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1 Introduction

In this paper, we consider the following Hilfer fractional differential equations boundary value

problems at resonance in Rm: Dα,β
0+ u(t) = f

(
t, u(t), Dα−1,β

0+ u(t)
)
, t ∈ [0, 1],

u(0) = Dγ−2
0+ u(0) = · · · = Dγ−n+1

0+ u(0) = θ, u(1) = A
∫ 1

0 u(t)dh(t),
(1.1)

where 1 ≤ n − 1 < α ≤ n, 0 ≤ β ≤ 1, γ = α + nβ − αβ, θ is the zero vector in Rm, A is m-order

nonzero square matrices, h(t) is a function of bounded variation, h′(t) is bounded almost everywhere

on [0,1], Dα,β
0+ is Hilfer fractional derivative of order α and type β, and f : [0, 1]×Rm ×Rm → Rm

satisfies Carathéodory, that is,
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(i) f(·, u, v) is measurable on [0,1] for all (u, v) ∈ Rm × Rm,

(ii) f(t, ·, ·) is continuous on Rm × Rm, for almost every t ∈ [0, 1],

(iii) The function mR(t) = sup{|f(t, u, v)| : (u, v) ∈ R} is Lebesgue integrable on 0 ≤ t ≤ 1 for all

compact set R ⊂ Rm × Rm, where |f | = max{|fi|, i = 1, 2 · · · ,m}.

Fractional differential equations are increasingly used in various fields to solve practical prob-

lems, such as physics, chemistry, engineering and so on [1–6]. A large number of results are obtained

on the existence of solutions to boundary value problems of Hilfer fractional differential equation-

s [7–15]. It is well known that problem (1.1) is a generalization of elliptic differential equations

on smooth surfaces [16]. M. Benchohra et al. [17] considered the existence and uniqueness of the

solution to the problem (1.1) by using Banach contraction principle and Krasnoselskii’s fixed point

theorem. Furthermore, Z. Bouazza et al. [18] also considered problem (1.1) when β = 1 and es-

tablished the existence result. A. Hasanen et al. [19] considered the following three-dimensional

system of multi-point boundary value problem:

Dι$(z) = f1(z,$(z), ρ(z), %(z)),

Dγ$(z) = f2(z,$(z), ρ(z), %(z)),

Dχ$(z) = f3(z,$(z), ρ(z), %(z)),

$(0) = ν1($), $(1) = η1$(ξ1),

ρ(0) = ν2(ρ), ρ(1) = η2ρ(ξ2),

%(0) = ν3(%), %(1) = η3%(ξ3),

where ι, γ, χ ∈ (1, 2], z ∈ [0, 1], η1, η2, η3 ∈ (0, 1). Moreover, K. O. Ezekiel et al. [20] established the

following multipoint boundary value problem with two-dimensional kernel at resonance:
Dα

0+u(t) = f(t, u(t), Dα−3
0+ u(t), Dα−2

0+ u(t), Dα−1
0+ u(t),

u(0) = Dα−3
0+ u(0) = 0, Dα−2

0+ u(0) =
∑m

i=1 µiD
α−2
0+ u(ξi),

Dα−1
0+ u(+∞) =

∫ η
0 D

α−2
0+ u(t)dh(t),

where t ∈ (0,+∞), h(t) is a continuous and bounded variation function on (0,+∞).

In recent years, there has been some related research on resonance boundary value problems

of fractional differential equations in Rm [21–23]. P. D. Phung et al. [24] studied the following

second-order three-point boundary value problems in Rm : u′′ = f(t, u(t), u′(t)), t ∈ (0, 1),

u′(0) = θ, u(1) = Au(η),
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where θ is an m-order zero vector, the matrix A satisfies one of the condition: A2 = A or A2 = I.

Ge et al. [25] concerned the following fractional three-point boundary value problems in Rm : Dα
0+x(t) = f(t, x(t), Dα−1

0+ x(t)), 1 < α ≤ 2, t ∈ (0, 1),

x(0) = θ, Dα−1
0+

x(1) = ADα−1
0+ x(ξ),

where θ is an n-order zero vector, the matrix A satisfies one of the condition: A2 = A or A2 = I.

The author extends the order from integer order to fractional order and obtains the existence result

of the solution by using Mawhin’s coincidence degree theory. Feng et al. [26] used similar methods

to study the following four-point boundary value problems in Rm : CDα
0+u(t) = f(t, u(t),C Dα−1

0+ u(t)), t ∈ (0, 1),

u(0) = Bu(ξ), u(1) = Cu(η),

where 0 < η, ξ < 1, 1 < α ≤ 2, B,C are two n-order nonzero square matrices. In [21–26], the

variable u is an n-dimensional vector function, and the kernel dimension can take any value in

{1, 2, · · · , n}.

However, we found that there are still some unresolved issues in Rm. Firstly, the derivative

operators in references [21–26] have not been unified. Therefore, it is imperative to mention that

the Hilfer fractional differential system considered in the problem (1.1) is a more general form. For

instance, the Hilfer fractional differential system in (1.1) corresponds to (i) the Riemann-Liouville

fractional differential system for β = 0; (ii) the Caputo fractional differential system when β = 1.

Secondly, the order of the derivative operator is limited. Therefore, the order was extended from

1 < α ≤ 2 to n−1 < α ≤ n and an interesting new Rimman-stieltjes boundary condition was used.

In addition, the use of Moore-Penrose generalized inverse matrix and their properties eliminates

the restriction on matrix A.

