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Abstract From a dual perspective of the sparse representation model, Nam
et al. proposed the cosparse analysis model. In this paper, we aim to in-
vestigate the convergence of the alternating direction method of multiplier-
s (ADMM) for the cosparse optimization problem. First, we examine the
variational inequality representation of the cosparse optimization problem by
introducing auxiliary variables. Second, ADMM is used to solve cosparse opti-
mization problem. Finally, by utilizing a tight frame with a uniform row norm
and building upon lemmas and the strict contraction theorem, we establish
a worst-case O(1/t) convergence rate in the ergodic sense. The experimen-
tal results verify the practicability and convergence of the ADMM in solving
cosparse optimization problems.
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1. Introduction

Low-dimensional signal recovery takes advantage of the inherent low-dimensionality
of many natural signals, despite their high ambient dimension. Utilizing prior in-
formation about the low-dimensional space can significantly aid in recovering the
signal of interest. Sparsity, a widely recognized form of prior information, serves
as the foundation for the burgeoning field of compressive sensing (CS [1–5]). The
recovery of sparse inputs has found numerous applications in areas such as imaging,
speech, radar signal processing, sub-Nyquist sampling, and more [6–9]. A typical
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sparse recovery problem is associated with the following linear system:

y = Mx, (1.1)

where y ∈ Rm is an observed vector, M ∈ Rm×d is a measurement matrix and
x ∈ Rd is an unknown signal which would be estimated from y. According to the
Nyquist-Shannon sampling theorem, if the k-space data is undersampled so much
that it fails to meet the Nyquist sampling criterion, then reconstructing the data
can be difficult or impossible without prior knowledge of x.

1.1. Sparse synthesis model

Over the past decade, the application of compressed sensing significantly increased
the image reconstruction speed and efficiency because of its capability to reconstruct
images from highly undersampled signals. Sparse prior is widely used in CS-based
reconstruction methods. For the sparse synthesis model, if a vector x is sufficient
sparse, under the incoherence assumptions on the measurement matrix M , x can
be robustly estimated by the problem

min
x
∥x∥p

s.t. y = Mx,
(1.2)

where 0 ≤ p ≤ 1. The ℓp(0 < p < 1) (quasi)-norm of a vector x means ∥x∥p =

(
∑d

i |xi|p)
1
p . In particular, the ℓ1 norm represents the sum of the absolute values

of the elements, and the ℓ0 norm represents the number of non-zero elements. The
advanced ideas and methods have been explored by applications in signals and
image processing [10–13]. After years of research, this model is becoming more and
more mature and stable.

1.2. Cosparse analysis model

In the recent decade, the cosparse analysis model is an alternative approach has
gained popularity [14, 15, 17–20]. Within this framework, a potentially redundant
analysis operator D ∈ Rn×d(n ≥ d) is employed, and the analyzed vector Dx is
expected to be sparse. This implies that a signal x ∈ Rd belongs to the cosparse
analysis model with cosparsity ℓ if ℓ = n − ∥Dx∥0. In this paper, the quantity ℓ
represents the number of rows in D that are orthogonal to the signal. Consequently,
x is referred to as ℓ-cosparse or simply cosparse. The specific definitions of cosparse
and cosupport can be found in literature [15], for ease of reference, we have listed
them below.

Definition 1.1 (Cosparse). A signal x ∈ Rd is said to be cosparse with respect to
an analysis operator D ∈ Rn×d if the analysis representation vector Dx contains
many zero elements. Further, the number of zero elements

ℓ = n− ∥Dx∥0

is called the cosparsity of x, we also say x is ℓ-cosparse.

Definition 1.2 (Cosupport). For a signal x ∈ Rd and a given analysis operator
D ∈ Rn×d with its rows Dj ∈ Rd(1 ≤ j ≤ n), the cosupport is defined by

Λ := {j|⟨Dj , x⟩ = 0}.
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In this paper, D is a tight frame with uniform row norm. We remind the reader
that a frame is defined as below.

