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Abstract

In this paper, we explore the complete synchronization and quasi-projective synchro-
nization in a class of stochastic delayed quaternion-valued neural networks, utilizing a
state-feedback control scheme. The studied neural networks into real-valued networks
are short of known decomposing, by designing a very general nonlinear controller, ac-
cording to the quaternion form Itô formula with a number of inequality techniques in
the configuration of quaternion domain, we obtained a quasi-projective synchronization
criterion for drive-response networks. Moreover, we estimate the error margin for quasi-
projective synchronization. At last, the theoretical results are confirmed by a numerical
simulation.

Key words: Stochastic neural network; Quaternion; Quasi-projective synchronization;
Time delays.

1 Introduction

Stochastic neural networks (SNNs) is a class of neural network model that incorporates
randomness into its structure or training process, which is set up by introducing random
variations into the network, or by giving random transfer functions to the neurons of the
network, or giving them random weights. When simulating the real nervous system and
artificial neural networks, the presence of noise is inevitable, as highlighted in previous studies
[1, 2, 3]. Hence, the exploration of SNNs holds significant practical importance [4, 5, 6, 7, 8,
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9, 10]. Furthermore, time delays are inevitably introduced in artificial neural networks and
ecosystems due to the limited switching rate of neurons and amplifiers.

A natural progression from the traditional neural networks, the complex-valued neural
networks (CNNs) and quaternion-valued neural networks (QVNNs) have found extensive ap-
plications in various domains, including robotics, satellite attitude control, image recognition,
integrated control, and many other fields [11, 12, 13]. Currently, many researches highlight
the greater versatility and practicality of non-autonomous neural networks compared to au-
tonomous ones. Nonetheless, there remains an inadequate focus on the dynamic analysis
of quaternion neural networks (QVNNs) with time delay [14, 15, 16]. Furthermore, in the
quaternion domain, processing information has made more complex properties and resilient
execution than complex-valued one. Quaternion-valued model in neural networks has quite
complicated competencies as compared to the complex-valued neural networks(CVNNs) mod-
els since that can be solved in QVNNs but cannot be solved for the CVNN models [17].

Since Pecora and Carroll proposed the idea of achieving synchronization between the
driving and responding components in coupled chaos models [18], chaos synchronization gen-
erates significant interest and attention. This is due to its wide-ranging applications in fields
such as automatic control, biosystems science, information technology, and more [19, 20, 21].
So far, various classes of synchronization like complete synchronization [22, 23, 24], phase
synchronization [25, 26], phase synchronization [27], lag synchronization [28], pinning syn-
chronization and clusters synchronization have been investigated[29]. Later, scholars also
proposed the concept of quasi-synchronization [30]. Besides, in contrast to the aforemen-
tioned synchronization types, projective synchronization can achieve more faster and faster
communications due to its proportional feature [31, 32, 33]. Recently, projective synchroniza-
tion has been extended to quasi-projective synchronization in [34]. The instability of dynamic
neural network systems is often induced by random disturbances arising from environmental
uncertainties. As a result, the synchronization problem in stochastic neural network systems
has garnered considerable research attention for the past few years [35, 36, 37, 38, 39]. Due
to the difficulty in dealing with random perturbations, and complex-valued neural network
systems, there are few results considering the quasi-synchronization issue of complex-valued
stochastic neural networks (CVSNNs) [40, 41, 42]. In fact, complex-valued model in neural
networks has quite complicated competencies as compared to the real valued stochastic neural
networks(RVSNNs) models since that can be solved in CVSNNs but cannot be solved for the
RVSNNs models.

Recently, scholars have been investigating synchronization in QVNNs [43, 44, 45, 46], as
well as examining the stability of quaternion-valued stochastic neural networks (QVSNNs)
[47, 48]. However, it is still an open challenge regarding how to explore the quasi-projective
synchronization of the stochastic delayed quaternion-valued neural networks (SDQVNNs)
using state-feedback control strategy. Therefore, delving into the quasi-projective synchro-
nization of SDQVNNs with state-feedback control strategy holds significant value.

To address the above discussion, we utilize a non-decomposition approach to analyze
the synchronization dynamics of SDQVNNs through state feedback control. All in all, the
primary contributions of this dissertation are highlighted as follows. Firstly, in this paper,
the quasi-projective synchronization of the SDQVNNs with state feedback control has been
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considered. Secondly, by incorporating the quaternionic version of Itô formula, we derive a
quasi-projective synchronization criterion along with several specific scenarios. Furthermore,
we assess the synchronization error limit and elucidate its connection with the controller
parameters. Thirdly, without dividing the SDQVNNs model into four real-valued models,
the examined SDQVNNs is implemented as a whole one. Finally, the proposed method can
be applied for investigating the quasi-projective synchronization of other sorts of SDQVNNs
with state-feedback control.

The primary contributions of this paper are structured as follows: Section 2 presents
the problem formulation. In Section 3, we derive criteria to guarantee quasi-projective syn-
chronization in the networks under consideration. Section 4 offers a numerical example to
validate our theoretical findings. Finally, we conclude with discussions and outline future
research directions in the last section.