2 Preliminaries

Definition 2.1. [15] Let X and Y be real Banach spaces. Linear operator L : domL ⊂ X → Y to

be a Fredholm operator of index zero if

(A1) ImL is a closed subset of Y ;

(A2) dim KerL = codim ImL < +∞.

If L satisfies (A1) and (A2), there exist two continuous projectors P : X → X and Q : Y → Y

such that ImP = KerL, KerQ = ImL, X = KerL ⊕ KerP , Y = ImL ⊕ ImQ. It follows that
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L|domL∩KerP : domL ∩ KerP → ImL is invertible. We denote the inverse of L|domL∩KerP by

Kp : ImL→ domL ∩KerP .

Definition 2.2. [15] If Ω is an open bounded subset of X, and domL∩Ω 6= φ, the map N : X → Y

will be called L-compact on Ω if QN(Ω̄) is bounded and Kp(I −Q)N(Ω̄) is completely continuous.

Lemma 2.3. [15] Let L : domL ⊂ X → Y be a Fredholm operator of index zero and N : X → Y

be L−compact on Ω̄. Suppose the following conditions are satisfied:

(1) Lu 6= λNu for every (u, λ) ∈ [(domL\KerL) ∩ ∂Ω]× (0, 1);

(2) Nu /∈ ImL for every u ∈ KerL ∩ ∂Ω;

(3) deg(JQN |KerL,Ω ∩KerL, 0) 6= 0, where Q : Y → Y is a projection such that ImL = KerQ,

and J : ImQ→ KerL is an isomorphism.

Then the equation Lu = Nu has at least one solution in domL ∩ Ω̄.

Definition 2.4. [13] The Riemann-Liouville fractional integrals of order α > 0 of a function

y : (0,+∞)→ R is given by

Iα0+y(t) =
1

Γ(α)

∫ t

0
(t− s)α−1y(s)ds,

provided the right side is pointwise on (0,+∞).

Definition 2.5. [13] The Riemann-Liouville fractional derivatives of order α > 0 of a function

y : (0,+∞)→ R is given by

Dα
0+y(t) =

1

Γ(n− α)

dn

dtn

∫ t

0
(t− s)n−α−1y(s)ds,

where n = [α] + 1, [α] denotes the integer part of number α, and this derivative is called the right

side is pointwise defined on (0,+∞).

Lemma 2.6. [13] The left-sided Hilfer fractional derivative of order α and type β for a function

y : (0,+∞)→ R is given by

Dα,β
a+ y(t) = I

β(n−α)
a+

dn

dtn
(I

(1−β)(n−α)
a+ y)(t), n− 1 < α < n, 0 ≤ β ≤ 1.

Lemma 2.7. [13] Let α > 0, if y ∈ C(0, 1)
⋂
L(0, 1), then the fractional differential equation

Dα
0+y(t) = 0
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has a unique solution

y(t) = c1t
α−1 + c2t

α−2 + · · ·+ cnt
α−n,

where ci ∈ R, i = 1, 2, · · · , n, n = [α] + 1.

Lemma 2.8. [13] If f ∈ L(0, 1), α > 0, β > 0, then

Dα
a±I

α
a±y(t) = y(t).

Lemma 2.9. [13] Let α > 0, n = [α] + 1, if y ∈ L1(0, 1) and In−α0+ y ∈ ACn[0, 1], then the following

holds

Iα0+D
α
0+y(t) = y(t)−

n∑
j=1

(In−α0+ y(t))(n−j)∣∣
t=0

Γ(α− j + 1)
tα−j .

Lemma 2.10. [27] Let T+ be the Moore-Penreose pseudoinverse matrix of T , then T satisfies

(j1) T+TT+ = T+,

(j2) TT+T = T ,

(j3) ImT+T = ImT ,

(j4) Im(I − T+T ) = KerT .

Lemma 2.11. [13] If α > 0, ν > −1, then the following holds

Dα
0+t

ν =
Γ(ν + 1)

Γ(n+ ν − α+ 1)

dn

dtn
(tn+ν−α),

where n = [α] + 1.

In order to study boundary value problem (1.1). We defined two spaces X =
{
u
∣∣∣u,Dα−1,β

0+ u ∈(
[0, 1],Rm

)}
with the norms ‖u‖ = max

{
‖u‖∞, ‖Dα−1,β

0+ u‖∞
}

, where ‖ · ‖∞ = max
1≤i≤n

max
t∈[0,1]

|ui(t)|

and Y = L1
(

[0, 1],Rm
)

with the norm ‖y‖1 = max
∫ 1

0 |yi(s)|ds.

In this paper, let T = I −A
∫ 1

0 t
γ−1dh(t) and always assume that:

(H1) det(I −A
∫ 1

0 t
γ−1dh(t)) = 0,

(H2)
∫ 1

0 (tγ−1 − tα)dh(t) 6= 0.

Define operators L : domL ⊂ X → Y and N : X → Y as follows

Lu = Dα,β
0+ u(t), u ∈ domL,

Nu = f
(
t, u(t), Dα−1,β

0+ u(t)
)
, u ∈ X,
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where

domL =
{
u
∣∣u ∈ X,Dα,β

0+ u ∈ Y, u(0) = Dγ−2
0+ u(0) = · · · = Dγ−n+1

0+ u(0) = θ, u(1) = A

∫ 1

0
u(t)dh(t)

}
.

Then the problem(1.1) is equivalent to Lu = Nu, u ∈ domL.

3 Main results

Lemma 3.1. Suppose (H1) holds, then L : domL ⊂ X → Y is a Fredholm operator of index zero.

