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1 Introduction

In this paper, we consider the following Hilfer fractional differential equations boundary value

problems at resonance in R™:

DgPu(t) = f (t,u(t),ngﬂu(t)) L teo,1],

1.1
w(0) = DY 2u(0) = - - = DI 1 u(0) = 6,u(1) = A [ u(t)dh(t), -

where 1 <n—-1<a<n,0<p8<1,v=a+np—af, d is the zero vector in R™, A is m-order
nonzero square matrices, h(t) is a function of bounded variation, h'(t) is bounded almost everywhere

on [0,1], Dg“f is Hilfer fractional derivative of order o and type /3, and f : [0,1] x R™ x R™ — R™

satisfies Carathéodory, that is,
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(7) f(-,u,v) is measurable on [0,1] for all (u,v) € R™ x R™,

(ii) f(t,-,-) is continuous on R™ x R™, for almost every ¢ € [0, 1],

(73i) The function mp(t) = sup{|f(t,u,v)| : (u,v) € R} is Lebesgue integrable on 0 <t < 1 for all
compact set R C R™ x R™, where |f| = maz{|f;|,i =1,2--- ,m}.

Fractional differential equations are increasingly used in various fields to solve practical prob-
lems, such as physics, chemistry, engineering and so on [1-6]. A large number of results are obtained
on the existence of solutions to boundary value problems of Hilfer fractional differential equation-
s [7-15]. Tt is well known that problem (1.1) is a generalization of elliptic differential equations
on smooth surfaces [16]. M. Benchohra et al. [17] considered the existence and uniqueness of the
solution to the problem (1.1) by using Banach contraction principle and Krasnoselskii’s fixed point
theorem. Furthermore, Z. Bouazza et al. [18] also considered problem (1.1) when 5 = 1 and es-
tablished the existence result. A. Hasanen et al. [19] considered the following three-dimensional

system of multi-point boundary value problem:

where ¢,7v,x € (1,2], z € [0,1], n1,7m2,m3 € (0,1). Moreover, K. O. Ezekiel et al. [20] established the

following multipoint boundary value problem with two-dimensional kernel at resonance:

Dgu(t) = f(t,u(t), D§;  ult), D7 u(t), D u(t),
u(0) = Do+ Pu(0) = 0, D *u(0) = 3L, wiDj (&),
Dgt Lu(+ f o 2u(t)dh(t),
where t € (0,+00), h(t) is a continuous and bounded variation function on (0, +00).
In recent years, there has been some related research on resonance boundary value problems
of fractional differential equations in R™ [21-23]. P. D. Phung et al. [24] studied the following

second-order three-point boundary value problems in R™ :

u” = f(t u(t),u'(t), t €(0,1),
w/'(0) =0, u(1) = Au(n),



where 6 is an m-order zero vector, the matrix A satisfies one of the condition: A% = A or A% = I.
Ge et al. [25] concerned the following fractional three-point boundary value problems in R™ :
D, x(t) = f(t,z(t), Dy z(t), 1 <a <2 te(0,1),
z(0) =0, Dy x(1) = ADS (€),
where 6 is an n-order zero vector, the matrix A satisfies one of the condition: A% = A or A% = I.
The author extends the order from integer order to fractional order and obtains the existence result
of the solution by using Mawhin’s coincidence degree theory. Feng et al. [26] used similar methods
to study the following four-point boundary value problems in R™ :
€Dy ult) = f(t,u(t).C DG (b)), t € (0.1),
u(0) = Bu(§), u(1) = Cu(n),
where 0 < n,§ < 1, 1 < a < 2, B,C are two n-order nonzero square matrices. In [21-26], the
variable u is an n-dimensional vector function, and the kernel dimension can take any value in
{1,2,--- ,n}.