2 Problem formulation

In the present work, we investigate the following SDQVNNs with time delays:

dyp(t) =

[
− ap(t)yp(t) +

m∑
q=1

bpq(t)fq
(
yq(t)

)
+

m∑
q=1

cpq(t)gq
(
yq(t− η(t))

)
+Up(t)

]
dt+

m∑
q=1

σpq
(
yq(t− η(t))

)
dwq(t), p ∈ {1, 2, . . . ,m} := Λ, (2.1)

where, n denotes the number of neurons in each layer, while other relevant variables and
parameters of the neural networks (2.1) are explained in Table 1.

Table 1: Parameters values for the SDQVNNs (2.1)

Symbols Meaning

yp(t) State of the p-th neuron at time t

ap(t) Self-feedback connection weight

bpq(t), cpq(t) The synaptic weights of delayed feedback

Up(t) External input on the p-th unit at time t

fq , gq The activation functions of signal transmission

w(t) =
(
w1(t), w2(t), . . . , wm(t)

)T
m-dimensional Brownian motion

σpq Borel measurable function

σ = (σpq)m×m Diffusion coefficient matrix

η(t) Time-varying, satisfying 0 ≤ η(t) ≤ η, and η is a constant

(Ω,F , {Ft}t≥0,P) stand for the complete probability space with a filtration {Ft}t≥0 sat-
isfying the usual conditions (that is, it is right continuous, and F0 contains all P-null sets),
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and E represents the expectation operator with respect to probability space(Ω,F , {Ft}t≥0,P).
Cb

F0
([−η, 0],Qm) denotes the family of all bounded, F0-measurable, BC([−η, 0],Qm)-valued

random variables ϕ.
We represent the skew field of quaternion number q as

Q := {q = qR + iqI + jqJ + kqK},

where qR, qI , qJ , qK ∈ R, i, j and k represent imaginary units, and the quaternion satisfies
the following Hamilton rules:{

ij = −ji = k, jk = −kj = i, ki = −ik = j,

i2 = j2 = k2 = ijk = −1,

∀y ∈ Q, let y∗ = yR − iyI − jyJ − kyK , and with the norm

∥y∥Q =
√
yy∗ =

√
(yR)2 + (yI)2 + (yJ)2 + (yK)2.

For every y = (y1, y2, . . . , ym)
T ∈ Qm, endowed with the norm ∥y∥0 = max

p∈Λ
{∥yp∥Q}.

Set

ap = inf
t∈R

|ap(t)|, b̄pq = sup
t∈R

∥bpq(t)∥Q, c̄pq = sup
t∈R

∥cpq(t)∥Q, Ūp = sup
t∈R

∥Up(t)∥Q.

The initial values of the networks (2.1) are described by

yp(s) = ϕp(s), s ∈ [−η, 0], p ∈ Λ,

where ϕp(s) ∈ Cb
F0
([−η, 0],Q).

In this article, we make the following assumptions about activation functions.

(S1) fq(0) = gq(0) = σpq(0) = lq(0) = 0, ∀u, v ∈ Q and there exist positive constants Lf
q , L

g
q ,

Lσ
pq and L

l
q such that∥∥fq(u)− fq(v)

∥∥
Q ≤ Lf

q

∥∥u− v
∥∥
Q ,

∥∥gq(u)− gq(v)
∥∥
Q ≤ Lg

q

∥∥u− v
∥∥
Q,∥∥σpq(u)− σpq(v)

∥∥
Q ≤ Lσ

pq

∥∥u− v
∥∥
Q ,

∥∥lq(u)− lq(v)
∥∥
Q ≤ Ll

q

∥∥u− v
∥∥
Q,

where p, q ∈ Λ.

3 Synchronization control of stochastic neural networks

In the present section, by considering a very general nonlinear state-feedback controller,
using stochastic analysis theory, Itô formula and the construction of appropriate Lyapunov
functions. We will discuss the quasi-projective synchronization problem for network (2.1).
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For this purpose, we consider the network (2.1) as a driver one, and the corresponding
response network as follows:

dzp(t) =

[
− ap(t)zp(t) +

m∑
q=1

bpq(t)fq
(
zq(t)

)
+

m∑
q=1

cpq(t)gq
(
zq(t− η(t))

)
+Up(t) + Ep(t)

]
dt+

m∑
q=1

σpq
(
zq(t− η(t))

)
dwq(t), (3.1)

where p ∈ Λ, zp(t) ∈ Q indicates the state of the response network, and Ep(t) ∈ Q is a
state-feedback controller, the other symbols are the same as network (2.1).

