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Abstract: A 3-species nonautonomous ratio-dependent reaction-diffusive predator-prey system is
considered in this article. Firstly, by utilizing a comparison principle and fixed point theorem, the
existence of solution of the system which is space homogenous strictly positive and periodic is
obtained. And the obtained conditions ensuring the existence of solution can be very easily verified.
At the same time, we develop some new analysis techniques as a byproduct. Furthermore, with the
help of the upper and lower solutions (UALS) approach for the parabolic partial differential
equations and Lyapunov theory, we aim at the globally asymptotically stability problems of the
solutions, and some judgment criteria are achieved. Finally, we give some numerical simulations
results which validate the theoretical findings of this article.
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1. Introduction
More and more attention has been paid to stability analysis theory of predator-prey models[1-10]

since 1920s when Lotka [11] and Volterra [12] proposed the classical Lotka-Volterra predator-prey
model. The "functional response" is thought as the core question in these models, which describes
the rate at which predators consume prey. In 1989, Arditi and Ginzburg [13] incorporated predator
dependence into functional responses, where they regarded the response function as a function of
ratio. Then, in 1999, Conser et al. [14] showed that it’s more appropriate to consider
ratio-dependent terms into predator-prey model by using some basic but different principles. In
2000, authors in [15] constructed a kind of average Lyapunov function to study a food web model,
combined with the knowledge of saturated equilibria, the problems of permanent coexistence and
extinction are studied of species. In 2009, M. Haque [16] considered a predator-prey models with
interacting populations and ratio-dependent, and obtained the stability of the system. In 2013, Gao
and Li [17] studied a predator-prey ratio-dependent system which has a strong Allee effect in prey
and has a Bogdanov-Takens bifurcation related with a catastrophic crash of the predator population.
In 2015, Agrawal and Saleem [18] considered a predator-prey system with three different
populations and ratio-dependent and proved that for the suitable parameters, the model has chaotic
attractors. In 2018, Mandal [19] researched a stochastically forced predator-prey ratio-dependent
system especially with Allee effect for prey population and demonstrated that the model has the
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stable interior equilibrium point or limit cycle for the coexistence of both species. In 2020, Jiang et
al. [20] considered a predator-prey model with ratio-dependent, the qualitative behaviors are
investigated. By utilizing he comparison principle, the global asymptotical stability are studied for
the boundary equilibrium, and some sufficient conditions without delays and diffusion effect were
obtained. More recently, in 2023, Yu et al. [21] investigated a novel predator-prey ratio-dependent
model which has additional food supply and obtained rich dynamic properties of the system. It is
noteworthy that none of the above ratio-dependent predator-prey systems contain diffusion terms.
Due to the fact that animals always involuntarily gather towards food and water sources, the new
model obtained by adding diffusion terms to the above model can more truly depict the objective
laws of interactions between species. However, the methods mentioned in the above literature
cannot be directly used to study this type of new models.