However, we found that there are still some unresolved issues in R™. Firstly, the derivative
operators in references [21-26] have not been unified. Therefore, it is imperative to mention that
the Hilfer fractional differential system considered in the problem (1.1) is a more general form. For
instance, the Hilfer fractional differential system in (1.1) corresponds to (i) the Riemann-Liouville
fractional differential system for 5 = 0; (ii) the Caputo fractional differential system when g = 1.
Secondly, the order of the derivative operator is limited. Therefore, the order was extended from
l<a<2ton—1< a<nand an interesting new Rimman-stieltjes boundary condition was used.
In addition, the use of Moore-Penrose generalized inverse matrix and their properties eliminates

the restriction on matrix A.

2 Preliminaries

Definition 2.1. [15] Let X and Y be real Banach spaces. Linear operator L : domL C X —Y to
be a Fredholm operator of index zero if

(A1) ImL is a closed subset of Y;

(A2) dim KerL = codim ImL < +oc.

If L satisfies (A1) and (Asg), there exist two continuous projectors P: X — X and @ : Y —» Y
such that ImP = KerL, KerQ = ImL, X = KerL ® KerP, Y = ImL ® Im(@Q. It follows that



Llgominkerp @ domL N KerP — ImL is invertible. We denote the inverse of L|jomrnierp by

K, :ImL — domL N KerP.

Definition 2.2. [15] If Q is an open bounded subset of X, and domLNQ # ¢, the map N : X — Y
will be called L-compact on Q if QN(Q) is bounded and K,(I — Q)N (Q) is completely continuous.

Lemma 2.3. [15] Let L : domL C X — Y be a Fredholm operator of index zero and N : X —Y
be L—compact on 2. Suppose the following conditions are satisfied:

(1) Lu # ANwu for every (u,\) € [(domL\KerL) N oQ] x (0,1);

(2) Nu ¢ ImL for every u € KerL N 0S);

(3) deg(JQN|kerr, 2N KerL,0) # 0, where Q : Y — Y is a projection such that ImL = KerQ,
and J : Im@Q — KerL is an isomorphism.

Then the equation Lu = Nu has at least one solution in domL N §Q.

Definition 2.4. [13] The Riemann-Liouville fractional integrals of order o > 0 of a function
y: (0, +00) = R is given by

t
13, y(t) = F(la) /0 (t— ) y(s)ds,

provided the right side is pointwise on (0,400).

Definition 2.5. [13] The Riemann-Liouville fractional derivatives of order o > 0 of a function

y: (0,+00) = R is given by

1 dr t
D& — i _ J\n—a—1
O—i—y(t) F(TL _ a) din /0 (t S) y(S)dS,

where n = [a] + 1, [a] denotes the integer part of number «, and this derivative is called the right

side is pointwise defined on (0,400).

Lemma 2.6. [13] The left-sided Hilfer fractional derivative of order o and type B for a function

y: (0,+00) = R is given by

n—o dr —p)(n—a
Dyfy(t) = 1 (T - 1 <a<n0< B < L.

Lemma 2.7. [13] Let o > 0, if y € C(0,1)[)L(0,1), then the fractional differential equation

Dgy(t) =0



has a unique solution

y(t) = 1t 4 gt 4 4t

where ¢; € Ryi=1,2,-++ n, n=[a] + 1.
Lemma 2.8. [18] If f € L(0,1), a > 0, 8 > 0, then
Do Igvy(t) = y(t).

Lemma 2.9. [13] Let o« > 0, n = [a] +1, if y € L1(0,1) and I “y € AC"[0,1], then the following
holds

DG )
I8 D& y(t) = y(t) — t=04a=j

Lemma 2.10. [27] Let T" be the Moore-Penreose pseudoinverse matrixz of T, then T satisfies
() T*TT+ =T+,

(j2) TT*T =T,

(j3) ImT*TT = ImT,

(ja) Im(I —T*T) = KerT.

Lemma 2.11. [13] If « > 0, v > —1, then the following holds

F(v+1) dar
F'n+v—a+1)dt"

Dg+ty — ( nJera)

where n = [a] + 1.