Proof. It is easy to get that

KerL =
{
u ∈ domL

∣∣u(t) = ctγ−1, c ∈ KerT
}
.

Now, we prove

ImL =
{
y ∈ Y |φy(t) ∈ ImT

}
,

where φy(t) : Y → Rm is a continuous linear operator defined by

φ(y) = Iα0+y(1)−A
∫ 1

0
Iα0+y(t)dh(t). (3.1)

Let |h′(t)| < M, a.e. t ∈ [0, 1]. For y1, y2 ∈ Y, if ‖ y1 − y2 ‖1< δ, then

|φ(y1)− φ(y2)|

=
∣∣∣Iα0+y1(1)− Iα0+y2(1)−A

∫ 1

0
Iα0+y1(t)dh(t) +A

∫ 1

0
Iα0+y2(t)dh(t)

∣∣∣
≤|Iα0+y1(1)− Iα0+y2(1)|+ ‖A‖∞

∣∣∣ ∫ 1

0
Iα0+[y2(t)− y1(t)]dh(t)

∣∣∣
≤ 1

Γ(α)

∣∣∣ ∫ 1

0
(1− s)α−1y1(s)− y2(s)ds

∣∣∣+
‖A‖∞
Γ(α)

∣∣∣ ∫ 1

0

∫ t

0
(t− s)α−1y2(s)− y1(s)h′(s)dsdt

∣∣∣
≤ 1

Γ(α)
‖ y1 − y2 ‖1 +

‖A‖∞M
Γ(α)

‖ y1 − y2 ‖1,

where ‖A‖∞ = max
1≤i≤n

( n∑
j=1
|aij |

)
. Therefore, the operator φ is continuous.

In fact, for any y ∈ ImL, there exists a function u ∈ domL such that Dα,β
0+ u(t) = y(t). By

Lemma (2.8) and Lemma (2.9), we obtain u(t) = Iα0+y(t) + c1t
γ−1 + c2t

γ−2 + · · · + cnt
γ−n. Since

u(0) = Dγ−2
0+ u(0) = · · · = Dγ−n+1

0+ u(0) = θ, we can get

u(t) = Iα0+y(t) + c1t
γ−1.
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And then from u(1) = A
∫ 1

0 u(t)dh(t), we can get

Iα0+y(t)|t=1 −A
∫ 1

0
Iα0+y(t)dh(t) = −Tc1, c1 ∈ Rm,

which means that φy(t) ∈ ImT. Consequently, ImL ⊆
{
y ∈ Y |φy(t) ∈ ImT

}
.

On the other hand, if y ∈ Y satisfies φy(t) ∈ ImT , there exist a constant ξ such that φy(t) =

−Tξ. Let u(t) = Iα0+y(t) + ξtγ−1. It is easy to prove that u satisfies the boundary conditions of the

problem (1.1), and we have Lu = y(t). Then ImL ⊇
{
y ∈ Y |φy(t) ∈ ImT

}
.

In summary, we get

ImL =
{
y ∈ Y |φy(t) ∈ ImT

}
.

Define the operator Q : Y → Y by

Qy = G(I − TT+)φ(y) := C, (3.2)

where G =
Γ(α+1)

∫ 1
0 t

γ−1dh(t)∫ 1
0 (tγ−1−tα)dh(t)

.

For y ∈ Y , ∀t ∈ [0, 1]

Q2y = G(I − TT+)φ(C)

= G(I − TT+)
[ 1

Γ(α)

∫ 1

0
(1− s)α−1C ds−A

∫ 1

0

1

Γ(α)

∫ t

0
(t− s)α−1C dsdh(t)

]
=

G

Γ(α+ 1)
(I − TT+)

(
I −A

∫ 1

0
tαdh(t)

)
C

=
G

Γ(α+ 1)

[
(I − TT+)− 1∫ 1

0 t
γ−1dh(t)

(I − TT+)

∫ 1

0
tαdh(t)

]
C

= G

∫ 1
0 t

γ−1dh(t)−
∫ 1

0 t
αdh(t)

Γ(α+ 1)
∫ 1

0 t
γ−1dh(t)

(I − TT+)C

= (I − TT+)Qy = Qy.

Actually, (I − TT+)A = 1∫ 1
0 t

γ−1dh(t)
(I − TT+).

Hence, Q is a linear projection operator. Obviously, ImL = KerQ. For y ∈ Y , we can set

y = (y−Qy)+Qy. By (y−Qy) ∈ KerQ = ImL, Qy ∈ ImQ, we can get Y = ImL+ImQ. It follows

from y ∈ ImL ∩ ImQ that y ∈ ImL = KerQ and y = Qy, then y = θ. Hence Y = ImL ⊕ ImQ.

It is obvious that codim ImL = dim ImQ = dim KerL. Thus, L is a Fredholm operator of index

zero.
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Define the operator P : X → X by

Pu(t) = (I − T+T )
Dγ−1

0+ u(0)

Γ(γ)
tγ−1. (3.3)

It is easy to get P 2u = Pu and ImP = KerL. Clearly X = KerL⊕KerP . So P : X → X is

a projector.

Lemma 3.2. Define a linear operator Kp : ImL→ domL ∩KerP ,

KP y(t) = Iα0+y(t)− T+φy(t)tγ−1. (3.4)

Then KP = (L|domL⋂
KerP )−1.