The initial values of network (3.1) are described by

zp(s) = ψp(s), s ∈ [−η, 0], p ∈ Λ,

where ψp(s) ∈ Cb
F0

(
[−η, 0],Q

)
. Through feedback control, the controller Ep can be described

as

Ep(t) = −θp(t)hp(t) +
m∑
q=1

dpq(t)lq
(
hq(t− η(t))

)
, (3.2)

where θp ∈ C(R,R+), dpq ∈ C(R,Q), lq : Q → Q, p, q ∈ Λ.
Let hp(t) = zp(t)−λyp(t) define as synchronization error, in which λ denoted by projective

parameters, then the error network between (2.1) and (3.1) can be expressed as

dhp(t) =

[
−

(
ap(t) + θp(t)

)
hp(t) +

m∑
q=1

bpq(t)
(
fq
(
zq(t)

)
− λfq

(
yq(t)

))
+

n∑
q=1

bpq(t)
(
gq
(
zq(t− η(t))

)
− λgq

(
yq(t− η(t))

))
+

m∑
q=1

dpq(t)
(
lq
(
zq(t− η(t))

)
− λlq

(
yq(t− η(t))

))
+ (1− λ)Up(t)

]
dt

+
m∑
q=1

(
σpq

(
zq(t− η(t))

)
− λσpq

(
yq(t− η(t))

))
dwq(t)

=

[
−

(
ap(t) + θp(t)

)
hp(t) +

m∑
q=1

bpq(t)fq
(
hq(t)

)
+

m∑
q=1

cpq(t)gq
(
hq(t− η(t))

)
+

m∑
q=1

dpq(t)lq
(
hq(t− η(t))

)
+

m∑
q=1

bpq(t)
(
fq
(
λyq(t)

)
− λfq

(
yq(t)

))
5



+
m∑
q=1

cpq(t)
(
gq
(
λyq(t− η(t))

)
− λgq

(
yq(t− η(t))

))
+

m∑
q=1

dpq(t)
(
lq
(
λyq(t− η(t))

)
− λlq

(
yq(t− η(t))

))
+(1− λ)Up(t)

]
dt+

m∑
q=1

σpq
(
hq(t− η(t))

)
dwq(t)

+
m∑
q=1

(
σpq

(
λyq(t− η(t))

)
− λσpq

(
yq(t− η(t))

))
dwq(t), (3.3)

where
fq
(
hq(t)

)
:= fq

(
zq(t)

)
− fq

(
λyq(t)

)
,

gq
(
hq(t− η(t))

)
:= gq

(
zq(t− η(t))

)
− gq(λyq(t− η(t))),

lq
(
hq(t− η(t))

)
:= lq

(
zq(t− η(t))

)
− lq

(
λyq(t− η(t))

)
,

σpq
(
hq(t− η(t))

)
:= σpq

(
zq(t− η(t))

)
− σpq

(
λyq(t− η(t))

)
.

Definition 3.1. [47] Consider an m-dimensional quaternion-valued stochastic differential
equation:

dH(t) = F
(
t,H(t), H(t− η(t))

)
dt+ G

(
t,H(t), H(t− η(t))

)
dW (t),

where H(t) = (H1(t), H2(t), . . . , Hm(t))
T ∈ Qm. For V (t,H) : R+ ×Qm → R+(in reality, we

can represent V (t,H) = V (t,H,H∗), R-derivative of V can be defined as

∂V (t,H)

∂H

∣∣∣∣
H∗=const

=

(
∂V (t,H(t))

∂H1

, . . . ,
∂V (t,H(t))

∂Hm

)∣∣∣∣
H∗=const

and

∂V (t,H)

∂H∗

∣∣∣∣
H=const

=

(
∂V (t,H(t))

∂H∗
1

, . . . ,
∂V (t,H(t))

∂H∗
m

)∣∣∣∣
H=const

,

where const is the constant. Denote by C1,2(R+ × Qm,R+) the family of all nonnegative
functions V (t,H) on R+ × Qm, which are once continuously differentiable in t and twice
differentiable in H and H∗. Thus, for V ∈ C1,2(R+ × Qm,R+), according to Itô’s formula,
the quaternion form is as follows:

dV (t,H) =
∂V (t,H)

∂t
dt+

∂V (t,H)

∂H
dH +

∂V (t,H)

∂H∗ dH∗

+
1

2

m∑
p,q=1

∂2V (t,H)

∂Hp∂Hq

dHpdHq +
1

2

m∑
p,q=1

∂2V (t,H)

∂H∗
p∂H

∗
q

dH∗
pdH

∗
q
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+
m∑

p,q=1

∂2V (t,H)

∂Hp∂H∗
q

dHpdH
∗
q

= LV (t,H)dt+

[
∂V (t,H)

∂H
G(t) + ∂V (t,H)

∂H∗ G∗(t)

]
dW (t),

where
F(t) = F(t,H(t), H(t− η(t))), G(t) = G(t,H(t), H(t− η(t))),

∂2V (t,H)

∂H2
=

(
∂2V (t,H)

∂Hp∂Hq

)
m×m

,
∂2V (t,H)

∂(H∗)2
=

(
∂2V (t,H)

∂H∗
p∂H

∗
q

)
m×m

,

∂2V (t,H)

∂H∂H∗ =

(
∂2V (t,H)

∂Hp∂H∗
q

)
m×m

, dW (t)dW (t) = dt,

dW (t)dt = dtdW (t) = dtdt = 0,

and operator LV (t,H) are described by

LV (t,H) =
∂V (t,H)

∂t
+
∂V (t,H)

∂Y
F(t) +

∂V (t,H)

∂Y ∗ F∗(t)

+
1

2
GT (t)

∂2V (t,H)

∂(H)2
G(t) + 1

2
(G∗(t))T

∂2V (t,H)

∂(H∗)2
G∗(t)

+GT (t)
∂2V (t,H)

∂H∂H∗ G∗(t).