In order to study boundary value problem (1.1). We defined two spaces X = {u)u, Dail’ﬁ u €

([0, 1],Rm)} with the norms |ju| = max{HuHoo, | Do+ 1’BuHoo}, where || - |lco = max max |u;(t)]
1<i<n t€[0,1]

and Y = Ll([O 1], Rm) with the norm ||y||; = max fo |lyi(s)|ds.

In this paper, let T =1—- A fo t7~1dh(t) and always assume that:
(Hy) det(I — A [, 7= 1dh(t)) = 0,
(Ha) [y (17~" = t2)dh(t) # 0.

Define operators L : domL C X —Y and N : X — Y as follows

Lu = Dgfu(t), u € domL,

Nu=f (t,u(t) DTy (t)), e X,



where
1
domL = {u\u € X, D3Pu € Y, u(0) = DY 2u(0) = -+ = DIT" 1u(0) = 0,u(1) = A/ u(t)dh(t)}.
0

Then the problem(1.1) is equivalent to Lu = Nu, u € domL.

3 Main results

Lemma 3.1. Suppose (Hi) holds, then L : domL C X — 'Y is a Fredholm operator of index zero.

Proof. 1t is easy to get that
KerL = {u € domL|u(t) = et ce KerT}.

Now, we prove

ImL = {y € Y|py(t) € ImT},

where ¢y(t) : Y — R™ is a continuous linear operator defined by

1
oy) = I8 y(1) — A /O 1, y(H)dh(t). (3.1)
Let |W/(t)] < M, a.e. t € [0,1]. For y1,y2 € Y, if || y1 — y2 ||1< 9, then

|p(y1) — d(y2)]
1 1
|10 (1) = T2 = A [ T + 4 [ 15 (a0

1
<ITgen (1) = 20|+ Al [ 4 Loett) = ()00

Sr(la)‘ /01(1 — )" yi(s) — yz(S)ds‘ - ”1:?'(';)" ’ /01 /Ot(t — 8)* Lyo(s) — y1 (s)(s)dsdt
1

| Allco M
<o~ lvyi—weli +—=——llv1 —v2 |1,
(@) INEY

n
where ||Al|lcoc = mazx ( > |aij|). Therefore, the operator ¢ is continuous.

In fact, for any y € ImL, there exists a function u € domL such that Dgfu(t) = y(t). By
Lemma (2.8) and Lemma (2.9), we obtain u(t) = I§,y(t) + c1t?7™! 4+ cot?™2 4 -+ + ¢,t7 7" Since

w(0) = Dg_:Qu(O) N D&;"Hu(o) =0, we can get

u(t) = Igy(t) + et



And then from u(1) = A fol u(t)dh(t), we can get

1
I8y ()]s — A / I8, y(t)dh(t) = ~Te1, o € R™,
0

which means that ¢y(t) € ImT. Consequently, ImL C {y eY|opy(t) € ImT}.

On the other hand, if y € Y satisfies ¢y(t) € ImT, there exist a constant & such that ¢y(t) =
—T¢. Let u(t) = I§, y(t) + &7~ Tt is easy to prove that u satisfies the boundary conditions of the
problem (1.1), and we have Lu = y(t). Then ImL 2 {y € Y|¢y(t) € ImT}.

In summary, we get

ImL = {y €Y|py(t) € ImT}.

Define the operator Q : Y — Y by

Qy =G -TT")¢(y) :=C, (3:2)
D(a+1) [ 7~ 'dh(t)
where G = f(}zrﬂ*l—ia)dh(t)t .
For y € Y, Vt € [0,1]
Q% =G —TT")¢(0)
1 1 1 t
G- TT) {r(la)/o (1— ) 1C ds — A/O r(a)/o (t — )°"1C dsdh(t)
= L(I —TTH)(I - A/1 t*dh(t))C
G 1 LN
- FarD [(1 _TTY) M(I . TT+)/0 ¢ dh(t)}C

s Jytrtdh(t) — [} tdh(t)
T(a+1) f) t7=1dh(t)

— (I - TT")Qy = Qy.