Proof. For y ∈ ImL, we have φ(y) ∈ ImT , which means that φ(y) = Tξ, then

KP y(0) = Dγ−2
0+ KP y(0) = · · · = Dγ−n+1

0+ KP y(0) = θ,

KP y(t)|t=1 −A
∫ 1

0
KP y(t)dh(t)

=Iα0+y(t)|t=1 − T+φ(y)−A
∫ 1

0

[
Iα0+y(t)− T+φ(y)tγ−1

]
dh(t)

=Iα0+y(t)|t=1 −A
∫ 1

0
Iα0+y(t)dh(t)−

[
I −A

∫ 1

0
tγ−1dh(t)

]
T+φ(y)

=φ(y)− TT+φ(y)

=(I − TT+)Tξ

=θ.

Thus, KP y ∈ domL. It follows from (3.2) and (3.4)

PKP y =(I − TT+)
Dγ−1

0+ KP y(t)|t=0

Γ(γ)
tγ−1

=(I − TT+)
Dγ−1

0+ [Iα0+y(t)]|t=0

Γ(γ)
tγ−1

=θ.

Thus, KP y ∈ KerP. And we have

LKP y(t) = Dα,β
0+

[
Iα0+y(t)− T+φy(t)tγ−1

]
= I

β(n−α)
0+ Dγ

0+I
α
0+y(t)− Iβ(n−α)

0+ Dγ
0+T

+φy(t)tγ−1

= I
β(n−α)
0+ D

β(n−α)
0+ y(t) = y(t).
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On the other hand, for u ∈ domL ∩KerP , we have

KPLu(t)

=Iα0+D
α,β
0+ u(t)− tγ−1T+

[
Iα0+D

α,β
0+
u(t)|t=1 −A

∫ 1

0
Iα0+D

α,β
0+ u(t)dh(t)

]
=Iγ0+D

γ
0+u(t)− tγ−1T+

[
Iγ0+D

γ
0+u(t)|t=1 −A

∫ 1

0
Iγ

0+
Dγ

0+u(t)dh(t)
]

=u(t)−
Dγ−1

0+ u(0)

Γ(γ)
tγ−1 −

Dγ−2
0+ u(0)

Γ(γ − 1)
tγ−2 − · · · −

In−γ0+ u(0)

Γ(γ − n+ 1)
tγ−n

− tγ−1T+

[
u(1)−

Dγ−1
0+ u(0)

Γ(γ)
−
Dγ−2

0+ u(0)

Γ(γ − 1)
− · · · −

In−γ0+ u(0)

Γ(γ − n+ 1)

−A
∫ 1

0
u(t)−

Dγ−1
0+ u(0)

Γ(γ)
tγ−1 −

Dγ−2
0+ u(0)

Γ(γ − 1)
tγ−2 − · · · −

In−γ0+ u(0)

Γ(γ − n+ 1)
tγ−ndh(t)

]

=u(t)−
Dγ−1

0+ u(0)

Γ(γ)
tγ−1 − tγ−1T+

[
u(1)−

Dγ−1
0+ u(0)

Γ(γ)
−A

∫ 1

0
u(t)dh(t) +A

∫ 1

0

Dγ−1
0+ u(0)

Γ(γ)
tγ−1dh(t)

]

=u(t)−
Dγ−1

0+ u(0)

Γ(γ)
tγ−1 + tγ−1T+

[
I −A

∫ 1

0
tγ−1dh(t)

]Dγ−1
0+ u(0)

Γ(γ)

=u(t)− (I − T+T )
Dγ−1

0+ u(0)

Γ(γ)
tγ−1

=u(t).

That means Kp =
(
L|domL⋂

KerP

)−1
.

Lemma 3.3. Assume Ω ⊂ X is an open bounded subset and domL∩Ω 6= φ, then N is L−compact

on Ω.

Proof. Let Ω ⊂ X is an open bounded subset. By the hypothesis (iii) on the function f , there

exists a function mR(t) ∈ L1[0, 1] such that for all u ∈ Ω,

|Nu(t)| = |f(t, u(t), Dα−1,β
0+ u(t))| ≤ mR(t), t ∈ [0, 1].

And then we shall prove that Kp(I − Q)Nu is completely continuous. It follows from (3.1)

definition of φ that

|φ(Nu)| =
∣∣∣Iα0+ −A

∫ 1

0
I1

0Nu(t)dh(t)
∣∣∣ ≤ 1

Γ(α)

(
1+ ‖ A ‖∞

∣∣∣ ∫ 1

0
dh(t)

∣∣∣) ‖ mR ‖1 .

Combing with (3.3), one has∣∣∣QNu(t)
∣∣∣ =

∣∣∣∣∣Γ(α+ 1)
∫ 1

0 t
γ−1dh(t)∫ 1

0 (tγ−1 − tα)dh(t)
(I − TT+)φ(Nu)

∣∣∣∣∣
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=

∣∣∣∣∣Γ(α+ 1)
∫ 1

0 t
γ−1dh(t)∫ 1

0 (tγ−1 − tα)dh(t)
(I − TT+)

[
Iα0+Nu(1)−A

∫ 1

0
Iα0+Nu(t)dh(t)

]∣∣∣∣∣
≤

∣∣∣∣∣ α
∫ 1

0 t
γ−1dh(t)∫ 1

0 (tγ−1 − tα)dh(t)

∣∣∣∣∣‖I − TT+‖∞

(∣∣∣ ∫ 1

0
(1− s)α−1Nu(s)ds

∣∣∣
+
∣∣∣A∫ 1

0

∫ t

0
(t− s)α−1Nu(s)dsdh(t)

∣∣∣)

≤

∣∣∣∣∣ α
∫ 1

0 t
γ−1dh(t)∫ 1

0 (tγ−1 − tα)dh(t)

∣∣∣∣∣‖I − TT+‖∞

(∫ 1

0
|Nu(s)|ds+ ‖A‖∞

∫ 1

0

∫ 1

0
|Nu(s)|dsdh(t)

)

≤

∣∣∣∣∣ α
∫ 1

0 t
γ−1dh(t)∫ 1

0 (tγ−1 − tα)dh(t)

∣∣∣∣∣‖I − TT+‖∞

(
1+ ‖ A ‖∞

∣∣∣ ∫ 1

0
dh(t)

∣∣∣)‖mR‖1.