Definition 3.2. [40] LetW represent the area where the network (2.1) shows chaotic behavior.
Drive-response networks (2.1) and (3.1) can achieve quasi-projective synchronization in mean
square via an error bound κ > 0, if lim

t→∞
E∥z(t) − λy(t)∥20 ≤ κ is satisfied for any initial

conditions, in which λ is stand for the projective parameters. Especially, networks (2.1) and
(3.1) can achieve quasi-synchronized in mean square if λ = 1. Moreover, networks (2.1) and
(3.1) can achieve complete synchronization if lim

t→∞
E∥z(t)− y(t)∥20 = 0.

Lemma 3.1. [40] Supposing that function h(t) : [t0 − η,+∞) → R is continuous and the
following condition hold.

dh(t)

dt
≤ −ρh(t) + ϱh(t− η(t)) + ϑ

for t ≥ t0, where ρ > ϱ > 0, ϑ > 0, η(t) ≤ η, it gains

h(t) ≤ sup
s∈[−η,0]

h(s)e−ξt +
ϑ

ξ
,

where ξ > 0 is the unique solution to algebra equation ρ− ϱeξη − ξ = 0.
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Theorem 3.1. Assumption (S1) holds, network (2.1) is quasi-projectively synchronized with
(3.1) in mean square under the linear controller (3.2), if there exist constants ρ, ϱ > 0, such
that

ρ = min
p∈Λ

{
2ap + 2θp − 7−

m∑
q=1

(
b̄qpL

f
q

)2}
> 0,

ϱ = max
p∈Λ

{ m∑
q=1

(
c̄qpL

g
q

)2
+

m∑
q=1

(
d̄qpL

l
q

)2
+

m∑
q=1

(
Lσ
qp

)2}
> 0

and ρ − ϱ > 0. Simultaneously, the stochastic synchronization error networks converges
exponentially in mean square to the following region

W =

{
h(t) ∈ Qm

∣∣∣E∥h(t)∥20 ≤ ϑ

ξ

}
,

where

ϑ = max
p∈Λ

{
(1− λ)∗(1− λ)

(
Ūp

)2
+

m∑
q=1

2
[
1 + λ∗λ

]
×
[(
b̄pqL

f
q

)2
+
(
c̄pqL

g
q

)2
+
(
d̄pqL

l
q

)2
+
(
Lσ
pq

)2]}
> 0

and ξ > 0 is the unique solution to algebra equation ρ− ϱeξη − ξ = 0.

Proof. Set σ(t) = (σpq(t))m×m, where σpq(t) = σpq(hq(t − η(t))). Choose the following Lya-
punov function:

V (t, h(t)) = max
p∈Λ

{
h∗p(t)hp(t)

}
.

According to Itô formula, next we will consider the following stochastic differential:

dV (t, h(t)) = LV (t, h(t))dt+ Vh(t, h(t))σ(t)dw(t), (3.4)

where V (t, h(t)) =
(∂V (t,h(t))

∂h1
, . . . , ∂V (t,h(t))

∂hm

)
, L is the differential operator, then according to

Definition 3.1, we have

∂2V (t, h(t))

∂h(t)h∗(t)
= 1,

∂2V (t, h(t))

∂h(t)2
=
∂2V (t, h(t))

∂(h∗(t))2
= 0.

Again from Definition 3.1, based on the differential operator L, we have

LV (t, h(t))

= max
p∈Λ

{
hp(t)

[(
− ap(t)− θp(t)

)
h∗p(t) +

m∑
q=1

[
bpq(t)fq

(
hq(t)

)]∗
8



+
m∑
q=1

[
cpq(t)gq

(
hq(t− η(t))

)]∗
+

m∑
q=1

[
dpq(t)lq

(
hq(t− η(t))

)]∗
+

m∑
q=1

[
bpq(t)

(
fq
(
λyq(t)

)
− λfq

(
yq(t)

))]∗
+

m∑
q=1

[
cpq(t)

(
gq
(
λyq(t− η(t))

)
− λgq

(
yq(t− η(t))

))]∗
+

m∑
q=1

[
dpq(t)

(
lq
(
λyq(t− η(t))

)
− λlq

(
yq(t− η(t))

))]∗
+(1− λ)U∗

p (t)

]
+ h∗p(t)

[(
− ap(t)− θp(t)

)
hp(t) +

m∑
q=1

bpq(t)fq
(
hq(t)

)
+

m∑
q=1

cpq(t)gq
(
hq(t− η(t))

)
+

m∑
q=1

dpq(t)lq
(
hq(t− η(t))