(I -TTHC

Actually, (I — TTT)A = m(

Hence, @ is a linear projection operator. Obviously, ImL = Ker@Q. For y € Y, we can set

y = (y—Qy)+Qy. By (y—Qy) € KerQ = ImL, Qy € ImQ, we can get Y = ImL+ImQ@Q. It follows
from y € ImL N ImQ that y € ImL = Ker@ and y = Qy, then y = 0. Hence Y = ImL ® ImQ.

I—TTH).

It is obvious that codim ImL = dim Im@Q = dim KerL. Thus, L is a Fredholm operator of index

Zero. O]



Define the operator P : X — X by

Dy u(0)
L'(v)

It is easy to get P?u = Pu and ImP = KerL. Clearly X = KerL ® KerP. So P: X — X is

Pu(t) = (I —T%T) L (3.3)

a projector.

Lemma 3.2. Define a linear operator K, : ImL — domL N KerP,
Kpy(t) = Ig,y(t) — T oyt~ (34)
Then Kp = (L|gomr kerp) -
Proof. For y € ImL, we have ¢(y) € ImT, which means that ¢(y) = T¢, then
Kpy(0) = DI °Kpy(0) = -+ = D" Kpy(0) = 6,
Kpy(t)li=1 — A/Ol Kpy(t)dh(t)
=18 y()|i=1 — T o(y) — A /01 [18‘+y(t) - T+¢(y)t”_1] dh(t)
IS y(t)imy — A /0 18, y(t)dh(t) — -4 /0 1 £ 1dn(1) | T+ (y)

=o(y) =TT ¢(y)
= —TTHT¢
=0.
Thus, Kpy € domL. It follows from (3.2) and (3.4)

Dy Kpy(t)|e=o

PKPy =1 — ,TT'+ t’}’*l
R )
_1 a
—(I - TT+)D3+ L5y Ollt=0 oy
L'(v)
=0.

Thus, Kpy € KerP. And we have
LEpy(t) = Do [I§,y(t) — T éy(0)r ']
— [P D g i) — 1P DY T gy ()0
= log o+ 105y (t) — Loy o+ L oy(t)

— 17 DIy (1) = (1),



On the other hand, for u € domL N KerP, we have
KpLu(t)
=15, Dgt Bu(t) — t%lTJr[]a o+“ )= 1—A/ (t)dh(t )}

=Ij, D, u(t) — " 'TF [Iv Dy, u(t)]=1 —A/ 1. Dy u(t )dh(t)}

=u(t) — 7D3;1u(0) 1 7D3¥2u(0) Y2 . 71& "u(0) pn
L'(v) L(y—1) I(y—n+1)
gt |y P8 DEFu() Iy u(0)
A R YO Tt 1)
D” Yw(0) ., DI u(0) I7u0)
_A/ ) vl_ﬁtv 2_.“_4F(fy+—n+1)t7 dh(t)

Dl 'u(0) - D7 L Lu(0)
=u(t) = =0T 07T (1) - —A/ Ddh(t +A/ 0+7t7 Lah(t)
—ult) — ng“(o) 1 =17 1 Dg; u(0)
=ult) = =y T L A/O t dh(t)} —Sey

DI hu(0)
:u(t)—(I—T+T)°F+TH !
=u(t).
That means Kp - (L|d0mLﬂKerP)_1. O

Lemma 3.3. Assume Q2 C X is an open bounded subset and domL NS # ¢, then N is L—compact

on €.

Proof. Let Q C X is an open bounded subset. By the hypothesis (7ii) on the function f, there

exists a function mg(t) € L'[0,1] such that for all u € Q,

[Nu(t)] = | f(t,u(t), DG7 u(t)] < mg(t),t € [0,1].