On the other hand, in mathematical ecology, the classic predator prey models only reveals the
population changes caused by predation when the densities of predators and prey are independent of
space. It ignores the fact that populations are generally not evenly distributed, as well as that prey
and predator instinctively find ways to survive. Prey species (herbivores) usually gather in areas
with rich water and grass, while predators (carnivores) typically lurk in areas where prey is
frequently found. Above factors are concerned with the diffusion process, which may be fairly
complex due to the different aggregation of predator and prey leading to different species mobility.
Such mobility can be affected by the aggregation of the different species (cross diffusion) or that of
same species (diffusion). Therefore, studying reaction-diffusion population models has important
theoretical and practical significance. In recent years, predator-prey models with diffusion have
received widespread attention. In 2013, Ko and Ahn [22-23] studied a reaction-diffusion
ratio-dependent system with two competing predator species and one prey and achieved the global
attractor and persistence of the equations. In 2015, Yang et al. [24] studied a reaction-diffusive food
chain model with homogeneous Robin boundary conditions and obtained the existence and
uniqueness for coexistence states as well as the existence of the global attractor by using the fixed
point index theory. In 2017, Wang [25] investigated the dynamical behavior of a predator-prey
diffusive model and obtained some conditions ensuring the existence of non-constant equilibrium
solutions and periodic orbits with the help of coincidence degree theory and bifurcation approach.
In 2018, Wang and Zhang [26] investigated a reaction-diffusive Leslie-Gower prey-predator model
with double free boundaries and proved the existence, uniqueness and regularity of global solution
for the model. In 2020, Wu and Zhao [27] studied the existence and stability of the equilibrium
solution for predator-prey diffusive model by constructing generalized Jacobian matrix. In 2021,
Tian ang Guo [28] studied a reaction-diffusive predator-prey model with Allee effect and constant
stocking rate for predator and obtained some sufficient conditions ensuring the asymptotical
stability of a spatially homogeneous steady-state solution. In 2022, Yan and Zhang [29] studied a
predator-prey diffusion system with B-D response function and obtained some conditions to ensure
the stability and instability conditions of the positive equilibrium solutions for the model. It is worth
noting that the above systems are all autonomous. However, it is very difficult to study the reaction
diffusion ecosystem of more than three species using the eigenvalue methods mentioned in the
above literature, and it is even more difficult to research nonautonomous reaction diffusion model.
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Additionally, most natural environments (such as seasonal effects of weather, food supplies,
mating habits and so forth) are dynamically evolutional such that the birth rate, death rate, and
interaction of a population are not invariable and the parameters in an real ecosystem model should
be a function of time rather than a constant. Therefore, studying nonautonomous ecosystems is
more meaningful than studying corresponding autonomous ecosystems. In 2015, Li and She [30]
studied a nonautonomous density-dependent predator-prey model and obtained some sufficient
condition of the permanence for the model and the uniqueness of positive periodic solutions. In
2017, Jiang et al. [31] studied a nonautonomous food web with B-D functional response and
obtained the existence of positive periodic solution for the model by using Leray-Schauder degree
theory. In 2019, Wang et al. [32] studied a nonautonomous predator-prey model with feedback
controls and prey diffusion and established some easily verifiable sufficient conditions which
guarantee the permanence and globally stability of positive solution for the system by using the
delayed differential inequalities and Lyapunov stability theory. In 2020, Tripathi et al. [33] studied
a nonautonomous predator-prey model with Crowley-Martin functional response and achieved
some sufficient conditions to ensure the permanence and globally attractivity of periodic solution
for the system. In 2021, Wu et al. [34] studied a nonautonomous predator-prey model with a prey
refuge and Holling type II schemes and obtained some sufficient conditions that ensure the
permanence and global stability of the system by using the Lyapunov stability theory and
comparison theorem of differential equations. In 2022, Sk et al. [35] researched a nonautonomous
3-species predator-prey system and obtained some sufficient conditions that ensure the stability and
instability of periodic solution for the model. In 2023, Guo and Ma [36] studied a nonautonomous
periodic predator-prey model with fear effect and general functional responses and achieved some
sufficient conditions to ensure the existence of positive periodic solutions for the model by
employing the coincidence degree theory. It is worth noting that the above systems are all
nonautonomous predator-prey model without diffusion. However, it is very difficult to study the
nonautonomous reaction-diffusion ecosystem using the methods obtained in the above literature.

The analysis of ecosystem stability has always been an important topic that biologists and
mathematicians are committed to researching. However, as we know, the stability analysis for a
nonautonomous predator-prey reaction-diffusion model with multi-species and ratio-dependent
functional responses is rather difficult because the interaction in different species is more complex
and diverse. Based on this, the researches on this field are still open. More and more experts and
scholars focus on attention to reaction-diffusion models especially with 3-species recently, but their
researches primarily concerned with the competition and mutualism systems without or with delay
(cf. [37-43]) as well as the prey-predator systems without ratio-dependent functional responses (cf
[44-47]). As is well known, the methods for studying reaction-diffusion competition and mutualism
models are difficult to directly apply to studying predator-prey models, especially nonautonomous
multi-species reaction-diffusion predator-prey models. At the same time, the introduction of ratio-
dependence functions also greatly increases the difficulty of model research.