Thus, QN(Ω̄) is bounded.

For u ∈ Ω̄,

φ(QNu)− φ(Nu)

=Iα0+QNu(t)|t=1 −A
∫ 1

0
Iα0+QNu(t)dh(t)− φ(Nu)

=
1

Γ(α)

∫ 1

0
(1− s)α−1QNu(s)ds−A

∫ 1

0

1

Γ(α)

∫ t

0
(t− s)α−1QNu(s)dsdh(t)− φ(Nu)

=
G(I − TT+)φ(Nu)

Γ(α)

∫ 1

0
(1− s)α−1ds− AG(I − TT+)φ(Nu)

Γ(α)

∫ 1

0

∫ t

0
(t− s)α−1dsdh(t)− φ(Nu)

=
G(I − TT+)

Γ(α+ 1)
φ(Nu)− AG(I − TT+)

Γ(α+ 1)
φ(Nu)

∫ 1

0
tαdh(t)− φ(Nu)

=

∫ 1
0 t

γ−1dh(t)∫ 1
0 (tγ−1 − tα)dh(t)

(
I −A

∫ 1

0
tαdh(t)

)
(I − TT+)φ(Nu)− φ(Nu)

=Dφ(Nu),

where D =
∫ 1
0 t

γ−1dh(t)∫ 1
0 (tγ−1−tα)dh(t)

(
I −A

∫ 1
0 t

αdh(t)
)

(I − TT+)− I.

For every u ∈ Ω, we have

Kp(I −Q)Nu(t) =Iα0+Nu(t)− tγ−1T+φNu(t)− Iα0+QNu(t) + tγ−1T+φ(QNu(t))

=Iα0+Nu(t)− Iα0+QNu(t) + tγ−1T+Dφ(Nu),
(3.5)

and

Dα−1
0+ Kp(I −Q)Nu(t) = I1

0+Nu(t)− I1
0+QNu(t) + I

β(n−α)
0+ Γ(γ)T+Dφ(Nu). (3.6)
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Combining (3.4) and (3.5) we have∣∣∣Kp(I −Q)Nu(t)
∣∣∣

=

∣∣∣∣∣ 1

Γ(α)

∫ t

0
(t− s)α−1Nu(s)ds− G(I − TT+)

Γ(α+ 1)
φ(Nu)tα + tγ−1T+Dφ(Nu)

∣∣∣∣∣
≤ 1

Γ(α)

∫ 1

0
| Nu(s) | ds+

∣∣∣∣G(I − TT+)

Γ(α+ 1)
φ(Nu)

∣∣∣∣+ |T+Dφ(Nu)|

≤ 1

Γ(α)
‖mR‖1 +

(∣∣∣∣ G

Γ(α+ 1)

∣∣∣∣‖I − TT+‖∞ + ‖T+D‖∞
)
|φ(Nu)|

=
1

Γ(α)

[
1 +

(∣∣∣∣∣
∫ 1

0 t
γ−1dh(t)∫ 1

0 (tγ−1 − tα)dh(t)

∣∣∣∣∣‖I − TT+‖∞ + ‖T+D‖∞

)(
1 + ‖A‖∞

∣∣∣ ∫ 1

0
dh(t)

∣∣∣)]‖mR‖1

and

|Dα−1
0+ Kp(I −Q)Nu(t)|

=|I1
0+Nu(t)− I1

0+QNu(t) + I
β(n−α)
0+ Γ(γ)T+Dφ(Nu)|

≤
∫ 1

0
|Nu(s)|ds+

∫ 1

0
|QNu(s)|ds+ |Iβ(n−α)

0+ Γ(γ)T+Dφ(Nu)|

≤‖mR‖1 + |G(I − TT+)φ(Nu)|+ Γ(γ)

Γ(β(n− α) + 1)
‖T+D‖∞|φ(Nu)|

=

[
1 +

(
|α
∫ 1

0 t
γ−1dh(t)|‖I − TT+‖∞
|
∫ 1

0 (tγ−1 − tα)dh(t)|
+

Γ(γ)‖T+D‖∞
Γ(α)Γ(β(n− α) + 1)

)(
1 + ‖A‖∞

∣∣∣ ∫ 1

0
dh(t)

∣∣∣)]‖mR‖1.

That is, Kp(I −Q)N(Ω̄) is uniformly bounded in X.

