In view of Proposition 2, for �xed a, b and c, the initial value (x0; y0) can
be immediately chosen by

(x0; y0) 2 (0; 1)�
�
0;
1 + b

bc

�
:

In the following, we will present the bifurcation diagrams and the maximum
Lyapunov exponents for system (7) to con�rm the above theoretical analysis
and show some new interesting complex dynamical behaviors by using numerical
simulations. Here, the parameters b and c are �xed at b = c = 0:5, and a 2 (1; 4)
is the bifurcation parameter, see Figure 4.

(a) (b)

(c) (d)

Figure 4. b = c = 0:5; and a 2 (1; 4) is the bifurcation parameter.

Figure 4a is the bifurcation diagram about x for system (7), Figure 4b is the
corresponding Lyapunov exponent diagram, and Figure 4c and Figure 4d are
similar for the variable y. The bifurcation diagrams and the Lyapunov exponent
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diagrams may describe the dynamical behaviors of x and y in di¤erent ways, for
example, the stabilities, the bifurcations, the period-doubling orbits, the chaos,
and the periodic windows.

From Figure 4, we observe the following:
(i) 1 < a < 3: The unique positive �xed E3 is stable, therefore, Theorem 1

is ture.
(ii) 3 < a < 3:57: A cascade of sudden changes provokes the oscillation of

the population in cycles of stable period 2n, where n increases from 1. When a
is close to 3, system (7) exists a stable 2-periodic solution, Theorems 2 and 3
are showed by the numerical simulations. In the following, the period-doubling
cascade is appeared. On the other hand, denote f (x) = ax (1� x), we can
obtain the Schwarzian of f (x) as

Sf =
f 000

f 0
� 3
2

�
f 00

f 0

�2
< 0

when 3 < a < 3:57 and x 2 [0; 1] with x 6= 1=2. If an is the bifurcation value of
the parameter corresponding to the appearance of a cycle B of period 2n, then
the cycle B is attracting for an < a < an+1, see Sharkovsky, Kolyada, Sivak
and Fedorenko [36].
(iii) 3:57 < a < 3:828: When the parameter moves, the system alternates

between periodic behaviors with high periods on parameter interval windows and
chaotic regimes for parameter values not located in intervals. The population
can not be predictable although the system is deterministic.
(iv) 3:828 < a < 3:85: The orbit of period 3 appears for a = 3:828 after

a regime where unpredictable bursts, named intermittences, have become rarer
until their disappearance in the three-periodic time signal. It is well known that
"Period three implies chaos", see Li and Yorke [38], also see Sharkovskii [45]
or [46]. In [37], Zhang, Jiang and Cheng obtained a necessary and su¢ cient
condition of existence of 3-periodic solution for the �rst equation of system (7),
see Theorem 2 (a > 1 + 2

p
2 � 3:828) in Zhang, Jiang and Cheng [37]. Hence,

any periodic cycles which include period 2n are instable.
(v) 3:85 < a � 4: Chaotic behavior with periodic windows is observed in

this interval. At this time, their maximum Lyapunov exponents are positive.

In the following, we will give some phase diagrams of (7). Here, the para-
meters b and c are still �xed at b = c = 0:5, and a 2 (1; 4) is chose the di¤erent
values, see Figures 5 and 6.
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a = 2:80 a = 3:20 a = 3:50 a = 3:56

a = 3:74 a = 3:83 a = 3:845 a = 3:85

Figure 5. Di¤erent choices at a 2 (1; 4) .

In Figure 5, we can observe the �xed point and the period-doubling orbits
of 2, 4 and 8 for a = 2:80, 3:20, 3:50 and 3:56, respectively. Furthermore, we
also observe another periodic orbits of 5, 3, 6 and 12 for a = 3:74, 3:83, 3:845
and 3:85, respectively. To emerge the change process of (7) from a �xed point
to chaos, in the �nal of this section, we again add Figure 6 for a varying from
3:58 to 3:9.

a = 3:58 a = 3:62 a = 3:63 a = 3:64

a = 3:68 a = 3:75 a = 3:86 a = 3:9

Figure 6. Di¤erent choices at a 2 (1; 4) .

When a is varying from 3:58 to 3:62, we observe that two point clouds are
gradually formed. When a = 3:63, two point clouds disappear and a period-6
orbit appears. When a = 3:64, two point clouds reappear and have a larger
scope. When a is varying from 3:68 to 3:73, there is one point cloud. When
a = 3:74, the point cloud disappear and a period-5 orbit appears (see Figure
5). When a is varying from 3:75 to 3:82, we observe one point cloud. When
a = 3:83, 3:845 and 3:85, we observe periodic orbits of 3, 6 and 12 (see Figure
5). Period three implies chaos, when a = 3:86, we observe that a larger range
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of point cloud reappears and a clear outline emerges above the point clouds.
When a = 3:9, the range of point clouds is larger and the boundaries become
blurry.

6 Conclusions and discussions

In this �nal section, we will induce the obtained conclusions in this paper, at
the same time, we also hope to explain the responses of the sub-centre by using
the numerical simulations when the sub-centre attends in the logistic equation.
In this paper, we obtain a new discrete large-sub-center system by using the

Euler and nonstandard discretization method for the corresponding continuous
system. The theoretical analysis and the numerical simulations exhibit that all
dynamic behaviors of the discrete system are exactly driven by the large-center
equation, for example, the stabilities, the bifurcations, the period-doubling or-
bits, and the chaotic dynamics, etc. Thus, such system may better describe the
hierarchical structure in the spatial systems. According to the studies, we draw
the following conclusions:
(i) By using the characteristic roots of Jacobian matrix, the local dynamics

of �xed points for the system are given, see Proposition 1.
(ii) When 1 < a < 3, a global stability result is obtained, see Theorem 1. At

the same time, the invariant set of system is also sought out when 1 < a � 4,
see Proposition 2.
(iii) A �ip bifurcation theorem is proved, see Theorem 2. It ensures that

the period-doubling orbits and the chaotic dynamics are facts. By observing
Figures. 4-6, the �ip bifurcation will present orbits with periods of 2, 4 and 8.
These periodic points are stable, see Sharkovsky, Kolyada, Sivak and Fedorenko
[36].
(iv) The exact 2-periodic orbits are also solved, see Theorem 3.
(v) The chaotic dynamics are observed in Figures 4, 5 and 6. At this time,

any periodic cycles which include period 2n are also instable, see Li and Yorke
[38].
(vi) All dynamic behaviors of system (7) are exactly driven by its �rst equa-

tion.

Remark 5. In this paper, the main purpose is to study the dynamical
consistency of the second equation for system (7). The other additional infor-
mations of the �rst equation for (7) can be seen in May [31], Baker and Gollub
[32], Baumol and Benhabib [33], Frank and Stengos [34] and Kelsey [35], and
the references therein.

We still have a question, can the sub-centre change the dynamical behaviors
of the large centre when the sub-centre attends in the logistic equation? For
example, we consider the system of the form(

xt+1 = axt (1� xt � "yt) ;
yt+1 =

(1+b)yt
1+b(xt+cyt)

:
(21)
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For the �xed b = c = 0:5, we give the following bifurcation diagrams of x and
y for " = 0:05, 0:1 and 0:15, see Figure 7, where a 2 [1; 4:5] is the bifurcation
parameter.

" = 0:05 " = 0:1 " = 0:15

Figure 7. b = c = 0:5 and a 2 [1; 4:5] is the bifurcation parameter.
From Figure 7, we can see that the competition of the sub-centre can indeed

change the dynamical behaviors of the large centre. We will consider this in
another paper.
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