Definition 1.3 (Frame [21, 22]). Let Φ = {φi}Ni=1 ⊆ Rn be a vector sequence of
the Hilbert space with N ≥ n. If there exist constants 0 < A ≤ B <∞ such that

∀x ∈ Rn, A∥x∥2 ≤
N∑
i=1

|⟨x, φi⟩|2 ≤ B∥x∥2, (1.3)

then Φ is referred to as a finite frame of Rn.

Remark 1.1. The constants A and B in the above formula are known as the lower
and upper bounds of the finite frame Φ, respectively. They are considered to be
the optimal bounds, with A being the supremum in the lower bound and B being
the infimum in the upper bound. If A = B, then the frame Φ is called an A-tight
frame. If A = B = 1, then Φ is called a Parseval frame. If there exists a constant
C such that each meta-norm ∥φi∥ = C of the frame Φ, then Φ is called an iso-norm
frame. In particular, for a tight frame, if C = 1, it is referred to as a uniformly
tight frame.

According to the definition of cosparsity, the cosparse analysis model focuses on
the zero elements of the analysis representation vector Dx, rather than the non-
zero elements. This perspective contrasts with the sparse synthesis model. If the
cosparsity ℓ is significantly large, meaning that the number of zeros ℓ is close to
d, we say that x has a cosparse representation. The cosupport set is identified
by iteratively removing rows from D for which ⟨Dj , x⟩ ̸= 0 until the index set Λ
remains unchanged, with |Λ| ≥ ℓ.

If the analysis representation vector Dx is sparse, similar to the sparse model,
the estimation of x from the measurements can be achieved by

min
x
∥Dx∥0

s.t. y = Mx.
(1.4)

The minimization problem (1.4) is known to be NP-hard [15], necessitating the
use of approximation methods. Similar to the sparse model, one option is to use
the greedy analysis pursuit (GAP) approach, which is inspired by the orthogonal
matching pursuit (OMP) algorithm [14–16]. Alternatively, the nonconvex ℓ0 norm
can be approximated by the convex ℓ1 norm, leading to the relaxed problem known
as analysis basis pursuit (ABP) [23]. In this case, x can be estimated by solving a
modified optimization problem

min
x
∥Dx∥1

s.t. ∥y −Mx∥2 ≤ ϵ,
(1.5)

where ∥ ·∥1 is the ℓ1 norm that sums the absolute values of a vector and ϵ is a upper
bound on the noise level ∥v∥2.

ABP is equivalent to the unconstrained optimization

min
x
∥Dx∥1 +

α

2
∥y −Mx∥22, (1.6)

which we call analysis LASSO (ALASSO). It can be said that ABP and ALAS-
SO are equivalent in the sense that for any ϵ > 0, there exists an α such that
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the optimal solutions of ABP and ALASSO are identical. For the optimization
problem (1.6), our previous work presented the modified GAP algorithm and er-
ror analysis [18, 24]. The simulations we conducted demonstrated the advantages
of the proposed method for the cosparse optimization problem. These optimiza-
tion problems can also be solved using interior point methods [25]. However, as
the problem dimension increases, these techniques become time-consuming since
they require solutions of linear systems. Other suggested approaches include the
alternating direction method of multipliers (ADMM) [26–28,38] and the accelerated
alternating minimization method (AAM) [29]. In this paper, we propose a new way
to analyze the convergence theory of the cosparse optimization problem based on
the variational inequality.

1.3. Organization of the paper

Our focus in this paper is on the cosparse optimization problem and its convergence
study based on a variational inequality. The paper is structured as follows: In
Section 2, we introduce auxiliary variables and investigate the variational inequality
characterization of the cosparse optimization problem. In Section 3, we present
several lemmas that establish the strict contraction of the ADMM for the cosparse
optimization problem. Using these lemmas and the strict contraction theorem, we
establish a worst-case O(1/t) convergence rate in the ergodic sense. In Section 4,
numerical experiments illustrate the validity of the convergence theorem given in
this paper. Finally, Section 5 provides a brief conclusion.