Based on the above analysis and inspired by the previous works, in this work, we focus on the
following 3-species nonautonomous ratio-dependent predator-prey reaction-diffusion model
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with the following boundary and initial conditions

0( , ) / 0, ( , ) , ( ,0) ( ) 0, , 1,2,3.i i iu x t n x t R u x u x x i        (1.2)

where  is a bounded smooth domain in nR with boundary  ,  is a Laplace operator on  ,
/ n  is the outward normal derivation on  , ( , )iu x t denotes the density of i-th populations at the

time of t and point 1 2( , , , ).nx x x x  From Table 1.1, it can be seen that the biological significance

of the parameters in model (1.1).
Table 1.1 The biological significance of parameters in model (1.1)

The coefficients of the reaction-diffusion predator-prey model (1.1) are positive and continuous,
- periodic functions. The systems (1.1)-(1.2) describe the interaction between predator and prey

species which is based on ratio-dependent functions. And it is an extended model of the famous
Lotka-Volterra predator-prey model which have one prey and two competing predators, whose
reduction systems have been intensively investigated. Especially, Wang et al. [48] researched the
model (1.1) with feedback controls and without diffusion. In this paper, the strictly positive space
homogenous periodic solution are studied, and the global asymptotic stability of the new system are
given in which we only need a set of easily verified conditions. These results show the permanence
of the nonautonomous predator-prey ratio-dependent reaction-diffusion system, the instability of the
semitrivial solutions and trivial solutions.

The article organization are showed as follows. In Section 2, we will give some preliminary
results and definitions. In Section 3, we will investigate the existence of the strictly positive space
homogenous periodic solution of the predator-prey model. In Section 4, we pay more attention to
the globally asymptotically stability of the strictly positive periodic solution. In Section 5, we will
give some numerical simulation to support the theoretical findings of this article. Lastly, we will
give a conclusion to summarize the important contributions of this article.
Remark 1: The innovations and achievements of this article are listed as follows: (1) By

introducing ratio-dependent functional responses and variable coefficient into the known population
models, a new Lotka-Volterra predator-prey model that can more truly depict the interaction among
populations is proposed. (2) By considering of comparison principle and fixed point method, in this
process, some new theories and methods have been creatively developed, the existence of the
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strictly positive space homogenous periodic solution of the new predator-prey system are obtained
in which only a set of simplify verified conditions are needed. (3) By constructing a novel
Lyapunov functions and utilizing the approach of UALS for the parabolic partial differential
equations, the globally asymptotically stability of the space homogenous strictly positive periodic
solution are studied in which some sufficient conditions are obtained. (4) Compared with the results
in [22, 23, 25, 27, 29, 48], the results obtained in this article are more general, and provides more
convenience for the further long-term application of Lotka-Volterra predator-prey model.

2. Preliminary
Some definition and preliminary results are showed in this section.

Definition 2.1 Suppose that 1 2 3( , ) ( ( , ), ( , ), ( , ))U x t u x t u x t u x t    , 1 2 3
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and

0 0ˆ ˆ( , ) / 0, ( , ) / 0,( , ) , ( ,0) ( ), ( ,0) ( ), , 1,2,3,i i i i i iu x t n u x t n x t R u x u x u x u x x i           

Then ( , )U x t and ˆ ( , )U x t are called a pair of ordered UALS for model (1.1)-(1.2) .

Lemma 2.1 ([49]) If ( , )U x t and ˆ( , )U x t are a pair of ordered UALS for models (1.1)-(2.2), then

models (1.1)-(1.2) have a unique solution ( , )U x t . Furthermore, it follows that ˆ( , ) ( , ) ( , )U x t U x t U x t  .

Lemma 2.2 ([50]) Suppose that the function ( ) :x R R   is uniformly continuous, and the limit

0
lim ( )

x

x
s ds

  exists and is finite, then lim ( ) 0.
x

x




Lemma 2.3 ([51]) Suppose that nV R is compact and convex and the mapping :V V  is

continuous, then there exists *x V such that * *( )x x  .

3. Existence of the spatial homogeneity periodic solution
Suppose that ( )x is - periodic function inR , we denote

sup{ ( ), },m x x R     inf ( ),l x x R    .
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Next, we study the following ODE corresponding to model (1.1)
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For the ODE (3.1), we let
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Definition 3.1 Suppose that there exist seven positive real numbers , , ( 1,2,3)i iM m i  and ,T such

that ( ) ,i i iM u t m  as t T for each positive solution 1 2 3( ( ), ( ), ( ))u t u t u t of the ODE (3.1) with the

positive initials, then ODE (3.1) is called permanent.
Theorem 3.1 If it holds that