And then we shall prove that K,(I — Q)Nu is completely continuous. It follows from (3.1)
definition of ¢ that

[¢(Nu)| =

-4 [ vuan)| < F(l)<1+ I 4 \/Oldhu)\) m

Combing with (3.3), one has
D(a+1) [} 77 dh(t)

TN e(Nu
ot —any T

Q@Nu(t)| =
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T+ 1) ff O, e i a e N
_ fol(ﬂ*l—ta)dh() (I-TT )[10+N (1) A/O &N (t)dh(t)}

1,~v-1

—Lan(t

f‘fo ®) T | ‘/ )91 Ny (s )
L1 — o) dh(t)

‘A// )= Nu(s dsdh()D
a [ 7 dh(t) T+||Oo</ |Nu(s ds+||A||oo/ / |Nu(s)|dsdh(t )

Tt —t@)dh(t)
III—TT+||oo<1+ I A lloc ‘/0 dh(t) )HmRII1.

afo 7~ Ldh(t)
| Jy (@t = te)dht)

Thus, QN () is bounded.

For u € Q,
H(QNw) — 6(Nu)
1
I3, QNu(t) oy — A /O I, QNu(t)dh(t) — ¢(Nu)

_L ! _sa—l w(s)ds — 1# t _Sa_l (lds B ;
_F(a)/o(l )" @Nu(s)d A/O p(a)/(t ) LQNu(s)dsdh(t) — ¢(Nu)

0
_GU-=TTH)$(Nu) [t 1, AGU —TT)p(Nu) Jo-1ds .
S /0<1 §)71ds o // dsdh(t) — $(Nu)
G —TT) AG(I —TT)

1
iy e - o(vu) [ an(e) = o(vu)
[ —Ldh(t)

@t —te)dh

Fa+1)

1
— @ —-TT* u) — u
0 <I A/O t dh(t))([ TT)(Nu) — ¢(Nu)
Jo 7 dn(t)

Jo (7 =1—t)dh(t)
For every u € (), we have

where D = <I — A tadh(t)) (I-TT+) - 1.

ol = QNu(o) =I5, Nul) = 07T 6Nut) — I, QNu@) + 07 THQNU)
—I§, Nu(t) — I§.QNu(t) + T Dp(Nu), |

and

DT K (I — Q)Nu(t) = It Nu(t) — I5. QNu(t) + 1)\~ T(7)T* D(Nu). (3.6)
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Combining (3.4) and (3.5) we have
(T = QN u(t)|

L ¢ _sa—l uls S_w w)t® y—1 U
ey Jy (= 9" Nuledds = SE o + 077 Do)

1 1

GU —TT*)

|NU(S)|d8+‘ o+ 1)

$(Nu)

+|TTDo(Nu)|

1 G

Jy trtdh(t)
Joh @ =1 —te)dn(t)

1
I =TT+ + ||T+D||oo> (1+ 14l /0 dh(t)\)] Il
and
DG Kp(I — Q)Nu(t)]

=13, Nu(t) — 1L, QNu(t) + 1"~ T ()T Dp(Nu)

1 1
< / |Nu(s)|ds + / IQNu(s)|ds + |10 T (y)T+ D(Nw)|
0 0

<lmals + 16 = TGN+ O T Dl ol

_ o il O RO~ TT oo . T()|T* Do ' m
N [1 i < | ) (7=t — to)dh(t)| T T(@)T (B0 —a) + 1)) (1 * ”A”“‘/O dh(t)‘)] Imes-

That is, K,(I — Q)N(S2) is uniformly bounded in X.

For 0 <t <ty <1,u € Q, we have

(I = QN ultz) ~ Ky(I ~ Q)Nultr)

1

L ainegs . GO = TTH)o(Nu)
Iy [ 2= 9 Vutsya

I'(a+1)
G(I — TTH)$(Nu)
INa+1)

t§ + ] TTDG(Nu)

S ! — $)* I Nu(s)ds —
| = (e

¢+ 7' T DG(Nuw)

1

T(a) " — 5)* ' Nu(s)ds 1 ’ — 8)* I Nu(s 5—L ! — 8)* I Nu(s)ds
F(a)/o(t2 ) N()d+r(a)/t1(t2 )* " Nu(s)d F(a)/o(tl >~ Nu(s)d