2. Preliminaries

To apply the ADMM for solving the cosparse optimization problem (1.6), we con-
vert the unconstrained optimization problem mentioned above into a constrained
optimization problem as follows

min
x,z
∥z∥1 +

α

2
∥y −Mx∥22

s.t. Dx− z = 0,
(2.1)

where an auxiliary variable z ∈ Rn is introduced in (1.6) to transfer Dx out of the
nondifferentiable term ∥ · ∥1 and α > 0 is a penalty parameter.

In this section, we summarize the variational inequality (VI) characterization of
(2.1). Initially, we present the optimality condition of the constrained optimization
problem (2.1), which forms the foundation for our subsequent convergence analysis
[30,33]. We then proceed to express the Lagrangian function of (2.1) as follows

L(z, x, λ) = ∥z∥1 +
α

2
∥y −Mx∥22 − λT (Dx− z). (2.2)

In (2.2), we assume that x ∈ X , z ∈ Z and λ ∈ Rn where X ⊂ Rd and Z ⊂ Rn are
closed convex sets, we call (z∗, x∗, λ∗) ∈ Ω := Z × X × Rn to be a saddle point of
L(z, x, λ) if the following inequalities are satisfied

L(z∗, x∗, λ) ≤ L(z∗, x∗, λ∗) ≤ L(z, x, λ∗). (2.3)
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Obviously, a saddle point (z∗, x∗, λ∗) can be characterized by the system
z∗ = argmin{L(z, x∗, λ∗)|z ∈ Z},

x∗ = argmin{L(z∗, x, λ∗)|x ∈ X},

λ∗ = argmax{L(z∗, x∗, λ)|λ ∈ Rn},

(2.4)

which can be rewritten as
z∗ ∈ Z, L(z, x∗, λ∗)− L(z∗, x∗, λ∗) ≥ 0,

x∗ ∈ X , L(z∗, x, λ∗)− L(z∗, x∗, λ∗) ≥ 0,

λ∗ ∈ Rn, L(z∗, x∗, λ∗)− L(z∗, x∗, λ) ≥ 0.

(2.5)

Below, we present a summary of the method for expressing the optimality con-
dition of the cosparse analysis model (2.1) via a variational inequality.

Proposition 2.1. Suppose X ⊂ Rd is a closed convex set, and θ(x) : Rd → R is a
convex function. Furthermore, let f(x) be differentiable in X . We assume that the
set of solutions for the minimization problem min{θ(x)+f(x)|x ∈ X} is nonempty,
then,

x∗ = argmin{θ(x) + f(x)|x ∈ X} (2.6)

if and only if

x, x∗ ∈ X , θ(x)− θ(x∗) + (x− x∗)T∇f(x∗) ≥ 0. (2.7)

The proof of Proposition 2.1 is available in [34]. Let θ1(z) = ∥z∥1 and θ2(x) =
α
2 ∥y −Mx∥22, according to the above inequality (2.7), a saddle point (z∗, x∗, λ∗)
of the Lagrangian function (2.2) can be characterized by a solution point of the
following variational inequality

ω, ω∗ ∈ Ω, θ(u)− θ(u∗) + (ω − ω∗)TF (ω∗) ≥ 0, (2.8)

where

θ(u) = θ1(z) + θ2(x), Ω = Z × X ×Rn, (2.9)

and

ω =


z

x

λ

 , u =

 z

x

 , F (ω) =


λ

−DTλ

Dx− z

 , (2.10)

Since F is an affine operator, and

F (ω) =


0 0 I

0 0 −DT

−I D 0




z

x

λ

 , (2.11)
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According to the antisymmetry of the affine matrix, it follows that

(ω − ω̄)T [F (ω)− F (ω̄)] ≡ 0, ∀ ω, ω̄ ∈ Ω. (2.12)

Using inequality (2.7) and combining (2.2), we derive the following conclusion with
(z∗, x∗, λ∗) ∈ Ω, 

θ1(z)− θ1(z
∗) + (z − z∗)Tλ∗ ≥ 0,

θ2(x)− θ2(x
∗) + (x− x∗)T (−DTλ∗) ≥ 0,

(λ− λ∗)T (Dx∗ − z∗) ≥ 0.