1( )H 1 12 13 12 13 13 12 0l l l m l m lr b b a b a b   , 2( )H 21 23 3 2 0l m ma a M r   , 3( )H 31 32 2 3 0l m ma a M r   .
Then the ODE (3.1) is permanent.
Proof. When the ODE (3.1) satisfies the conditions 1 3( ) ( )H H , we choose six appropriate

positive numbers )3,2,1(,, imM ii to satisfy the following inequality

.0**  iiii mmMM (3.2)
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Based on the comparison theorem of ODE, it follows that
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The above inequality contradicts 1 1( )u t M , so we can choose a adequacy large 001  tT such that

1 1( )M u t when 1Tt  . (3.3)

According to the second equation of ODE (3.1), and using (3.3), we can get



7

2 12 2 1 21 1
2

12 2 1

*2 12 1 21 2 2 12
2 2 2 2 2

12 2 1 2

2 2

12 12 2 1

2 12
2

12 2

1 1
2 2

12 2 1

( ( ) )( )[ ]
( )

( )( ) [ ( )

( ) ( )[ ]
( ) ( )

] ( ) [ ( ) ]
( ) ( )

( )
( )

l l m

l

l l m l l l

l l l l

l

m

l

l

l r b u t M a Mu t
b u t M

r b M a r r bu t u t u t u t M
b u t M r b b u t M

r bu t
b u

du t a Mu t r
dt t u t

t M

b M
  





  

 

 
 











2 2
1

[ ( ) ].u t M 

According to the same analysis method as above, one has
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2 2 2 2

2

2 2
12 2 1 1

3 3 21 1 23 3

23 3

23 3

2

23 3

2 1

( ) ( )( ) [ ( ) ]
( ) ( )

( ) ( )( ) [ ( ) ] ( ) [ ( ) ].
( ) ( )

lm m m

m m m

m m m m

m

m

m

m

m

m m

ar b r mu t u t
b u t m r b

r b r bu t

M

u t m u
t

a M m a

u

a M

a M at u t m
b u t m

M
b m

  
  

 

 
     

 

By the similar analysis method above and the comparison theorem of ODE, it holds that
(7) When 2 0 2( )u t m , if 0t t , then 2 2( )u t m ,

(8) When 2 0 20 ( )u t m  , if there exists a sufficiently large t , we have 2 2( )m u t .

Therefore, we can choose a adequacy large 002  tT such that

2 2( )m u t when 2Tt  . (3.7)

Analogously, it follows that there is a adequacy large 003  tT such that

* 1 32 2 31 3
3 3 3 3

3 13 32 13 2

( )0 ( ),
m l m

m m m m

m a M a rm u t m m
r b a b M
  

   


when 3Tt  . (3.8)

From (3.3)-(3.8), and set  iii
TTT 


,max

31
, then we have ( )i i iM u t m  as T t for each positive

solution 1 2 3( ( ), ( ), ( ))u t u t u t of ODE (3.1) with any positive initial values. The proof of Theorem 3.1 is

completed.
Theorem 3.2 If the model (1.1) satisfy the assumptions 1 3( ) ( )H H , there is a strictly positive

spatial homogeneity - periodic solution  * * *
1 2 3( ) ( ), ( ), ( )U t u t u t u t for the model (1.1).

Proof. Based on the existence and uniqueness theorem of solutions of ODE, we can define a
Poincaré mapping 3 3:R R   in the following form

0 0 0( ) ( , , , )U U t t U  ,

where 0 0 1 2 3( , , , ) ( ( ), ( ), ( ))U t t U u t u t u t  be a positive solution of ODE (3.1) subject to the initial

conditions 0 1 0 2 0 3 0( ( ), ( ), ( ))U u t u t u t . And define

 3
1 2 3( , , ) , 1, 2, 3i i iS u u u R m u M i     ,

then it is quite clear that that 3
RS is a convex and compact set. By the Theorem 3.1 and the

continuity of solution of ODE (3.1) with regard to the initial values, it is not difficult to know that
the mapping  is a continuous mapping from S to S . Furthermore, from Lemma 2.3 we can

obtain that ODE (3.1) has a positive - periodic solution 1 2 3( ( ), ( ), ( )), .u t u t u t t R    It is easy to

know that 1 2 3( ( ), ( ), ( ))u t u t u t   is the spatial homogeneity - periodic solution for system (1.1). This

finishes the proof of Theorem 3.2.