For 0 ≤ t1 < t2 ≤ 1, u ∈ Ω̄, we have∣∣∣Kp(I −Q)Nu(t2)−Kp(I −Q)Nu(t1)
∣∣∣

≤

∣∣∣∣∣ 1

Γ(α)

∫ t2

0
(t2 − s)α−1Nu(s)ds− G(I − TT+)φ(Nu)

Γ(α+ 1)
tα2 + tγ−1

2 T+Dφ(Nu)

− 1

Γ(α)

∫ t1

0
(t1 − s)α−1Nu(s)ds− G(I − TT+)φ(Nu)

Γ(α+ 1)
tα1 + tγ−1

1 T+Dφ(Nu)

∣∣∣∣∣
=

∣∣∣∣∣ 1

Γ(α)

∫ t1

0
(t2 − s)α−1Nu(s)ds+

1

Γ(α)

∫ t2

t1

(t2 − s)α−1Nu(s)ds− 1

Γ(α)

∫ t1

0
(t1 − s)α−1Nu(s)ds

+
G(I − TT+)φ(Nu)

Γ(α+ 1)
(tα1 − tα2 ) + (tγ−1

2 − tγ−1
1 )T+Dφ(Nu)

∣∣∣∣∣
≤ 1

Γ(α)

∫ t1

0

[
(t2 − s)α−1 − (t1 − s)α−1

]
mR(s)ds+

1

Γ(α)

∫ t2

t1

mR(s)ds

+

∣∣∣∣∣G(I − TT+)φ(Nu)

Γ(α+ 1)

∣∣∣∣∣|tα1 − tα2 |+ |tγ−1
2 − tγ−1

1 |‖T+D‖∞|φ(Nu)|.
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According to the uniform continuity of binary functions, for any ε > 0, there is always a positive

integer δ that only depends on ε, so that for all points (t1, t2) ∈ [0, 1]× [0, 1], as long as |t1− t2| < δ,

there is |(t2 − s)α−1 − (t1 − s)α−1| < ε.∣∣∣Dα−1,β
0+ Kp(I −Q)Nu(t2)−Dα−1,β

0+ Kp(I −Q)Nu(t1)
∣∣∣

=

∣∣∣∣∣
∫ t2

0
Nu(s)ds−G(I − TT+)φ(Nu)t2 +

Γ(γ)

Γ(β(n− α) + 1)
T+Dφ(Nu)

−
∫ t1

0
Nu(s)ds+G(I − TT+)φ(Nu)t1 −

Γ(γ)

Γ(β(n− α) + 1)
T+Dφ(Nu)

∣∣∣∣∣
=

∣∣∣∣∣
∫ t2

t1

Nu(s)ds+G(I − TT+)φ(Nu)(t1 − t2)

∣∣∣∣∣
≤
∫ t2

t1

mR(s)ds+

∣∣∣∣∣ α
∫ 1

0 t
γ−1dh(t)∫ 1

0 (tα−1 − tα)dh(t)

∣∣∣∣∣‖I − TT+‖∞
(

1 + ‖A‖∞
∣∣∣ ∫ 1

0
dh(t)

∣∣∣)|t1 − t2|‖mR‖1.

Thus, Kp(I −Q)N(Ω̄) is equicontinuous. By the Ascoli-Arzela theorem, we can conclude that

the operator N is L-compact in Ω̄.

Theorem 3.4. Suppose (H1), (H2) and the following conditions hold:

(H3) There exists a constant δ1 > 0 such that for u ∈ domL, if |t1−γu(t)| > δ1 for all t ∈ [0, 1],

then

φf(t, u(t), Dα−1,β
0+ u(t)) /∈ ImT.

(H4) There exist three nonnegative functions a, b, c ∈ C1[0, 1] such that

|f(t, u, v)| ≤ a(t)|u|+ b(t)|v|+ c(t), for all t ∈ [0, 1], u, v ∈ Rm,

where BΓ(α + 1) > 2(‖a‖B + ‖b‖D), B = Γ(α + 1)Γ(β(n − α) + 1)(1 − ‖b‖) − ‖b‖Γ(γ), D =

[Γ(α+ 1)Γ(β(n− α) + 1) + Γ(γ)].

(H5) There exists a constant δ2 > 0 such that for any β ∈ Rm, satisfying β =
∫ 1

0 t
γ−1dh(t)Aβ and

|β| > δ2, either

〈β,QNβ〉 ≥ 0 or 〈β,QNβ〉 ≤ 0,

where 〈·, ·〉 is the scalar product in Rm.

Then the problem (1.1) has at least one solution in X.

Before we prove theorem 3.4, we show three Lemmas.
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Lemma 3.5. Let Ω1 =
{
u|u ∈ domL\KerL,Lu = λNu, λ ∈ (0, 1)

}
. Assume (H1) − (H4) hold.

Then Ω1 is bounded in X.

Proof. Let u ∈ Ω1, we have Lu = λNu, Nu ∈ ImL, we get φ(Nu) ∈ ImT . It follows from (H3)

that there exists a constant t0 ∈ [0, 1] such that |t1−γ0 u(t0)| ≤ δ1.

By Lu = λNu(t) and boundary condition, we have

u(t) = λIα0+Nu(t) + ξtγ−1. (3.7)

Taking t = t0 into equation (3.6), we have u(t0) = λIα0+Nu(t0) + ξtγ−1
0 . That means

|ξ| ≤ |t1−γ0 u(t0)|+ |λt1−γ0 Iα0+Nu(t0)|

≤ δ1 + t1−γ0

1

Γ(α)

∫ t0

0
(t0 − s)α−1|Nu(s)|ds

≤ δ1 + t1−γ0 tα0
1

Γ(α+ 1)
(‖a‖‖u‖∞ + ‖b‖‖Dα−1,β

0+ u‖∞ + ‖c‖)

≤ δ1 +
1

Γ(α+ 1)
(‖a‖‖u‖∞ + ‖b‖‖Dα−1,β

0+ u‖∞ + ‖c‖).