(2.13)

After conducting the aforementioned analysis, the linear constrained cosparse op-
timization problem is reformulated as a variational inequality. Consequently, the
task is ultimately simplified to identifying a saddle point of the Lagrangian func-
tion. In the subsequent section, the convergence analysis of the ADMM method for
addressing the cosparse optimization problem, as denoted by equation (2.1), will be
discussed.

3. Convergence analysis of the cosparse optimiza-
tion problem

3.1. Variational inequality characterization of ADMM

The augmented Lagrangian function of the problem (2.1) can be formulated as
follows

Lβ(z, x, λ) =∥z∥1 +
α

2
∥y −Mx∥22 − λT (Dx− z) +

β

2
∥Dx− z∥22, (3.1)

where λ is the Lagrange multiplier and β > 0 is a penalty parameter for the linear
constraints. Thus, applying directly the augmented Lagrangian function (3.1) and
starting with an initial iterate (x0, λ0) ∈ X ×Rn, the ADMM generates its sequence
via following iterative scheme

zk+1 = argmin{Lβ(z, x
k, λk)|z ∈ Z},

xk+1 = argmin{Lβ(z
k+1, x, λk)|x ∈ X},

λk+1 = λk − β(Dxk+1 − zk+1), λ ∈ Rn

(3.2)

the corresponding variational inequalities of (3.2) can be given as
θ1(z)− θ1(z

k+1) + (z − zk+1)T [λk − β(Dxk − zk+1)] ≥ 0,

θ2(x)− θ2(x
k+1) + (x− xk+1)T [−DTλk + βDT (Dxk+1 − zk+1)] ≥ 0,

(λ− λk+1)T [(Dxk+1 − zk+1) + 1
β (λ

k+1 − λk)] ≥ 0.

(3.3)

For some reviews on the classical ADMM, one can refer to literatures [28,30,32,35–
37].
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3.2. Assertions

To establish that {ωk} is strictly contractive with respect Ω, we first present several
lemmas.

Lemma 3.1. Let the sequence {ωk} be generated by (3.2). Then, we have

θ(u)− θ(uk+1) + (ω − ωk+1)TF (ω)

≥(z − zk+1)Tβ(Dxk −Dxk+1) +
1

β
(λ− λk+1)T (λk − λk+1), ∀ω ∈ Ω.

(3.4)

Proof. From (3.3) we know that

θ1(z)− θ1(z
k+1) + (z − zk+1)T [λk − β(Dxk − zk+1)] ≥ 0, ∀z ∈ Z (3.5)

and

θ2(x)− θ2(x
k+1)

+ (x− xk+1)T (−DTλk + βDT (Dxk+1 − zk+1)) ≥ 0, ∀x ∈ X .
(3.6)

Using λk+1 = λk − β(Dxk+1 − zk+1) we can easily deduce

λk = λk+1 + β(Dxk+1 − zk+1) (3.7)

and

(Dxk+1 − zk+1) =
1

β
(λk − λk+1). (3.8)

Putting the formulations (3.7) and (3.8) into (3.5) and (3.6), respectively, then we
have the following inequalities

θ1(z)− θ1(z
k+1) + (z − zk+1)T [λk+1 + β(Dxk+1 − zk+1)− β(Dxk − zk+1)] ≥ 0,

(3.9)

θ2(x)− θ2(x
k+1) + (x− xk+1)T (−DTλk+1) ≥ 0, (3.10)

and

(λ− λk+1)T (Dxk+1 − zk+1) ≥ (λ− λk+1)T
1

β
(λk − λk+1). (3.11)

Combining (3.9), (3.10) and (3.11) we have
θ1(z)− θ1(z

k+1) + (z − zk+1)Tλk+1 ≥ (z − zk+1)Tβ(Dxk −Dxk+1),

θ2(x)− θ2(x
k+1) + (x− xk+1)T (−DTλk+1) ≥ 0,

(λ− λk+1)T (Dxk+1 − zk+1) ≥ (λ− λk+1)T 1
β (λ

k − λk+1),

(3.12)

which is

θ(u)− θ(uk+1) + (ω − ωk+1)TF (ωk+1)

≥(z − zk+1)Tβ(Dxk −Dxk+1) + (λ− λk+1)T
1

β
(λk − λk+1).
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Note that the matrix in the operator F is skew-symmetric, then, using (2.12), we
have

θ(u)− θ(uk+1) + (ω − ωk+1)TF (ω)

≥(z − zk+1)Tβ(Dxk −Dxk+1) + (λ− λk+1)T
1

β
(λk − λk+1).