4. Stability of the spatial homogeneity periodic solution
In present section, we obtain the globally asymptotically stability of the spatial homogeneity
- periodic solution of model (1.1) by invoking the new method of UALS for the parabolic partial

differential equations and Lyapunov stability theory, some easily verifiable sufficient conditions are
given.
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Theorem 4.1 Suppose that the - periodic model (1.1) satisfies assumptions 1 3( ) ( )H H and

the following assumptions

4( )H 13 13 31 312 12 21 2
11 2 2

12 2 1 13 3 1

( )( ) 0
( ) ( )

m m mm m m
l

l l

a b a Ma b a Ma
b m m b m m


  

 
;

5( )H 12 1 21 12 1
32 2 2

12 2 1 12 2 1

0
( ) ( )

m l l
m

l m

a M a b ma
b m m b M M

   
 

;

6( )H 13 1 31 13 1
23 2 2

13 3 1 13 3 1

0
( ) ( )

m l l
m

l m

a M a b ma
b m m b M M

   
 

;

then there is a spatial homogeneity strictly positive - periodic solution 1 2 3( ( ), ( ), ( )).u t u t u t   And

the - periodic solution is globally asymptotically stable, i.e., the solution 1 2 3( ( , ), ( , ), ( , ))u x t u x t u x t
of models (1.1)-(1.2) with any initial values fulfills

 lim ( , ) ( ) 0i it
u x t u t


  , uniformly for x , 1,2,3i  . (4.1)

Proof. By means of Theorem 3.2, we have obtained the existence results, next we pay more
attention to the stability. Let 0min ( ),i ix

l u x


 0max ( ), 1,2,3,i ix
r u x i


  then 00 ( ) .i i il u x r   Let

1 2 3( ( ), ( ), ( ))u t u t u t   and 1 2 3ˆ ˆ ˆ( ( ), ( ), ( ))u t u t u t are the solutions for ODE (3.1) subject to initial values

1 2 3 1 2 3( (0), (0), (0)) ( , , )u u u r r r   and 1 2 3 1 2 3ˆ ˆ ˆ( (0), (0), (0)) ( , , )u u u l l l respectively, then there exist a pair of

ordered UALS 1 2 3( ( ), ( ), ( ))u t u t u t   and 1 2 3ˆ ˆ ˆ( ( ), ( ), ( ))u t u t u t for (1.1)-(1.2). Therefore, from Lemma 2.1

systems (1.1)-(1.2) have a unique solution 1 2 3( ( , ), ( , ), ( , )), ( , )u x t u x t u x t x t R , which satisfies

1 2 3 1 2 3 1 2 3ˆ ˆ ˆ( ( ), ( ), ( )) ( ( , ), ( , ), ( , )) ( ( ), ( ), ( ))u t u t u t u x t u x t u x t u t u t u t     .

If we can prove
ˆlim( ( ) ( )) lim( ( ) ( )) 0i i i it t

u t u t u t u t 

 
    , ( 1, 2,3),i  (4.2)

then (4.1) is established. So, if we want to achieve (4.2), we have to prove the solution

1 2 3( ( ), ( ), ( ))u t u t u t for ODE (3.1) with any positive initial value 1 2 3 10 20 30( (0), (0), (0)) ( , , )u u u u u u satisfies

 lim ( ) ( ) 0, 1,2,3.i it
u t u t i


   (4.3)

By means of Theorem 3.1, there exist seven positive real numbers iM , im and T such that

( )i i im u t M  when t T .

Set Lyapunov function
3

*

1
( ) ln ( ) ln ( ) , 0.i i

i
V t u t u t t



  

Suppose that ( )D V t is the right derivation on function ( )V t , it follows that
*3 3

* *
*

1 1

* * 2
1 1 11 1 1 12

12 2 1

( ) ( )1 1( ) [ ln ( ) ln ( ) ] sgn{ ( ) ( )}( )
( ) ( )

( )sgn{ ( ) ( )}[ ( )( ( ) ( )) ( )(
( ( ) ( ) ( ))

i i
i i i i

i i i i

du t du tD V t D u t u t u t u t
u t dt u t dt

u tu t u t a t u t u t a t
b t u t u t

 

 

    

    


 
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**
3 32

13* * * *
12 2 1 13 3 1 13 3 1

* *
2 2 23 3 3

*
1 1

21 3* *
12 2 1 12 2 1

( ) ( )( ) ) ( )( )]
( ( ) ( ) ( )) ( ( ) ( ) ( )) ( ( ) ( ) ( ))

sgn{ ( ) ( )}[ ( )( ( ) ( ))