)
+

m∑
q=1

bpq(t)
(
fq
(
λyq(t)

)
− λfq

(
yq(t)

))
+

m∑
q=1

cpq(t)
(
gq
(
λyq(t− η(t))

)
− λgq

(
yq(t− η(t))

))
+

m∑
q=1

dpq(t)
(
lq
(
λyq(t− η(t))

)
− λlq

(
yq(t− η(t))

))
+(1− λ)Up(t)

]
+

m∑
q=1

[
σpq

(
hq(t− η(t))

)]∗[
σpq

(
hq(t− η(t))

)]
+

m∑
q=1

[
σpq

(
λyq(t− η(t))

)
− λσpq

(
yq(t− η(t))

)]∗
×
[
σpq

(
λyq(t− η(t))

)
− λσpq

(
yq(t− η(t))

)]}
= max

p∈Λ

{[(
− ap(t)− θp(t)

)
h∗p(t)hp(t) +

m∑
q=1

hp(t)
[
bpq(t)fq

(
hq(t)

)]∗
+

m∑
q=1

hp(t)
[
cpq(t)gq

(
hq(t− η(t))

)]∗
+

m∑
q=1

hp(t)
[
dpq(t)lq

(
hq(t− η(t))

)]∗
+

m∑
q=1

hp(t)
[
bpq(t)

(
fq
(
λyq(t)

)
− λfq

(
yq(t)

))]∗
+

m∑
q=1

hp(t)
[
cpq(t)

(
gq
(
λyq(t− η(t))

)
− λgq

(
yq(t− η(t))

))]∗
9



+
m∑
q=1

hp(t)
[
dpq(t)

(
lq
(
λyq(t− η(t))

)
− λlq

(
yq(t− η(t))

))]∗
+(1− λ)∗U∗

p (t)hp(t)

]
+

[(
− ap(t)− θp(t)

)
h∗p(t)hp(t)

+
m∑
q=1

h∗p(t)bpq(t)fq
(
hq(t)

)
+

m∑
q=1

h∗p(t)cpq(t)gq
(
hq(t− η(t))

)
+

m∑
q=1

h∗p(t)dpq(t)lq
(
hq(t− η(t))

)
+

m∑
q=1

h∗p(t)bpq(t)
(
fq
(
λyq(t)

)
−λfq

(
yq(t)

))
+

m∑
q=1

h∗p(t)cpq(t)
(
gq
(
λyq(t− η(t))

)
− λgq

(
yq(t− η(t))

))
+

m∑
q=1

h∗p(t)dpq(t)
(
lq
(
λyq(t− η(t))

)
− λlq

(
yq(t− η(t))

))
+(1− λ)Up(t)h

∗
p(t)

]
+

m∑
q=1

[
σpq

(
hq(t− η(t))

)]∗[
σpq

(
hq(t− η(t))

)]
+

m∑
q=1

[
σpq

(
λyq(t− η(t))

)
− λσpq

(
yq(t− η(t))

)]∗
×
[
σpq

(
λyq(t− η(t))

)
− λσpq

(
yq(t− η(t))

)]}
≤ max

p∈Λ

{(
− 2ap(t)− 2θp(t) + 6

)
h∗p(t)hp(t) +

m∑
q=1

[
bpq(t)fq

(
hq(t)

)]∗
×
[
bpq(t)fq

(
hq(t)

)]
+

m∑
q=1

[
cpq(t)gq

(
hq(t− η(t))

)]∗
×
[
cpq(t)gq

(
hq(t− η(t))

)]
+

m∑
q=1

[
dpq(t)lq

(
hq(t− η(t))

)]∗
×
[
dpq(t)lq

(
hq(t− η(t))

)]
+
[
h∗p(t)hp(t) + (1− λ)∗(1− λ)U∗

p (t)Up(t)
]

+
m∑
q=1

[
bpq(t)

(
fq
(
λyq(t)

)
− λfq

(
yq(t)

))]∗[
bpq(t)

(
fq
(
λyq(t)

)
−λfq

(
yq(t)

))]
+

m∑
q=1

[
cpq(t)

(
gq
(
λyq(t− η(t))

)
− λgq

(
yq(t− η(t))

))]∗
×
[
cpq(t)

(
gq
(
λyq(t− η(t))

)
− λgq

(
yq(t− η(t))

))]
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+
m∑
q=1

[
dpq(t)

(
lq
(
λyq(t− η(t))

)
− λlq

(
yq(t− η(t))

))]∗
×
[
dpq(t)

(
lq
(
λyq(t− η(t))

)
− λlq

(
yq(t− η(t))

))]
+

m∑
q=1

[
σpq

(
hq(t− η(t))

)]∗[
σpq

(
hq(t− η(t))

)]
+

m∑
q=1

[
σpq

(
λyq(t− η(t))

)
− λσpq

(
yq(t− η(t))

)]∗
×
[
σpq

(
λyq(t− η(t))

)
− λσpq

(
yq(t− η(t))