G — TTH)(Nu)

Tatn (@) +E 47T DoV

1 t1 o o 1 t
SF(O‘)/O [(tQ - S) 1_ (tl - S) 1]mR(S)d8 + m /t1 mR(S)dS

G(I — TT*)¢(Nu)

-1 -1
T(a+ 1) 17 =51+ 137 — ] I T Dlloc|p(Nu)l.
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According to the uniform continuity of binary functions, for any € > 0, there is always a positive
integer 0 that only depends on ¢, so that for all points (¢1,t2) € [0,1] x [0, 1], as long as |t; —ta] < 9,

there is |(ty — 8)* L — (t1 — s)* 7l < e.

‘D&:l’ﬁKp(I — Q)Nulty) — DTV K, (I — Q)Nuf(ty)

. t2 w(s)ds — . + u F(’Y) + U
=| | Nuls)ds = G = TTH)ON)tz + gz s T Do(N)
- " uls)as - + u — F(’Y) + u
[ Nu(s)ds + G = TT)oNuph = [T Do(N)

to

Nu(s)ds +G(I — TT1)p(Nu)(t; — t2)

t1

to
< mp(s)ds +
t1

a [} 7 dh(t)
Jo (to=2 —t=)dh(t)

1
7 =TT oo (14 41| [ an@)]) 12 = ol

Thus, K,(I — Q)N () is equicontinuous. By the Ascoli-Arzela theorem, we can conclude that

the operator N is L-compact in . O

Theorem 3.4. Suppose (Hy),(H2) and the following conditions hold:
(H3) There exists a constant 9 > 0 such that for u € domL, if |[t1™u(t)| > &1 for all t € [0,1],
then

of (t,u(t), DG Pu(t)) ¢ ImT.

(Hy) There exist three nonnegative functions a,b,c € C'[0,1] such that
[f(tu,0)] < a(®)|ul +b()|v] + c(t), for all t €[0,1],u,v € R™,

where BI'(a + 1) > 2(||a||B + ||b]|D), B = I'(ae + DI'(B(n — ) + 1)(1 — ||b]|) — [|blIT (), D =
[Cla+DI(B(n—a) +1) +T(y)].

(Hs) There exists a constant 02 > 0 such that for any 5 € R™, satisfying 5 = fol 7" 1dh(t)AB and
|B] > 62, either

(B,QNB) >0 or (B,QNpB) <0,

where (-,-) is the scalar product in R™.

Then the problem (1.1) has at least one solution in X.

Before we prove theorem 3.4, we show three Lemmas.
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Lemma 3.5. Let ) = {u|u € domIL\KerL, Lu = ANu, A € (0, 1)} Assume (Hy) — (Hy) hold.
Then Q1 s bounded in X.

Proof. Let v € Qy, we have Lu = ANu, Nu € ImL, we get ¢(Nu) € ImT. It follows from (Hj)
that there exists a constant ¢y € [0, 1] such that ]té_wu(to)\ < 01.

By Lu = ANu(t) and boundary condition, we have
u(t) = Mg, Nu(t) + &1 (3.7)
Taking t = o into equation (3.6), we have u(tg) = A, Nu(to) + 5153_1. That means

€] < [toTulto)] + [Atg I, Nulto)]

1 to B
<61+ 1k Wf(a)/o (to — 5)°~ | Nu(s)|ds

1- 1 -1,
<61+ ”tSW(HaHHun + 1161111 D55 ull oo + llell)
1
<81+ gy Ualllulloo + IOIDGE Pullo + fel).