( ) ( )( )( )] sgn{ ( )
( ) ( ) ( ) ( ) ( ) ( )

u t u tu t a t
b t u t u t b t u t u t b t u t u t

u t u t a t u t u t

u t u ta t u t
b t u t u t b t u t u t

  
  

   

   
 

*
3

*
* 1 1

32 2 2 31 * *
13 3 1 13 3 1

* *
1 1 11 1 1

* * * *
1 2 2 2 1 1

12
12 2 1 12 2

( )}

( ) ( )[ ( ( ) ( )) ( )( )]
( ) ( ) ( ) ( ) ( ) ( )

sgn{ ( ) ( )}[ ( )( ( ) ( ))

( )( ( ) ( )) ( )( ( ) ( ))( )
( ( ) ( ) ( ))( ( )

u t

u t u ta u t u t a t
b t u t u t b t u t u t

u t u t a t u t u t

u t u t u t u t u t u ta t
b t u t u t b t u

   
 

    

  
 * *

1
* * * *
1 3 3 3 1 1

13 *
13 3 1 13 3 1

* * * *
* 2 1 1 1 2 2

2 2 21 12
12 2 1 12 2

( ) ( ))

( )( ( ) ( )) ( )( ( ) ( ))( ) ]
( ( ) ( ) ( ))( ( ) ( ) ( ))

( )( ( ) ( )) ( )( ( ) ( ))sgn{ ( ) ( )}[ ( ) ( )
( ( ) ( ) ( ))( ( )

t u t

u t u t u t u t u t u ta t
b t u t u t b t u t u t

u t u t u t u t u t u tu t u t a t b t
b t u t u t b t u



  


 

  
 

 * *
1

*
23 3 3

* * * *
* 3 1 1 1 3 3

3 3 31 13 * *
13 3 1 13 3 1

*
32 2 2

* 12 2
1 1 11

( ) ( ))

( )( ( ) ( ))]

( )( ( ) ( )) ( )( ( ) ( ))sgn{ ( ) ( )}[ ( ) ( )
( ( ) ( ) ( ))( ( ) ( ) ( ))

( )( ( ) ( ))]

( ( )( ) ( ) [ ( )

t u t

a t u t u t

u t u t u t u t u t u tu t u t a t b t
b t u t u t b t u t u t

a t u t u t

a t au t u t a t



 

  
 

 

 


   

*
1 12 2

* *
12 2 1 12 2 1

*
13 31 13 3

* *
13 3 1 13 3 1

*
* 12 21 12 1

2 2 32
12 2 1 12

( ) ( )) ( )
( ( ) ( ) ( ))( ( ) ( ) ( ))

( ( ) ( ) ( )) ( ) ]
( ( ) ( ) ( ))( ( ) ( ) ( ))

( ( ) ( ) ( )) ( )( ) ( ) [ ( )
( ( ) ( ) ( ))( ( )

t b t u t
b t u t u t b t u t u t

a t a t b t u t
b t u t u t b t u t u t

a t a t b t u tu t u t a t
b t u t u t b t


 


 


  



*
* 12 21 12 2

1

* *
2 1

*
* 13

2
1 11 * *

1 2 1 1

*
31 13 1

3 3 23 *
13 2 1 13 2 1

2 2 1

13

( ( ) ( ) ( )) ( )( ) ( ) [ ( )
( ( ) ( )

]
( ) ( ))

( ( ) ( ) ( )) ( )( ) ( ) [ ( ) ]
( ( ) ( ) ( ))( ( ) ( ) ( )

(

)

))( ( ) ( ) ( ))

( (t

u t u t

a t a t b t u tu t u t a t
b t u t u t b t u t u t

a t a t b t u tu t u t a t
b t u t u t b t u t u t

a




  

 


    

 
*

31 13 3
* *

13 3 1 13 3 1
*

* 12 1
2 2 32 * *

12 2 1 12 2 1
*

21 12 1
* *

12 2 1 12 2 1

3

) ( ) ( )) ( ) ]
( ( ) ( ) ( ))( ( ) ( ) ( ))

( ) ( )( ) ( ) [ ( )
( ( ) ( ) ( ))( ( ) ( ) ( ))

( ) ( ) ( ) ]
( ( ) ( ) ( ))( ( ) ( ) ( ))