(3.13)

The Lemma 3.1 is proved.

Lemma 3.2. Let the sequence {ωk} be generated by (3.2). Then, we have

β(z − zk+1)T (Dxk −Dxk+1) +
1

β
(λ− λk+1)T (λk − λk+1)

=− 1

2β
∥λk − λ∥22 −

β

2
∥Dxk − z∥22 +

1

2β
∥λk+1 − λ∥22 +

β

2
∥Dxk+1 − z∥22

+
β

2
∥Dxk − zk+1∥22, ∀ω ∈ Ω.

(3.14)

Proof. Applying the identity

(a− b)T (c− d) =
1

2
{∥a− d∥22 − ∥a− c∥22}+

1

2
{∥c− b∥22 − ∥d− b∥22}

to the left-hand side in (3.14) with

a = z, b = zk+1, c = Dxk, d = Dxk+1,

we obtain

β(z − zk+1)T (Dxk −Dxk+1)

=
β

2
{∥z −Dxk+1∥22 − ∥z −Dxk∥22}+

β

2
{∥Dxk − zk+1∥22 − ∥Dxk+1 − zk+1∥22}.

(3.15)
Using the identity

bT (b− a) =
1

2
(∥b∥22 − ∥a∥22 + ∥b− a∥22),

and let
a = λ− λk, b = λ− λk+1,

we obtain

1

β
(λ− λk+1)T (λk − λk+1) =

1

2β
{∥λ− λk+1∥22 − ∥λ− λk∥22 + ∥λk − λk+1∥22}.

(3.16)
Using

β∥Dxk+1 − zk+1∥22 =
1

β
∥λk − λk+1∥22,

and combining (3.15) and (3.16), we complete the proof of this lemma.

Lemma 3.3. Let the sequence {xk}, {zk} and {λk} be generated by (3.2), then,

β∥Dxk − zk+1∥22 ≥ β∥Dxk −Dxk+1∥22 +
1

β
∥λk − λk+1∥22. (3.17)

Administrator
高亮



Convergence analysis on the ADMM for the cosparse optimization problem 9

Proof. Based on the second inequality of inequality (3.12), we can derive the
following result θ2(x)− θ2(x

k+1) + (x− xk+1)T (−DTλk+1) ≥ 0,

θ2(x)− θ2(x
k) + (x− xk)T (−DTλk) ≥ 0.

(3.18)

Let x = xk and x = xk+1 in (3.18), respectively, then θ2(x
k)− θ2(x

k+1) + (xk − xk+1)T (−DTλk+1) ≥ 0,

θ2(x
k+1)− θ2(x

k) + (xk+1 − xk)T (−DTλk) ≥ 0.

From above inequalities, we have

(λk − λk+1)T (Dxk −Dxk+1) ≥ 0. (3.19)

Using

(Dxk+1 − zk+1) =
1

β
(λk − λk+1),

then we obtain
β∥Dxk − zk+1∥22

=β∥Dxk −Dxk+1 +Dxk+1 − zk+1∥22

=β∥Dxk −Dxk+1 +
1

β
(λk − λk+1)∥22

≥β∥Dxk −Dxk+1∥22 +
1

β
∥λk − λk+1)∥22.

(3.20)

The proof of this lemma is completed.

3.3. Strict contraction

To present the main result of the paper, it is necessary to establish the strict con-
tractility of the iterative sequence. The following subsection provides a proof of
the strong contractility of the iterative sequence {ωk}, which relies on Lemma 3.1,
Lemma 3.2, and Lemma 3.3.