Based on

DG ()] = (S Nu(t) + 15 er ()|

lallllullos + 1B11 D55 " ulloc + [l L'(y)
Ia+1) I'Bn—a)+1)
17
106" ulloo + llalllfaoc

1,
<llallllulloo + 1BIIDGF " ullos + lle + <51 +

lal[T()

3 [bIr()
“Ta+1)I'(B(n—a)+1)

a4+ 1DI'(B(n—a)+1)
] ) I'(v)
F(a+1)'T(B(n—a)+1)’

HuHoo +

+ BIIDGE oo + llell + (61 +

we obtain

Cla+ DB —a)+1) + T()]llall lull
(a+ DT (B(n —a) + 1)(1 = [[b]l) — [T ()"
La+ DE(B0 —a) +1) + T()]flell + aT(a + HI(y)
Fla+ DB —a) + 1)1 = [b]]) = [[b[IT()

1055 ulloe <7

Therefor, we get

€] <61+ =——

ol lelloo + 2] { [Cla+ DB —a) +1) + T()]llall

Mo+ 1) o+ 1) | Ta + DT —a) + ) — o)) — [e]re) e
[Ha+ﬂﬂﬂn—@+w+rwww+&rw+wmw} el
I+ DI — @) + D~ [6]) — [bIT) Mo+ 1)




lall (B + [|b]| D)
<
<o+ T(a+1)B

1Bl &+ el B

lelloo + T(a+ 1B’

where £ = [['(a + 1)I'(B(n — a) + 1) + T'(7)]|c]| + 01T (o + 1) (7).

By simple calculation, we can get

t
ull gl/o (t — $)* L Nu(s)|ds + [¢]

I'(a)

1 a—1,8 lal|(B + [|b]|D) [b]| E + ||| B
<— 0o b Dgy. " oo 0 o T T T
<t gy e + IBNIDG oo Nell + 1 -+ F4 e S e + MR

[al[(B + [|b]|D) [b]| E + ||| B
<d1 +2 o+ 2 —m———.
e TR I e vy
Therefore,
lulloo < 01 BT (a+ 1) + 2(||b]| E + HcHB)
= BI'(a+1)—2(|lal|B + [[b]| D)
We can conclude that €27 is bounded in X.

Lemma 3.6. Let () = {u!u € KerL,Nu € ImL}. Suppose (H1)— (Hz) hold. Then Qs is bounded

m X.
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O

Proof. Let u € Qo, for any t € [0,1], we have u(t) = &7, ¢ € KerT. Since Nu € ImL, then

¢(Nu) € ImT. According to (Hs), there exists tg € [0, 1] such that \té_wu(toﬂ < 41. Thus we get

that €] = [tg Yu(to)] < 61
Therefore, {25 is bounded in X.

Lemma 3.7. Let 3 = {u € KerL|phu+ (1 — NQNu =0, € 0, 1}}.

B { 1, if (3,QNp) > 0 holds,
"7\ S1 it (5.0NB) <0 holds.

Then Q3 is bounded in X.

Proof. Let u € Q3, we know that u(t) = t7~! with 8 € KerT and (1 — \)QNu = —pAu.
If A\=0, then QNu =0, Nu € KerL = ImL. Thus we have u € g, so [Jul| < d;.
If A\ € (0,1] and p = 1, suppose |3| > d2. Then, from (Hs), we get a contradiction

0> =A|B)* = =A(8,8) = (1= N)(B,QNp) > 0.

Thus, we have [|u|| < ds.
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If A € (0,1] and p = —1, suppose |3| > . Similarly,
0 < ABP = X(B,8) = (1 = \)(B,QNS) < 0.
Thus [Ju|| < 2. In conclusion, €23 is bounded in X. O

The following is the proof of Theorem 3.4.

Proof. Let Q D Q3 U Q2 U Q3 U {#} be a bounded open subset of X. It follows from Lemma 3.3
that N is L—compact on €. By Lemmas 3.5 and 3.6, we have

(1)Lu # ANu, for every (u,\) € [(domi\KerL)NoQ] x (0,1);

(2)Nu ¢ ImL for every u € KerL N 0.
We need only to prove deg(JQN |kerr,, 2N KerL,0) # 0.

Take H(u,A) = AJu+ p(1 — \)QNu. According to Lemma 3.7, we know that H(u,\) # 6 for

u € 9N KerL. Therefore, via the homotopy property of degree, we obtain

deg(JQN|kerr, 2N KerL,0) = deg(pH(+,0),2N KerL,0)
=deg(pH(-,1),Q2N KerL,0)

=deg(xpl,Q2N KerL,0) = +1 # 0.