(

a t b t u t
b t u t u t b t u t u t

a t u tu t u t a t
b t u t u t b t u t u t

a t b t u t
b t u t u t b t u t u t

u t


 

  
 


 


*

* 13 1
3 23 * *

13 2 1 13 2 1
*

31 13 1
* *

13 2 1 13 2 1

( ) ( )) ( ) [ ( ) ]
( ( ) ( ) ( ))( ( ) ( ) ( ))

( ) ( ) ( ) ]
( ( ) ( ) ( ))( ( ) ( ) ( ))

a t u tu t a t
b t u t u t b t u t u t

a t b t u t
b t u t u t b t u t u t

 
 


 
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* 13 31 13 312 21 12 2
1 1 11 2 2

12 2 1 13 3 1

* 12 1 21 12 1
2 2 32 2 2

12 2 1 12 2 1

* 13 1 31 13 1
3 3 23 2

13 3 1 13 3

( )( )( ) ( ) [ ]
( ) ( )

( ) ( ) [ ]
( ) ( )

( ) ( ) [
( ) (

m m mm m m
l

l l

m l l
m

l m

m l l
m

l m

a a b Ma a b Mu t u t a
b m m b m m

a M a b mu t u t a
b m m b M M
a M a b mu t u t a

b m m b M M


    

 

    
 

    
  2

1

].
)

In view of conditions 4 6( ) ( )H H ，one has

13 31 13 312 21 12 2
11 2 2

12 2 1 13 3 1

12 1 21 12 1
32 2 2

12 2 1 12 2 1

13 1 31 13 1
23 2 2

13 3 1 13 3 1

( )( )min{ ,
( ) ( )

,
( ) ( )

} 0.
( ) ( )

m m mm m m
l

l l

m l l
m

l m

m l l
m

l m

a a b Ma a b Ma
b m m b m m
a M a b ma

b m m b M M
a M a b ma

b m m b M M

 
  

 

  
 

   
 

Thus,
3

*

1
( ) ( ) ( )i i

i
D V t u t u t



   . (4.4)

Integrating (4.4) from T to t , 0t T , we have
3

*

1
( ) ( ( ) ( ) ) ( ) .

t

i iT
i

V t u t u t ds V T


    
Therefore,

3
*

1

( )( ( ) ( ) ) .
t

i iT
i

V Tu t u t ds


    (4.5)

By (4.5), we have
3

* 1

1
( ) ( ) ( , ).i i

i
u t u t L T



  

Because of the permanence of ODE (3.1),
3

*

1
( ) ( )i i

i
u t u t



 is uniformity continuous. With help of

Lemma 2.2, it follows that
*lim ( ) ( ) 0, ( 1,2,3).i it

u t u t i


  

This ends the proof of Theorem 4.1.

5. Numerical example
An example is given to validate the results achieved in this article. To prove the correctness of

the Theorem 4.1, we choose the 2-periodic function as the coefficients of ODE (1.1) and discuss
the following 3-species reaction-diffusion 2-periodic model with ratio-dependent functions. Based
on the assumptions 1 6( ) ( )H H of Theorem 4.1, with the help of some calculations we choose some
special values of parameters shown in models (5.1)-(5.2). It should be noted that, the selection of
above parameters is not unique.
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2
1 1 2

1 12
2 1

3

3 1

2

( , ) ( , ) (0.075 0.025sin ) ( , )( , )[(21 cos ) (13 sin ) ( , )
(0.95 0.05sin ) ( , ) ( , )

(0.065 0.035sin ) ( , ) ], 0, (0,2 ),
(0.97 0.07sin ) ( , ) ( , )

( , )

u x t u x t t u x tu x t t t u x t
t x t u x t u x t

t u x t t x
t u x t u x t

u x t
t

 


 


  
     

   


  
 






2
2 1

22
2 1

3
2

3 3 1
32

( , ) (4.9 0.1sin ) ( , )( , )[ (3.25 0.25cos )
(0.95 0.05sin ) ( , ) ( , )

(0.12 0.1sin ) ( , )], 0, (0,2 ),
( , ) ( , ) (4.8 0.1sin ) ( , )( , )[ (3.1 0.1cos )

(0

u x t t u x tu x t t
x t u x t u x t

t u x t t x
u x t u x t t u x tu x t t
t x




 



 
   

  
   

  
    