)]}
≤ max

p∈Λ

{(
− 2ap(t)− 2θp(t) + 7

)
h∗p(t)hp(t) +

m∑
q=1

(
b̄pqL

f
q

)2
×
(
hq(t)

)∗(
hq(t)

)
+

m∑
q=1

(
c̄pqL

g
q

)2(
hq(t− η(t))

)∗(
hq(t− η(t))

)
+

m∑
q=1

(
d̄pqL

l
q

)2(
hq(t− η(t))

)∗(
hq(t− η(t))

)
+ (1− λ)∗(1− λ)

×U∗
p (t)Up(t) +

m∑
q=1

(
Lσ
pq

)2(
hq(t− η(t))

)∗(
hq(t− η(t))

)
+

m∑
q=1

2
(
b̄pq

)2[(
fq
(
λyq(t)

))∗(
fq
(
λyq(t)

))
+ λ∗λ

(
fq
(
yq(t)

))∗(
fq
(
yq(t)

))]
+

m∑
q=1

2
(
c̄pq

)2[(
gq
(
λyq(t− η(t))

))∗(
gq
(
λyq(t− η(t))

))
+λ∗λ

(
gq
(
yq(t− η(t))

))∗(
gq
(
yq(t− η(t))

))]
+

m∑
q=1

2
(
d̄pq

)2[(
lq
(
λyq(t− η(t))

))∗(
lq
(
λyq(t− η(t))

))
+λ∗λ

(
lq
(
yq(t− η(t))

))∗(
lq
(
yq(t− η(t))

))]
+

m∑
q=1

2
[(
σpq

(
λyq(t− η(t))

))∗(
σpq

(
λyq(t− η(t))

))
+λ∗λ

(
σpq

(
yq(t− η(t))

))∗(
σpq

(
yq(t− η(t))

))]
≤ max

p∈Λ

{
−

[
2ap + 2θp − 7

]
h∗p(t)hp(t) +

m∑
q=1

(
b̄pqL

f
q

)2(
hq(t)

)∗(
hq(t)

)
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+
m∑
q=1

(
c̄pqL

g
q

)2(
hq(t− η(t))

)∗(
hq(t− η(t))

)
+

m∑
q=1

(
d̄pqL

l
q

)2
×
(
hq(t− η(t))

)∗(
hq(t− η(t))

)
+ (1− λ)∗(1− λ)

(
Ūp

)2
+

m∑
q=1

(
Lσ
pq

)2(
hq(t− η(t))

)∗(
hq(t− η(t))

)
+

m∑
q=1

2
(
b̄pq

)2(
Lf
q

)2[
1 + λ∗λ

]
+

m∑
q=1

2
(
c̄pq

)2(
Lg
q

)2[
1 + λ∗λ

]
+

m∑
q=1

2
(
d̄pq

)2(
Ll
q

)2[
1 + λ∗λ

]
+

m∑
q=1

2
(
Lσ
pq

)2[
1 + λ∗λ

]}

≤ max
p∈Λ

{
−

[
2ap + 2θp − 7−

n∑
q=1

(
b̄qpL

f
q

)2]
h∗p(t)hp(t)

+

[ n∑
q=1

(
c̄qpL

g
q

)2
+

m∑
q=1

(
d̄qpL

l
q

)2
+

m∑
q=1

(
Lσ
qp

)2]
h∗p(t− η(t))hp(t− η(t))

+(1− λ)∗(1− λ)
(
Ūp

)2
+

m∑
q=1

2
[
1 + λ∗λ

][(
b̄pqL

f
q

)2
+
(
c̄pqL

g
q

)2
+
(
d̄pqL

l
q

)2
+
(
Lσ
pq

)2]}
≤ −ρV (t, h(t)) + ϱV (t, h(t− η(t))) + ϑ, (3.5)

where

ρ = min
p∈Λ

{
2ap + 2θp − 7−

m∑
q=1

(
b̄qpL

f
q

)2}
,

ϱ = max
p∈Λ

{ m∑
q=1

(
c̄qpL

g
q

)2
+

m∑
q=1

(
d̄qpL

l
q

)2
+

m∑
q=1

(
Lσ
qp

)2}
,

ϑ = max
p∈Λ

{
(1− λ)∗(1− λ)

(
Ūp

)2
+

m∑
q=1

2
[
1 + λ∗λ

]
×
[(
b̄pqL

f
q

)2
+
(
c̄pqL

g
q

)2
+
(
d̄pqL

l
q

)2
+
(
Lσ
pq

)2]}
.

Next, choosing the mathematical expectation of both sides of (3.4), we get

dEV (t, h(t))

dt
= −ρEV (t, h(t)) + ϱEV (t, h(t− η(t))) + ϑ. (3.6)

Since ρ− ϱ > 0, by Lemma 3.1, it yields

EV (t, h(t)) = sup
s∈[−η,0]

EV (s, h(s))e−ξt +
ϑ

ξ
,

12



if ρ− ϱeξη − ξ = 0, the unique solution is ξ > 0, which implies that

E∥h(t)∥20 = sup
s∈[−η,0]

EV (s, h(s))e−ξt +
ϑ

ξ
.