Based on

|Dα−1,β
0+ u(t)| = |λI1

0+Nu(t) + I
β(n−α)
0+ ξΓ(γ)|

≤‖a‖‖u‖∞ + ‖b‖‖Dα−1,β
0+ u‖∞ + ‖c‖+

(
δ1 +

‖a‖‖u‖∞ + ‖b‖‖Dα−1,β
0+ u‖∞ + ‖c‖

Γ(α+ 1)

)
Γ(γ)

Γ(β(n− α) + 1)

≤ ‖a‖Γ(γ)

Γ(α+ 1)Γ(β(n− α) + 1)
‖u‖∞ +

‖b‖Γ(γ)

Γ(α+ 1)Γ(β(n− α) + 1)
‖Dα−1,β

0+ u‖∞ + ‖a‖‖u‖∞

+ ‖b‖‖Dα−1,β
0+ u‖∞ + ‖c‖+

(
δ1 +

‖c‖
Γ(α+ 1)

) Γ(γ)

Γ(β(n− α) + 1)
,

we obtain

‖Dα−1,β
0+ u‖∞ ≤

[Γ(α+ 1)Γ(β(n− α) + 1) + Γ(γ)]‖a‖
Γ(α+ 1)Γ(β(n− α) + 1)(1− ‖b‖)− ‖b‖Γ(γ)

‖u‖∞

+
[Γ(α+ 1)Γ(β(n− α) + 1) + Γ(γ)]‖c‖+ δ1Γ(α+ 1)Γ(γ)

Γ(α+ 1)Γ(β(n− α) + 1)(1− ‖b‖)− ‖b‖Γ(γ)
.

Therefor, we get

|ξ| ≤δ1 +
‖a‖

Γ(α+ 1)
‖u‖∞ +

‖b‖
Γ(α+ 1)

{
[Γ(α+ 1)Γ(β(n− α) + 1) + Γ(γ)]‖a‖

Γ(α+ 1)Γ(β(n− α) + 1)(1− ‖b‖)− ‖b‖Γ(γ)
‖u‖∞

+
[Γ(α+ 1)Γ(β(n− α) + 1) + Γ(γ)]‖c‖+ δ1Γ(α+ 1)Γ(γ)

Γ(α+ 1)Γ(β(n− α) + 1)(1− ‖b‖)− ‖b‖Γ(γ)

}
+

‖c‖
Γ(α+ 1)
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≤δ1 +
‖a‖(B + ‖b‖D)

Γ(α+ 1)B
‖u‖∞ +

‖b‖E + ‖c‖B
Γ(α+ 1)B

,

where E = [Γ(α+ 1)Γ(β(n− α) + 1) + Γ(γ)]‖c‖+ δ1Γ(α+ 1)Γ(γ).

By simple calculation, we can get

‖u‖ ≤ 1

Γ(α)

∫ t

0
(t− s)α−1|Nu(s)|ds+ |ξ|

≤ 1

Γ(α+ 1)
(‖a‖‖u‖∞ + ‖b‖‖Dα−1,β

0+ ‖∞ + ‖c‖) + δ1 +
‖a‖(B + ‖b‖D)

Γ(α+ 1)B
‖u‖∞ +

‖b‖E + ‖c‖B
Γ(α+ 1)B

≤δ1 + 2
‖a‖(B + ‖b‖D)

Γ(α+ 1)B
‖u‖∞ + 2

‖b‖E + ‖c‖B
Γ(α+ 1)B

.

Therefore,

‖u‖∞ ≤
δ1BΓ(α+ 1) + 2(‖b‖E + ‖c‖B)

BΓ(α+ 1)− 2(‖a‖B + ‖b‖D)
.

We can conclude that Ω1 is bounded in X.

Lemma 3.6. Let Ω2 =
{
u|u ∈ KerL,Nu ∈ ImL

}
. Suppose (H1)−(H3) hold. Then Ω2 is bounded

in X.

Proof. Let u ∈ Ω2, for any t ∈ [0, 1], we have u(t) = ξtγ−1, ξ ∈ KerT. Since Nu ∈ ImL, then

φ(Nu) ∈ ImT . According to (H3), there exists t0 ∈ [0, 1] such that |t1−γ0 u(t0)| ≤ δ1. Thus we get

that |ξ| = |t1−γ0 u(t0)| ≤ δ1.

Therefore, Ω2 is bounded in X.

Lemma 3.7. Let Ω3 =
{
u ∈ KerL|ρλu+ (1− λ)QNu = θ, λ ∈ [0, 1]

}
.

ρ =

{
1, if 〈β,QNβ〉 ≥ 0 holds,

−1, if 〈β,QNβ〉 ≤ 0 holds.

Then Ω3 is bounded in X.

Proof. Let u ∈ Ω3, we know that u(t) = βtγ−1 with β ∈ KerT and (1− λ)QNu = −ρλu.

If λ = 0, then QNu = θ, Nu ∈ KerL = ImL. Thus we have u ∈ Ω2, so ‖u‖ ≤ δ1.

If λ ∈ (0, 1] and ρ = 1, suppose |β| > δ2. Then, from (H5), we get a contradiction

0 > −λ|β|2 = −λ〈β, β〉 = (1− λ)〈β,QNβ〉 ≥ 0.

Thus, we have ‖u‖ ≤ δ2.



15

If λ ∈ (0, 1] and ρ = −1, suppose |β| > δ2. Similarly,

0 < λ|β|2 = λ〈β, β〉 = (1− λ)〈β,QNβ〉 ≤ 0.

Thus ‖u‖ ≤ δ2. In conclusion, Ω3 is bounded in X.

The following is the proof of Theorem 3.4.