Theorem 3.1. Assuming that the sequence {ωk} is generated by iteration scheme
(3.2), we have

∥vk+1 − v∗∥2H ≤ ∥vk − v∗∥2H − ∥vk − vk+1∥2H (3.21)

where

v =

λ

x

 , H =

 1
β Im 0

0 βId

 and V∗ = {(λ∗, x∗)|(z∗, x∗, λ∗) ∈ Ω}. (3.22)

Proof. We can deduce from Lemma 3.1 and Lemma 3.2 that

θ(uk+1)− θ(u) + (ωk+1 − ω)TF (ω)

≤ 1

2β
∥λk − λ∥22 +

β

2
∥Dxk − z∥22 −

1

2β
∥λk+1 − λ∥22 −

β

2
∥Dxk+1 − z∥22

− β

2
∥Dxk − zk+1∥22.

(3.23)
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By utilizing Lemma 3.3, we can rewrite equation (3.23) as follows

0 ≤θ(uk+1)− θ(u∗) + (ωk+1 − ω∗)TF (ω∗)

≤ 1

2β
∥λk − λ∗∥22 +

β

2
∥Dxk − z∗∥22 −

1

2β
∥λk+1 − λ∗∥22 −

β

2
∥Dxk+1 − z∗∥22

− 1

2β
∥λk − λk+1∥22 −

β

2
∥Dxk −Dxk+1∥22.

(3.24)

That is

1

β
∥λk+1 − λ∗∥22 + β∥Dxk+1 − z∗∥22

≤ 1

β
∥λk − λ∗∥22 + β∥Dxk − z∗∥22 − (

1

β
∥λk − λk+1∥22 + β∥Dxk −Dxk+1∥22).

(3.25)

Let

Dx∗ = z∗, v =

λ

x

 and H =

 1
β Im 0

0 βDTD

 ,

therefore, the left-hand side of inequality (3.25) becomes

1

β
∥λk+1 − λ∗∥22 + β∥Dxk+1 − z∗∥22

=

λk+1 − λ∗

xk+1 − x∗

T  1
β Im 0

0 βDTD

λk+1 − λ∗

xk+1 − x∗


=(vk+1 − v∗)T

 1
β Im 0

0 βDTD

 (vk+1 − v∗)

=∥vk+1 − v∗∥2H .

(3.26)

Likewise, the sum of the first two terms on the right-hand side of inequality (3.25)
is

1

β
∥λk − λ∗∥22 + β∥Dxk −Dx∗∥22

=

λk − λ∗

xk − x∗

T  1
β Im 0

0 βDTD

λk − λ∗

xk − x∗


=(vk − v∗)T

 1
β Im 0

0 βDTD

 (vk − v∗)

=∥vk − v∗∥2H

(3.27)
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and the sum of the last two terms on the right-hand side of inequality (3.25) is

1

β
∥λk − λk+1∥22 + β∥Dxk −Dxk+1∥22

=

λk − λk+1

xk − xk+1

T  1
β Im 0

0 βDTD

λk − λk+1

xk − xk+1


=(vk − vk+1)T

 1
β Im 0

0 βDTD

 (vk − vk+1)

=∥vk − vk+1∥2H .

(3.28)

Since D ∈ Rn×d is a unit tight frame, we have that DTD = Id. By combining
formulas (3.26), (3.27), and (3.28), we complete the proof of the Theorem 3.1.

Theorem 3.2. Let H be a positive definite matrix, and let {vk} be a sequence with
initial vector v0 = (λ0, x0)

T . Given inequality (3.21), we can derive the sequence
{vk} is convergent to V∗.

Proof. According to Theorem 3.1, we know that H is a positive definite matrix,
and inequality (3.21) implies that the sequence {vk} is bounded. Assuming that the
initial vector is v0 = (λ0, x0)

T , we can obtain the following expression by summing
both sides of inequality (3.21)

∞∑
k=0

∥vk − vk+1∥2H ≤ ∥v0 − v∗∥2H . (3.29)

The above equation indicates that limk→∞ ∥vk − vk+1∥2H = 0. Therefore, any
subsequence vkj of vk also has limj→∞ ∥vkj − vkj+1∥2H = 0. Suppose there exists a
subsequence that converges to v̄, then formula (3.4) implies that v̄ is the solution
of formula (3.2). This shows that any accumulation point of the sequence vk is
a solution of (3.2). According to formula (3.21), vk cannot have more than one
accumulation point, and hence vk converges to v̄ ∈ V∗.