Applying Lemma 2.3, we conclude that problem (1.1) has at least one solution in X. The proof

is completed. O

4 Conclusions

This paper mainly studied a class of Hilfer fractional differential boundary value problem systems
at resonance that state variable u € R™ and gave a new theorem on the existence of solutions
in kernel spaces by using the Mawhin coincidence degree theorem. We provided an example to
illustrate the obtained results. Our results also provide some methods for ¢-Hilfer and Hadamard

fractional differential. These contributions will advance research in other fields.
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5 Example

In this section, we present an example to verify our main results. Let’s consider the following

boundary value problem at resonance:

D a(t) = it 2(0), 9(0), DL a(0), D y(), ¢ € [0,1],
Dg2y(t) = fa(t, (1), y(t), D§? x(t), Dg;*y(t), t € [0,1],
55(9) =y(0) =0, (5.1)

7
D0+a:(0) = D6‘+y(0) =0,

— S (0 1),

= o )

. . . . 7 1
The problem (5.1) has a solution if and only if problem (1.1) has a solution, where o = 5, § = 3,
0 285
h(t)=t>*—tand A = 24;5 . Define the function f; : [0,1] x R* — R?, i = 1,2 by
U Y
f(t7 u, U) = (fl (t) T1,Y1,T2, y2)7 f?(t7 T1,Y1,T2, y2))T
= (fg@r+uy) + !1’2! +y2l), g (21 +y1) + 5(31”23«“2 + sin’y2))",
1 -1 ;0
for all t € [0,1] and u = (21,%1), v = (22,92) € R%. Let T = , Tt = , and
0 0 —% 0
0
you get I —TT+ = .
0 1

Then problem (5.1) has one solution if and only if the problem (1.1), with A and f defined as
above, has one solution. So we only need prove that the conditions of Theorem 3.4 are satisfied.
By (5.2) f satisfies carathéodory conditions.

First of all, prove the first condition of theorem 3.4. Let a(t) = %, b(t) = 3t, c(t) = 1. It
follows from (5.2) that |f(t,u,v)| < a(t)|u] + b(t)|v] + c(t) for all t € [0,1] and u,v € R?. By
simple calculation we have B = T'(ao + D)T'(B(n — «) + 1)(1 — ||b]]) — ||b[|T(y) =~ 5.5533, D =
[D(a+ DT (B(n—a)+1)+T(y)] ~ 14.9644 and BT (a+1) —2(||a|| B+ [|b||D) ~ 58.9026 > 0. Hence,
(H3) is satisfied.

Next, let’s check (Hy), we note that

|fa(t, z1, y1, 22, y2)| > 0,
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for all u = (x1,91), v = (72,y2) € R2. We calculated that

285
o(f2) y—‘ 1—3)0‘ Lfa(s) s—/ / fa(s)dsd(t* —t)| # 0
therefore
¢f(ta$17y1,$2ay2) - (¢f1(t)x17y17x2)y2)7¢f2(t7x17y17x27y2)) ¢ ImT7

due to ImT = {(n,0)";n € R}. Hence, (H,) is satisfied.
And finally, let’s prove the condition (Hj). For any 8 € R?, satisfying 3 = 285 T AB, and |B] > 0.
3 can be written as 8 = (B0, Bo) " for By € R. By (3.1) and (4.2) we have

T t2 t2 T
NB: (fl(taﬁao)an(taB7O)) = (gﬁ()’g/BO) ;
T
and we get G = 138.4249, (N ) = (0.037650,0.037650) Tt follows from (3.3) that

Q(NB) = 138.4249(0,0.037643)) ",

and

(B,Q(NB)) = 0.195752 > 0.

Then, the condition (Hs) holds. Therefore, by an application of Theorem 3.4, we obtain that

problem (4.1) has at least one solution.
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