Hence, we have that the solution of system (3.4) converges to the regionW =
{
h(t)

∣∣E∥h(t)∥20 ≤
ϑ
ξ

}
in mean square. Therfore, from Definition 3.2, we get that quasi-projective synchroniza-

tion in mean square of networks (2.1) and (3.1). This completes the proof.

Remark 3.1. In fact, when λ = 1, we have ϑ = 0, then the problem to consider becomes the
mean square synchronization between the networks (2.1) and (3.1).

Corollary 3.1. suppose (S1) is correct for the drive network (2.1) and response network
(3.1) are synchronized in mean square through the linear controller (3.2), if there exist two
constants ρ, ϱ > 0, such that

ρ = min
p∈Λ

{
2ap + 2θp − 3−

m∑
q=1

(
b̄qpL

f
q

)2}
> 0,

ϱ = max
p∈Λ

{ m∑
q=1

(
c̄qpL

g
q

)2
+

m∑
q=1

(
d̄qpL

l
q

)2
+

m∑
q=1

(
Lσ
qp

)2}
> 0

and ρ− ϱ > 0.

Remark 3.2. So far, there are few studies on quasi-projective synchronization of quaternion-
valued stochastic neural networks with time delays and state-feedback control scheme. There-
fore, our theoretical results are an extension and supplement to the study of quaternion-valued
stochastic neural networks with time delays and state-feedback control. Moreover, considering
similar networks (2.1) and (3.1), but no stochastic perturbations, we can analyze it in the
same way. The proof is omitted here.

4 Illustrative Example

In this section, we present a numerical example to validate the practicality of the main
results derived for the stochastic quaternion-valued neural network with time delays and
state-feedback control, as discussed in previous sections of this paper.

Example 4.1. Set m = 2, let us consider the following stochastic quaternion-valued neural
network with time delays:

dyp(t) =

[
− ap(t)yp(t) +

2∑
q=1

bpq(t)fq
(
yq(t)

)
+

2∑
q=1

cpq(t)gq
(
yq(t− η(t))

)
+Up(t)

]
dt+

2∑
q=1

σpq
(
yq(t− η(t))

)
dwq(t), (4.1)

13



the given response network corresponds to

dzp(t) =

[
− ap(t)zp(t) +

2∑
q=1

bpq(t)fq
(
zq(t)

)
+

2∑
q=1

cpq(t)gq
(
zq(t− η(t))

)
+Up(t) + Ep(t)

]
dt+

2∑
q=1

σpq
(
zq(t− η(t))

)
dwq(t), (4.2)

and the state-feedback controller is as follow:

Ep(t) = −θp(t)hp(t) +
2∑

q=1

dpq(t)lq
(
hq(t− η(t))

)
, (4.3)

in which p = 1, 2, and select the network parameters:

fq(yq) =
1

4
sin yRq + i

1

5
sin yIq + j

1

4
tanh yJq + k

1

8
sin yKq ,

gq(yq) =
1

10
tanh yRq + i

1

5

∣∣yIq ∣∣+ j
1

8
sin yJq + k

1

5
sin yKq ,

σpq(yq) =
1

20

∣∣yRq ∣∣+ i
1

10
sin yIq + j

1

5

∣∣yJq ∣∣+ k
1

25
arctan yKq ,

lq(hq) =
1

10
arctanhRq + i

1

5
tanhhIq + j

1

20
sinhJq + k

1

10

∣∣hKq ∣∣,
a1(t) = 3 + | sin(

√
3t)|, a2(t) = 6− 2.5 cos(

√
5t), η(t) =

1

2
| cos t|,

b11(t) = b12(t) = 0.2 sin(
√
2t) + i0.2 cos(3t) + j0.4 cos(

√
3t) + k0.3 cos(3t),

b21(t) = b22(t) = 0.4 cos(3t) + i0.2 cos(3t) + j0.5 sin(
√
2t) + k0.5 sin(

√
2t),

c11(t) = c12(t) = 0.1 cos(
√
3t) + i0.3 cos(2t) + j0.2 sin(2t) + k0.1 sin(3t),

c21(t) = c22(t) = 0.2 sin t+ i0.4 cos(3t) + j0.5 cos t+ k0.3 sin(
√
3t),

θ1(t) = 1 + | sin(
√
3t)|, θ2(t) = 2− 0.5 sin(

√
3t),

d11(t) = d21(t) = 0.5 sin(3t) + i0.2 cos t+ j0.3 sin(
√
3t) + k0.2 cos(

√
3t),

d12(t) = d22(t) = 0.3 cos t+ i0.5 sin t+ j0.4 sin(
√
3t) + 0.45k cos t,

U1(t) = 0.25 cos(
√
2t) + i0.45 sin(3t) + j0.35 cos(

√
2t) + k0.35 sin(

√
2t),

U2(t) = 0.35 sin(
√
3t) + i0.45 cos(

√
3t) + j0.55 sin t+ k0.25 cos(

√
5t).