3.4. Convergence rate in ergodic sense

Combining with Theorem 3.1, we prove a worst-case O(1/t) convergence rate in a
ergodic sense of the ADMM scheme (3.2) for cosparse signal reconstruction problem.

Theorem 3.3. Let the sequence {ωk} be generated by (3.2). Then, for any positive
integer t, we have

θ(ut)− θ(u) + (ωt − ω)TF (ω)

≤ 1

2(t+ 1)
[
1

β
∥λ0 − λ∥22 + β∥Dx0 − z∥22], ∀ω ∈ Ω

(3.30)

where

ωt =
1

t+ 1
(

t∑
k=0

ωk+1). (3.31)
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Proof. For any integer k, by (3.23) we obtain

θ(uk+1)− θ(u) + (ωk+1 − ω)TF (ω)

≤ 1

2β
∥λk − λ∥22 +

β

2
∥Dxk − z∥22 −

1

2β
∥λk+1 − λ∥22 −

β

2
∥Dxk+1 − z∥22.

(3.32)

Suppose k = 0, 1, 2, . . . , t are non-negative integers. By summing the left and right
ends of the inequality (3.32), we deduce that

t∑
k=0

θ(uk+1)− (t+ 1)θ(u) +

[
t∑

k=0

ωk+1 − (t+ 1)ω

]T

F (ω)

≤ 1

2β
∥λ0 − λ∥22 +

β

2
∥Dx0 − z∥22, ∀ω ∈ Ω.

(3.33)

The left and right ends of the inequality (3.33) are multiplied by 1
t+1 at the same

time, and let

ωt =
1

t+ 1

t∑
k=0

ωk+1, (3.34)

then, the inequality (3.33) is equivalent to

1

t+ 1

t∑
k=0

θ(uk+1)− θ(u) + (ωt − ω)TF (ω)

≤ 1

2(t+ 1)
[
1

β
∥λ0 − λ∥22 + β∥Dx0 − z∥22].

(3.35)

Given that the function θ(u) is convex, let

ut =
1

t+ 1

t∑
k=0

uk+1 =
1

t+ 1
(u1 + u2 + · · ·+ ut),

we can derive the following expression

θ(ut) =θ

[
1

t+ 1
(u1 + u2 + · · ·+ ut)

]
≤ 1

t+ 1

[
θ(u1) + θ(u1) + · · ·+ θ(ut)

]
=

1

t+ 1

t∑
k=0

θ(uk+1).

(3.36)

By utilizing equations (3.35) and (3.36), we complete the proof of the Theorem 3.3.

After t-th iterations, then ωt defined by (3.34) satisfies

ω̃ ∈ Ω and sup
ω∈Dω̃

{θ(ũ)− θ(u) + (ω̃ − ω)TF (ω)} ≤ d

2t
= O(1

t
),

where

Dω̃ = {ω ∈ Ω|∥ω − ω̃∥ ≤ 1}, d := sup{ 1
β
∥λ0 − λ∥22 + β∥Dx0 − z∥22|ω ∈ Dω̃},

and v0 = (λ0, x0) is the initial iteration point. That means ωt is an O( 1t ) solution
of (3.3).
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3.5. Comparison with existing work

Existing literature, such as He and Yuan [30] has shown a convergence rate of O(1/t)
for the Douglas-Rachford alternating direction methods scheme. He [31] has given a
proof of the convergence properties of ADMM, which includes the strong contractil-
ity and O(1/t) ergotic (where t is a non-negative integer, indicating the number of
iterations). Although in the ergodic sense, our convergence order is the same as that
of the existing literature, in our work, we provided a new perspective and specific
convergence proof for the cosparse optimization problem, offering a more gener-
al convergence analysis under the framework of strict contraction and variational
inequalities. This extends the applicability of ADMM to cosparse optimization
problems. On the other hand, it must be assumed in the literature that H is a
symmetric positive semidefinite matrix, but the results we give do not require this
assumption, because for the particularity of the cosparse optimization problem, the
redundant analysis operator D is a uniform tight frame, therefore, the H matrix is
a symmetric positive definite matrix.