  3 1

2

.97 0.07sin ) ( , ) ( , )
(0.13 0.1sin ) ( , )], 0, (0,2 ),

t u x t u x t
t u x t t x


 













  

   

(5.1)

with the following initial values and Neumman boundary conditions

1 2 3( ,0) 1.6, ( ,0) 0.8, ( ,0) 0.85, (0, 2 ),u x u x u x x     31 2 0, 0, 0, 2 .uu u t x
n n n


 

    
  

(5.2)

By calculating, we have
* *
1 1 1 1
* *
2 2 3 3

* *
2 2 3 3

1 12 13 12 13 13 12

21 23 3 2 31

1.8333,  1.8334,  1.4127,  1.4126,
1.3581,  1.3582,  1.2902,  1.2903,
0.3794,  0.3793,  0.4593,  0.4592,

16.02,
 1.0161,

l l l m l m l

l m m l

M M m m
M M M M
m m m m

r b b a b a b
a a M r a

   

   

   

  

    32 2 3

13 13 31 312 12 21 2
11 2 2

12 2 1 13 3 1

12 1 21 12 1
32 2 2

12 2 1 12 2 1

13 1 31 13 1
23 2 2

13 3 1 13 3 1

1.1876,  
( )( ) 7.7374,

( ) ( )

0.3095,
( ) ( )

0.3176
( ) ( )

m m

m m mm m m
l

l l

m l l
m

l m

m l l
m

l m

a M r
a b a Ma b a Ma

b m m b m m
a M a b ma

b m m b M M
a M a b ma

b m m b M M

 


  

 

   
 

   
 

.

It is quite clear that that models (5.1)-(5.2) satisfy the assumptions of Theorem 4.1. From Theorem
4.1 it is easy to know that the system (5.1) has a spatial homogeneity strictly positive 2-periodic
solution 1 2 3( ( ), ( ), ( )).u t u t u t   Moreover, the solution 1 2 3( ( , ), ( , ), ( , ))u x t u x t u x t of models (5.1)-(5.2)

fulfills

 lim ( , ) ( ) 0i it
u x t u t


  , uniformly for (0, 2 )x  , 1,2,3i  .

By employing the finite differences method and the MATLAB 7.1 software package, we can obtain
some numerical solutions for the systems (5.1)-(5.2) which are shown in Figure 5.1 to Figure 5.3.
From Figures 5.1-5.3, it is not difficult to find that the systems (5.1)-(5.2) have a strictly positive
globally asymptotically stable spatial homogeneity 2- periodic solution.

Studying the conditions under which ecosystems are in equilibrium and how to artificially control
them has always been an important topic worthy of in-depth research. From theoretical results
(Theorem 4.1) and numerical simulations (Figures 5.1-5.3) obtained in this paper, it can be found
that the 3-species reaction-diffusion nonautonomous system (1.1)-(1.2) can be in equilibrium when
the prey grows rapidly enough and the two predator's capture rates are high enough. To be precise,
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in models (5.1)-(5.2), the densities of prey and predator will oscillate periodically with a period of 2
and distribute homogeneously in space when the time is long enough.

6. Conclusion
This article shows the great strength of UALS approach for nonlinear nonautonomous reaction-

diffusion equations. It’s widely used for solving the problems for nonlinear differential equations in
chemistry, engineering and mathematical physics etc. The technique constructing Lyapunov
function and a pair of ordered UALS provides a novel approach for reference to deal with the
nonlinear differential equation.

The problem of periodic solution for a 3-species nonautonomous reaction-diffusion predator-prey
system which have ratio-dependent functional responses is studied. The existence and stability of
the space homogenous strictly positive periodic solution are obtained for the nonautonomous
nonlinear reaction-diffusion equations only for some easily verifiable criterions. These criterions
improve and generalize some previous results. It is especially worth mention that it’s flexible for
applications due to the sufficient conditions obtained in this article are very simple. It should be
noted that in this study, we do not considered the delays in the model. However, in ecosystems,
time delays are widespread and can affect the stability of the system. Consequently, our next goal is
to study the multi-species nonautonomous diffusion ecosystem with time delays.
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Figure 5.1 Evolution process of the density for the species 1( , )u x t of systems (5.1)-(5.2)
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Figure 5.2 Evolution process of the density for the species 2 ( , )u x t of systems (5.1)-(5.2)

Figure 5.3 Evolution process of the density for the species 3( , )u x t of systems (5.1)-(5.2)
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