Proof. Let Ω ⊃ Ω1 ∪ Ω2 ∪ Ω3 ∪ {θ} be a bounded open subset of X. It follows from Lemma 3.3

that N is L−compact on Ω̄. By Lemmas 3.5 and 3.6, we have

(1)Lu 6= λNu, for every (u, λ) ∈ [(doml\KerL) ∩ ∂Ω]× (0, 1);

(2)Nu /∈ ImL for every u ∈ KerL ∩ ∂Ω.

We need only to prove deg(JQN |KerL,Ω ∩KerL, θ) 6= 0.

Take H(u, λ) = λJu + ρ(1− λ)QNu. According to Lemma 3.7, we know that H(u, λ) 6= θ for

u ∈ ∂Ω ∩KerL. Therefore, via the homotopy property of degree, we obtain

deg(JQN |KerL,Ω ∩KerL, θ) = deg(ρH(·, 0),Ω ∩KerL, θ)

= deg(ρH(·, 1),Ω ∩KerL, θ)

= deg(±ρI,Ω ∩KerL, θ) = ±1 6= 0.

Applying Lemma 2.3, we conclude that problem (1.1) has at least one solution in X. The proof

is completed.

4 Conclusions

This paper mainly studied a class of Hilfer fractional differential boundary value problem systems

at resonance that state variable u ∈ Rm and gave a new theorem on the existence of solutions

in kernel spaces by using the Mawhin coincidence degree theorem. We provided an example to

illustrate the obtained results. Our results also provide some methods for ϕ-Hilfer and Hadamard

fractional differential. These contributions will advance research in other fields.
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5 Example

In this section, we present an example to verify our main results. Let’s consider the following

boundary value problem at resonance:

D
7
2
, 1
2

0+ x(t) = f1(t, x(t), y(t), D
5
2
, 1
2

0+ x(t), D
5
2
, 1
2

0+ y(t)), t ∈ [0, 1],

D
7
2
, 1
2

0+ y(t) = f2(t, x(t), y(t), D
5
2
, 1
2

0+ x(t), D
5
2
, 1
2

0+ y(t)), t ∈ [0, 1],

x(0) = y(0) = 0,

D
7
4
0+x(0) = D

7
4
0+y(0) = 0,

x(1) = 357
52

∫ 1
0 y(t)d(t2 − t),

y(1) = 357
52

∫ 1
0 y(t)d(t2 − t).

(5.1)

The problem (5.1) has a solution if and only if problem (1.1) has a solution, where α = 7
2 , β = 1

2 ,

h(t) = t2 − t and A =

0 285
44

0 285
44

. Define the function fi : [0, 1]× R4 → R2, i = 1, 2 by

f(t, u, v) = (f1(t, x1, y1, x2, y2), f2(t, x1, y1, x2, y2))T

= (
t2

16
(x1 + y1) +

t

3
(|x2|+ |y2|),

t2

16
(x1 + y1) +

t

3
(sin2x2 + sin2y2))T ,

(5.2)

for all t ∈ [0, 1] and u = (x1, y1), v = (x2, y2) ∈ R2. Let T =

1 −1

0 0

, T+ =

 1
2 0

−1
2 0

, and

you get I − TT+ =

0 0

0 1

.

Then problem (5.1) has one solution if and only if the problem (1.1), with A and f defined as

above, has one solution. So we only need prove that the conditions of Theorem 3.4 are satisfied.

By (5.2) f satisfies carathéodory conditions.

First of all, prove the first condition of theorem 3.4. Let a(t) = t2

8 , b(t) = 2
3 t, c(t) = 1. It

follows from (5.2) that |f(t, u, v)| ≤ a(t)|u| + b(t)|v| + c(t) for all t ∈ [0, 1] and u, v ∈ R2. By

simple calculation we have B = Γ(α + 1)Γ(β(n − α) + 1)(1 − ‖b‖) − ‖b‖Γ(γ) ≈ 5.5533, D =

[Γ(α+1)Γ(β(n−α)+1)+Γ(γ)] ≈ 14.9644 and BΓ(α+1)−2(‖a‖B+‖b‖D) ≈ 58.9026 > 0. Hence,

(H3) is satisfied.

Next, let’s check (H4), we note that

|f2(t, x1, y1, x2, y2)| > 0,
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for all u = (x1, y1), v = (x2, y2) ∈ R2. We calculated that

|φ(f2)| =
∣∣∣∣ 1

Γ(α)

∫ 1

0
(1− s)α−1f2(s)ds− 285

44

∫ 1

0

∫ 1

0
f2(s)dsd(t2 − t)

∣∣∣∣ 6= 0

therefore

φf(t, x1, y1, x2, y2) =
(
φf1(t, x1, y1, x2, y2), φf2(t, x1, y1, x2, y2)

)
/∈ ImT,

due to ImT = {(η, 0)>; η ∈ R}. Hence, (H4) is satisfied.

And finally, let’s prove the condition (H5). For any β ∈ R2, satisfying β = 285
44 Aβ, and |β| > 0.

β can be written as β = (β0, β0)> for β0 ∈ R. By (3.1) and (4.2) we have

Nβ =
(
f1(t, β, 0), f2(t, β, 0)

)>
=
( t2

8
β0,

t2

8
β0)>,

and we get G = 138.4249, φ(Nβ) =
(

0.0376β0, 0.0376β0

)>
. It follows from (3.3) that

Q(Nβ) = 138.4249
(
0, 0.0376β0

)>
,

and

〈β,Q(Nβ)〉 = 0.1957β2
0 > 0.

Then, the condition (H5) holds. Therefore, by an application of Theorem 3.4, we obtain that

problem (4.1) has at least one solution.
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