4. Numerical experiments

This experiment aims to demonstrate how to use the ADMM to solve the cosparse
optimization problem. Through experiments, we verified the effectiveness and con-
vergence of the ADMM in solving the cosparse signal reconstruction problem. To
conduct the experiments, we first generated the problem instance, including the
signal dimension d, the number of rows of the measurement matrix m, and the
observation vector y. We use a randomly generated measurement matrix M . The
redundant analysis operator D is generated as a tight frame with uniform row norm
and DTD = I. In addition, we also introduce Gaussian noise to simulate the noise
situation in actual observations. And the ϵ is a upper bound on the noise level ∥v∥2.
All experiments are performed under Windows 10 and MATLAB R2021a running
on a Lenovo desktop with an Intel Core(TM)i7-9700, CPU at 3.6 GHz and 8 GB of
memory.

Algorithm 1 ADMM

Task: Approximate the solution of (2.1).
Input: Initial point x0 = 0, z0 = 0, λ0 = 0 and the parameters α, β. Number
of iterations k = 1, 2, . . . ,max iter. Generate the redundant analysis operator
D [17].

while the termination criterion is not met, do
• zk+1 = argmin Lβ(z, x

k, λk),
• xk+1 = argmin Lβ(z

k+1, x, λk),
• λk+1 = λk − β(Dxk+1 − zk+1).
k ← k + 1.
end while

Check convergence conditions.
Output: z ← zk+1, x← xk+1, λ← λk+1.

The maximum number of iterations is set to max iter = 1000, the penalty
parameters are set to α = 1 × 10−4 and β = 1 × 10−2, the convergence tolerance
is set to tol = 1 × 10−6, the noise level is set to ϵ = 1 × 10−2. By running the
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ADMM algorithm, we record the residual ∥rk+1∥2 = ∥Dxk+1 − zk+1∥2 and error
∥xk+1− xk∥2 for each iteration, and plot their convergence curves. For figure 1, we
set d = 128, n = 140,m = 256, ℓ = 118. For figure 2, we set d = 256, n = 512,m =
512, ℓ = 230. Experimental results show that as the number of iterations increases,
the residuals and errors gradually decrease. This illustrates that the numerical
results are consistent with the theoretical results.
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Figure 1. The residuals and errors curves with
d = 128, n = 140,m = 256, ℓ = 118.

0 100 200 300 400 500 600 700 800 900 1000

Iteration

0

2

4

6

M
ag

ni
tu

de

Convergence of Residual ||Dx - z||2

0 100 200 300 400 500 600 700 800 900 1000

Iteration

0

1

2

3

4

M
ag

ni
tu

de

×10-4 Convergence of Error ||xk+1 - xk||2

Figure 2. The residuals and errors curves with
d = 256, n = 512,m = 512, ℓ = 230.

5. Conclusions

This paper studies the convergence of the ADMM on cosparse optimization problem-
s from the dual perspective of sparse representation models. The paper first intro-
duces auxiliary variables and examines the cosparse optimization problem through
the expression of variational inequalities. Then, the ADMM is applied to solve
the cosparse optimization problem, and the tight frame with unified row norm are
used, combined with the lemma and the strict contraction theorem, to establish the
worst-case convergence rate of O(1/t) in the ergodic sense. In addition, the paper
also verifies the effectiveness and convergence of ADMM in the cosparse signal re-
construction problem through numerical experiments. Experimental results show
that as the number of iterations increases, the residuals and errors gradually de-
crease, proving the practicability and convergence of the ADMM method in solving
cosparse optimization problems.

Researchers currently rely on a range of methods to solve separable convex
optimization problems. Two popular approaches are the generalized symmetric
ADMM and parameterizable proximal point algorithms [38–40]. These methods
have demonstrated their effectiveness and superiority in various experiments. In
our future work, we plan to explore the potential of combining these methods to
solve the cosparse signal reconstruction problem.
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