In this case, by a relative simplify calculation, one has

a1 = 3, a2 = 4, θ1 = 1, θ2 = 1.5, η(t) ≤ 1

2
,
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Lf
q ≤ 0.425, Lg

q ≤ 0.325, Lσ
pq ≤ 0.2326, Ll

q ≤ 0.25,

b̄11 = b̄12 ≤ 0.5745, b̄21 = b̄22 ≤ 0.8367,

c̄11 = c̄12 ≤ 0.3873, c̄21 = c̄22 ≤ 0.7348,

d̄11 = d̄21 ≤ 0.6481, d̄12 = d̄22 ≤ 0.8124,

Ū1 ≤ 0.6164, Ū2 ≤ 0.7348.

Then we have

ρ = min
p=1,2

{
2ap + 2θp − 7−

2∑
q=1

(
b̄qpL

f
q

)2} ≈ 0.8139 > 0,

ϱ = max
p=1,2

{ 2∑
q=1

[(
c̄qpL

g
q

)2
+
(
d̄qpL

l
q

)2
+
(
Lσ
qp

)2]} ≈ 0.2486 > 0

and ρ− ϱ = 0.5653 > 0.
Here, choose λ = 0.2 + 0.3i+ 0.1j + 0.4k, then

ϑ = max
p=1,2

{
(1− λ)∗(1− λ)

(
Ūp

)2
+

n∑
q=1

2
[
1 + λ∗λ

]
×
[(
b̄pqL

f
q

)2
+
(
c̄pqL

g
q

)2
+
(
d̄pqL

l
q

)2
+
(
Lσ
pq

)2]} ≈ 2.6729 > 0

and ξ ≈ 0.4954 > 0 is the unique solution of algebra equation ρ − ϱeξη − ξ = 0. So, the
conditions of Theorem 3.1 all holds. Therefore, according to Theorem 3.1, networks (4.1) and
(4.2) is quasi-projectively synchronization by convergence region

W =

{
h(t) ∈ Qm

∣∣E∥h(t)∥20 ≤ 2.6729

0.4954
≈ 5.3954

}
,

which is verified by Fig. 6. Figs. 1 and 2 show the phase trajectories of four parts of network
(4.1) with initial condition (yR1 (0), y

R
2 (0))

T = (0.19,−0.19)T , (0.15,−0.05)T , (yI1(0), y
I
2(0))

T =
(−0.25, 0.35)T , (0.15,−0.15)T , (yJ1 (0), y

J
2 (0))

T = (−0.05,−0.25)T , (0.35, 0.15)T , (yK1 (0), yK2 (0))T =
(0.35,−0.15)T , (−0.35, 0.05)T . Figs. 3 and 4 show the phase trajectories of four parts of
netwrok (4.2) with initial condition (zR1 (0), z

R
2 (0))

T = (0.25,−0.25)T , (0.15,−0.05)T , (zI1(0), z
I
2(0))

T =
(−0.25, 0.35)T , (0.15,−0.15)T , (zJ1 (0), z

J
2 (0))

T = (−0.05,−0.25)T , (0.35, 0.15)T , (zK1 (0), zK2 (0))T =
(0.35,−0.15)T , (−0.35, 0.05)T . Fig. 5 illustrates the progression of synchronization error with-
out a controller, demonstrating the failure to achieve quasi-projection synchronization.
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Figure 1: The trajectories of drive system states yRp and yIp, p = 1, 2.
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Figure 2: The trajectories of drive system states yJp and yKp , p = 1, 2.
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Figure 3: The trajectories of response system states zRp and zIp , p = 1, 2.
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Figure 4: The trajectories of response system states zJp and zKp , p = 1, 2.

17



0 2 4 6 8 10 12 14 16 18 20

t

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

h
(t
)

1

R

2

R

1

I

2

I

1

J

2

J

1

K

2

K
h h h h h h h h

Figure 5: The evolution curves of quasi-projective synchronization error h(t) without con-
troller Ep(t).
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Figure 6: The evolution curves of quasi-projective synchronization error h(t) with state-
feedback controller Ep(t).
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5 Conclusions and future works

In this article, the quasi-projective synchronization in quaternion-valued stochastic neu-
ral networks, with the consideration of time delays and a state-feedback control scheme, has
been examined. By employing the quaternionic form of the Itô formula, along with several in-
equality techniques within the quaternionic range framework, a criterion for quasi-projective
synchronization in the error network has been established. Finally, we provide an example and
conduct computer simulations to demonstrate the practicality and validity of our research re-
sults. These results are not only applicable for addressing quasi-projective synchronization in
quaternion-valued neural networks with time-varying delays but also provide an enhancement
over several previous outcomes. The state-feedback control methods are still valid for design-
ing the quasi-projective synchronization of Clifford-valued neural networks with time delays.
This is something we will continue to explore and study in our future work, and we will con-
centrate on addressing quasi-projective synchronization challenges in delayed fractional-order
stochastic quaternion-valued neural networks, considering a state-feedback control scheme,
and exploring alternative synchronization control techniques. Further investigations of quasi-
projective synchronization in the real applications of image recognition.
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